
Memento: Architectural Support for Ephemeral Memory
Management in Serverless Environments

Ziqi Wang
Carnegie Mellon University

Pittsburgh, USA
ziqiw@cs.cmu.edu

Kaiyang Zhao
Carnegie Mellon University

Pittsburgh, USA
kaiyang2@cs.cmu.edu

Pei Li
Carnegie Mellon University

Pittsburgh, USA
peili@andrew.cmu.edu

Andrew Jacob
Carnegie Mellon University

Pittsburgh, USA
ajacob@andrew.cmu.edu

Michael Kozuch
Intel Labs

Pittsburgh, USA
michael.a.kozuch@intel.com

Todd C. Mowry
Carnegie Mellon University

Pittsburgh, USA
tcm@cs.cmu.edu

Dimitrios Skarlatos
Carnegie Mellon University

Pittsburgh, USA
dskarlat@cs.cmu.edu

ABSTRACT
Serverless computing is an increasingly attractive paradigm in the
cloud due to its ease of use and fine-grained pay-for-what-you-use
billing. However, serverless computing poses new challenges to
system design due to its short-lived function execution model. Our
detailed analysis reveals that memory management is responsible
for a major amount of function execution cycles. This is because
functions pay the full critical-path costs of memory management in
both userspace and the operating system without the opportunity
to amortize these costs over their short lifetimes.

To address this problem, we propose Memento, a new hardware-
centric memory management design based upon our insights that
memory allocations in serverless functions are typically small, and
either quickly freed after allocation or freed when the function
exits. Memento alleviates the overheads of serverless memory man-
agement by introducing two key mechanisms: (i) a hardware object
allocator that performs in-cache memory allocation and free op-
erations based on arenas, and (ii) a hardware page allocator that
manages a small pool of physical pages used to replenish arenas of
the object allocator. Together these mechanisms alleviate memory
management overheads and bypass costly userspace and kernel
operations. Memento naturally integrates with existing software
stacks through a set of ISA extensions that enable seamless integra-
tion with multiple languages runtimes. Finally, Memento leverages
the newly exposed memory allocation semantics in hardware to in-
troduce a main memory bypass mechanism and avoid unnecessary
DRAM accesses for newly allocated objects.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3623795

We evaluate Memento with full-system simulations across a
diverse set of containerized serverless workloads and language run-
times. The results show that Memento achieves function execution
speedups ranging between 8–28% and 16% on average. Furthermore,
Memento hardware allocators and main memory bypass mecha-
nisms drastically reduce main memory traffic by 30% on average.
The combined effects of Memento reduce the pricing cost of func-
tion execution by 29%. Finally, we demonstrate the applicability of
Memento beyond functions, to major serverless platform operations
and long-running data processing applications.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; • Soft-
ware and its engineering→ Memory management.

KEYWORDS
Cloud computing, Serverless, Function-as-a-Service, Memory Man-
agement

ACM Reference Format:
Ziqi Wang, Kaiyang Zhao, Pei Li, Andrew Jacob, Michael Kozuch, Todd C.
Mowry, and Dimitrios Skarlatos. 2023. Memento: Architectural Support
for Ephemeral Memory Management in Serverless Environments. In 56th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’23), October 28-November 1, 2023, Toronto, ON, Canada. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3613424.3623795

1 INTRODUCTION
Memory management is responsible for a major chunk of datacen-
ter cycles as revealed by Google’s internal profiling [20, 25], despite
significant efforts in optimizing them in software [16, 32]. Unfor-
tunately, while long-running workloads have some opportunity to
amortize part of their memory management costs over their long
runtimes, this is not the case for short-lived functions. Prior work
on serverless computing [17, 22–24, 29, 43, 45–47, 50, 51, 53, 54,
58, 59], has mostly focused on reducing the cold-start effects of
functions [2, 3, 6, 14, 18, 39, 48, 52, 55, 56, 60]. However, memory

https://orcid.org/0000-0003-0067-0701
https://orcid.org/0000-0002-7856-4274
https://orcid.org/0009-0003-3844-8556
https://orcid.org/0009-0001-3977-9715
https://orcid.org/0009-0009-0939-3297
https://orcid.org/0000-0003-4076-5684
https://orcid.org/0000-0002-0289-5499
https://doi.org/10.1145/3613424.3623795
https://doi.org/10.1145/3613424.3623795

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ziqi Wang et al.

management still relies on expensive allocation and deallocation
paths on the critical path of function execution, leading to major
overheads in serverless environments.

In particular, functions pay the full cost of memory allocation
and deallocation in both userspace and the OS on the critical path of
their short runtime. For example, consider the overheads of typical
memory management operations. For starters, applications must
pay the cost of memory management in userspace, where each
allocation and free typically requires tens of instructions in popular
high-level languages for serverless environments (e.g., Python).
Furthermore, userspace allocator rely on the OS to actually allocate
physical memory. However, the allocation path in the OS, either
performed at system call time, such as mmap or later on at access time
through page faults, is inherently expensive. This is because of the
creation of page tables and the actual physical memory allocation
and bookkeeping, requiring additional thousands of instructions.

In this paper, we focus on reducing the performance overhead of
memorymanagement for serverless functions. To better understand
the characteristics of memory management in serverless functions
and to expose opportunities for optimization, we first start with
a detailed investigation of function behavior across several func-
tions and three language runtimes that cover a wide spectrum of
memory management behavior. Beyond serverless functions, we
further investigate serverless platform operations such as func-
tion deployment, and long-running data processing applications.
Our analysis reveals three key insights. First, the vast majority
of allocations are relatively small, no larger than 512 bytes. This
characteristic is partly due to the usage of high-level languages,
where small objects are used extensively. Second, the allocation
lifetime is bimodal based on the language runtime. In particular,
objects are either allocated and freed shortly after, usually within
less than 16 other allocations of the same size class. Alternatively,
allocations are often not freed due to the short runtime of functions
and they are instead batch-freed by the OS when the function exits.
Finally, memory management spends a significant amount of cycles
in userspace and within the OS. Especially in high-level language
runtimes, almost half of memory allocation cycles are spent in the
OS.

Based on these insights we proposeMemento, a holistic hardware-
centric design that optimizes memorymanagement bymovingmost
of the work on the software critical path to hardware. Memento
introduces two key mechanisms that operate in tandem. The first
is a hardware object allocator that tracks objects using arenas and
performs memory allocations and frees in novel per-core metadata
cache called the Hardware Object Table (HOT). Due to the small
sizes of allocations, a small number of size classes can be efficiently
cached. Furthermore, for allocations that are allocated and quickly
freed allocation metadata exhibit temporal locality. Therefore, the
hardware object allocator can satisfy requests entirely in the meta-
data cache within only a few cycles.

The second mechanism in Memento is a hardware page alloca-
tor that manages a small pool of free virtual and physical pages.
The hardware page allocator serves the dual purpose of (i) replen-
ishing the hardware object allocator with free virtual pages that
constitute arenas; and (ii) backing virtual pages with physical mem-
ory on-demand when a virtual page is accessed for the first time.
The hardware page allocator removes the kernel path of memory

management from the critical path of function execution, thereby
avoiding invoking expensive system calls and page fault handlers.
Furthermore, for allocations that are batch-freed at the end of func-
tion execution, the hardware page allocator can deallocate their
memory with low latency.

Overall, these two mechanisms work together in a complemen-
tary fashion that resembles the userspace and kernel path in the
current software stack. Memento naturally integrates with the ex-
isting software stack by adding two new instructions to the ISA for
allocation and deallocation of memory. The hardware design and
interface of Memento enable seamless integration with both com-
piled and interpreted languages, including those with and without
garbage collection.

Finally, Memento leverages the newly exposed memory alloca-
tion semantics in hardware to introduce a main memory bypass
mechanism. Memento detects newly allocated objects and avoids
unnecessary DRAM accesses. Instead, Memento instantiates lines
entirely in the cache hierarchy.

We evaluate Memento with full-system simulations running a
diverse set of serverless workloads and three language runtimes
in a containerized environment. The results show that Memento
achieves function execution speedups ranging between 8–28% and
16% on average. Furthermore, Memento’s hardware allocators and
memory bypass mechanisms drastically reduces main memory
traffic by 30%. The combined effects of Memento reduce the pricing
cost of function execution by 29%. Finally, we demonstrate the
applicability of Memento beyond functions, to major serverless
platform operations responsible for deploying function instances,
and long-running data processing applications.

This paper’s contributions are:
• A detailed study of the memory management behavior of
serverless functions that identifies the costs and optimization
opportunities of memory management operations in both
userspace and the OS kernel.

• A novel arena-based hardware object allocator and a Hard-
ware Object Table(HOT) that enables hardware to fully man-
age userspace memory allocations.

• A hardware page allocator that manages virtual and physi-
cal address assignment to allocation arenas, replenishes the
hardware object allocator, and eliminates the OS costs of
memory management.

• A main memory bypass mechanism that leverages the in-
troduction of memory allocation semantics in hardware to
avoid unnecessary DRAM accesses.

• The evaluation of Memento across a large set of serverless
functions that shows Memento significantly improves their
performance, bandwidth usage, and runtime cost. It fur-
ther shows that Memento is applicable beyond functions
to serverless platform operations and data processing appli-
cations.

2 BACKGROUND AND OPPORTUNITIES ON
MEMORY MANAGEMENT

This section first provides a background on memory management
in userspace and the OS. Then we showcase the memory behavior
of serverless workloads.

Memento: Architectural Support for Ephemeral Memory Management in Serverless Environments MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

User space
Kernel space

mmap4PF Handler7

Used pools

Free pools 3

2
Size Classes

…

Allocated
Free

A=allocate(8)

access(A)

free(A)

1

5

6

Buddy Allocator

Figure 1: Memory management overview.

2.1 A Day in the Life of a Memory Allocation
Memory management is split between userspace and OS operations.
Typically, variable byte-sized allocations are performed in userspace
while the OSmanages memory resources at the granularity of pages.
Referencing Fig. 1, we describe the steps and effects of memory
allocation and free, based on a typical example of userspacememory
allocation, and then shed light on the steps performed by the OS.
UserspaceOperations.Weuse the CPython implementation of the
heap allocator, pymalloc [1], as an example to describe the allocator
procedure. Allocators in other high-level language runtimes also
follow similar steps. The allocator requests memory from the OS at
the granularity of 256KB arenas and then splits them into smaller
4KB pools. Free objects within a pool are organized as linked lists,
and each pool serves allocation requests of a particular size class.
On an allocation request, the size class is computed by aligning the
requested size up to the nearest 8-byte boundary (Step 1○ in Fig. 1).
Then, the allocator checks the per-size class free pool list, and
if a pool with free objects is present, the head entry of the free
list is returned to the caller (Step 2○). However, if no free objects
can be found, the allocator attempts to grab a new free pool from
the free pool list (Step 3○) and tries again. If there are no free
pools, mmap in the kernel is called to allocate more arenas (Step 4○).
Allocation requests that are larger than 512 bytes by default are
directly serviced by malloc in glibc, which eventually calls mmap
as well.

On a free operation (Step 5○), the pool header is first obtained
by aligning the address down to the nearest 4KB boundary. Then
the object is returned to the pool by linking it to the head of the
free list. If the free operation turns the pool entirely free, then the
pool is returned to the free pool list. Finally, if all pools in an arena
become free, the allocator returns its memory by calling munmap.
Kernel Space Operations. Userspace allocators request memory
allocations from the kernel through system calls. Continuing the
above example, when the mmap [36] system call is invoked (Step 4○),
it performs the following. First, mmap finds an unused region of
addresses in the virtual address space of the process and then sets up
mapping metadata describing the allocation. Note that no physical
storage backs the virtual address region allocated in this stage.
Instead, the system call only returns the region’s start address to
the userspace without setting up any virtual-to-physical mapping.

As a result, when the software accesses a newly allocated virtual
memory page for the first time, a page fault will be raised (Step 6○)
by hardware due to lacking a valid address mapping. The page fault
is serviced by a kernel handler, which finds the mapping metadata
set up earlier by mmap on the faulting address. In this stage, the

[1,
 51

2]

[51
3,

10
24

]

[10
25

, 1
53

6]

[15
37

,20
48

]

[20
49

,25
60

]

[25
61

,30
72

]

[30
73

,35
84

]

[35
85

,40
96

]

[40
97

,In
f]

0

20

40

60

80

100

%
 o

f T
ot

al
 A

llo
ca

tio
ns Python

C++
Golang
Data Proc
Serverless Pltf

Figure 2: Allocation size (Bytes)

handler performs physical memory allocation by requesting a free
physical page from the kernel’s physical page allocator and then
setting the corresponding page table entry to point to the physical
page (Step 7○). Eventually, the faulting memory access is retried
and will land on the newly allocated physical page.

Applications deallocate memory through the munmap [36] system
call that performs the opposite steps. First, munmap tears down the
mapping metadata. Then it walks the page table entries describing
the mapping, clears page table entries, and returns physical pages to
the kernel as needed. Finally, if relevant page tables become empty,
they are also freed.

2.2 Memory Management Behavior
Short-lived functions pose new challenges to memory management.
In this section, we study thememory behavior of function execution
across serverless workloads based on four suites [11, 19, 28, 40]
and three languages, Python, C++, and Golang. To characterize
the allocation sizes and lifetimes of functions we instrumented
the allocators of each language and collected allocation traces. We
normalize the number of allocations of each function, then we ag-
gregate across functions, and show the per language breakdown.
We further characterize separately four long-running data process-
ing applications (Data Proc) written in C++ and three key serverless
platform operations (FaaS Pltf) written in Golang. We further show
a breakdown between userspace and kernel memory management.
We discuss our workloads in detail in Section 5.
Allocation Sizes and Object Lifetimes in Userspace . Fig. 2
shows the object size distribution in 512-byte increments. The re-
sults show that allocations are small. Specifically, 93% of allocations
are smaller than 512 bytes. For several workloads, small allocations
can account for more than 98% of all allocations. Large allocations
are a rare occurrence. Size distributions within 512 bytes are heavily
workload-dependent and we did not observe any consistent pat-
terns for small allocations across the workloads. In data processing
applications, small allocations account for 98%, while for the server-
less platform, 99% of allocations are smaller than 512 bytes. Overall,
small allocations dominate across Python, C++, and Golang.

To characterize object lifetimes, we define a lifetime metric based
on the malloc-free distance. In particular, we compute the number
of allocations of the same size class before the object is freed. This
is a good predictor of allocation metadata locality. Fig. 3 shows
the average lifetime distribution of object allocations. The results

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ziqi Wang et al.

show that function allocation lifetimes exhibit a bimodal behavior.
Specifically, 71% of allocations are short-lived as they are freed
within only 16 allocations of the same size class. On the other hand,
27% of allocations are long-lived and rely on OS deallocation when
the function exits. Furthermore, object lifetime is highly depen-
dent on the language runtime. Specifically, for C++ the majority
of allocations are short-lived, while for Python they are primarily
short-lived except for a few long-lived ones. Furthermore, Golang
allocations are long-lived because garbage-collection is not invoked
due to the short runtime of functions and allocations are batch-
freed at the end of function execution. Finally, in the serverless
platform case, most allocations are long-lived due to the Golang
garbage collection. Data processing applications written in C++
exhibit primarily short-lived allocations.

[1-
16

]

[17
-32

]

[33
-48

]

[49
-64

]

[65
-80

]

[81
-96

]

[97
-11

2]

[11
3-1

28
]

[12
9-1

44
]

[14
5-1

60
]

[16
1-1

76
]

[17
7-1

92
]

[19
3-2

08
]

[20
9-2

24
]

[22
5-2

40
]

[24
1-2

56
]

[25
7-I

nf]
0

20

40

60

80

100

%
 o

f T
ot

al
 A

llo
ca

tio
ns

Python
C++
Golang
Data Proc
Serverless Pltf

Figure 3: Allocation lifetime (Malloc-Free distance).

In Table 1 we show the joint distribution of allocation size and
lifetime for functions. On average, 61% of allocations are both small
and short-lived. These objects are small in size and freed quickly
after allocation. For several workloads, short-lived and small al-
locations account more than 80% and up to 96% of all allocations.
Furthermore, 32% of allocations are long-lived and small. Finally,
larger allocations account for 7% of total allocations with the major-
ity being short-lived. Separately from the table, in data processing
applications, 97% of the allocations are both small and short-lived.
In the case of the serverless platform, 99% of the allocations are
small while being long-lived.

Small Large

Short-lived 61% 6.55%

Long-lived 32% 0.45%

Table 1: Combined distribution of size and lifetime.

Kernel Impact. We further characterize the impact of kernel mem-
orymanagement in serverless workloads for different languages. Ta-
ble 2 shows the breakdown. In C++ workloads, the majority of the
memory management overhead originates from userspace, account-
ing for 96% of the total memory management costs. We find that
such behavior is due to the smaller heap working set size of C++ ap-
plications. On the other hand, for Python and Golang runtimes, the
kernel memory management overhead is substantial, accounting

Python C++ Golang
FaaS
Platform

Data
Proc.

User/Kernel 48%/52% 96%/4% 56%/44% 59%/41% 38%/62%

Table 2: Memory Management Cycles Breakdown.

for 52% and 46% respectively, due to their relatively larger working
sets. For the serverless platform, userspace accounts for 59% while
the kernel accounts for 41%. In data processing applications, the
split is 38% and 62%. Overall, both userspace and kernel memory
management play a critical role in serverless functions.
Insights and Implications. Our detailed study illustrates three
prominent memory management behaviors of serverless workloads.
First, most objects exhibit varying patterns in small objects under
512 bytes. Therefore, the allocator should optimize for small and
varying size classes. Second, most objects are freed shortly after
allocation, indicating that they are short-lived. The allocator should
prioritize short-lived object handling and take advantage of the
strong allocation metadata locality. Third, our detailed study of
serverless functions highlights that both userspace and kernel allo-
cations play a substantial role. Especially for Python and Golang
runtimes, addressing only the userspace component would leave
almost half of the memory management overhead intact. Beyond
functions, we observe similar behavior in the serverless platform
operations and the data processing applications.
Guiding the Design of Memento. Based on these insights, we
design Memento, a holistic hardware-centric approach to eliminate
the overheads of memory management. To handle varying patterns
of object sizes under 512 bytes, Memento maintains multiple size
classes. Allocations in each size class are satisfied by the dedicated
metadata for that particular size class. Furthermore, Memento lever-
ages the strong temporal locality of allocation metadata by adding a
hardware object allocator that caches allocation metadata near the
processor. Hence, Memento fulfills most allocation requests in only
a few cycles. Then, Memento introduces a hardware page allocator
to fulfill the needs of the object allocator and eliminate the cost of
kernel memory management for serverless workloads. Finally, Me-
mento leverages the newly exposed memory allocation semantics
in hardware to introduce a main memory bypass mechanism and
avoid unnecessary DRAM accesses for newly allocated objects.

3 MEMENTO DESIGN
The design of Memento consists of two mechanisms that operate
in tandem to handle userspace and kernel memory management
operations. The first mechanism is an arena-based hardware object
allocator that is located close to the core and it is responsible for
object allocation and deallocation. The hardware object allocator
interfaces with the software stack through a set of ISA extensions
that provide malloc and free semantics and enable a seamless
integration with language runtimes. Next, Memento introduces a
hardware page allocator at the memory controller that manages
physical pages. The hardware page allocator replenishes the object
allocator with physical memory-backed arenas on-demand. Finally,
Memento builds on top of the newly exposed memory allocation

Memento: Architectural Support for Ephemeral Memory Management in Serverless Environments MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Hardware
Object

Allocator
Arena List

Size Class
Arenas

1

2

Arena

3

4 Hardware
Page Allocator

Request
Arena

Page Pool
5

7
Header …

Body obj1obj2 …
2.…
3. free(ptr)3.free(obj2)

Application

6

1.obj1 = malloc(8)

Figure 4: Memento’s memory management workflow.

semantics in hardware to design an effective main memory by-
pass mechanism that enables newly allocated objects to completely
avoid expensive DRAM accesses. Through this set of mechanisms,
Memento drastically reduces the cost of memory management in
userspace and kernel by servicing most memory allocation and deal-
location requests with a latency equivalent to a single roundtrip to
the L1 cache, improving performance and reducing main memory
memory traffic.
Memento’s Workflow In Fig. 4 we show a high-level overview
of Memento’s workflow and how the hardware object and page
allocator cooperate to satisfy memory management operations.
First, upon an allocation (step 1○), the hardware object allocator will
identify the size class of the request. In step 2○, the corresponding
arena from the arena list will be selected. Next, in step 3○, the
hardware object allocator (which caches arena headers) will identify
and mark a free location within the arena’s header where allocation
metadata is stored. The arena metadata can be used to identify
the location of the body of the arena storing the allocated objects.
Finally, the allocated virtual address is returned to the caller.

In the scenario that an arena containing free objects is unavail-
able, the hardware object allocator requests an arena from the
hardware page allocator, as shown in step 4○. The hardware page
allocator then allocates the appropriate number of pages from the
page pool (shown in step 5○) and returns the new arena to the hard-
ware object allocator. Upon a free operation (step 6○), the hardware
object allocator performs the reverse operations that undo object
allocation. Specifically, the allocator will clear the appropriate meta-
data entry of the arena header, as shown in step 7○. Similarly, the
hardware object allocator notifies the hardware page allocator to
free arenas and returns pages to the free page pool.

3.1 Hardware Object Allocator
Conceptually, the hardware object allocator performs userspace-
level memory management operations. The goal of Memento is to
provide a general interface that can seamlessly support language
runtimes instead of hardwiring the design to any particular software
allocator. To this end, in Memento we opt to provide the abstraction
of an object allocator through an interface similar to malloc and
free drastically simplifying integration with software. To realize
this interface, we extend the ISA with two new instructions for
allocating and freeing objects: obj-alloc and obj-free.

The obj-alloc instruction carries the requested allocation size
as an operand. When executed, it returns the virtual address point-
ing to a memory block that is available for use and satisfies the
requested size. The obj-free instruction has the virtual address to
be freed as its operand, and it deallocates the block so that future
allocations can reuse the block.

Hardware Object Table Entry

Arena Header Available
List HeadPA Full List

Head

VA

Arena Header

Bitmap [00| 11|…|0255] Prev Next Obj255…Obj1Obj0

Arena Body

+ (a)

(b)

Bypass
Counter

Figure 5: Memento’s layout of the (a) arena header and body,
and (b) hardware object table entries.

We next discuss the two main components of the hardware ob-
ject allocator: (i) Memento arenas that track object-level allocations,
and (ii) the hardware object table (HOT) that facilitates arena man-
agement in hardware.
Memento Arenas. The object allocator tracks the allocation status
of memory addresses by maintaining bookkeeping information in
the unit of arenas. An Memento arena is a consecutive range of
virtual addresses and it serves allocation and free requests of only
one specific size class during its lifetime. Fig. 5(a) shows the arena
layout, which includes the header and the body.

An arena header includes four parts: (i) a virtual address (VA)
field, (ii) an allocation bitmap, (iii) a bypass counter, and (iv) two
pointers to doubly-linked lists of same-size-class arenas. The VA
field stores the base virtual address of the arena. The bitmap is
used for tracking the allocation status of objects. A set bit in the
bitmap indicates that the object at the corresponding offset has
been allocated. The arena body is an array of objects of the same
size. The combination of the VA field with the offset of a bitmap
entry points to the allocated object in the arena body. Each arena
contains a fixed number of objects. In our experiments, we set this
parameter to 256 objects per arena, balancing metadata cost and
internal fragmentation.

Arenas are organized into arena lists for each size class. Specifi-
cally, two lists are maintained per size class. The first is an available
list tracking arenas with at least one free object, and the second
is a full list tracking arenas without any available objects. In addi-
tion, arenas are connected to the the appropriate list through the
prev and next pointers. The bypass counter is used to support main
memory bypass of new allocations. We further discuss the main
memory bypass design of Memento in Section 3.3.
Hardware Object Table. The core of the hardware object alloca-
tor is the Hardware Object Table (HOT). The HOT holds the most
recently used arena header for each size class. Based on our analy-
sis in Section 2.2 we opt to support allocations up to 512 bytes in
8-byte increments, resulting in a total of 64 size classes. Fig. 5(b)
shows the HOT entry layout. Each entry stores a cached copy of the
arena’s header fields, which are loaded from memory. Additionally,
to support operations on the available and full list, HOT entries also
contain the following: (i) the PA field storing the physical address
of the arena, and (ii) two pointers, the available list head and full
list head pointers, which store the physical addresses of the first
arenas in the available and full list of the size class, respectively.

The hardware object allocator manipulates the hardware object
table for initialization, allocation, and free operations following the
steps in Fig. 6.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ziqi Wang et al.

Initialization 1 Allocation 5

Request Arena from
Page Allocator 2

Set Arena Header 3

Load HOT Entry 4

Lookup HOT 6

Set Bitmap 7 Load Arena 8

Hit Miss

No Valid Arena 9

Free 10

Lookup HOT 11

Clear Bitmap 12 Load Arena 13

Hit Miss

Figure 6: Hardware object allocator steps for initialization,
allocation, and free operations.

Initialization. On initialization (1○), an arena is allocated for each
size class by requesting free pages from the page allocator (2○). We
further describe the design of the hardware page allocator in Sec-
tion 3.2. Individual arenas are initialized by preparing the arena
header (3○) via clearing the bitmap and the linked list prev and
next pointers. The arena header’s VA field is set to the virtual ad-
dress assigned to the arena. The PA of the HOT entry is set to the
header’s physical address returned from the page allocator. The
available and full list head pointers are set to indicate that both lists
are empty. Finally, the initialized arena header is loaded into the
corresponding HOT entry of the allocator (4○).
Allocation.On an allocation request (5○), the size class is computed
by rounding the requested size up to the nearest 8-byte boundary.
Then theHOT entry is located swiftly using the size class as an index
without any associative search (6○). Next, the bitmap is scanned.
Three cases might occur in this step which we discuss next.

In the most common case, a cleared bit is found, and the alloca-
tion completes quickly by setting it (7○). The allocator computes
the address of the allocated object based on the entry’s VA field and
the position of the bit in the bitmap before returning the computed
address to the core. We refer to this scenario as an allocation “HOT
hit”.

In the rare scenario that a zero bit cannot be found, indicating
that the arena is currently full, the hardware will then use the
available list pointer to load the next arena header into the HOT
entry from the memory hierarchy (8○). Meanwhile, the hardware
replaces the existing entry by writing it back to the corresponding
memory location using the PA field of the replaced entry. The
hardware also performs two additional list operations. First, the
full arena being replaced is inserted into the full list as the head.
Furthermore, the newly loaded arena is removed from the head of
the available list.

Finally, if the available list field indicates that no valid arenas
exist, a new arena is allocated and loaded into the HOT entry
by requesting more pages from the page allocator (9○). The new
arena is initialized following the initialization procedure described
earlier. Finally, the current full arena is inserted into the full list. We
refer to the last two scenarios as an allocation “HOT miss”. As an
optimization, the hardware allocator may eagerly load an available
list arena or requests a new arena at the moment the last valid object
of the current HOT entry is allocated. The hardware allocator can
hide the potential latency of HOT misses in this manner.
Free.On a free request (10○), the hardware identifies the appropriate
arena by calculating the base virtual address and size class of the
arena.This is performed by using the operand of obj-free, which

is the virtual address of the object. The calculation only requires
simple bit operations, as we will discuss shortly in Section 3.2.

After obtaining the size class, the arena’s base address is com-
pared to the VA field of the corresponding HOT entry (11○). In the
common case, the VA matches, and the free “hits” in the HOT. The
appropriate bit in the bitmap is cleared, and the free operation com-
pletes (12○). If the VA does not match, the free “misses” in the HOT,
and the following steps are performed (13○). First, the hardware allo-
cator translates the arena’s base address to the physical address by
requesting a translation from the TLB. Next, the hardware allocator
fetches the header from the memory hierarchy using the physical
address from the previous step. Finally, the hardware clears the
appropriate bit in the header’s bitmap and writes the header back.

In the case of a HOT miss, if the arena is in the full list (having
its all its bitmap set) before the free operation, then the arena will
be moved to the available list. The hardware removes the arena
from the full list and inserts it into the head of the available list by
updating the appropriate pointers.

3.2 Hardware Page Management
As our study in Section 2.2 revealed, the cost of OSmemorymanage-
ment operations can be significant in serverless functions. A major
challenge to reduced this cost in hardware is how to efficiently
manage the virtual and physical page assignments. To address this
challenge, Memento introduces a lightweight page allocator that
drastically reduce the cost of memory management costs induced
by the OS.

The Memento page allocator is a hardware component located
on the memory controller, and it interfaces with the object allocator
for page-level operations. The two primary responsibilities of the
page allocator are: (i) allocating arenas to the object allocator in the
virtual address space, and (ii) managing a small pool of physical
pages and using them to allocate arenas. Next we discuss how
Memento manages virtual and physical addresses for arenas.

Managing Arena Virtual Addresses. For each process that uses
Memento, the OS reserves a region of virtual addresses from the pro-
cess’s address space. The OS exposes the begin and end addresses
of the region to the hardware through special region control regis-
ters on the core and the memory controller, which we refer to as
MementoRegion Start (MRS) and MementoRegion End (MRE). These
two registers are managed in a multicore system at a per-address
space level, i.e., each executing process maintains its private pair
of registers backed by per-process memory locations. The OS is
responsible for spilling and loading the region control registers into
and from memory on context switches.

Memento divides the reserved virtual address region evenly into
64 size classes. This key design decision enables the hardware object
allocator to calculate the size class and the arena’s base address
by simple bit operations. Given an object’s address, the hardware
calculates the size class by dividing the address offset in the region
by 64. The arena base address is calculated by further rounding the
offset within the size class down to the arena size of that particular
size class. Note that the rounding can be implemented in hardware
efficiently because the arena sizes are known in advance.

The first responsibility of the page allocator is to allocate virtual
addresses to arenas. This scenario occurs when the object allocator

Memento: Architectural Support for Ephemeral Memory Management in Serverless Environments MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

runs out of arenas and requests a new one from the page allocator.
In Memento, an arena can consist of single or multiple pages de-
pending on the particular size class of the arena. Therefore, the page
allocator maintains a per-size-class pointer as the starting address
of the next allocation. On receiving an allocation request for a new
arena, the page allocator bumps the pointer of the requested size
class forward by the arena size of that size class. In addition, a phys-
ical page is also eagerly allocated to back the first page of the arena
containing the header. Both the virtual and physical addresses are
sent back to the object allocator, which then uses them to initialize
the VA field of the arena header and the PA field of the HOT entry,
respectively.

On a multiprocessor system, the page allocator maintains per-
size-class pointers for each core in a reserved memory block, and
enables fast access to frequently used entries with a small on-chip
cache called the Arena Allocation Cache (AAC). The AAC is direct-
mapped using core IDs as indexes, and each entry stores the pointers
for frequently used size classes. In practice, a small number of size
classes per workload is sufficient to cover most of its memory
allocation activities.

Assigning Physical Pages to Arenas. The second responsibil-
ity of the page allocator is to assign physical pages to the arenas
handed out to the object allocator. For this purpose, the page allo-
cator implements two additional components. The first is a simple
physical page pool consisting of free physical pages replenished
by the OS on-demand. The second is a hardware-managed page
table that tracks the virtual-to-physical address mapping for arenas.
We next describe how Memento’s hardware page allocator maps
arenas to the physical address space.

As mentioned earlier, when the hardware page allocator gives
out new arenas, it physically backs only their first page. This de-
sign decision is deliberately made to simplify the operation of the
object allocator, as the object allocator will initialize the metadata
located on the first page of the arena right after an arena is allo-
cated. However, the page allocator does not back the rest of the
arena’s virtual addresses. Instead, physical pages are assigned to
these virtual addresses only on the first access, reducing potential
memory waste.

When arena memory is accessed for the first time, the MMU
attempts to translate the accessed virtual address, which will incur
a TLB miss and a subsequent page walk. Then the MMU will first
check whether the virtual address lies in the process’s reserved
Memento address region by comparing the requested virtual ad-
dress against the pair of region control registers. Supposing that
the address lies in the Memento address region, the MMU then
conducts the page walk from a different page table root address,
specified by a Memento Page Table Root (MPTR) register (instead
of the regular one, e.g., CR3). The MMU issues page walk requests
marked with a special flag that will be identified by the page allo-
cator. The hardware page allocator manages a Memento page table
for each process similarly to the kernel. The only exception is that
the page allocator constructs the Memento page table on page walk
requests and automatically expands the table when encountering
invalid entries.

Memory
Controller

Page
Allocator

Page Pool

DRAM
4

p=obj-alloc(8) obj-free(p)

L3

L1-I
L2L1-D

HOT
Object

Allocator

MMU

1

3

Core 2

Figure 7: Memento Design Overview

On receiving the page walk request, the page allocator fetches
and returns the Memento page table entry using the physical ad-
dress in the walk request, if the entry is valid. If, however, the valid
bit of the entry is 0, meaning the virtual address is currently not
mapped, then one of the following happens before the page alloca-
tor returns the entry. In the first case, the walk is on the leaf level.
The page allocator will proceed to allocate a new physical page
and populate the leaf entry with the page’s address. Otherwise,
if the entry is higher up in the page table tree (e.g., it could be a
PGD, PUD, or PMD entry on x86), the next level of the Memento
page table is allocated from the pool and zeroed out (i.e., all entries
are invalid). Eventually, all levels on the page walk path will be
populated, after which the page walk concludes.

The TLB inserts the mapping after the page walk is complete.
Future memory access will proceed as any other memory accesses.
Moreover, future page walks on the arena address will not cause
new allocation since both the Memento page table and the address
are backed by physical memory.

Memento sets the permissions of all arena pages to readable,
writeable, and non-executable. The page allocator sets this per-
mission combination in the mapping entry returned to the page
walker. While other combinations are also generally valid, in Me-
mento, we choose to solely support heap memory allocation, where
this combination alone is sufficient. This design decision dramati-
cally simplifies Memento by avoiding complex use cases such as
file-backed allocation.

The page allocator also handles arena frees, which occurs when
the object allocator has freed the last live object within an arena.
The page allocator walks the Memento page table and reclaims
physical pages backing the arena. The corresponding page table
entries are also invalidated, with page table pages freed if the last
valid entry in it is invalidated.

When freeing an arena, TLB shootdowns are sent to cores that
have issued page walk requests on the address space in the past.
To identify which cores should receive the shootdown request, the
hardware page allocator tracks per-process shootdown information
using a hardware bit vector, the length of which equals the number
of cores in the system. Note that typical serverless workloads are
single-process and single-threaded, and as a result, this procedure’s
cost is negligible. Overall, the hardware page allocator in Memento
enables applications to acquire memory from the Memento address
region without incurring any OS costs, saving on both context
switch and kernel code execution.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ziqi Wang et al.

3.3 Main Memory Bypass
By exposing memory management semantics to hardware, Me-
mento can enable previously difficult optimizations. To this end,
Memento takes a first stab at this direction by leveraging alloca-
tion semantics in hardware to introduce a main memory bypass
mechanism. Our main insight is that newly allocated objects do not
need to be fetched from main memory and hence can be entirely
instantiated in the cache hierarchy. This is safe because software
should not have any expectation of data in newly allocated objects,
hence Memento can simply provide a zeroed line.

The primary challenge lies in identifying which requests can
bypass main memory. Since Memento is responsible for handling
allocation and free operations identifying newly allocated objects
is feasible. However, tracking which cache lines of an object can
bypass main memory is difficult. This is because maintaining a full
bitmap for every allocation would be prohibitively expensive.

As we revealed in Section 2.2, function allocations are short-lived.
As a result, our insight is that allocations tend to have high reuse
and enjoy high cache locality. Hence, it is important to bypass main
memory at the first allocation. Furthermore, allocation metadata
maintained in the arena header are densely populated and cold
allocations are performed the first time an entry in Memento’s
arena header bitmap is set.

Based on these insights, Memento introduces an effective track-
ing mechanism that sequentially counts the lines of an allocation
that have been accessed. To this end, Memento leverages the Bypass
Counter in the arena header (Fig. 5) to track accessed cache lines.
Specifically, cachelines with indices higher than the counter are
guaranteed to have not been accessed before and hence it is safe to
bypass main memory. The counter is only 11-bits which is sufficient
to track the maximum number of cache lines in an arena. When
there is an access to a line of an object allocated by Memento, the
corresponding Bypass Counter is set to the index of the line if it
is higher than the counter value. Similarly, the counter is decre-
mented on a free if the index matches the counter. On an L1 miss,
Memento’s HOT identifies if this request is a main memory bypass
request. To simplify integration with cache coherence, Memento
allows the request to propagate regularly to the LLC where the line
is instantiated instead of being fetched from DRAM. As a result,
costly DRAM access for newly allocated objects are avoided.

3.4 Putting It All Together
Fig. 7 shows overall design of Memento with the main compo-
nents depicted in gray. The OS exposes Mementomemory regions
to the processor through control registers, MRS and MRE. Appli-
cations communicate with Memento through the ISA extensions
obj-alloc and obj-free that allocate and free objects (1○). The
hardware object allocator (2○) is responsible for managing the mem-
ory arenas and the corresponding arena lists. The MMU further
maintains an additional control register, the MPTR, that enables
page walks to traverse the page tables that belong to the Memen-
tomemory region. Memento may instantiate a new object in the
last level cache upon first access and bypass DRAM, if possible
(3○) Finally, to allocate new arenas, the hardware object allocator
requests free pages from the hardware page allocator that lives in
the memory controller (5○).

4 DISCUSSION
Integrating With Software Memory Allocators. Memento fo-
cuses primarily on small object allocations within 512 bytes. Larger
allocations, which are rare in serverless workloads, are handled
by software. We propose two approaches that enable Memento
to integrate with software allocators. The first approach is to let
malloc check the allocation size. If the size is within 512, the soft-
ware malloc will use Memento to fulfill the allocation. Similarly,
free will check whether the object pointer to be deallocated lies in
the Memento memory region. In this scenario, Memento executes
the free. An alternative approach is to expose the address of the
software allocation and free function calls and let Memento redi-
rect control accordingly. For simplicity, our design opts for the first
approach so that the existing malloc/free interfaces exposed to
the application remain unchanged.
Interaction with Garbage Collection.Memento naturally sup-
ports garbage collection (GC). For example, both the Python and
Golang frameworks that we use in our experiments have GC run-
times: they use reference counting and mark-and-sweep, respec-
tively. Memento integrates seamlessly with both of these GC run-
times as follows: when the GC algorithm decides to free allocated
objects, it uses Memento’s obj-free interface to perform the free
operation, thereby enjoying the same benefits from Memento’s
hardware support as non-GC’ed languages. Looking ahead toward
potential future research, Memento creates interesting opportuni-
ties for extending GC algorithms to take advantage of Memento
to manage ephemeral objects more efficiently. For example, al-
though Memento does not help with tracking liveness, it could
be integrated with an enhanced GC algorithm to help differenti-
ate between ephemeral and non-ephemeral allocations. Once this
distinction is made, the GC algorithm could leverage Memento
to proactively free dead ephemeral objects before they create too
much cache pressure rather that waiting to free objects when there
is too much memory pressure. We leave this exploration to future
work.
Multi-core Support. Current serverless workloads are single-
process, but multiple independent functions can be collocated on
the same server. To support multi-tenancy, the OS flushes the HOT
table before a process is context switched. As we will see in Sec-
tion 6.6, this operation is inexpensive as the HOT table is small.

Although today’s serverless function workloads are typically
single-threaded, Memento does support multi-threaded applica-
tions. Existing software allocators rely on locks to atomicallymodify
allocation metadata. To avoid frequent synchronization overheads,
modern allocators often leverage per-thread pools. In Memento,
we follow a similar design where each thread in Memento man-
ages its own arena whose virtual address range is maintained by
hardware. As a result, allocations within each thread’s own arena
are managed the same way as in a single-threaded case. Note that
since allocations are performed within a thread’s arena there are
no races on the allocation path.

The interesting scenario is when an object that is allocated by
one thread is deallocated by a different thread. In practice, we do
not expect this to be the common case, because it would require
passing pointers through shared memory between threads; while
this is possible, allocated objects are more typically deallocated by

Memento: Architectural Support for Ephemeral Memory Management in Serverless Environments MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

the same thread. The first step in handling this case is recognizing
that the object was allocated by a different thread, which Memento
does by comparing the virtual address of the object with the virtual
address range of its own arena (which is maintained by hardware).
Once this scenario is recognized, Memento can use either software-
assisted or hardware-only approaches to deallocate the object. To
amortize the overhead of invoking a software handler, Memento can
batch these non-local free operations in a thread-local buffer and
only signal the software to perform batch deallocation when the
buffer becomes full or when a context switch occurs. The software
handler manages such deallocations in the same manner as existing
software allocators to perform the deallocations atomically and
avoid potential races.

For the hardware-only design, Memento can leverage existing
cache-coherence mechanisms to perform deallocations inexpen-
sively without software locks. Instead, Memento performs the read-
modify-write operation in the HOT atomically. In particular, if the
object lies outside the current thread’s arena, a deallocation is per-
formed by the local HOT by first issuing a BusRdX to the cache
hierarchy to acquire exclusive ownership of the arena’s metadata
header (Fig. 5). The local HOT then updates the metadata header as
in a regular free. Metadata headers are tracked by the existing co-
herence protocol of the system as normal data. For example, when
a HOT receives a coherence invalidation message to one of its en-
tries, the HOT entry will be invalidated and supplied to the request.
Overall, this design avoids potential races as the arena header entry
is in the dirty state in the private cache of the core that performs
the free, and it relies on existing hardware cache-coherence mecha-
nisms that provide write serialization. Finally, in the case of page
allocations, the hardware page allocator simply serves requests in
a first-come first-serve order based on the serialization of requests
provided by the interconnect.

In summary, we avoid data races in Memento through the com-
bination of two things. First, because each thread allocates from its
own arena, we avoid potential races that might arise from multiple
threads attempting to allocate from the same arena. Second, we
avoid potential data races in setting bits in the allocation meta-
data by performing these read-modify-write operations atomically
in the HOT on metadata cachelines that are already in the dirty
state (leveraging the normal cache coherence protocol). Page allo-
cations in the memory controller are serialized by the interconnect.
With this support, both allocations and deallocations avoid race
conditions in Memento. Other multi-threaded challenges such as
double-free attempts due to application bugs are independent of
the allocation implementation in software or in Memento’s hard-
ware. In Memento such cases are handled graciously by raising an
exception to software.

5 EVALUATION METHODOLOGY

Simulation platformandHardwareCost.We evaluateMemento
with full-system simulation using QEMU [5] integrated with the
SST [44] and DRAMSim3 [33]. The simulated architecture is pre-
sented in Table 3. We use Linux kernel 5.18. We further show the
two main hardware structures of Memento, the hardware object
table (HOT) modeled as a 3.4KB direct-mapped cache and the arena
allocation cache (AAC) of the hardware page allocator modeled

CPU 4-issue OOO, 3 GHz, 256-Entry ROB, 64-Entry LSQ

TLB L1 64-Entry, 4-Way; L2 2048-Entry, 12-Way

L1d 32KB, 8-Way, 2 Cycle, LRU Replacement

L1i 32KB, 8-Way, 2 Cycle, LRU Replacement

HOT 3.4KB, Direct-Mapped, 2 Cycle, 1.32mW, 0.0084mm2

L2 256KB, 8-Way, 14 Cycle, LRU Replacement

LLC 2MB Slice, 16-Way, 40 Cycle, LRU Replacement

AAC 32-Entry, Direct-Mapped, 1 Cycle, 0.43mW, 0.0023mm2

DRAM 64GB, DDR4 3200, 16 Banks

OS Ubuntu 20.04

Table 3: Simulation configuration.

as a 32-entry direct-mapped cache. We evaluate hardware energy
and area cost of HOT and ACC using CACTI 6.5 [38] under 22nm
technology node. The results are shown inline in Table 3. Overall,
the hardware cost of Memento is minimal.

We instrumented both userspace and kernel functions to cap-
ture memory management routines. For Python workloads, we in-
strumented CPython 3.8 [42] heap allocation functions. For C/C++
workloads, we link them against an instrumented jemalloc [15, 21].
For Golang workloads, we instrumented heap memory allocation
and garbage collection functions in go-1.13 and linked them against
Golang binaries. To capture page faults, we instrumented the page
fault handler functions in Linux. We also instrumented system calls
to mmap and munmap. The simulator replaces calls to memory allo-
cation and free functions with the corresponding ISA extensions of
Memento. Allocations of size greater than 512 bytes and addresses
outside of the reserved address region are handled by software
without Memento’s intervention.
Benchmarks. To evaluate Memento, we use a total of fourteen
benchmarks. We focus our evaluation on functions that exhibit at
least 0.5 MallocPKI (malloc per kilo instructions) on average. All
functions executes within a crun [12] container. We use function
workloads from FunctionBench [28], and the serverless benchmark
suite SeBS [11]. dynamic-html(dh), image-recognition (ir),
graph-bfs(bfs) , dna-visualisation (dna) are from SeBS, and
pyaes (aes), feature_reducer (fr) are from FunctionBench.
We further perform experiments with pyperformance [40] using
memory management benchmarks json_loads (jl), json_dumps
(jd), and mako (mk). In addition, we adapted UrlShorten (US),
UserMentions (UM), ComposeMedia (CM) and MovieID (MI) from
DeathStarBench [19], written in C++, into function-like units [49].
We ported the Python dynamic-html, graph-bfs, and pyaes func-
tions to Golang (dh-go, bfs-go, and aes-go). Before simulation
begins, we perform a system-level only warm-up and then we simu-
late functions workloads from the beginning to completion. Beyond
function execution, serverless computing involves a significant plat-
form software stack [10, 12, 13, 30, 41], including those providing
container runtime, orchestration, event routing, and other func-
tionalities. To this end, we evaluate the OpenFaaS [41] serverless
platform when performing three important operations, namely up
that starts up the serverless platform, deploy that registers a func-
tion in the function store and prepares it for execution, and invoke

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ziqi Wang et al.

that routes a request to an instance of the function. For these opera-
tions, we send a request for these operations to OpenFaaS Gateway
after the platform has been warmed up and simulate the regions of
interest of each operation. We further evaluate four long-running
data processing applications, including two key-value stores, Redis
and Memcached, and two in-memory databases, Silo and SQLite3.
We use the value size distribution from [37] to drive the workloads
and perform measurements at the steady state.

All workloads use the default input if possible. Workload exe-
cution time ranges from sub-second level to a few seconds, and
memory consumption numbers are from low to tens of MBs. Func-
tions communicate via RPCs with a Redis backend to fetch inputs
and store results at the beginning and end of function execution. We
measure RPC costs to be at between hundreds of microseconds to
a few milliseconds across our workloads depending on input/result
size. This is a small portion of the total function runtime. RPCs
have been the focus of recent works [31].

6 EVALUATION
6.1 Speedup
Fig. 8 shows the execution time reduction of Memento as the
speedup over the baseline system. We group results in Fig. 8 by
the language runtime (Python, C++, Golang). We show the average
of functions as func-avg. We further distinguish between data pro-
cessing applications (data-avg) and serverless platform operations
(pltf-avg).

Overall, Memento achieves substantial speedups between 8–
28% and 16% on average for functions. These are substantial gains
achieved by Memento for serverless functions. Data processing ap-
plications and serverless platform operations also enjoy substantial
gains between 4-11%.

To further study the source of speedups, we present in Fig. 9 a
breakdown of the performance gains of Memento. The figure shows
four main sources of gains that can be achieved by Memento: (i)
hardware object allocations (obj-alloc), (ii) hardware object frees
(obj-free), (iii) hardware page management operations (page-mgmt),
and (iv) main memory bypass (bypass). Memento can satisfy mem-
ory management operations with latency equivalent to a single
cache access in most cases, and hence significantly reduces func-
tion execution time. On average for functions, 33% of the gains are
attributed to hardware object allocation and 32% to free. The main
memory bypass mechanism attains a 2% improvement on average,
and it can reach up to 17% improvement depending on the func-
tion’s sensitivity to bandwidth. The hardware page management
component is responsible for 33%. In data processing applications
the gains are primarily split between object allocation and page
management, that account for 37% and 58% respectively. In the case
of the serverless platform operations, the majority of the gains,
71%, come from object allocations with a smaller percentage be-
ing attributed to page management. The results are similar within
workloads and operations across the two environments hence we
show only the average.

Individual function workloads demonstrate different gains from
either or both sources, further highlighting the need for both hard-
ware object and page management proposed by Memento. Seven

of the nine Python workloads and two out of three Golang work-
loads get at least 40% of the gains from Memento’s hardware page
management. This observation is explained by the larger heap size,
which causes a higher number of page faults that increases propor-
tionally to the number of pages in the heap memory. The majority
of the page management gains come from dynamic page allocations
in hardware that eliminate costly OS page fault handling. In the
case of aes and jl, more than 90% of the gains come from hardware
object management. This is because their working sets are much
smaller, shifting the critical path from page allocation to object
allocation.

In the case of data processing workloads Memento provides
significant benefits between 5–11%. Redis benefits the most from
Memento, achieving an 11% throughput increase on mixed PUT-
GET (50% each) workload. We attribute the result to the usage of the
SDS string library, which allocates strings on the heap to store keys
and values and as temporary buffers. Both Memcached and Silo
saw moderate throughput increase of 6.5% and 7.5% respectively.
Both applications experience frequent page faults on heap memory,
resulting in significant cycle reduction in the kernel with Memento.
SQLite3 allocates many small and short-lived objects when parsing
SQL queries. Consequently, SQLite3 can also benefit fromMemento
with 5% improvement when processing SQL SELECT statements.
The above study reveals that Memento is also applicable to long
running workloads that often rely on short-lived allocations. The
gains are due the ability of Memento to improve both userspace
allocations and kernel memory management that account for 38%
and 62% of the memory manangement cycles respectively in the
case of data processing applications. Serverless platform operations
also enjoy significant speedups with Memento between 4%-7%. The
gains are similar across operations, with 59% being attributed to
userspace allocations and 41% to kernel memory management.

The main memory bypass mechanism can also be beneficial for
certain workloads such as dh as it saves 6% of execution cycles
leading to a 28% function speedup. The DeathStarBench C++ work-
loads show significant speedups of 16% on average. The majority
of the gains come from hardware object management. The page
management gains are smaller because jemalloc pre-maps and pre-
faults a small pool of memory during library initialization. This
mechanism instead turns object allocation and free operations into
a performance bottleneck that Memento addresses. Overall, the
results highlight the importance of Memento’s mechanisms.

Iso-storage Comparison. Finally, we compare Memento to an
iso-storage architecture where the HOT storage is provided to
the L1 cache instead. Specifically, we consider a hypothetical 9-
way L1D cache that incurs the same SRAM overhead as the HOT
while maintaining the same latency. Our results show that while
dedicating Memento’s HOT storage to the L1D results in an overall
speedup of 3%, this is significantly smaller than the 28% speedup
provided by Memento.

6.2 Memory Bandwidth Savings.
To study the effect of Memento on main memory traffic, we present
results on normalized memory bandwidth savings in Fig. 10. Over-
all, Memento reduces memory bandwidth usage by 30%. For two
workloads, UM and CM, Memento achieves a 31% and 35% reduction

Memento: Architectural Support for Ephemeral Memory Management in Serverless Environments MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

ht
m
l ir bf
s

dn
a

ae
s fr jl jd m
k US UM CM M
I

ht
m
l-g

o
bf
s-
go

ae
s-
go

fu
nc
-a
vg

Re
di
s

M
em

ca
ch
ed Si
lo

SQ
Lit

e3
da

ta
-a
vg up

de
pl
oy

in
vo

ke
pl
tf
-a
vg

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Sp
ee

du
p

Python C++ Golang Data
Processing

Serverless
Platform

Figure 8: Normalized speedup.

ht
m

l ir bf
s

dn
a

ae
s fr jl jd m
k US UM CM M
I

ht
m

l-g
o

bf
s-

go
ae

s-
go

fu
nc
-a
vg

da
ta
-a
vg

pl
tf
-a
vg

0
10
20
30
40
50
60
70
80
90

100

Sp
ee

du
p

Br
ea

kd
ow

n
 (%

 S
av

ed
 C

yc
le

s)

Python C++ Golang
obj-alloc obj-free page-mgmt bypass

Figure 9: Performance gains breakdown.

ht
m

l ir bf
s

dn
a

ae
s fr jl jd m
k US UM CM M
I

ht
m

l-g
o

bf
s-

go
ae

s-
go

fu
nc
-a
vg

da
ta
-a
vg

pl
tf
-a
vg

0.0
0.1
0.2
0.3
0.4
0.5
0.6

No
rm

al
ize

d
M

em
or

y
 B

an
dw

id
th

 R
ed

uc
tio

n Python C++ Golang

Figure 10: Normalized memory bandwidth usage reduction.
Yellow highlights main memory bypass savings.

of DRAM traffic for functions. The gains for the serverless platform
are smaller. In the case of data processing applications Memento
significantly reduces memory bandwidth usage by 33%. Memento’s
bandwidth savings are attributed to three sources. First, the hard-
ware object table (HOT) absorbs allocation traffic to memory as
objects can be instantiated in the cache without adding unnecessary
traffic to the main memory. Furthermore, Memento eliminates the
instruction and data movement caused by memory management in
userspace and the kernel. Finally, Memento’s main memory bypass
mechanism provides provides savings of 5% on average and up to
34%.

6.3 Aggregate Main Memory Usage.
Fig. 11 presents normalized aggregated memory usage results. We
measure aggregated memory usage as the total number of physical

pages allocated during simulated execution. We present normal-
ized user and kernel space memory separately in addition to the
total memory usage. Memento achieves an overall 15% reduction
in aggregate memory usage for functions. When we look at the
userspace and kernel usage, we see that userspace reduction is
about 10% and kernel is 28%. In the case of serverless platform
operations the memory usage remains almost the same. Further-
more, looking at the aggregate memory usage for data processing
applications, we see that Memento achieves significant savings of
5% in userspace, 50% in the kernel, and total savings of 23%.

By examining the behavior of functions, we see that Memento in-
creases userspace memory usage for Python and Golang workloads.
A primary reason is that the software allocators for these two lan-
guages share free pages among size classes, which reduces external
fragmentation. We choose not to include this potential optimiza-
tion and trade-off userspace memory instead for a less complicated
hardware design. Nonetheless, Memento reduces kernel memory
usage for these workloads by 29%. In workloads like dh, Memento
can achieve major kernel memory usage reductions, more than 60%,
due to the reduction of kernel metadata needed to manage memory
regions. For C++ workloads from DeathStarBench [19], Memento
achieves 41% userspace memory savings. We attribute this to the
low utilization of jemalloc’s memory pool, which ends up wasting
userspace memory resources. Memento instead can dynamically
respond to the memory usage of each function. Furthermore, Me-
mento achieves significant kernel savings for DeathStarBench, with
an average of 25%.

6.4 Characterizing Memento
Hardware object table hit rate. We present the hit rate of the
hardware object table (HOT) in Fig. 12. On allocations, a HOT hit
happens when a request finds an available entry in the cached
header bitmap. Similarly, on free operations, a HOT hit happens
when the cached header can fulfill the free request without incur-
ring additional memory operations. A miss in the HOT causes a
cache request to be issued to load the appropriate entry from mem-
ory. Hits in the HOT are completed in two cycles without issuing
memory requests.

Overall, allocations in Memento enjoy a high hit rate of 99.8%
for functions. Furthermore, they exhibit a uniform behavior across
functions as well as data processing applications and serverless
platform operations. Free operations show an average hit rate of
83%.We observe that Python workloads generally exhibit lower free

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ziqi Wang et al.

ht
m

l ir bf
s

dn
a

ae
s fr jl jd m
k US UM CM M
I

ht
m

l-g
o

bf
s-

go
ae

s-
go

fu
nc
-a
vg

da
ta
-a
vg

pl
tf
-a
vg

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

No
rm

al
ize

d
Ag

gr
eg

at
e

 M
em

or
y

Us
ag

e

Python C++ Golang
User Kernel Total

Figure 11: Normalized aggregate memory usage.

ht
m

l ir bf
s

dn
a

ae
s fr jl jd m
k US UM CM M
I

ht
m

l-g
o

bf
s-

go
ae

s-
go

fu
nc
-a
vg

da
ta
-a
vg

pl
tf
-a
vg

0
20
40
60
80

100

HO
T

Hi
t R

at
e

%

Python C++ Golang
obj-alloc obj-free

Figure 12: Hardware object table hit rate.

hit rate, while Golang and C++ workloads show a very high free hit
rate. Further investigation reveals that C++ workloads operate on
tight loops with objects being allocated at the beginning of the loop
and freed at the end. Golang workloads, on the other hand, rely on
garbage collection to batch-free objects. Therefore, they never need
to call free on individual objects. For Python workloads, some of the
allocations are made by the interpreter to store global information
that tends to live much longer than other local objects (e.g., those
created in tight loops). These long-lived objects cause low HOT hit
rates. Nevertheless, Memento handles them correctly by performing
the free operation out of the execution critical path. As a result,
Memento is still able to eliminate their overheads successfully,
despite low HOT hit rates.

The results further corroborate the insights from Section 2.2 as
function workloads are short-lived in nature with short malloc-free
distances. When an object is allocated from the HOT and freed
shortly afterward, the free request will very likely result in a hit.
Consequently, Memento achieves a high HOT hit rate even with a
small direct-mapped structure.

While not shown in the figure, Memento’s arena allocation cache
(AAC) enjoys uniformly high hit rates as only a few size classes are
utilized in each of the workloads.
Arena list operations. Fig. 13 presents the frequency of linked
list operations for arena management during allocation and free.
These operations occur when the object allocator puts arenas on/off
the full/available arena lists (Section 3.1). We characterize them
by calculating the percentage of allocations or frees that include
arena list operations. For all workloads, less than 1% of allocations

ht
m

l ir bf
s

dn
a

ae
s fr jl jd m
k US UM CM M
I

ht
m

l-g
o

bf
s-

go
ae

s-
go

fu
nc
-a
vg

da
ta
-a
vg

pl
tf
-a
vg

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%

Ar
en

a
lis

t o
pe

ra
tio

ns
(%

 o
bj

-a
llo

c/
ob

j-f
re

e) Python C++ Golang
obj-alloc obj-free

Figure 13: Arena list operation frequency.

and 0.6% of frees need to operate on linked lists. Workloads with
smaller working sets require fewer linked list operations because
there are fewer arenas to manage, and the locality of allocation and
free is high. Compared with the total number of instructions, the
linked list operations only constitute a tiny fraction of total memory
accesses (≤ 0.01%). We also evaluated an ideal environment without
the linked list operations and saw minimal changes in the result.
Overall, the performance implications of arena list operations are
negligible.

6.5 Function Pricing
We compute the cost of running functions on both the baseline
system and Memento according to AWS pricing [4]. Fig. 14 shows
the runtime cost based on execution time and memory usage. The
current AWS pricing policy computes the cost of functions in the
granularity of milliseconds for runtime and MB for consumed mem-
ory. On average, we can see from the results that Memento can
achieve a significant runtime cost saving of 29%. Function providers
add a fixed per-invocation cost that accounts for the infrastruc-
ture management and deployment costs outside the function costs.
While this cost is outside the scope of Memento, when included for
end-to-end pricing cost, Memento is able to achieve cost savings
up to 31%, and 11% on average.

6.6 Sensitivity Studies
Populating pages on mmap. mmap supports a flag that will force
the OS to eagerly populate virtual pages with physical memory
(MAP_POPULATE) , hence reducing the page fault overhead. However,
eagerly populating pages may cause an increased physical memory
footprint. To evaluate the effect, we instrumented the software
allocators under comparison to pass the flag to mmap and evaluated
Memento on this setting. For Golang workloads we observed that
on average performance improved by 3% from the baseline but
physical memory footprint increased by 8.6×, due to the large
mmap size of Golang allocator. For Python and C++ workloads, we
did not observe any significant change in speedup, with physical
memory increasing by an average of 9.6%. We conclude that eagerly
populating allocations is not cost-efficient for serverless functions
based on the AWS pricing model in Section 6.5 due to the increased
physical memory footprint.
Multi-process environments. To evaluate Memento in multi-
process environments, where a single core is over-subscribed by

Memento: Architectural Support for Ephemeral Memory Management in Serverless Environments MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

ht
m

l ir bf
s

dn
a

ae
s fr jl jd m
k US UM CM M
I

ht
m

l-g
o

bf
s-

go
ae

s-
go

fu
nc
-a
vg

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
Ru

nt
im

e
 P

ric
in

g

Python C++ Golang

Figure 14: Normalized function runtime pricing.

several time-sharing function instances, we ran the simulation by
starting four randomly selected function instances and pinning
them to the same core. We repeated the experiment ten times, with
different workloads each time. The main potential overhead of Me-
mento is the flushing of the HOT table. Specifically, the core issues
flush operations for every entry in the HOT table. Compared with
the typical context-switch time that is in the order of microseconds,
and the frequency of context switches that is in the order of a few
milliseconds, the overall performance effect is negligible.
Tuning software allocators. We manually tuned the available
configuration knobs of software allocators to study their effects
on Memento. Our results show that while changing most of the
knobs does not affect Memento’s speedup, enlarging the arena size
of software allocators causes a noticeable but less than 1% speedup.
Further investigation revealed that using larger arenas reduces the
frequency of mmap at the potential cost of fragmentation. Physical
memory footprint is unaffected as mmap reserves physical pages
lazily.
Fragmentation. To identify potential fragmentation induced by
Memento, we measured fragmentation as the percentage of actual
amount of memory allocated to small objects and the total amount
of memory given to HOT. Our results show that on average, only
3.68% of the slots in the arena headers are not active. (This result
is the combination of fragmentation and free memory, since it is
difficult to disambiguate between the two.) We further compared
these fragmentation results to the software-only allocators, and
observed similar results within a ± 2% of hardware design across
applications. Meanwhile, Memento reduces the overall memory
usage as we discussed in Section 6.3.
Warm-start versus cold-start. Our earlier experiments warm-
started functions, i.e., functions are executed by an existing con-
tainer process and skip the container set-up stage. However, in
practice, functions may also experience cold-starts where the la-
tency of setting up containers are added to their execution latency.
To study the effect of cold-started functions on Memento, we ran
experiments where containers are set up before executing the func-
tion. Our results show that, even with cold-starts, Memento can
still gain a speedup of 7%–22% compared with the baseline.

6.7 Comparison with Related Work
The mostly closely related work to Memento is Mallacc [26], which
introduces hardware extensions to accelerate certain userspace
malloc operations. In contrast, Memento is a holistic hardware

design that accelerates both userspace and kernel memory man-
agement, both of which are very important for performance (as
shown in Fig. 9). By exposing memory allocation semantics to the
hardware, Memento is able to explore previously hard-to-perform
optimizations such as main memory bypass. In addition, while Mal-
lacc is hardwired to TCMalloc and only supports C++ workloads,
Memento is agnostic to the language runtime, as demonstrated by
our integration of Memento with Python, C++, and Golang.

To provide a quantitative comparison, we simulate an idealized
version of Mallacc where the Mallacc cache has zero latency and
always hits. Because Mallacc only supports C++ workloads, we
only compare it to Memento on DeathStarBench. Whereas this ide-
alized Mallacc configuration achieves speedups ranging from 5-10%
(8% on average), Memento doubles these performance gains with
speedups ranging from 12-20% (16% on average). At the same time
Memento provides substantial gains (between 8-28%) for other lan-
guage runtimes (Python and Golang) that Mallacc cannot support.
Memento’s design for kernel memory management in hardware
is especially crucial for high-level languages such as Python and
Golang (as shown in Section 6.1), and this is not supported by Mal-
lacc. Memento successfully eliminates the kernel overheads that
account for 33% on average and up to 68% of function memory
management overheads.

7 RELATEDWORK

Reducing Cold Starts for Serverless Functions A body of work
has focused on reducing the cold start effects of serverless work-
loads by focusing on system-level effects such as creating VMs and
containers. These works seek to reduce the cold start latency using
process snapshots [6, 14, 39, 57], lightweight kernels [2], record-and-
replay [56], application-level sandboxing [3], low-latency serverless
frameworks [23], and live container caching [18, 48, 52]. These ap-
proaches motivated by the short-lived function execution and are
orthogonal to Memento and can be adopted together.

Hardware Memory Management Prior work has explored a
simplified version of page management with hardware buddy allo-
cators [7–9, 34, 35]. These works aim to provide physical memory
management for embedded platforms with limited OS support or
simple runtimes. Instead, Memento relies on a fully-fledged OS
and only manages a small pool of physical pages used for arena
allocations in tandem with the hardware object allocator. We have
discussed Mallac [26] extensively in Section 6.7.

Memory Management in Datacenters The cost of memory man-
agement in datacenters has been under active investigation [20, 25].
Recent work by Google [20] has shown that the cost of memory al-
location remains high in data processing applications. In this work,
we have shown that Memento can be beneficial for data processing
applications by eliminating wasted cycles in userspace memory allo-
cations and offloading expensive kernel operations to hardware. By
eliminating the compound effects of memory management across
the stack, Memento can achieve major efficiency gains for datacen-
ter workloads. Finally, by exposing memory management semantics
to hardware, future work on accelerator design for other prevalent
datacenter operations such as compression, croptography, protocol
buffers [27], and RPC [31] can benefit significantly by chaining

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Ziqi Wang et al.

multiple accelerator operations together while performing memory
management with Memento.

8 CONCLUSION
This paper presented Memento, a novel hardware-centric design
that alleviates the overheads of serverless memory management.
Memento introduces two key mechanisms in hardware for object
allocation and page management that operate in tandem and alle-
viate both userspace and kernel memory management overheads.
It further leverages the exposed memory management semantics
in hardware to introduce a main memory bypass mechanism for
newly allocated objects. Our evaluation shows that Memento re-
duces main memory traffic by 30%, speeds up function execution by
8-28%, and further reduces the runtime pricing cost of functions by
29%. Finally, we demonstrated the applicability of Memento beyond
functions, tomajor serverless platform operations and long-running
data processing applications.

ACKNOWLEDGMENTS
This work was funded in part by NSF grants CNS-2107307, CNS-
2239311 and aMeta Faculty Award.We thank Gennady Pekhimenko
and the anonymous reviewers for all of their valuable feedback.

REFERENCES
[1] 2023. Python Memory Management and pymalloc, home page:

https://docs.python.org/3/c-api/memory.html.
[2] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
virtualization for serverless applications. In 17th USENIX symposium on networked
systems design and implementation (NSDI 20). 419–434.

[3] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: towards high-
performance serverless computing. In Proceedings of the 2018 USENIX Conference
on Usenix Annual Technical Conference (USENIX ATC ’18). USENIX Association,
USA, 923–935.

[4] Amazon. 2023. AWS Lambda Pricing. https://aws.amazon.com/lambda/pricing/.
[5] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX

annual technical conference, FREENIX Track, Vol. 41. Califor-nia, USA, 10–5555.
[6] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger, and

Jonathan Appavoo. 2020. SEUSS: skip redundant paths to make serverless fast.
In Proceedings of the Fifteenth European Conference on Computer Systems. 1–15.

[7] Hasan Cam, Mostafa Abd-El-Barr, and Sadiq M Sait. 1999. A high-performance
hardware-efficient memory allocation technique and design. In Proceedings 1999
IEEE International Conference on Computer Design: VLSI in Computers and Proces-
sors. IEEE, 274–276.

[8] J. Morris Chang and Edward F. Gehringer. 1996. A high performance memory
allocator for object-oriented systems. IEEE Trans. Comput. 45, 3 (1996), 357–366.

[9] J Morris Chang, Witawas Srisa-An, and C-TD Lo. 2000. Architectural support for
dynamic memory management. In Proceedings 2000 International Conference on
Computer Design. IEEE, 99–104.

[10] containerd. 2023. containerd - An industry-standard container runtime with an
emphasis on simplicity, robustness and portability. https://containerd.io.

[11] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. 2021. Sebs: A serverless benchmark suite for function-as-a-
service computing. In Proceedings of the 22nd International Middleware Conference.
64–78.

[12] crun. 2023. crun container official github repo.
https://github.com/containers/crun/.

[13] Docker. 2023. Docker: Accelerated Container Application Development.
https://www.docker.com.

[14] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang Qin, Qix-
uan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond startup for serverless
computing with initialization-less booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 467–481.

[15] Jason Evans. 2006. A scalable concurrent malloc implementation for FreeBSD. In
Proc. of the bsdcan conference, ottawa, canada.

[16] Tais B. Ferreira, Rivalino Matias, Autran Macedo, and Lucio B. Araujo. 2011.
An Experimental Study on Memory Allocators in Multicore and Multithreaded

Applications. In 2011 12th International Conference on Parallel and Distributed
Computing, Applications and Technologies. 92–98. https://doi.org/10.1109/PDCAT.
2011.18

[17] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Bal-
asubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George
Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video
Processing Using Thousands of Tiny Threads. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX Association,
Boston, MA, 363–376. https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/fouladi

[18] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: keeping serverless
computing alive with greedy-dual caching. In Proceedings of the 26th ACM In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 386–400.

[19] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 3–18.

[20] Abraham Gonzalez, Aasheesh Kolli, Samira Khan, Sihang Liu, Vidushi Dadu,
Sagar Karandikar, Jichuan Chang, Krste Asanovic, and Parthasarathy Ran-
ganathan. 2023. Profiling Hyperscale Big Data Processing. In Proceedings of
the 50th Annual International Symposium on Computer Architecture (Orlando, FL,
USA) (ISCA ’23). Association for Computing Machinery, New York, NY, USA,
Article 47, 16 pages. https://doi.org/10.1145/3579371.3589082

[21] jemalloc. 2023. jemalloc official github repo.
https://github.com/jemalloc/jemalloc/.

[22] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless Computing with
Shared Logs. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles (Virtual Event, Germany) (SOSP ’21). Association for Comput-
ing Machinery, New York, NY, USA, 691–707. https://doi.org/10.1145/3477132.
3483541

[23] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scalable Server-
less Computing for Latency-Sensitive, Interactive Microservices. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2021). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3445814.3446701

[24] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic,
Ankit Singla, Wentao Wu, and Ce Zhang. 2021. Towards Demystifying Serverless
Machine Learning Training. In Proceedings of the 2021 International Conference
on Management of Data (Virtual Event, China) (SIGMOD ’21). https://doi.org/10.
1145/3448016.3459240

[25] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-
scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture. 158–169.

[26] Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David Brooks. 2017. Mallacc:
Accelerating memory allocation. ACM SIGPLAN Notices 52, 4 (2017), 33–45.

[27] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh Parimi,
Borivoje Nikolic, Krste Asanovic, and Parthasarathy Ranganathan. 2021. A
Hardware Accelerator for Protocol Buffers. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (Virtual Event, Greece) (MICRO
’21). Association for Computing Machinery, New York, NY, USA, 462–478.
https://doi.org/10.1145/3466752.3480051

[28] Jeongchul Kim and Kyungyong Lee. 2019. Functionbench: A suite of workloads
for serverless cloud function service. In 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD). IEEE, 502–504.

[29] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Server-
less Analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 427–444. https:
//www.usenix.org/conference/osdi18/presentation/klimovic

[30] Knative. 2023. Knative. https://knative.dev/docs/.
[31] Nikita Lazarev, Neil Adit, Shaojie Xiang, Zhiru Zhang, and Christina Delimitrou.

2021. Dagger: Towards Efficient RPCs in Cloud Microservices with Near-Memory
Reconfigurable NICs. In Proceedings of the Twenty Sixth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS) (Virtual).

[32] Sangho Lee, Teresa Johnson, and Easwaran Raman. 2014. Feedback Directed
Optimization of TCMalloc. In Proceedings of the Workshop on Memory Sys-
tems Performance and Correctness (Edinburgh, United Kingdom) (MSPC ’14).
Association for Computing Machinery, New York, NY, USA, Article 3, 8 pages.
https://doi.org/10.1145/2618128.2618131

[33] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020.
DRAMsim3: a cycle-accurate, thermal-capable DRAM simulator. IEEE Computer
Architecture Letters 19, 2 (2020), 106–109.

https://doi.org/10.1109/PDCAT.2011.18
https://doi.org/10.1109/PDCAT.2011.18
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1145/3579371.3589082
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3477132.3483541
https://doi.org/10.1145/3445814.3446701
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3448016.3459240
https://doi.org/10.1145/3466752.3480051
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1145/2618128.2618131

Memento: Architectural Support for Ephemeral Memory Management in Serverless Environments MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

[34] Wentong Li, Saraju Mohanty, and Krishna Kavi. 2006. A page-based hybrid
(software-hardware) dynamic memory allocator. IEEE Computer Architecture
Letters 5, 2 (2006), 13–13.

[35] Wentong Li, Mehran Rezaei, Krishna Kavi, Afrin Naz, and Philip Sweany. 2007.
Feasibility of decoupling memory management from the execution pipeline.
Journal of Systems Architecture 53, 12 (2007), 927–936.

[36] Linux manual. 2023. mmap(2) - Linux manual page. https://man7.org/linux/man-
pages/man2/mmap.2.html.

[37] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng Yang, Sathya
Gunasekar, Jimmy Lu, Daniel S Berger, Nathan Beckmann, and Gregory R Ganger.
2021. Kangaroo: Caching billions of tiny objects on flash. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles. 243–262.

[38] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A tool to model large caches. HP laboratories 27 (2009), 28.

[39] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea
Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. {SOCK}: Rapid task provision-
ing with {Serverless-Optimized} containers. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). 57–70.

[40] CPython official repo. 2023. The Python Benchmark Suite.
https://github.com/python/pyperformance/.

[41] OpenFaaS. 2023. OpenFaaS. https://www.openfaas.com.
[42] Python. 2023. CPython official github repo. https://github.com/python/cpython/.
[43] Haoran Qiu, Weichao Mao, Archit Patke, Chen Wang, Hubertus Franke, Zbig-

niew T. Kalbarczyk, Tamer Başar, and Ravishankar K. Iyer. 2022. Reinforcement
Learning for Resource Management in Multi-Tenant Serverless Platforms. In
Proceedings of the 2nd European Workshop on Machine Learning and Systems
(Rennes, France) (EuroMLSys ’22). Association for Computing Machinery, New
York, NY, USA, 20–28. https://doi.org/10.1145/3517207.3526971

[44] Arun F Rodrigues, Gwendolyn Renae Voskuilen, Simon David Hammond, and
Karl Scott Hemmert. 2016. Structural Simulation Toolkit (SST). Technical Report.
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

[45] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa, Paul Batum,
Neeraja J. Yadwadkar, Rodrigo Fonseca, Christos Kozyrakis, and Ricardo Bian-
chini. 2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless Applications.
In Proceedings of the ACM Symposium on Cloud Computing (Seattle, WA, USA)
(SoCC ’21). Association for Computing Machinery, New York, NY, USA, 122–137.
https://doi.org/10.1145/3472883.3486974

[46] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos Kozyrakis.
2021. INFaaS: Automated Model-less Inference Serving. In 2021 USENIX An-
nual Technical Conference (USENIX ATC 21). USENIX Association, 397–411.
https://www.usenix.org/conference/atc21/presentation/romero

[47] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos Kozyrakis.
2021. Llama: A Heterogeneous & Serverless Framework for Auto-Tuning Video
Analytics Pipelines. In Proceedings of the ACM Symposium on Cloud Computing
(Seattle, WA, USA) (SoCC ’21). Association for Computing Machinery, New York,
NY, USA, 1–17. https://doi.org/10.1145/3472883.3486972

[48] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. IceBreaker: warming
serverless functions better with heterogeneity. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2022). Association for Computing Machinery, New
York, NY, USA, 753–767. https://doi.org/10.1145/3503222.3507750

[49] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sandberg, and Boris
Grot. 2022. Lukewarm serverless functions: characterization and optimization..
In ISCA. 757–770.

[50] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira,
Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson. 2021. What Serverless Computing is and Should Become:
The next Phase of Cloud Computing. Commun. ACM 64, 5 (apr 2021), 76–84.
https://doi.org/10.1145/3406011

[51] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural
Implications of Function-as-a-Service Computing. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (Columbus, OH,
USA) (MICRO ’52). Association for Computing Machinery, New York, NY, USA,
1063–1075. https://doi.org/10.1145/3352460.3358296

[52] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul Ba-
tum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing the
serverless workload at a large cloud provider. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 205–218.

[53] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight isolation for effi-
cient stateful serverless computing. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20). 419–433.

[54] Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, MohammedDanish Shaikh,
Shivaram Venkataraman, and Aditya Akella. 2021. Atoll: A Scalable Low-Latency
Serverless Platform. In Proceedings of the ACM Symposium on Cloud Computing
(Seattle, WA, USA) (SoCC ’21). Association for Computing Machinery, New York,
NY, USA, 138–152. https://doi.org/10.1145/3472883.3486981

[55] Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and Josep Torrellas. 2023. MXFaaS:
Resource Sharing in Serverless Environments for Parallelism and Efficiency. In
Proceedings of the 50th Annual International Symposium on Computer Architecture
(Orlando, FL, USA) (ISCA ’23). Association for Computing Machinery, New York,
NY, USA, Article 34, 15 pages. https://doi.org/10.1145/3579371.3589069

[56] Dmitrii Ustiugov, Plamen Petrov,Marios Kogias, Edouard Bugnion, and Boris Grot.
2021. Benchmarking, analysis, and optimization of serverless function snapshots.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 559–572.

[57] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable Execution Op-
timized for Page Sharing for a Managed Runtime Environment. In Proceedings of
the Fourteenth EuroSys Conference 2019 (EuroSys ’19). Association for Computing
Machinery, New York, NY, USA, 1–16. https://doi.org/10.1145/3302424.3303978

[58] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang Zhao,
Xingzhen Chen, and Keqiu Li. 2022. INFless: A Native Serverless System for Low-
Latency, High-Throughput Inference. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (Lausanne, Switzerland) (ASPLOS ’22). Association for Computing Ma-
chinery, New York, NY, USA, 768–781. https://doi.org/10.1145/3503222.3507709

[59] Yanqi Zhang, Íñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh El-
nikety, Christina Delimitrou, and Ricardo Bianchini. 2021. Faster and Cheaper
Serverless Computing on Harvested Resources. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Ger-
many) (SOSP ’21). Association for Computing Machinery, New York, NY, USA,
724–739. https://doi.org/10.1145/3477132.3483580

[60] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2022. AQUATOPE:
QoS-and-Uncertainty-Aware Resource Management for Multi-Stage Serverless
Workflows. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 1
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 1–14. https://doi.org/10.1145/3567955.3567960

https://doi.org/10.1145/3517207.3526971
https://doi.org/10.1145/3472883.3486974
https://www.usenix.org/conference/atc21/presentation/romero
https://doi.org/10.1145/3472883.3486972
https://doi.org/10.1145/3503222.3507750
https://doi.org/10.1145/3406011
https://doi.org/10.1145/3352460.3358296
https://doi.org/10.1145/3472883.3486981
https://doi.org/10.1145/3579371.3589069
https://doi.org/10.1145/3302424.3303978
https://doi.org/10.1145/3503222.3507709
https://doi.org/10.1145/3477132.3483580
https://doi.org/10.1145/3567955.3567960

	Abstract
	1 Introduction
	2 Background and Opportunities on Memory Management
	2.1 A Day in the Life of a Memory Allocation
	2.2 Memory Management Behavior

	3 Memento Design
	3.1 Hardware Object Allocator
	3.2 Hardware Page Management
	3.3 Main Memory Bypass
	3.4 Putting It All Together

	4 Discussion
	5 Evaluation Methodology
	6 Evaluation
	6.1 Speedup
	6.2 Memory Bandwidth Savings.
	6.3 Aggregate Main Memory Usage.
	6.4 Characterizing Memento
	6.5 Function Pricing
	6.6 Sensitivity Studies
	6.7 Comparison with Related Work

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

