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persistence diagrams using mesh filtrations

Some things that might be true.
Wild speculation.



We consider point clouds in low-
dimensional Euclidean space.

Maybe there 1s underlying structure, but maybe not.
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Conventional Wisdom: If you want a smaller complex,
you need to use fewer vertices.

Obvious? True?
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The complexity of stmplicial complexes 1s
not dominated by vertex counts.

For simplicial polytopes: $2(n) < number of faces < O (nLd/ 2J)
For o -complexes: (2(n) < number of faces < O(nm/ 21)

Geometry matters!

Example:
Delaunay triangulation of points sampled from 2 skew lines.

Complexity: O(n?)

Does noise help?

Complexity with noise: O(n)



A TDA Pipeline



A TDA Pipeline

Data Points

I —_——




A TDA Pipeline

Data Points
a Function

(Lipschitz)




A TDA Pipeline

Data Points
a Function

(Lipschitz)

I—

‘

\/

A (filtered) Simplicial Complex
(to approx. the function)




A TDA Pipeline

Data Points
a Function

(Lipschitz)

E—

‘

\J

A (filtered) Simplicial Complex
(to approx. the function)

Y

Compute Persistence

S



A TDA Pipeline

Data Points

TR

a Function

(Lipschitz)
A (filtered) Simplicial Complex
(to approx. the function)
2
Compute Persistence

— —

Mesh Generation




A TDA Pipeline

Data Points

TR

a Function

(Lipschitz)
A (filtered) Simplicial Complex
(to approx. the function)

e EE—
\/

(Almost)

Mesh Generation

Compute Persistence

[ — e




A TDA Pipeline

Data Points

a Function
(Lipschitz)

A (filtered) Simplicial Complex
(to approx. the function)
T — \; B

(Almost)

Mesh Generation

Compute Persistence

T — ———




Mesh Generation




Mesh Generation

Decompose a domain
into simple elements.



Mesh Generation

Decompose a domain
into simple elements.




Mesh Generation

Decompose a domain

into simple elements. Mesh Quality

A

Radius/Edge < const




Mesh Generation

Decompose a domain

into simple elements. Mesh Quality

J=
X Vv X

Radius/Edge < const




Mesh Generation

Decompose a domain

into simple elements. Mesh Quality Conforming to Input

J=
X Vv X

Radius/Edge < const




Mesh Generation

Decompose a domain

into simple elements. Mesh Quality Conforming to Input

J=
X Vv X

Radius/Edge < const




Mesh Generation

Decompose a domain

into simple elements. Mesh Quality Conforming to Input

J=
X Vv X

Radius/Edge < const




Mesh Generation

Decompose a domain

into simple elements. Mesh Quality Conforming to Input

J=
X Vv X

Radius/Edge < const




Mesh Generation

Decompose a domain

into simple elements. Mesh Quality Conforming to Input

J=
X Vv X

Radius/Edge < const

Voronoi Diagram



Mesh Generation

Decompose a domain

into simple elements. Mesh Quality Conforming to Input

J=
X Vv X

Radius/Edge < const

e

Vorono1 Diagram OutRadius/InRadius < const




Mesh Generation

Decompose a domain

into simple elements. Mesh Quality Conforming to Input

J=
X Vv X

Radius/Edge < const

e

Vorono1 Diagram OutRadius/InRadius < const




Mesh Generation

Decompose a domain
into simple elements.

Mesh Quality

Ja

X

Radius/Edge < const

Conforming to Input

Voronoi Diagram

9G

OutRadius/InRadius < const
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Approximate
Persistence Diagrams

Bottleneck Distance

Birth and Death times
differ by a constant factor.

Death

Birth

This 1s just the bottleneck distance of the log-scale diagrams.
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Stability theorems can be viewed as
approximation theorems.

This 1s just a change 1n perspective.

Define the log-scale filtration of F = {F,} as

log .__ lo lo .
Fo8 = {F®} where F| > = F,
Given filtrations F and G, we say
Dgm F is a y-approximation to Dgm G iff

dp(Dgm F'°¢ Dgm G'°8) < log .

Lemma. Let F = {F,} and G = {G,} be filtrations. If
Foiv © Gy C© Foy for all o = 0, then Dgm F is a -

approximation to Dgm §.
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The main i1dea

Given a function f : R = R, let F = {F,} be its sublevel
filtration.

F, := 710, q]
Let M be a quality mesh.

Let V = {V,} be the Voronoi filtration of f on M.

Vo 1= U Vor(v)
veM
f(v)<o

We will show Dgm V is a good approximation to Dgm F.
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The Vorono1 filtration interleaves with
the offset filtration.

* |/ o 9‘ Finer refinement yields a tighter
- ' interleaving.

: |
- 4" “' caveat: Special case for
""‘ ’ small scales.
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2 Why meshing is a nonobvious good i1dea for TDA.

3 Why meshingisebvweusis=nota good 1dea for TDA.
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Meshing codes are hard to write.

1 Numerical Robustness .
change your perception of

2 Understanding tradeofts

3 “Necessary’ heuristics

1mage credit: Pointwise

On the other hand, meshing for FEA often has stricter
requirements than those for TDA.

- Approximate gradients
- Shivers
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The size of an optimal mesh 1s given by
the feature size measure.

Ifsp(x) := Distance to second nearest neighbor in P.

pumber of vertices

Optimal Mesh Size/—/ (fﬂ lfs(x)d>

Ahides Sx“mp/e exponenz( ral in d

The F Size M - (9)—/ o
e Feature di1ze VMeasure: Up — o Ifsp(x)

When is up(2) = O(n)?

Pacing and the Empty Annulus Condition [S. 2012]




The Main Approximation Theorem

Theorem. Let P be a point cloud and let M be an e-

refined mesh of P. Let f > %lfSp be a t-Lipschitz function
RY — R for some constant ¢ > 0. Let F be the sublevel
filtration of f and let )V be the Voronoi filtration of f on M.

Then Dgm V 1s a (1 | cte )-appmm’matz’on to Degm F.

1—e



Proof of the main theorem

Fix any v € M and any x € Vor(v)

1
f > —lis
c

R, < elfs(v)

v —x|| < R, <elfs(v) < cef(v) v —z|| <

) f(a)
@) < ) +tlo—o] < (+ i) | F0) < f@)+ o=l < (14

Vv € M, Vor(v) C F(1—|—ct€)f(v)
Va 2 OaFoz g F(1_|_Ct_€)a
\V/Oé Z O, Va g F(1—|—cts)a 1—¢

cte

\V/OKZO, Voz/fygFagVa'y Where”}/:1+1 -

Dgm V is a y-approximation to Dgm F.
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The Main Approximation Theorem

Theorem. Let P be a point cloud and let M be an e-
refined mesh of P. Let f > %lfSp be a t-Lipschitz function
RY — R for some constant ¢ > 0. Let F be the sublevel
filtration of f and let )V be the Voronoi filtration of f on M.

Then Dgm V 1s a (1 | cte )-appmxz’matz’on to Degm F.

1—e

Observations:

M can be made to have size O(n).

The construction of M does not depend on /.
One mesh works for many functions.
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We know how to do many things with meshes.
(Some of these should be useful for TDA).

Dealing with anisotropy.
Approximation of gradients.
Mesh Coarsening.
Adaptive/Dynamic/Kinetic

Geometric Separators



Mesh generation 1s a natural preprocess for TDA
1n low-dimensional Euclidean space.




