
Mesh Generation and
Topological Data Analysis

Don Sheehy
INRIA Saclay, France

Obvious.

Obvious.
“I could have thought of that.”

Obvious.
“I could have thought of that.”

“I should have thought of that.”

Outline

Outline

1 The Obvious.

Outline

1 The Obvious.
Mesh generation as a preprocess for TDA

Outline

1 The Obvious.
Mesh generation as a preprocess for TDA

2 The Not Obvious.

Outline

1 The Obvious.
Mesh generation as a preprocess for TDA

2 The Not Obvious.
Some challenges of mesh generation

Outline

1 The Obvious.
Mesh generation as a preprocess for TDA

2 The Not Obvious.
Some challenges of mesh generation
(and their solution)

Outline

1 The Obvious.
Mesh generation as a preprocess for TDA

2 The Not Obvious.
Some challenges of mesh generation
(and their solution)

3 Some things that are true.

Outline

1 The Obvious.
Mesh generation as a preprocess for TDA

2 The Not Obvious.
Some challenges of mesh generation
(and their solution)

3 Some things that are true.
The main theorems about approximating
persistence diagrams using mesh filtrations

Outline

1 The Obvious.
Mesh generation as a preprocess for TDA

2 The Not Obvious.
Some challenges of mesh generation
(and their solution)

3 Some things that are true.
The main theorems about approximating
persistence diagrams using mesh filtrations

4 Some things that might be true.

Outline

1 The Obvious.
Mesh generation as a preprocess for TDA

2 The Not Obvious.
Some challenges of mesh generation
(and their solution)

3 Some things that are true.
The main theorems about approximating
persistence diagrams using mesh filtrations

4 Some things that might be true.
Wild speculation.

We consider point clouds in low-
dimensional Euclidean space.

Maybe there is underlying structure, but maybe not.

A trip down memory lane...

A trip down memory lane...

A trip down memory lane...

VR
Cech
alpha-shapes
Witness
Mapper

A trip down memory lane...

How to get very small and
understandable representations

VR
Cech
alpha-shapes
Witness
Mapper

A trip down memory lane...

Conventional Wisdom: If you want a smaller complex,
you need to use fewer vertices.

How to get very small and
understandable representations

VR
Cech
alpha-shapes
Witness
Mapper

A trip down memory lane...

Conventional Wisdom: If you want a smaller complex,
you need to use fewer vertices.

How to get very small and
understandable representations

VR
Cech
alpha-shapes
Witness
Mapper

Obvious?

A trip down memory lane...

Conventional Wisdom: If you want a smaller complex,
you need to use fewer vertices.

How to get very small and
understandable representations

VR
Cech
alpha-shapes
Witness
Mapper

Obvious? True?

The complexity of simplicial complexes is
not dominated by vertex counts.

The complexity of simplicial complexes is
not dominated by vertex counts.

For simplicial polytopes: Ω(n) ≤ number of faces ≤ O(n!d/2")

The complexity of simplicial complexes is
not dominated by vertex counts.

For simplicial polytopes: Ω(n) ≤ number of faces ≤ O(n!d/2")

For α-complexes: Ω(n) ≤ number of faces ≤ O(n!d/2")

The complexity of simplicial complexes is
not dominated by vertex counts.

For simplicial polytopes: Ω(n) ≤ number of faces ≤ O(n!d/2")

Geometry matters!

For α-complexes: Ω(n) ≤ number of faces ≤ O(n!d/2")

The complexity of simplicial complexes is
not dominated by vertex counts.

For simplicial polytopes: Ω(n) ≤ number of faces ≤ O(n!d/2")

Geometry matters!

For α-complexes: Ω(n) ≤ number of faces ≤ O(n!d/2")

Example:
Delaunay triangulation of points sampled from 2 skew lines.

The complexity of simplicial complexes is
not dominated by vertex counts.

For simplicial polytopes: Ω(n) ≤ number of faces ≤ O(n!d/2")

Geometry matters!

For α-complexes: Ω(n) ≤ number of faces ≤ O(n!d/2")

Example:
Delaunay triangulation of points sampled from 2 skew lines.

Complexity: O(n2)

The complexity of simplicial complexes is
not dominated by vertex counts.

For simplicial polytopes: Ω(n) ≤ number of faces ≤ O(n!d/2")

Geometry matters!

For α-complexes: Ω(n) ≤ number of faces ≤ O(n!d/2")

Example:
Delaunay triangulation of points sampled from 2 skew lines.

Complexity: O(n2)

Complexity with noise: O(n)

The complexity of simplicial complexes is
not dominated by vertex counts.

For simplicial polytopes: Ω(n) ≤ number of faces ≤ O(n!d/2")

Geometry matters!

For α-complexes: Ω(n) ≤ number of faces ≤ O(n!d/2")

Example:
Delaunay triangulation of points sampled from 2 skew lines.

Complexity: O(n2)

Complexity with noise: O(n)
Does noise help?

A TDA Pipeline

A TDA Pipeline

Data Points

A TDA Pipeline

Data Points

a Function
(Lipschitz)

A TDA Pipeline

Data Points

a Function
(Lipschitz)

A (filtered) Simplicial Complex
(to approx. the function)

A TDA Pipeline

Data Points

a Function
(Lipschitz)

A (filtered) Simplicial Complex
(to approx. the function)

Compute Persistence

M
es

h
 G

en
er

at
io

n

A TDA Pipeline

Data Points

a Function
(Lipschitz)

A (filtered) Simplicial Complex
(to approx. the function)

Compute Persistence

M
es

h
 G

en
er

at
io

n

A TDA Pipeline

Data Points

a Function
(Lipschitz)

A (filtered) Simplicial Complex
(to approx. the function)

Compute Persistence

(A
lm

os
t)

M
es

h
 G

en
er

at
io

n

A TDA Pipeline

Data Points

a Function
(Lipschitz)

A (filtered) Simplicial Complex
(to approx. the function)

Compute Persistence

(A
lm

os
t)

Mesh Generation

Mesh Generation
Decompose a domain
into simple elements.

Mesh Generation
Decompose a domain
into simple elements.

Mesh Generation

Mesh Quality

Radius/Edge < const

Decompose a domain
into simple elements.

Mesh Generation

X X✓

Mesh Quality

Radius/Edge < const

Decompose a domain
into simple elements.

Mesh Generation

X X✓

Mesh Quality

Radius/Edge < const

Conforming to Input
Decompose a domain
into simple elements.

Mesh Generation

X X✓

Mesh Quality

Radius/Edge < const

Conforming to Input
Decompose a domain
into simple elements.

Mesh Generation

X X✓

Mesh Quality

Radius/Edge < const

Conforming to Input
Decompose a domain
into simple elements.

Mesh Generation

X X✓

Mesh Quality

Radius/Edge < const

Conforming to Input
Decompose a domain
into simple elements.

Mesh Generation

X X✓

Mesh Quality

Radius/Edge < const

Conforming to Input
Decompose a domain
into simple elements.

Voronoi Diagram

Mesh Generation

X X✓

Mesh Quality

Radius/Edge < const

OutRadius/InRadius < const

Conforming to Input
Decompose a domain
into simple elements.

Voronoi Diagram

Mesh Generation

X X✓

✓X

Mesh Quality

Radius/Edge < const

OutRadius/InRadius < const

Conforming to Input
Decompose a domain
into simple elements.

Voronoi Diagram

Mesh Generation

X X✓

✓X

Mesh Quality

Radius/Edge < const

OutRadius/InRadius < const

Conforming to Input
Decompose a domain
into simple elements.

Voronoi Diagram

Meshing Points
Input: P ⊂ Rd

Output: M ⊃ P with a “nice” Voronoi diagram

n = |P |,m = |M |

Meshing Points
Input: P ⊂ Rd

Output: M ⊃ P with a “nice” Voronoi diagram

n = |P |,m = |M |

Meshing Points
Input: P ⊂ Rd

Output: M ⊃ P with a “nice” Voronoi diagram

n = |P |,m = |M |

Meshing Points
Input: P ⊂ Rd

Output: M ⊃ P with a “nice” Voronoi diagram

n = |P |,m = |M |

Meshing Guarantees

Aspect Ratio (quality):

Cell Sizing:

Constant Local Complexity:

Optimality and Running time:

v
Rv

rv
Rv

rv
≤ τ

Rv ≤ εlfs(v)
lfs(x) := d(x, P \ {NN(x)})

|M | = Θ(|Optimal|)

Running time: O(n log n+ |M |)

The degree of the 1-skeleton is 2O(d).

Meshing Guarantees

Aspect Ratio (quality):

Cell Sizing:

Constant Local Complexity:

Optimality and Running time:

v
Rv

rv
Rv

rv
≤ τ

Rv ≤ εlfs(v)
lfs(x) := d(x, P \ {NN(x)})

|M | = Θ(|Optimal|)

Running time: O(n log n+ |M |)

The degree of the 1-skeleton is 2O(d).

ε-refined

Mesh Filtrations
Geometric

Approximation
Topologically
Equivalent

1. Compute the function on the vertices.

2. Approximate the sublevel with a union of Voronoi cells.

3. Filter the Delaunay triangulation appropriately.

Mesh Filtrations
Geometric

Approximation
Topologically
Equivalent

1. Compute the function on the vertices.

2. Approximate the sublevel with a union of Voronoi cells.

3. Filter the Delaunay triangulation appropriately.

Persistence Diagrams

Birth

D
ea

th

Persistence Diagrams

Birth

D
ea

th

Persistence Diagrams

d∞B = max
i

|pi − qi|∞

Bottleneck Distance

Birth

D
ea

th

Persistence Diagrams

d∞B = max
i

|pi − qi|∞

Bottleneck Distance

Approximate

Birth

D
ea

th

Persistence Diagrams

d∞B = max
i

|pi − qi|∞

Bottleneck Distance

Approximate

Birth and Death times
differ by a constant factor.

Birth

D
ea

th

Persistence Diagrams

d∞B = max
i

|pi − qi|∞

Bottleneck Distance

This is just the bottleneck distance of the log-scale diagrams.

Approximate

Birth and Death times
differ by a constant factor.

Birth

D
ea

th

Stability theorems can be viewed as
approximation theorems.

Stability theorems can be viewed as
approximation theorems.
This is just a change in perspective.

Stability theorems can be viewed as
approximation theorems.
This is just a change in perspective.

F log
:= {F log

α
} where F

log
logα

:= Fα

Define the log-scale filtration of F = {Fα} as

Stability theorems can be viewed as
approximation theorems.
This is just a change in perspective.

F log
:= {F log

α
} where F

log
logα

:= Fα

Define the log-scale filtration of F = {Fα} as

Given filtrations F and G, we say
Dgm F is a γ-approximation to Dgm G iff

dB(Dgm F log
,Dgm Glog) ≤ log γ.

Stability theorems can be viewed as
approximation theorems.
This is just a change in perspective.

F log
:= {F log

α
} where F

log
logα

:= Fα

Define the log-scale filtration of F = {Fα} as

Given filtrations F and G, we say
Dgm F is a γ-approximation to Dgm G iff

dB(Dgm F log
,Dgm Glog) ≤ log γ.

Lemma. Let F = {Fα} and G = {Gα} be filtrations. If
Fα/γ ⊆ Gα ⊆ Fαγ for all α ≥ 0, then Dgm F is a γ-
approximation to Dgm G.

The main idea

The main idea

Given a function f : Rd → R, let F = {Fα} be its sublevel
filtration.

Fα := f−1[0, α]

The main idea

Let M be a quality mesh.

Given a function f : Rd → R, let F = {Fα} be its sublevel
filtration.

Fα := f−1[0, α]

The main idea

Let M be a quality mesh.

Given a function f : Rd → R, let F = {Fα} be its sublevel
filtration.

Fα := f−1[0, α]

Let V = {Vα} be the Voronoi filtration of f on M .

Vα :=
⋃

v∈M
f(v)≤α

Vor(v)

The main idea

Let M be a quality mesh.

Given a function f : Rd → R, let F = {Fα} be its sublevel
filtration.

Fα := f−1[0, α]

Let V = {Vα} be the Voronoi filtration of f on M .

Vα :=
⋃

v∈M
f(v)≤α

Vor(v)

We will show Dgm V is a good approximation to Dgm F .

The Voronoi filtration interleaves with
the offset filtration.

The Voronoi filtration interleaves with
the offset filtration.

The Voronoi filtration interleaves with
the offset filtration.

The Voronoi filtration interleaves with
the offset filtration.

The Voronoi filtration interleaves with
the offset filtration.

V
α/τ ⊆ P

α ⊆ V
ατ

The Voronoi filtration interleaves with
the offset filtration.

Finer refinement yields a tighter
interleaving.

V
α/(1+ε) ⊆ P

α ⊆ V
α(1+ε)

V
α/τ ⊆ P

α ⊆ V
ατ

The Voronoi filtration interleaves with
the offset filtration.

Finer refinement yields a tighter
interleaving.

caveat: Special case for
small scales.

V
α/(1+ε) ⊆ P

α ⊆ V
α(1+ε)

V
α/τ ⊆ P

α ⊆ V
ατ

The Not Obvious.

The Not Obvious.

1 Why meshing is not obviously a good idea for TDA.

The Not Obvious.

1 Why meshing is not obviously a good idea for TDA.

2 Why meshing is a nonobvious good idea for TDA.

The Not Obvious.

1 Why meshing is not obviously a good idea for TDA.

2 Why meshing is a nonobvious good idea for TDA.

3 Why meshing is obviously not a good idea for TDA.

The Not Obvious.

1 Why meshing is not obviously a good idea for TDA.

2 Why meshing is a nonobvious good idea for TDA.

3 Why meshing is obviously not a good idea for TDA.

Meshing codes are hard to write.

image credit: Pointwise

Meshing codes are hard to write.

1 Numerical Robustness

image credit: Pointwise

Meshing codes are hard to write.

1 Numerical Robustness

2 Understanding tradeoffs

image credit: Pointwise

Meshing codes are hard to write.

1 Numerical Robustness

2 Understanding tradeoffs

3 “Necessary” heuristics

image credit: Pointwise

Meshing codes are hard to write.

1 Numerical Robustness

2 Understanding tradeoffs

3 “Necessary” heuristics

image credit: Pointwise

On the other hand, meshing for FEA often has stricter
requirements than those for TDA.

Meshing codes are hard to write.

1 Numerical Robustness

2 Understanding tradeoffs

3 “Necessary” heuristics

image credit: Pointwise

On the other hand, meshing for FEA often has stricter
requirements than those for TDA.

- Approximate gradients

Meshing codes are hard to write.

1 Numerical Robustness

2 Understanding tradeoffs

3 “Necessary” heuristics

image credit: Pointwise

On the other hand, meshing for FEA often has stricter
requirements than those for TDA.

- Approximate gradients
- Slivers

The size of an optimal mesh is given by
the feature size measure.

The size of an optimal mesh is given by
the feature size measure.

lfsP (x) := Distance to second nearest neighbor in P .

The size of an optimal mesh is given by
the feature size measure.

lfsP (x) := Distance to second nearest neighbor in P .

The size of an optimal mesh is given by
the feature size measure.

lfsP (x) := Distance to second nearest neighbor in P .

The size of an optimal mesh is given by
the feature size measure.

x

lfsP (x) := Distance to second nearest neighbor in P .

The size of an optimal mesh is given by
the feature size measure.

lfs
(x
)

x

lfsP (x) := Distance to second nearest neighbor in P .

The size of an optimal mesh is given by
the feature size measure.

x

lfsP (x) := Distance to second nearest neighbor in P .

The size of an optimal mesh is given by
the feature size measure.

lfs(x)x

lfsP (x) := Distance to second nearest neighbor in P .

The size of an optimal mesh is given by
the feature size measure.

lfs(x)x

lfsP (x) := Distance to second nearest neighbor in P .

Optimal Mesh Size = Θ
(

∫

Ω
dx

lfs(x)d

)

The size of an optimal mesh is given by
the feature size measure.

lfs(x)x

lfsP (x) := Distance to second nearest neighbor in P .

Optimal Mesh Size = Θ
(

∫

Ω
dx

lfs(x)d

)

number of vertices

The size of an optimal mesh is given by
the feature size measure.

lfs(x)x

lfsP (x) := Distance to second nearest neighbor in P .

Optimal Mesh Size = Θ
(

∫

Ω
dx

lfs(x)d

)

hides simple exponential in d

number of vertices

The size of an optimal mesh is given by
the feature size measure.

lfs(x)x

lfsP (x) := Distance to second nearest neighbor in P .

Optimal Mesh Size = Θ
(

∫

Ω
dx

lfs(x)d

)

hides simple exponential in d

number of vertices

µP (Ω) =

∫
Ω

dx

lfsP (x)d
The Feature Size Measure:

The size of an optimal mesh is given by
the feature size measure.

lfsP (x) := Distance to second nearest neighbor in P .

Optimal Mesh Size = Θ
(

∫

Ω
dx

lfs(x)d

)

hides simple exponential in d

number of vertices

µP (Ω) =

∫
Ω

dx

lfsP (x)d
The Feature Size Measure:

When is µP (Ω) = O(n)?

The size of an optimal mesh is given by
the feature size measure.

lfsP (x) := Distance to second nearest neighbor in P .

Optimal Mesh Size = Θ
(

∫

Ω
dx

lfs(x)d

)

hides simple exponential in d

number of vertices

µP (Ω) =

∫
Ω

dx

lfsP (x)d
The Feature Size Measure:

When is µP (Ω) = O(n)?
Pacing and the Empty Annulus Condition [S. 2012]

The Main Approximation Theorem

Theorem. Let P be a point cloud and let M be an ε-
refined mesh of P . Let f ≥ 1

c
lfsP be a t-Lipschitz function

Rd → R for some constant c > 0. Let F be the sublevel
filtration of f and let V be the Voronoi filtration of f on M .

Then Dgm V is a
(

1 + ctε

1−ε

)

-approximation to Dgm F .

Proof of the main theorem

‖v − x‖ ≤ Rv ≤ εlfs(v) ≤ cεf(v) ‖v − x‖ ≤
cε

1− ε
f(x)

f(x) ≤ f(v) + t‖v − x‖ ≤ (1 + ctε)f(v) f(v) ≤ f(x) + t‖v − x‖ ≤

(

1 +
ctε

1− ε

)

f(x)

∀v ∈ M,Vor(v) ⊆ F(1+ctε)f(v)

∀α ≥ 0, Vα ⊆ F(1+ctε)α
∀α ≥ 0, Fα ⊆ F(1+ ctε

1−ε)α

∀α ≥ 0, Vα/γ ⊆ Fα ⊆ Vαγ where γ = 1 +
ctε

1− ε

Dgm V is a γ-approximation to Dgm F .

f ≥
1

c
lfs

Rv ≤ εlfs(v)

Fix any v ∈ M and any x ∈ Vor(v)

v

x

Rv

The Main Approximation Theorem

Theorem. Let P be a point cloud and let M be an ε-
refined mesh of P . Let f ≥ 1

c
lfsP be a t-Lipschitz function

Rd → R for some constant c > 0. Let F be the sublevel
filtration of f and let V be the Voronoi filtration of f on M .

Then Dgm V is a
(

1 + ctε

1−ε

)

-approximation to Dgm F .

The Main Approximation Theorem

Theorem. Let P be a point cloud and let M be an ε-
refined mesh of P . Let f ≥ 1

c
lfsP be a t-Lipschitz function

Rd → R for some constant c > 0. Let F be the sublevel
filtration of f and let V be the Voronoi filtration of f on M .

Then Dgm V is a
(

1 + ctε

1−ε

)

-approximation to Dgm F .

Observations:
M can be made to have size O(n).
The construction of M does not depend on f.
One mesh works for many functions.

We know how to do many things with meshes.
(Some of these should be useful for TDA).

We know how to do many things with meshes.
(Some of these should be useful for TDA).

Dealing with anisotropy.

We know how to do many things with meshes.
(Some of these should be useful for TDA).

Dealing with anisotropy.

Approximation of gradients.

We know how to do many things with meshes.
(Some of these should be useful for TDA).

Dealing with anisotropy.

Approximation of gradients.

Mesh Coarsening.

We know how to do many things with meshes.
(Some of these should be useful for TDA).

Dealing with anisotropy.

Approximation of gradients.

Mesh Coarsening.

Adaptive/Dynamic/Kinetic

We know how to do many things with meshes.
(Some of these should be useful for TDA).

Dealing with anisotropy.

Approximation of gradients.

Mesh Coarsening.

Adaptive/Dynamic/Kinetic

Geometric Separators

Meshing!

Thank You!

Mesh generation is a natural preprocess for TDA
in low-dimensional Euclidean space.

