
Searching for the center.

Don Sheehy
CMU Theory Lunch

October 8, 2008

1



2



It’s a fine line 
between stupid and 

clever.
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The Divide and Conquer Game
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The Divide and Conquer Game

How to win
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Pick a center point.

6



The Divide and Conquer Game

How to win

Pick a center point.

Given a set S ⊂ Rd, a center point p is a point
such that every closed halfspace with p on its
boundary contains at least n

d+1
points of S.
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Some definitions you probably already know.
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∑

pi∈P

cipiLinear:

Nonnegative:

Affine:

Convex:  Affine and Nonnegative

ci ≥ 0

∑
ci = 1
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Radon => Helly => Center Points Exist.
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Radon’s Theorem
If P ∈ Rd has d+2 (or more) points then there is a partition of P into (U,U)

such that conv(U) ∩ conv(U) is nonempty.
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Radon’s Theorem

d+2∑

i=1

cipi = 0

d+2∑

i=1

ci = 0

If P ∈ Rd has d+2 (or more) points then there is a partition of P into (U,U)
such that conv(U) ∩ conv(U) is nonempty.
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Radon’s Theorem
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I
+
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I
−
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(−ci)pi
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Radon’s Theorem
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If P ∈ Rd has d+2 (or more) points then there is a partition of P into (U,U)
such that conv(U) ∩ conv(U) is nonempty.

x =

∑

i∈I+

(

ci
∑

j∈I+ cj

)

pi =

∑

i∈I−

(

−ci
∑

j∈I−
−cj

)

pi
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Helly’s Theorem
Given some convex sets in Rd such that every d + 1 sets

have common intersection, then the whole collection of sets
has a common intersection.
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Helly’s Theorem
Given some convex sets in Rd such that every d + 1 sets

have common intersection, then the whole collection of sets
has a common intersection.
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Proof Hint:
Use Radon’s Theorem!
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Fun Exercise:
Show that the Radon 
Point is in every set.
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More than d+2 sets?
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The Center Point Theorem

Consider the set of all minimal halfspaces containing
at least dn

d+1
+ 1 points.

Helly’s Theorem implies that all the halfspaces have
a common intersection. The intersection is the set
of center points.

Observe that every d + 1 have a common intersection.
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Tverberg’s Theorem

Let S be a set of at least (d + 1)(r − 1) + 1 points in Rd.
There exists a partition of S into r subsets X1, . . . , Xr

such that
⋂r

i=1
conv(Xi) "= ∅
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Tverberg’s Theorem
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Tverberg’s Theorem

Let S be a set of at least (d + 1)(r − 1) + 1 points in Rd.
There exists a partition of S into r subsets X1, . . . , Xr

such that
⋂r

i=1
conv(Xi) "= ∅

Choose r = n/(d+1)
It’s a center point!
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Proof via Helly’s 
Theorem

Proof via Tverberg’s
Theorem
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Proof via Helly’s 
Theorem

Proof via Tverberg’s
Theorem

coNP NP
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An Algorithm
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Approximating Center Points with Iterated Radon Points
[ Clarkson, Eppstein, Miller, Sturtivant, Teng, 1993 ]
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Approximating Center Points with Iterated Radon Points
[ Clarkson, Eppstein, Miller, Sturtivant, Teng, 1993 ]

1. Randomly sample points into sets of d+2.
2. Compute the Radon point for each set. 
3. Compute the Radon points of the Radon points  
4. Continue until only one point remains.
5. Return that point.
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Approximating Center Points with Iterated Radon Points
[ Clarkson, Eppstein, Miller, Sturtivant, Teng, 1993 ]

1. Randomly sample points into sets of d+2.
2. Compute the Radon point for each set. 
3. Compute the Radon points of the Radon points  
4. Continue until only one point remains.
5. Return that point.

O
(

n

d2

)

-center with high probability.
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Analysis looks like Helly-type proof.

Look at all projections to one dimension
at the same time.
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Let’s build an algorithm so that the analysis will 
look less like Helly and more like Tverberg.
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This almost works.
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Analysis: How good is the resulting center point?
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Analysis: How good is the resulting center point?

Say gn is the minimum guaranteed partition size on n points

Then, gn/2 < n
2(d+1)2 and the corresponding partition

uses less than n
2(d+1) points.

So, with n points, we can construct d + 2 points
with partitions of size gn/2.

This means we can iterate the algorithm, and
gn ≥ 2gn/2

Base case: gd+2 = 2. =⇒ gn ≥ 2
log n

d+2 =
n

d + 2

Suppose for contradiction that gn < n

(d+1)2 .
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Thank you.
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