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The goal of topological data analysis
1s to extract meaningtul topological
information from data.



Use powerful 1deas from computational
geometry to speed up persistent
homology computation when the data 1s
intrinsically low-dimensional.
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The Vietoris-Rips Filtration encodes the topology of a
metric space when viewed at different scales.

Input: A finite metric space (P,d).
Output: A sequence of simplicial complexes { R, }
such that o € R, iff d(p, q) < 2« for all p,q € o.

O

R, is the powerset 2% .

This is too big!
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Persistence Diagrams describe the changes in
topology corresponding to changes 1n scale.

Bottleneck Distance

In approximate persistence
diagrams, birth and death
times differ by at most a
constant factor.
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This 1s just the bottleneck
distance of the log-scale
diagrams.
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Some related work on sparse filtrations.

Previous Approaches at subsampling:
Witness Complexes [dSC04, BGOO7]
Persistence-based Reconstruction [COO0S§]

Other methods:

Meshes 1n Euclidean Space [HMSO10]
Topological simplification [Z210, ALS11]
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Key 1dea: Treat many close points as one point.

This 1dea 1s ubiquitous in computational geometry.

n-body simulation, approximate nearest neighbor search,
spanners, well-separated pair decomposition,...
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Two tricks:

1 Embed the z1gzag 1n a topologically equivalent filtration.

2 Perturb the metric so the persistence module does not zigzag.

Standard filtration < Ra — Rﬁ —> Rfy —

| B

Zigzag filtration <= Qy — Qp > Q- —

SHQ.) - 1@y DHQ,) -

At the homology level, there 1s no zigzag.
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The Result:

Given an n point metric (P, d), there exists a zigzag filtration of
size O(n) whose persistence diagram (1+ ¢)-approximates that of

the Rips filtration.

(Big-O hides doubling dimension and approximation factor, ¢)

A metric with doubling dimension d 1s
one for which every ball of radius 2r

can be covered by 27 balls of radius r
for all r.
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How to perturb the metric.

Let ¢, be the time when point p is removed.

0 if o < (1 —¢)t,
wy(a) =¢ a—(1—¢e)t, if(1—-¢)t,<a<t,
EQY ift, <«

0 (1—e)t, t,

A

do(p,q) = d(p, q) + wp(a) + wy()
RipS Complex: S Ra <~ d(pv Q) S 200 fOl" all P, q co

Relaxed Rips: o € R, < aa(p, q) < 2« for all p,q € o

Ro CR,CR,

€
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A generalization of quadtrees to metric spaces.
One leaf per point of P.

Each node u has a representative rep(u) in P and a radius rad(p).
Three properties:

1 Inheritance: Every nonleaf u has a child with the same rep.
2 Covering: Every heir 1s within ball(rep(u), rad(u))
3 Packing: Any children v,w of u have d(rep(v),rep(w)) > K rad(u)

Let u, be the ancestor of all nodes represented by p.

Time to remove p: ¢, = ﬁff ad(parent(up))
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Key Fact: For all p,q € P, a(wa (p),q) < a(p, q).

This can be used to show that projection onto a net 1s a
homotopy equivalence.

Relaxed Rips: <« jf{a — RB — E,Y —
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Sparse Rips Zigzag: <= Qo — Qg < Q- —
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Really getting rid of the zigzags.

KXo = UQ&

fla

This 1s (almost) the clique complex of a hierarchical spanner!
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