

Topological Inference via Meshing

Don Sheehy
Theory Lunch

Joint work with
Benoit Hudson, Gary Miller, and Steve Oudot

Computer Scientists want to know
the **shape** of data.

Clustering

Principal Component Analysis

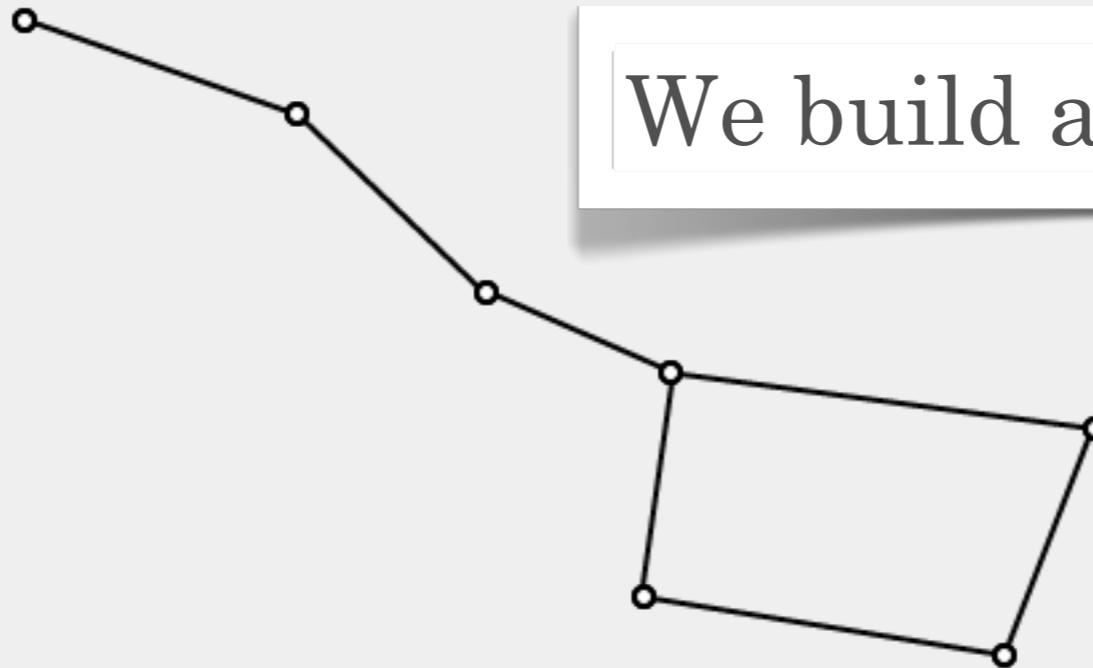
Convex Hull

Mesh Generation

Surface Reconstruction

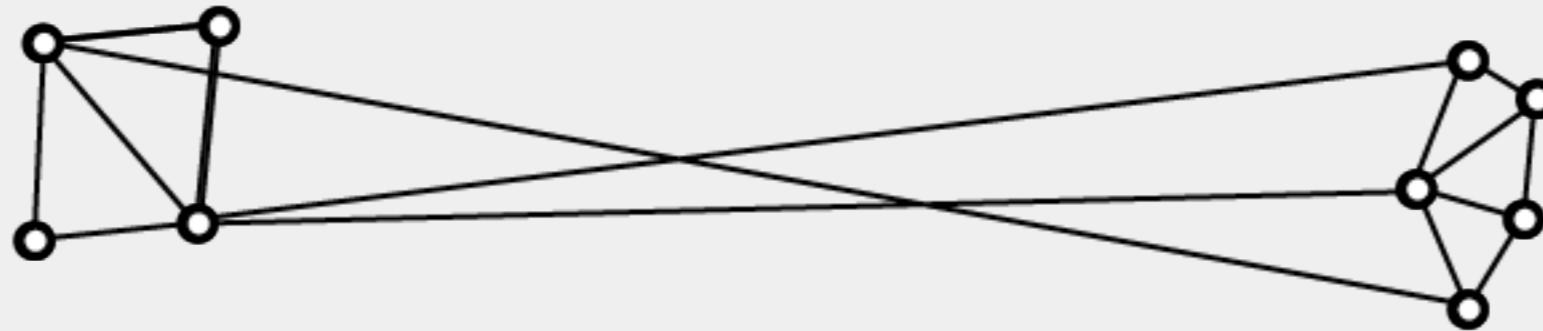
Point sets **have no shape...**

so we have to add it ourselves.

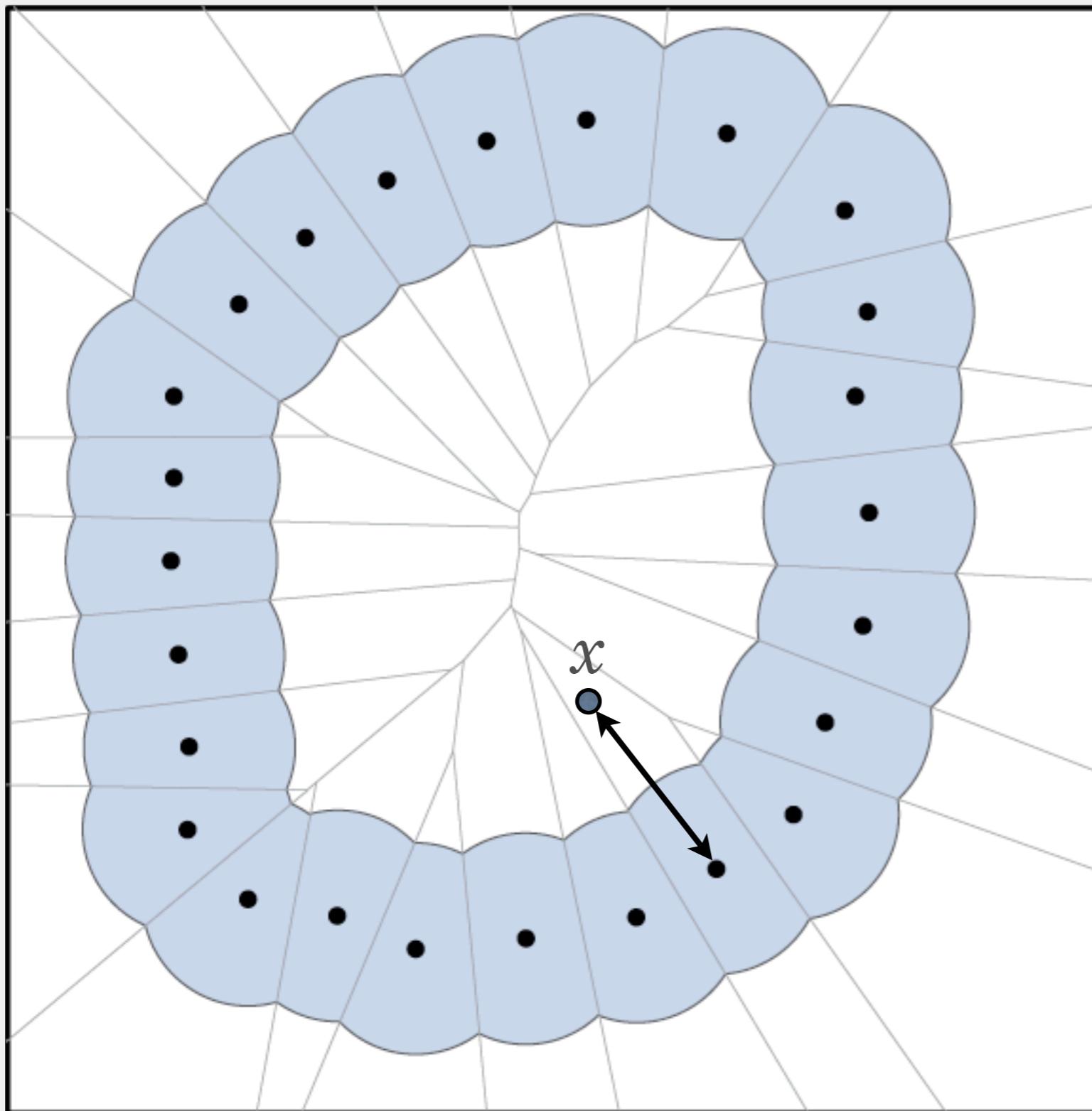


We build a simplicial complex.

We assume that the
geometry is meaningful.



Distance functions add **shape** to data.

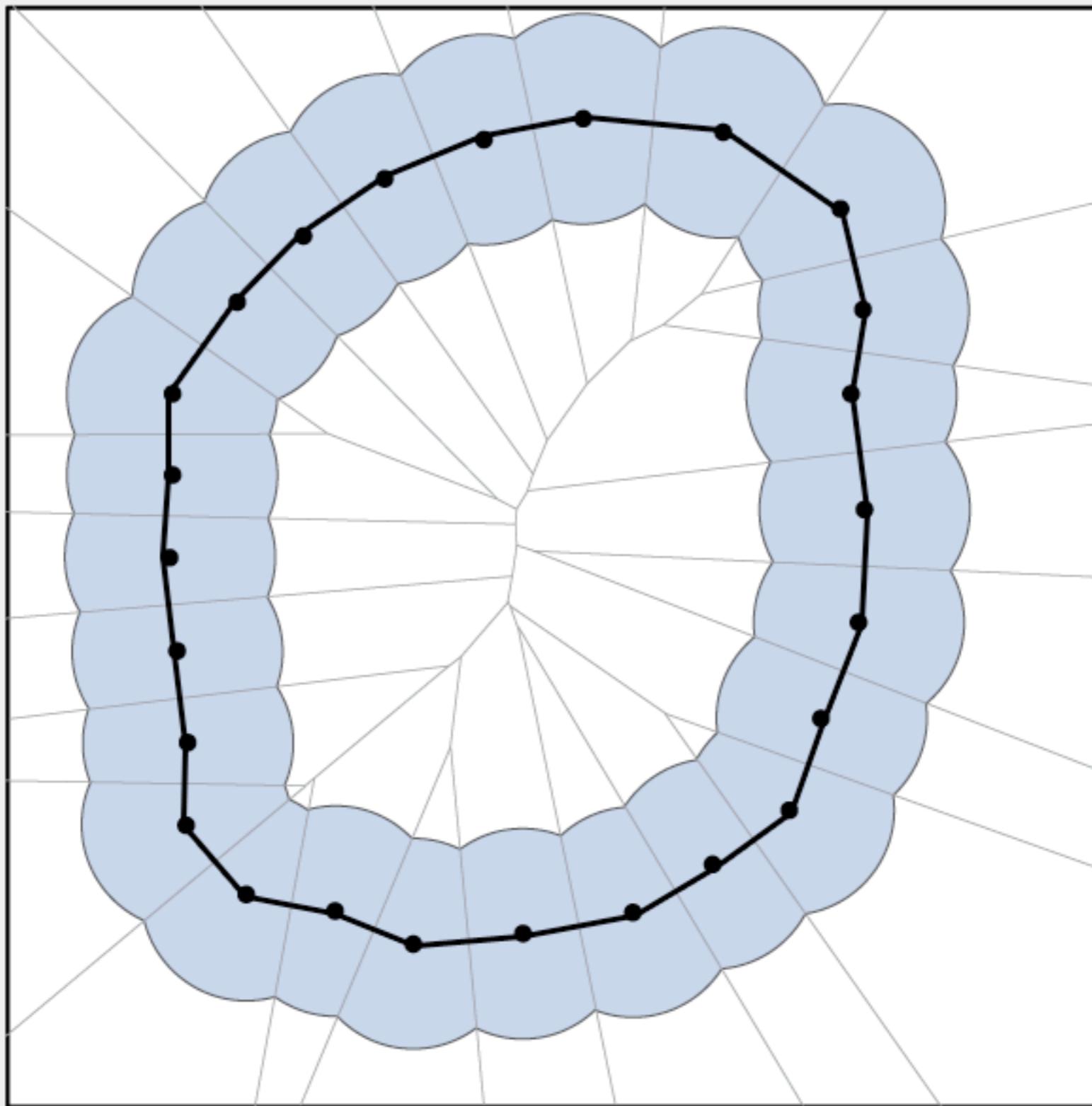


$$d_P(x) = \min_{p \in P} |x - p|$$

$$P^\alpha = d_P^{-1}[0, \alpha]$$

$$= \bigcup_{p \in P} \text{ball}(p, \alpha)$$

If you know the “**scale**” of the data, the situation is often easier.



There may not be a **right** scale at which to look at the data for two reasons.

- 1 No **single** scale captures the shape.
- 2 Interesting features appear at **several** scales.

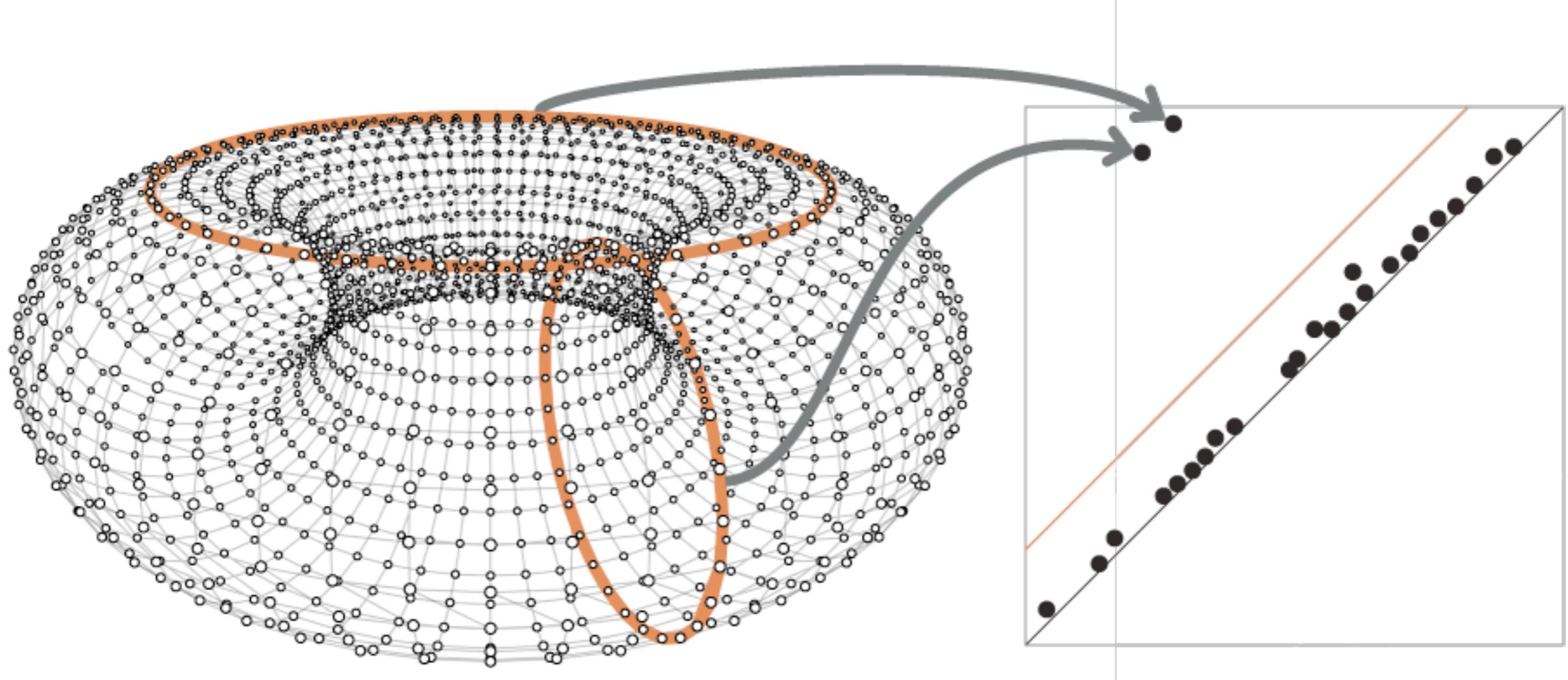
The Persistence Approach:
Look at *every* scale and then see what *persists*.

Homology gives a **quantitative** description of **qualitative** aspects of shape, i.e. **components, holes, voids**.

Reduces to linear algebra for simplicial complexes.

0th Homology group is the nullspace of the Laplacian.

Persistent Homology tracks homology across **changes in scale**.



The input to the persistence algorithms is a *filtration*.

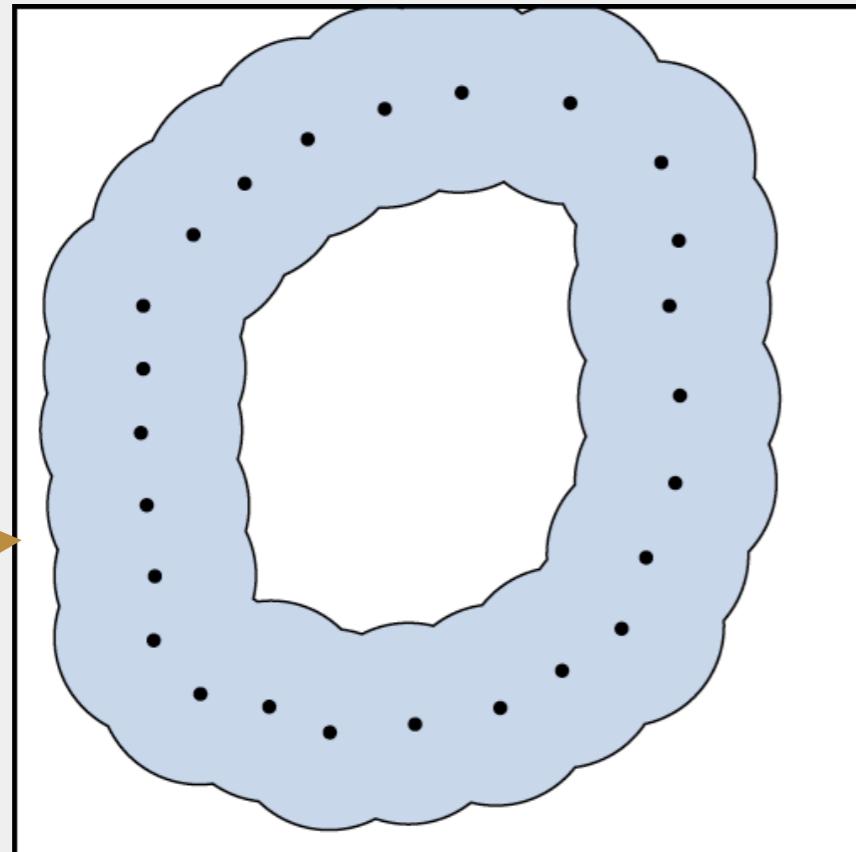
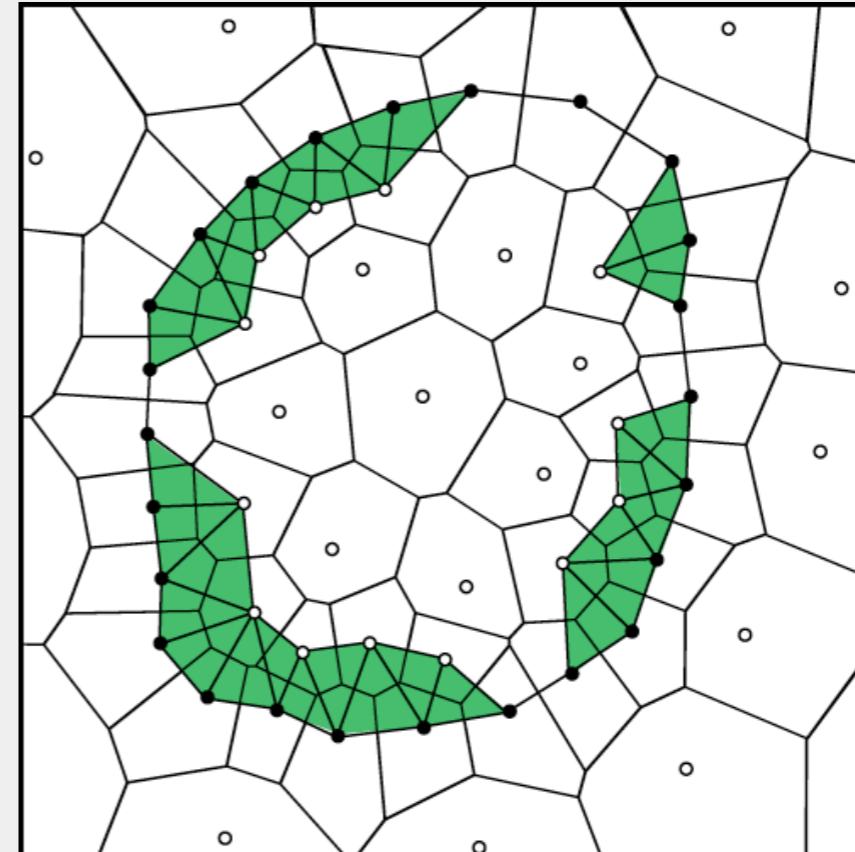
A *filtration* is a growing sequence of topological spaces.

$$\{F_\alpha\}_{\alpha \geq 0}$$

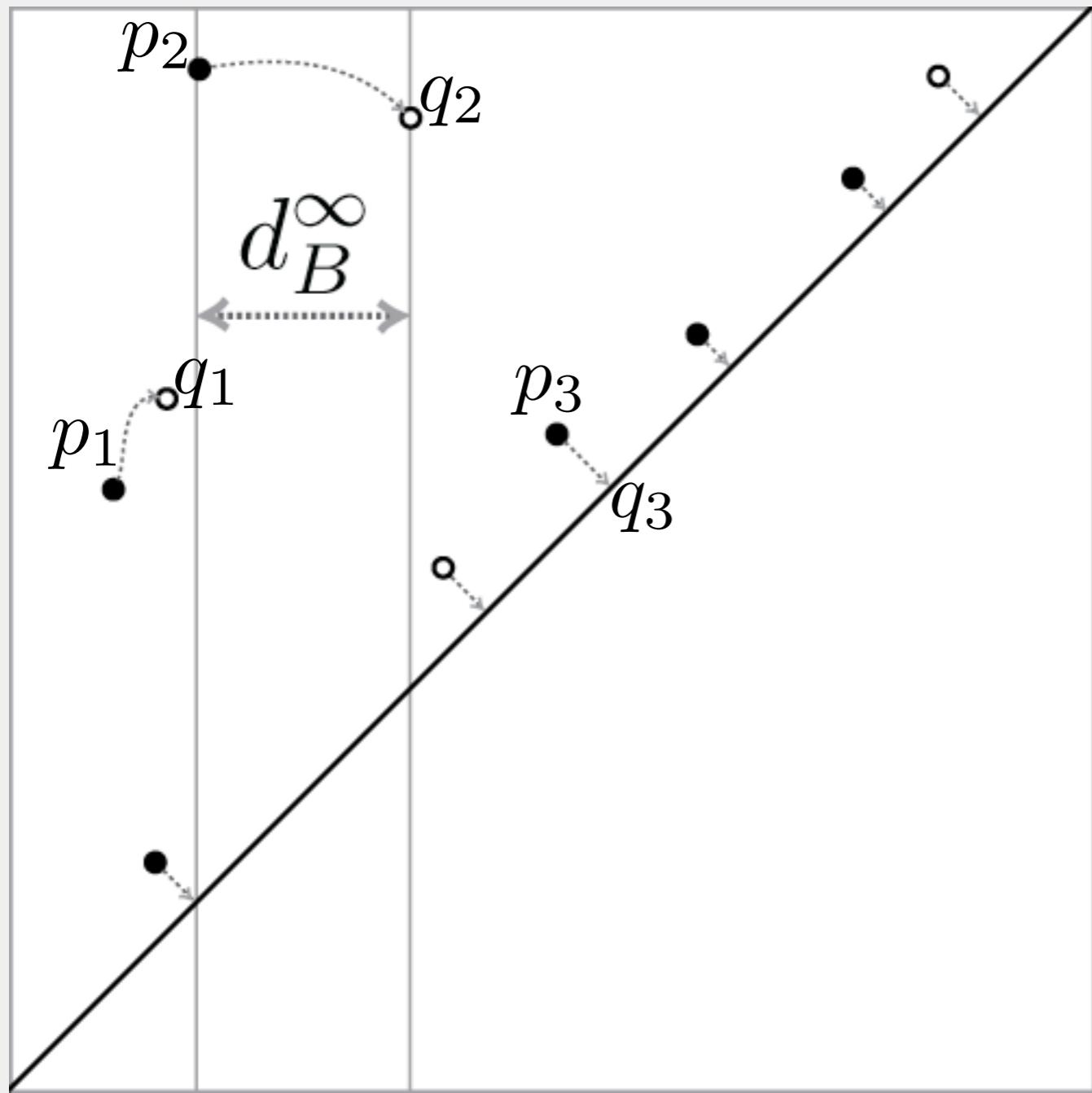
$$\forall \alpha \leq \beta, F_\alpha \subseteq F_\beta$$

We care about two different types of filtrations.

- 1 Sublevel sets of well-behaved functions.
- 2 Filtered simplicial complexes.

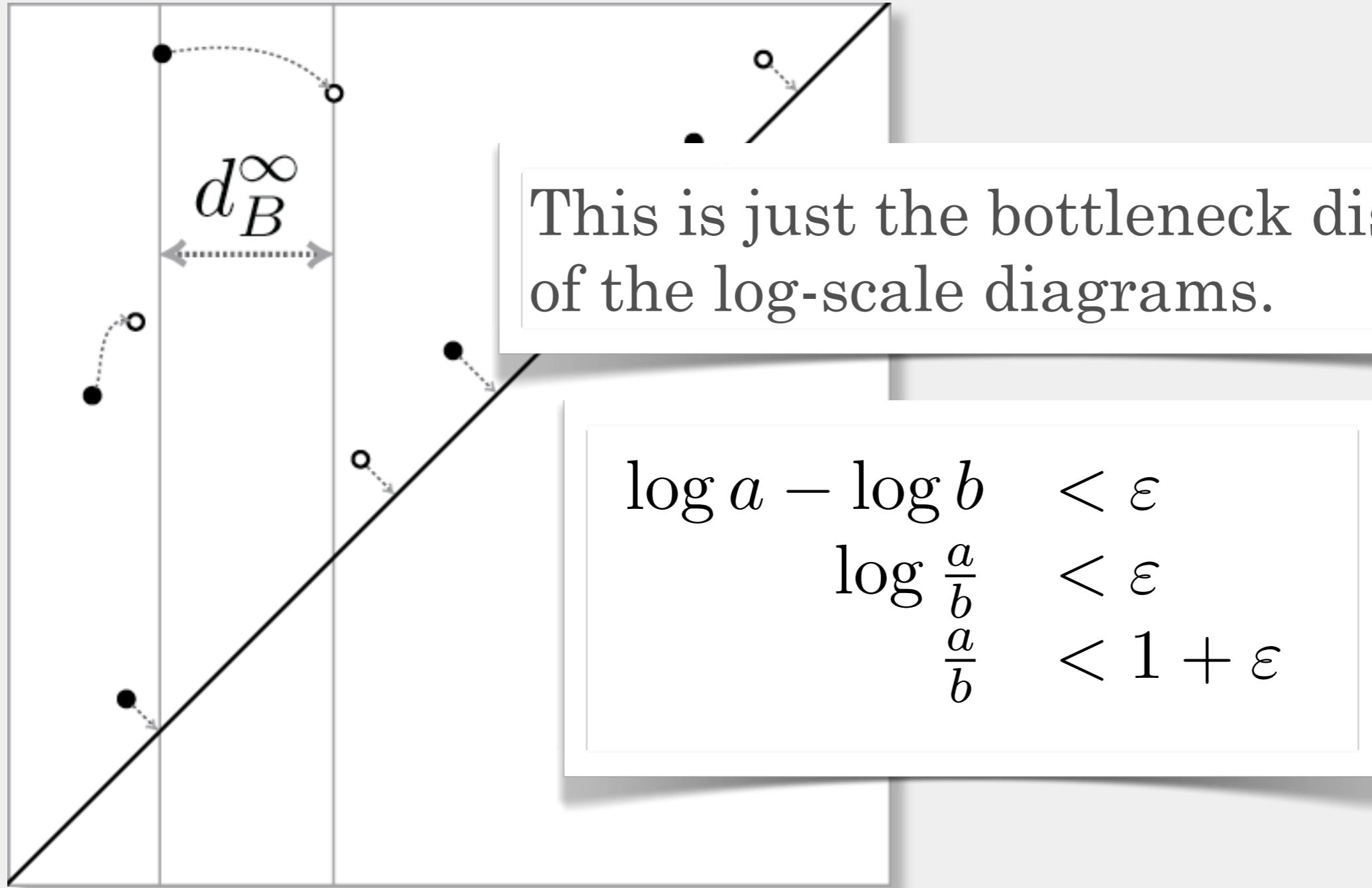


The distance between two diagrams is the bottleneck of a matching.



$$d_B^\infty = \max_i |p_i - q_i|_\infty$$

Approximate persistence diagrams have features that are born and die within a constant factor of the birth and death times of their corresponding features.



There are two phases, one is geometric the other is topological.

Geometry

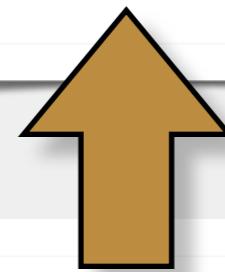
Build a filtration, i.e.
a filtered complex.



We'll focus on this side.

Topology
(linear algebra)

Compute the
persistence diagram
(Run the Persistence Algorithm).



Running time is
polynomial in the
size of the complex.

Idea 1: Use the Delaunay Triangulation

Good: It works, (alpha-complex filtration).

Bad: It can have size $n^{O(d)}$.

Idea 2: Connect up everything close.

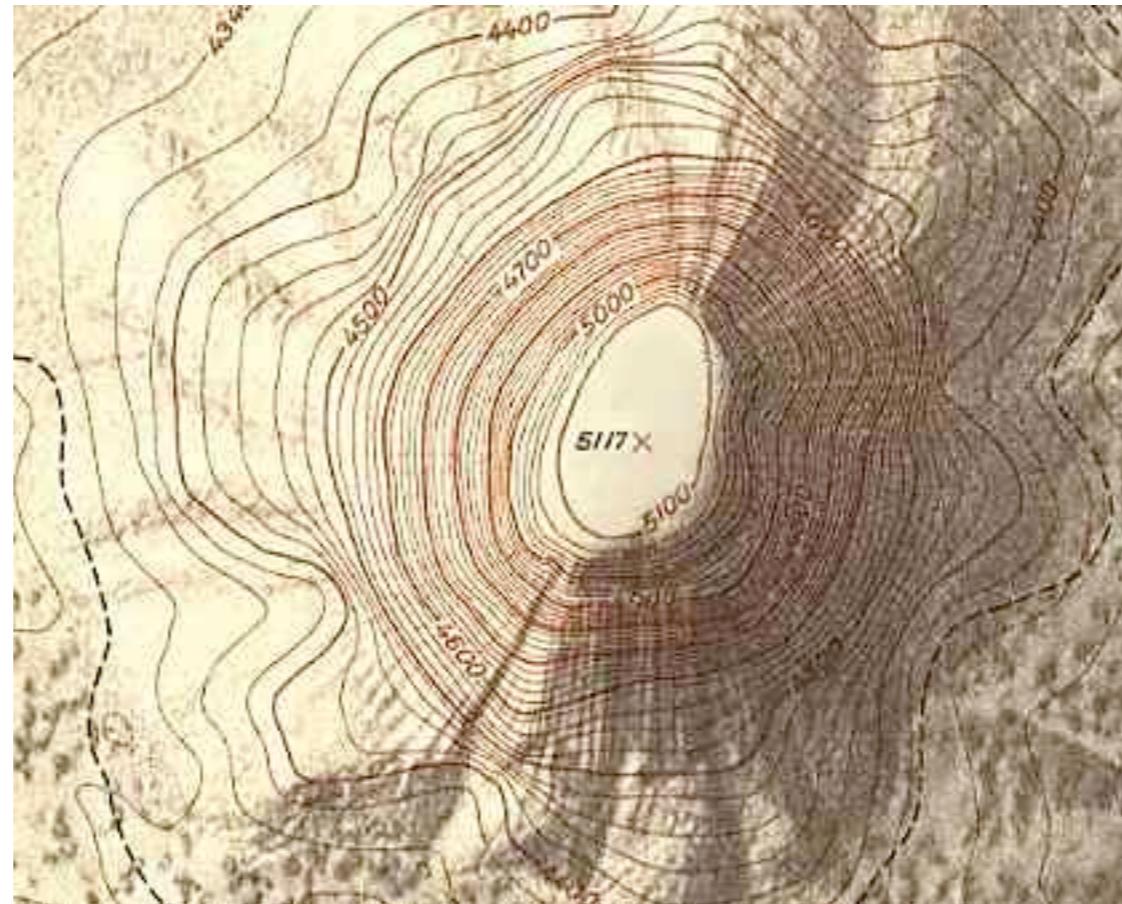
Čech Filtration: Add a k -simplex for every $k+1$ points that have a smallest enclosing ball of radius at most α .

Rips Filtration: Add a k -simplex for every $k+1$ points that have all pairwise distances at most α .

Still n^d , but we can quit early.

Topology is not Topography

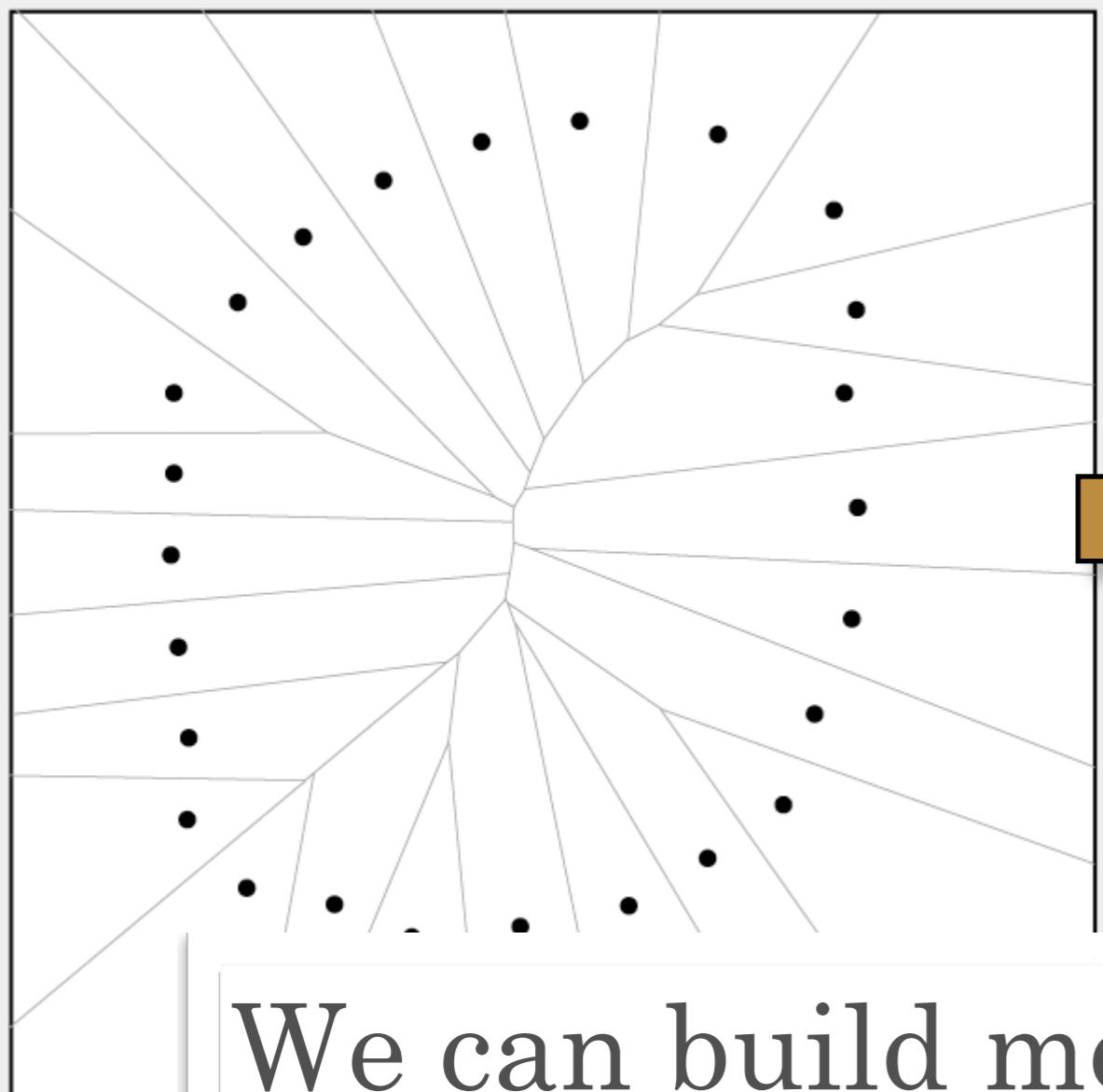
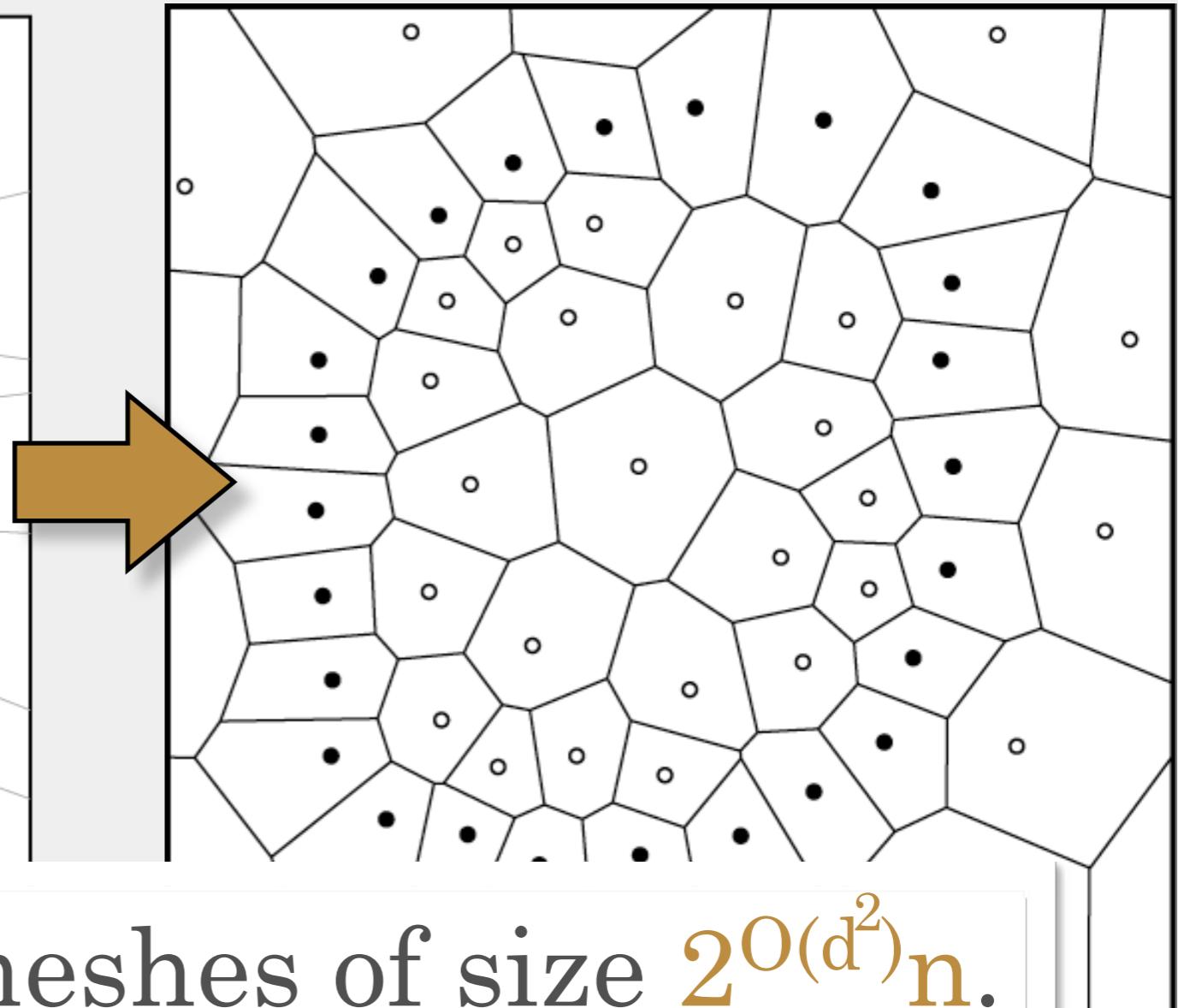
Sublevel sets



(But in our case, there are some similarities)

Nobel Peace Prize!

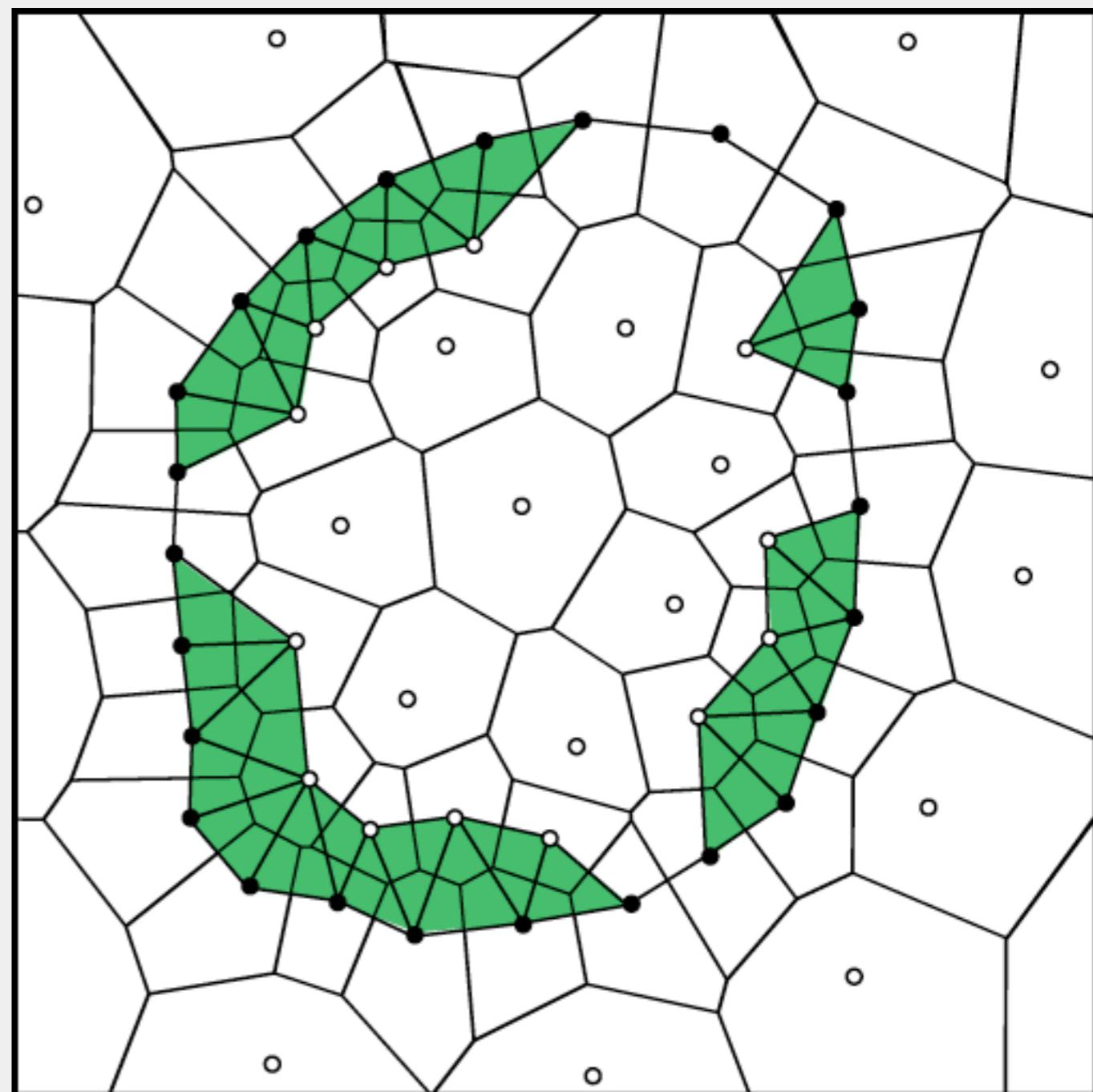
Our Idea: Build a **quality mesh**.



We can build meshes of size $2^{O(d^2)}n$.

The α -mesh filtration

1. Build a mesh M .
2. Assign birth times to vertices based on distance to P (special case points very close to P).
3. For each simplex s of $\text{Del}(M)$, let $\text{birth}(s)$ be the min birth time of its vertices.
4. Feed this filtered complex to the persistence algorithm.



Approximation via interleaving.

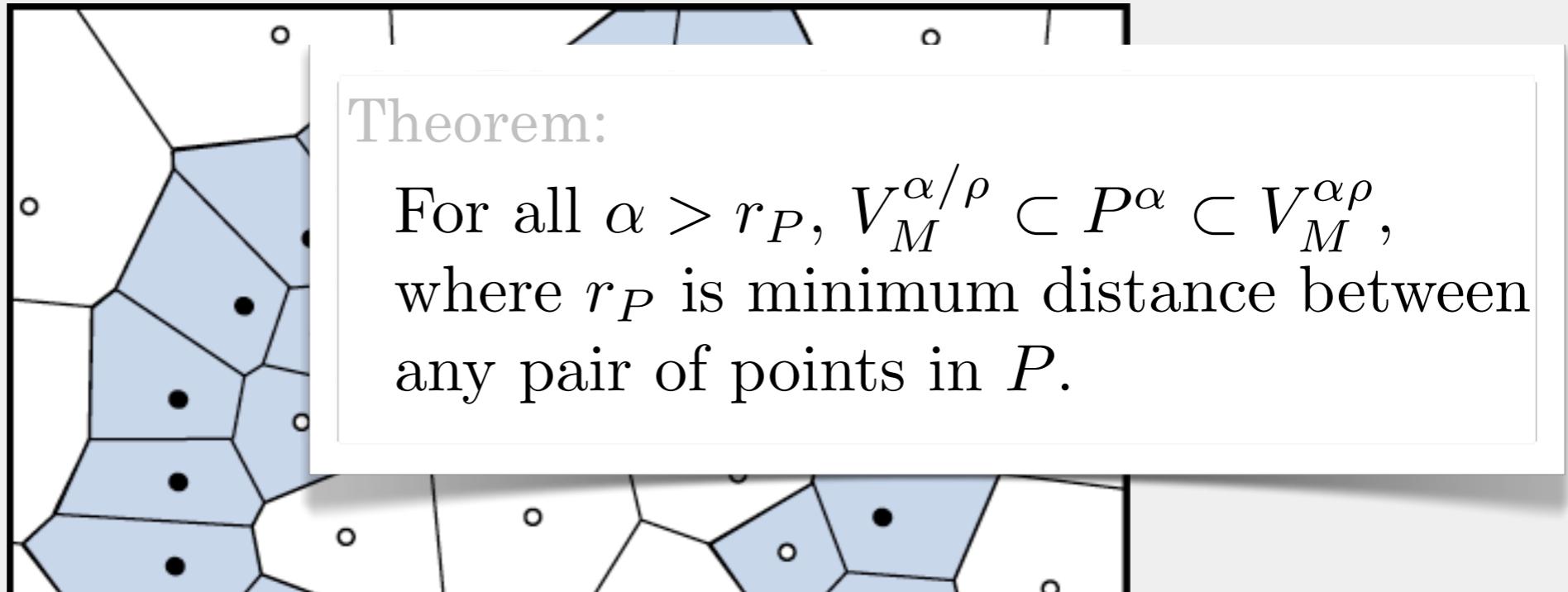
Definition:

Two filtrations, $\{P_\alpha\}$ and $\{Q_\alpha\}$ are ε -interleaved if $P_{\alpha-\varepsilon} \subseteq Q_\alpha \subseteq P_{\alpha+\varepsilon}$ for all α .

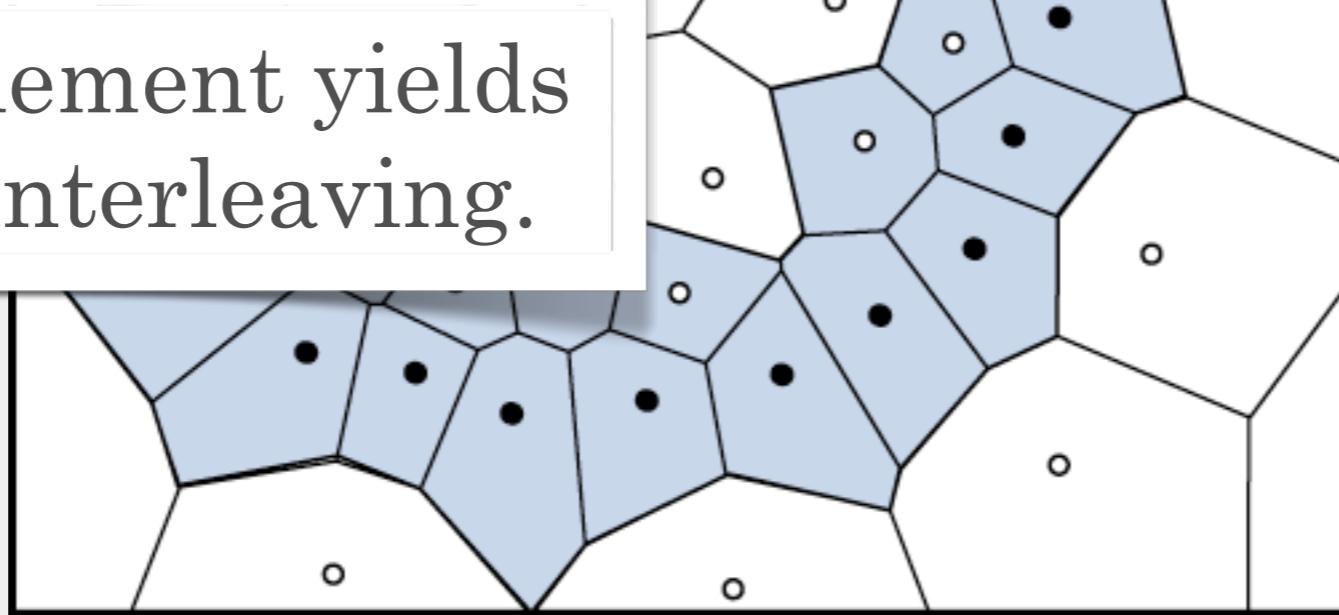
Theorem [Chazal et al, '09]:

If $\{P_\alpha\}$ and $\{Q_\alpha\}$ are ε -interleaved then their persistence diagrams are ε -close in the bottleneck distance.

The Voronoi filtration interleaves with the offset filtration.

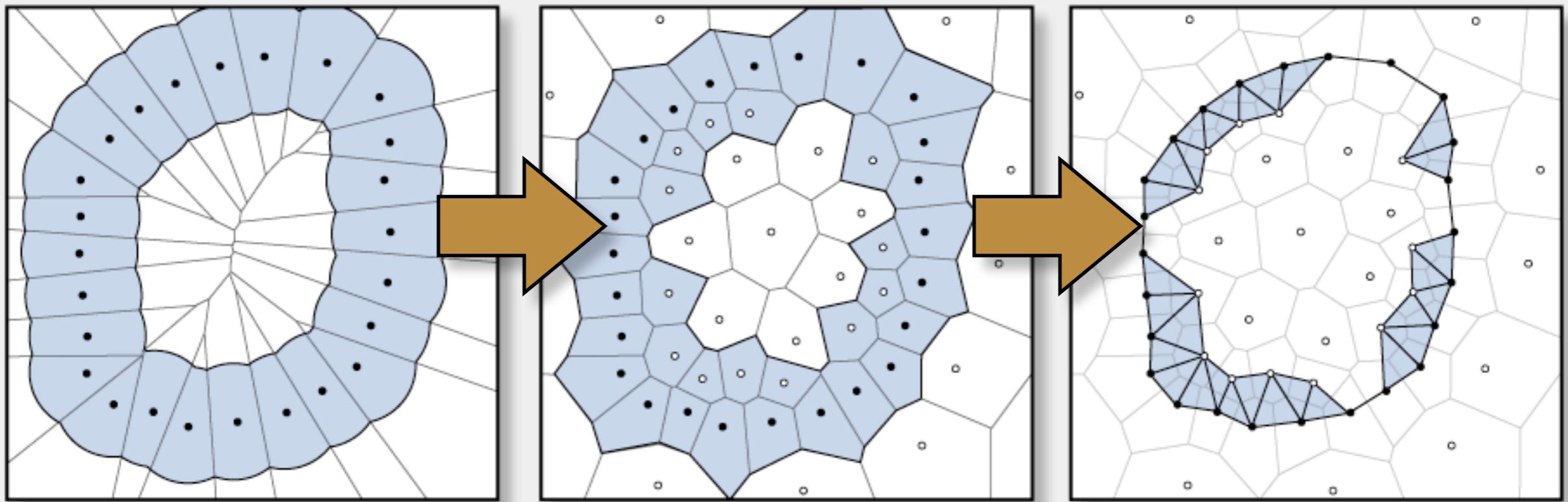


Finer refinement yields a tighter interleaving.



Geometric Approximation

Topological Approximation



If it's so easy, why didn't anyone think of this before?

Theorem [Hudson, Miller, Phillips, '06]:

A quality mesh of a point set can be constructed in $O(n \log \Delta)$ time, where Δ is the spread.

Theorem [Miller, Phillips, Sheehy, '08]:

A quality mesh of a *well-paced* point set has size $O(n)$.

The Results

1. Build a mesh M .
Over-refine it.
Use linear-size meshing.
2. Assign birth times to vertices based on distance to P (special case points very close to P). **
3. For each simplex s of $\text{Del}(M)$, let $\text{birth}(s)$ be the min birth time of its vertices.
4. Feed this filtered complex to the persistence algorithm.

	Approximation ratio	Complex Size
Previous Work	1	$n^{O(d)}$
Simple mesh filtration	ρ	$2^{O(d^2)} n \log \Delta$
Over-refine the mesh	$1 + \varepsilon$	$\varepsilon^{-O(d^2)} n \log \Delta$
Linear-Size Meshing	$1 + \varepsilon + 3\theta$	$(\varepsilon\theta)^{-O(d^2)} n$

Thank you.