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1  The Obvious.
Mesh generation as a preprocess for TDA

2  The Not Obvious.
Some challenges of mesh generation
(and their solution)

3  Some things that are true.
The main theorems about approximating 
persistence diagrams using mesh filtrations

4  Some things that might be true.
Wild speculation.



We consider point clouds in low-
dimensional Euclidean space.

Maybe there is underlying structure, but maybe not.
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Conventional Wisdom: If you want a smaller complex,
you need to use fewer vertices.

How to get very small and 
understandable representations

VR
Cech
alpha-shapes
Witness
Mapper

Obvious? True?
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The complexity of simplicial complexes is 
not dominated by vertex counts.

For simplicial polytopes: Ω(n) ≤ number of faces ≤ O(n!d/2")

Geometry matters!

For α-complexes: Ω(n) ≤ number of faces ≤ O(n!d/2")

Example:
Delaunay triangulation of points sampled from 2 skew lines.

Complexity: O(n2)

Complexity with noise: O(n)
Does noise help?
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Optimality and Running time:

v
Rv

rv
Rv

rv
≤ τ

Rv ≤ εlfs(v)
lfs(x) := d(x, P \ {NN(x)})

|M | = Θ(|Optimal|)

Running time: O(n log n+ |M |)

The degree of the 1-skeleton is 2O(d).



Meshing Guarantees

Aspect Ratio (quality):

Cell Sizing:

Constant Local Complexity:

Optimality and Running time:

v
Rv

rv
Rv

rv
≤ τ

Rv ≤ εlfs(v)
lfs(x) := d(x, P \ {NN(x)})

|M | = Θ(|Optimal|)

Running time: O(n log n+ |M |)

The degree of the 1-skeleton is 2O(d).

ε-refined
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Persistence Diagrams

d∞B = max
i

|pi − qi|∞

Bottleneck Distance

This is just the bottleneck distance of the log-scale diagrams.

Approximate

Birth and Death times 
differ by a constant factor.

Birth
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F log
:= {F log

α
} where F

log
logα

:= Fα

Define the log-scale filtration of F = {Fα} as

Given filtrations F and G, we say
Dgm F is a γ-approximation to Dgm G iff

dB(Dgm F log
,Dgm Glog) ≤ log γ.

Lemma. Let F = {Fα} and G = {Gα} be filtrations. If
Fα/γ ⊆ Gα ⊆ Fαγ for all α ≥ 0, then Dgm F is a γ-
approximation to Dgm G.
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The main idea

Let M be a quality mesh.

Given a function f : Rd → R, let F = {Fα} be its sublevel
filtration.

Fα := f−1[0, α]

Let V = {Vα} be the Voronoi filtration of f on M .

Vα :=
⋃

v∈M
f(v)≤α

Vor(v)

We will show Dgm V is a good approximation to Dgm F .
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The Voronoi filtration interleaves with 
the offset filtration.

Finer refinement yields a tighter 
interleaving.

caveat: Special case for 
small scales.

V
α/(1+ε) ⊆ P

α ⊆ V
α(1+ε)

V
α/τ ⊆ P

α ⊆ V
ατ
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Meshing codes are hard to write.

1 Numerical Robustness

2 Understanding tradeoffs

3 “Necessary” heuristics

image credit: Pointwise

On the other hand, meshing for FEA often has stricter 
requirements than those for TDA.

- Approximate gradients
- Slivers
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The size of an optimal mesh is given by 
the feature size measure.

lfsP (x) := Distance to second nearest neighbor in P .

Optimal Mesh Size = Θ
(

∫

Ω
dx

lfs(x)d

)

hides simple exponential in d

number of vertices

µP (Ω) =

∫
Ω

dx

lfsP (x)d
The Feature Size Measure:

When is µP (Ω) = O(n)?
Pacing and the Empty Annulus Condition [S. 2012]



The Main Approximation Theorem

Theorem. Let P be a point cloud and let M be an ε-
refined mesh of P . Let f ≥ 1

c
lfsP be a t-Lipschitz function

Rd → R for some constant c > 0. Let F be the sublevel
filtration of f and let V be the Voronoi filtration of f on M .

Then Dgm V is a
(

1 + ctε

1−ε

)

-approximation to Dgm F .



Proof of the main theorem

‖v − x‖ ≤ Rv ≤ εlfs(v) ≤ cεf(v) ‖v − x‖ ≤
cε

1− ε
f(x)

f(x) ≤ f(v) + t‖v − x‖ ≤ (1 + ctε)f(v) f(v) ≤ f(x) + t‖v − x‖ ≤

(

1 +
ctε

1− ε

)

f(x)

∀v ∈ M,Vor(v) ⊆ F(1+ctε)f(v)

∀α ≥ 0, Vα ⊆ F(1+ctε)α
∀α ≥ 0, Fα ⊆ F(1+ ctε

1−ε )α

∀α ≥ 0, Vα/γ ⊆ Fα ⊆ Vαγ where γ = 1 +
ctε

1− ε

Dgm V is a γ-approximation to Dgm F .

f ≥
1

c
lfs

Rv ≤ εlfs(v)

Fix any v ∈ M and any x ∈ Vor(v)

v

x

Rv
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The Main Approximation Theorem

Theorem. Let P be a point cloud and let M be an ε-
refined mesh of P . Let f ≥ 1

c
lfsP be a t-Lipschitz function

Rd → R for some constant c > 0. Let F be the sublevel
filtration of f and let V be the Voronoi filtration of f on M .

Then Dgm V is a
(

1 + ctε

1−ε

)

-approximation to Dgm F .

Observations:
M can be made to have size O(n).
The construction of M does not depend on f.
One mesh works for many functions.
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We know how to do many things with meshes.
(Some of these should be useful for TDA).

Dealing with anisotropy.

Approximation of gradients.

Mesh Coarsening.

Adaptive/Dynamic/Kinetic

Geometric Separators



Meshing!

Thank You!

Mesh generation is a natural preprocess for TDA 
in low-dimensional Euclidean space.


