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I. INTRODUCTION

Apprenticeship learning, where teachers generally demon-
strate behaviors for agents to follow, has been used to train
agents to control complicated systems such as helicopters
[1]. However, most work on this topic burdens the teacher
with demonstrating even the simplest nuances of a task.
This contrasts with autonomous reinforcement learning [S]]
where a number of domain classes are efficiently learnable
by an actively exploring agent, although this class is provably
smaller than those learnable with the help of a teacher (see
[6]]). Intuitively, this seems like a false choice; human teachers
often use demonstration but also let the student explore parts
of the domain on its own. Here we describe some of our recent
theoretical and empirical results with a system that balances
teacher demonstrations and autonomous exploration.

This work extends the apprenticeship learning protocol of
[6] where a learning agent and teacher take turns running
trajectories. We note this version of apprenticeship is fun-
damentally different from Inverse Reinforcement Learning
(IRL) and imitation learning [3] because (1) our agents are
allowed to enact better policies then their teachers and (2) our
agents do not know the dynamics of the environment and do
observe reward signals in teacher trajectories (the opposite is
true in IRL). Our work modifies the previous efforts by (1)
introducing a new architecture (called KWIK-MBP) based on
a similar learning protocol from [4] that indicates areas where
the agent should autonomously explore but also can make
mistakes, and (2) introducing a communication of expected
utility from the student to the teacher so the teacher can better
determine when to give a trace.

II. KWIK, AND MBP FOR DOMAIN LEARNING

In model-based reinforcement learning (for an MDP
(S, A, T, R,~)), recent advancements [2] have linked the effi-
cient learnability of 7" and R in the KWIK (“Knows What It
Knows”) framework for supervised learning with PAC-MDP
behavior. KWIK caps the number of times the agent will
admit uncertainty in its predictions by forcing an agent to
predict L (“I don’t know”) in order to get a sample. The
general result from [2]] shows that if the transition and reward
functions 7" and R of an MDP are KWIK learnable, then
a PAC-MDP agent (taking at most a polynomial number of
suboptimal steps with high probability) can be constructed for
autonomous exploration. The mechanism for constructing such
PAC-MDP agents is to use an optimistic interpretation of the
model where it replaces any L predictions from those learners

with transitions to a trap state with reward R,,,,. While
the class of functions that is KWIK learnable contains many
interesting MDPs (including tabular and factored MDPs), it
is ultimately limited as larger dynamics classes (such as those
with conjunctions for pre-conditions) are not KWIK learnable.

However, in the apprenticeship setting, a larger class of
models (including such pre-conditions) can be efficiently
learned. In the protocol described in [6], an agent starts at state
sop and is asked to take actions according to its current policy
7 4, until a horizon H or a terminal state is reached. After each
of these episodes, a teacher can demonstrate its own policy m
starting from sg. The learning agent is able to fully observe
each transition and reward received both in its own trajectories
as well as the teacher, which may be able to provide highly
informative samples (such as those needed to learn conjunctive
pre-conditions). In that work, the authors describe a measure
of sample complexity called PAC-MDP-Trace (analogous to
PAC-MDP from above) that measures (with probability 1 — §)
the number of episodes where V., (so) < Vi, (o) — €, that is
where the expected value of the agent’s policy is significantly
worse than the expected value of the teacher’s policy (V4 and
Vr for short) and connect it to a supervised framework called
Mistake Bound Predictor (MBP). This mirrors the KWIK
to PAC-MDP connection described earlier, except that the
interpretation of the model is strict, and often pessimistic. Such
interpretations would be catastrophic in the autonomous case,
but are permissible in apprenticeship learning where teacher
traces will make up for the missed data.

Notice if one considers a measure (as we do below) where
the number of teacher traces is to be minimized, then MBP
learning may overburden the teacher. In addition, PAC-MDP-
Trace and MBP-Agent do not specify when a teacher can stop
giving traces, but rather only count episodes when the agent’s
policy was worse than the teacher’s.

III. TEACHING BY DEMONSTRATION WITH MIXED
INTERPRETATIONS

We now introduce a different criteria with the goal of
minimizing teacher traces while not forcing the agent to
explore exponentially long.

Definition 1. A Teacher Interaction (71) bound for a domain in
apprenticeship learning bounds the number of episodes where
the teacher provides a trace to an agent while ensuring the
number of suboptimal steps by the agent between each teacher
interaction (or after the last one) where Va(sg) < Vr(sg) —e
is polynomial in the domain parameters with probability 1—9.



A good TI bound minimizes the teacher interactions, but
only requires the suboptimal exploration steps to be polyno-
mially bounded, not minimized. This reflects our judgement
that teacher interactions are far more costly than autonomous
agent steps, so as long as the latter are reasonably constrained,
we should always seek to minimize the former.

Here, we propose a supervised-learning protocol that can
separately quantify the number of changes made to a model
through exploration and teacher demonstrations, based on the
recent KWIK-MB protocol [4], which we extend slightly here
for stochastic labels (KWIK-MBP).

Definition 2. A hypothesis class H : X +— Y is said
to be KWIK-MBP with accuracy parameters € and § under
the following conditions. For each (adversarial) input x; the
learner must predict y; € Y or L. With probability (1—40), the
number of L predictions must be bounded by a polynomial K
over (|H|,¢€,d) and the number of mistakes must be bounded
by a polynomial M.

KWIK-MB was originally designed for a situation where
mistakes are more costly than | predictions. So mistakes
are minimized while | predictions are only bounded. This
is analogous to our own TI criteria so we now consider how
a mix of optimism and pessimism and a KWIK-MBP learner
would fare in the apprenticeship setting.

Our algorithm (KWIK-MBP-Agent) builds KWIK-MBP
learners L+ and Ly for the transition and reward functions
of an MDP. When planning with the subsequent model, the
agent constructs a “mixed” interpretation, trusting the learner’s
predictions where mistakes might be made, but replacing all
1 predictions from Lp with a reward of R,,,, and any L
predictions from T with transitions to the R,,qx trap state.
This has the effect of drawing the agent to explore explicitly
uncertain regions (L) and to either explore on its own or rely
on the teacher for areas where a mistake might be made.

However, this change is not yet enough to guarantee a
meaningful TI bound. As an example, suppose there was no
communication in the algorithm just described and the teacher
provided a trace whenever the student’s previous policy was
worse than the teacher’s. Consider a domain where the pre-
conditions of actions are governed by a disjunction over the n
state factors. [4] showed that disjunctions can be learned using
a combination of M = n/3 mistakes and K = 3n/2—3M L
predictions. However, that learning algorithm defaults to pre-
dicting “true” and only learns from negative examples. Thus,
in the apprenticeship setting, both mistaken predictions and
1 predictions are being filled in optimistically and the agent
should learn the pre-conditions purely through autonomous
exploration. However, the teacher will provide many traces
to the agent since it sees it performing suboptimally during
its exploration. These traces, which may contain only positive
examples, will be uninformative to L.

We eliminate this problem by providing a channel where
the student communicates its expected utility U4, which the
teacher compares to its own utility to decide if it should give a
trace. That is, a teacher will only show a trace to a pessimistic
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Fig. 1. An illustration of the cases for the main theorem.

agent, but will “stand back” and let an over-confident student
learn from its own mistakes.

Note this is different than comparing to the actual expected
value of m4 in the real world (denoted V4). A theorem
for KWIK-MBP-Agent’s TI bound appears below. The main
argument from the proof is illustrated in Figure [T where we
show that if we force the student to (w.h.p.) learn an $-accurate

1
value function we can guarantee traces below Vp — < will be

helpful to an agent, but because V4 nd U4 may be 2different
(since the latter comes from the agent’s model), the teacher
does not give a trace unless Uy < Vp— %e, to make sure it will
help. We bound the error on the true returns V4 by adding in
an additional § slack term. Because traces only come in when
the student undervalues his performance, the number of traces

is related only to the MBP portion of the KWIK-MBP bound.

Theorem 1 (main theorem). A KWIK-MBP-Agent that reports
Ua(so) before every episode will have a TI bound that is
polynomial in %, %, and ﬁ and M, the latter of which is
the number of mistakes (not counting L predictions) made by
Lt and Lg. A tighter bound on can be achieved by making
M the number of pessimistic mistakes (those responsible for

U, being significantly less than V).

Other changes to the protocol can also lead to efficient
learning (for instance forcing the teacher to intervene only
when the student must have finished learning and based on
the observed values the student has collected).

IV. EXPERIMENTS

Our first experiment is in a blocks world with dynamics
based on stochastic STRIPS operators and a —1 step cost with
a goal of stacking the blocks. The actions in this world are two
versions of pickup(X, From) and two versions of putDown(X,
To), with one version being “reliable”, producing the expected
result 80% of the time and otherwise doing nothing. The
other version of each action has the probabilities reversed.
The literals in the effects of the STRIPS operators (the Add
and Delete lists) are given to the learning agents, but the pre-
conditions and probabilities of the effects need to be learned.
This is an interesting case because the effect probabilities can
be learned autonomously while the conjunctive pre-conditions,
require teacher input.

Figure 2| column 1, shows KWIK, MBP, and KWIK-MBP
agents as trained by a teacher who uses unreliable actions
half the time. The KWIK learner never receives traces (since
its confidence is always high), but spends exponential (in the
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Fig. 2. A matrix of plots. Rows include: value predictions (i.e., U (so0),
row a), average undiscounted reward sums (row b), and the proportion of
trials where MBP and KWIK-MBP received teacher traces (¢ and d). The
left column is Blocks World and the right a modified Wumpus World. Red
corresponds to KWIK, blue to MBP, and black to KWIK-MBP.

number of literals) time exploring the potential pre-conditions
of actions. In contrast, the MBP and KWIK-MBP agents use
the first trace to learn the pre-conditions. The proportion of
trials (out of 30) that the MBP and KWIK-MBP learners
received teacher traces across episodes is shown in the bar
graphs 1c and 1d of Fig. 2] The MBP learner continues to get
traces for several episodes afterwards, using them to help learn
the probabilities well after the pre-conditions are learned. This
probability learning could be accomplished autonomously, but
the MBP pessimistic value function prevents such exploration
in this case. By contrast, KWIK-MBP receives 1 trace to
learn the pre-conditions, and then explores the probabilities on
its own. KWIK-MBP actually learns the probabilities faster
than MBP because it targets areas it does not know about
rather than relying on potentially redundant teacher samples.
Howeyver, in rare cases KWIK-MBP receives additional traces;
in fact there were two exceptions in the 30 trials, indicated
by *’s at episodes 5 and 19 in 1d. The reason for this is
that sometimes the learner may be unlucky in the experience
it gathers, constructing an inaccurate value estimate and the
teacher then steps in and provides a trace.

The second domain we used is a variant of “Wumpus
World” with 5 locations in a chain, an agent who can move,
fire arrows (unlimited supply) or pick berries (also unlimited),
and a wumpus moving randomly. The domain is represented
by a Dynamic Bayes Net (DBN) based on the factors above
and the reward is represented as a linear combination of the

factor values (—5 for a live wumpus and +2 for picking a
berry). The action effects are noisy, especially the probability
of killing the wumpus, which depends on the exact (not
just relative) locations of the agent, wumpus, and whether
the wumpus is dead yet (3 parent factors in the DBN).
While the reward function is KWIK learnable through linear
regression [2]] and though DBN CPTs with small parent sizes
are also KWIK learnable, the high connectivity of this DBN
makes autonomous exploration of all the parent configurations
prohibitive. Instead, we constructed an “optimal hunting”
teacher that finds the best combination of locations to shoot
the wumpus from/at, but ignores the berries. We concentrate
on the ability of our algorithm to explore and find a better
policy than the teacher (i.e., learning to pick berries), but still
staying close enough to the teacher’s traces that it can hunt
the wumpus effectively.

In plot 2a we see the predicted values of the three learners,
while the plot 2b shows their performance. The KWIK learner
starts with high U4 and gradually descends (in 2a), but without
traces spends most of its time exploring fruitlessly (very slowly
inclining slope of 2b). The MBP learner learns to hunt from
the teacher and quickly achieves good behavior, but rarely
learns to pick berries (only gaining experience on the reward
of berries if it ends up in completely unknown state and
picks berries at random many times). The KWIK-MBP learner
starts with high U4 and explores the structure of just the
reward function, discovering berries but not the proper location
combinations for killing the wumpus. It’s expected utility thus
initially dips precipitously as it thinks all it can do is collect
berries. Once this crosses the teacher’s threshold, the teacher
steps in with a number of traces showing the best way to hunt
the wumpus—this is seen in plot 2d with the small bump
in the proportion of trials with traces, starting at episode 2
and declining roughly linearly until episode 10. The KWIK-
MBP student is then able to fill in the CPTs with information
from the teacher and reach an optimal policy that kills the
wumpus and picks berries, avoiding both the over- and under-
exploration of the KWIK and MBP agents—this increased
overall performance is seen in plot 2b as, between episodes 5
and 10 KWIK-MBP’s average reward surpasses MBP.
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