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It’s a fine line
between stupid and
clever.
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The Divide and Conquer Game

Pick a center point.




How to win

The Divide and Conquer Game

Pick a center point.

Given a set S C RY, a center point p is a point
such that every closed haltspace with p on its
boundary contains at least -5 points of 5.
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Some definitions you probably already know.
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Nonnegative: ¢ =0
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Convex: Affine and Nonnegatiye
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Radon => Helly => Center Points Exist.




Radon’s Theorem
If P € RY has d+2 (or more) points then there is a partition of P into (U, U)

such that conv(U) N conv(U) is nonempty.
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Radon’s Theorem
If P € RY has d+2 (or more) points then there is a partition of P into (U, U)

such that conv(U) N conv(U) is nonempty.
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Radon’s Theorem
If P € RY has d+2 (or more) points then there is a partition of P into (U, U)

such that conv(U) N conv(U) is nonempty.
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Radon’s Theorem
If P € RY has d+2 (or more) points then there is a partition of P into (U, U)

such that conv(U) N conv(U) is nonempty.
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Helly’s Theorem

Given some convex sets in R? such that every d + 1 sets
have common intersection, then the whole collection of sets
has a common intersection.
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Proof Hint:

Use Radon’s Theorem!
|
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Fun Exercise:
Show that the Radon

Point is in every set.
P T —
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More than d+2 sets?
S
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The Center Point Theorem

Consider the set of all minimal halfspaces containing

at least d‘f':’l - 1 points.

Observe that every d + 1 have a common intersection.

Helly’s Theorem implies that all the halfspaces have

a common 1ntersection. The intersection is the set
of center points.
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Tverberg’s Theorem

Let S be a set of at least (d + 1)(r — 1) + 1 points in R¢.
There exists a partition of S into r subsets X;,..., X,

such that (),_, conv(X;) # (
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Tverberg’s Theorem

Let S be a set of at least (d + 1)(r — 1) + 1 points in R¢.
There exists a partition of S into r subsets X;,..., X,

such that (),_, conv(X;) # (

Choose r = n/(d+1)
It’s a center point!
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Proof via Tverberg’s
Theorem
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Proof via Tverberg’s
Theorem

NP
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An Algorithm




Approximating Center Points with Iterated Radon Points
| Clarkson, Eppstein, Miller, Sturtivant, Teng, 1993 |

49



Approximating Center Points with Iterated Radon Points
| Clarkson, Eppstein, Miller, Sturtivant, Teng, 1993 |

|. Randomly sample points into sets of d+2.

2. Compute the Radon point for each set.

3. Compute the Radon points of the Radon points
4. Continue until only one point remains.

5. Return that point.
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Approximating Center Points with Iterated Radon Points
| Clarkson, Eppstein, Miller, Sturtivant, Teng, 1993 |

|. Randomly sample points into sets of d+2.

2. Compute the Radon point for each set.

3. Compute the Radon points of the Radon points
4. Continue until only one point remains.

5. Return that point.

O (%)—Center with high probability.
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Analysis looks like Helly-type proof.

Look at all projections to one dimension
at the same time.
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Let’s build an algorithm so that the analysis will
look less like Helly and more like Tverbersg.
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This almost works.
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Analysis: How good is the resulting center point!?
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Say g, 1s the minimum guaranteed partition size on n points

Suppose for contradiction that g, < ( dj:1)2'

Then, g, /2 < 3 dil)Q and the corresponding partition

uses less than o d"ﬁrl) points.

So, with n points, we can construct d + 2 points
with partitions of size g, /2.

This means we can iterate the algorithm, and
Gn = 29n/2

Base case: gg19 = 2.
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Analysis: How good is the resulting center point!?

Say g, 1s the minimum guaranteed partition size on n points

Suppose for contradiction that g, < ( dj:1)2'

Then, g, /2 < 3 dil)Q and the corresponding partition

uses less than o d"ﬁrl) points.

So, with n points, we can construct d + 2 points
with partitions of size g, /2.

This means we can iterate the algorithm, and

log —"_ T
Base case: ggi2 =2. = gn =270 T2 = d—+ 2
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Thank you.




