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The goal of topological data analysis 
is to extract meaningful topological 

information from data.



Use powerful ideas from computational 
geometry to speed up persistent 

homology computation when the data is 
intrinsically low-dimensional.
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The Vietoris-Rips Filtration encodes the topology of a 
metric space when viewed at different scales. 

Input: A finite metric space (P,d).
Output: A sequence of simplicial complexes {Rα}
such that σ ∈ Rα iff d(p, q) ≤ 2α for all p, q ∈ σ.

R∞ is the powerset 2P .

This is too big!
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Persistence Diagrams describe the changes in 
topology corresponding to changes in scale.

d∞B = max
i

|pi − qi|∞

Bottleneck Distance

This is just the bottleneck 
distance of the log-scale 
diagrams.

In approximate persistence 
diagrams, birth and death 
times differ by at most a 
constant factor.
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Previous Approaches at subsampling:
Witness Complexes [dSC04, BGO07]
Persistence-based Reconstruction [CO08]

Other methods:
Meshes in Euclidean Space [HMSO10]
Topological simplification [Z10, ALS11]

Some related work on sparse filtrations.
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Key idea: Treat many close points as one point.

This idea is ubiquitous in computational geometry.

n-body simulation, approximate nearest neighbor search, 
spanners, well-separated pair decomposition,...
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Two tricks:

2 Perturb the metric so the persistence module does not zigzag.

→ H(Qα) → H(Qβ) → H(Qγ) →

←↩ Qα ↪→ Qβ ←↩ Qγ ↪→

↪→ R̂α ↪→ R̂β ↪→ R̂γ ↪→

↪→ ↪→ ↪→

1 Embed the zigzag in a topologically equivalent filtration.

Zigzag filtration

Standard filtration

At the homology level, there is no zigzag.
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The Result:
Given an n point metric (P, d), there exists a zigzag filtration of 
size O(n) whose persistence diagram (1+ ε)-approximates that of 
the Rips filtration.  

(Big-O hides doubling dimension and approximation factor, ε)

A metric with doubling dimension d is 
one for which every ball of radius 2r 
can be covered by 2d balls of radius r 
for all r.
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How to perturb the metric.

d̂α(p, q) = d(p, q) + wp(α) + wq(α)

wp(α) =







0 if α ≤ (1− ε)tp
α− (1− ε)tp if (1− ε)tp < α < tp

εα if tp ≤ α

tp(1− ε)tp0
0

Let tp be the time when point p is removed.

σ ∈ Rα ⇔ d(p, q) ≤ 2α for all p, q ∈ σRips Complex:

Relaxed Rips: σ ∈ R̂α ⇔ d̂α(p, q) ≤ 2α for all p, q ∈ σ

R α

1+ε

⊆ R̂α ⊆ Rα
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Net-trees

A generalization of quadtrees to metric spaces.
One leaf per point of P.
Each node u has a representative rep(u) in P and a radius rad(p).
Three properties:

1 Inheritance: Every nonleaf u has a child with the same rep.

2 Covering: Every heir is within ball(rep(u), rad(u))

3 Packing: Any children v,w of u have d(rep(v),rep(w)) > K rad(u)

Let up be the ancestor of all nodes represented by p.

Time to remove p: tp = 1
ε(1−ε)rad(parent(up))



Projection onto a net



Projection onto a net
Nα = {p ∈ P : tp ≥ α}



Projection onto a net
Nα = {p ∈ P : tp ≥ α}

Qα is the subcomplex of R̂α induced on Nα.



Projection onto a net
Nα = {p ∈ P : tp ≥ α}

Qα is the subcomplex of R̂α induced on Nα.

πα(p) =

{

p if p ∈ Nα

argminq∈Nα
d̂(p, q) otherwise



Nα is a Delone set.

Projection onto a net
Nα = {p ∈ P : tp ≥ α}

Qα is the subcomplex of R̂α induced on Nα.

πα(p) =

{

p if p ∈ Nα

argminq∈Nα
d̂(p, q) otherwise



Nα is a Delone set.

Projection onto a net
Nα = {p ∈ P : tp ≥ α}

For all p ∈ P , there is a q ∈ Nα

such that d(p, q) ≤ ε(1− ε)α.
1  Covering:

Qα is the subcomplex of R̂α induced on Nα.

πα(p) =

{

p if p ∈ Nα

argminq∈Nα
d̂(p, q) otherwise



Nα is a Delone set.

Projection onto a net
Nα = {p ∈ P : tp ≥ α}

For all p ∈ P , there is a q ∈ Nα

such that d(p, q) ≤ ε(1− ε)α.
1  Covering:

For all distinct p, q ∈ Nα,
d(p, q) ≥ Kpackε(1− ε)α.

2  Packing:

Qα is the subcomplex of R̂α induced on Nα.

πα(p) =

{

p if p ∈ Nα

argminq∈Nα
d̂(p, q) otherwise



Nα is a Delone set.

Projection onto a net
Nα = {p ∈ P : tp ≥ α}

For all p, q ∈ P , d̂(πα(p), q) ≤ d̂(p, q).Key Fact:

For all p ∈ P , there is a q ∈ Nα

such that d(p, q) ≤ ε(1− ε)α.
1  Covering:

For all distinct p, q ∈ Nα,
d(p, q) ≥ Kpackε(1− ε)α.

2  Packing:

Qα is the subcomplex of R̂α induced on Nα.

πα(p) =

{

p if p ∈ Nα

argminq∈Nα
d̂(p, q) otherwise



For all p, q ∈ P , d̂(πα(p), q) ≤ d̂(p, q).Key Fact:

←↩ Qα ↪→ Qβ ←↩ Qγ ↪→

↪→ R̂α ↪→ R̂β ↪→ R̂γ ↪→

↪→ ↪→ ↪→

Relaxed Rips:

Sparse Rips Zigzag:

This can be used to show that projection onto a net is a 
homotopy equivalence.



For all p, q ∈ P , d̂(πα(p), q) ≤ d̂(p, q).Key Fact:

←↩ Qα ↪→ Qβ ←↩ Qγ ↪→

↪→ R̂α ↪→ R̂β ↪→ R̂γ ↪→

↪→ ↪→ ↪→

Relaxed Rips:

Sparse Rips Zigzag:

← H(Qα) → H(Qβ) ← H(Qγ) →

This can be used to show that projection onto a net is a 
homotopy equivalence.



For all p, q ∈ P , d̂(πα(p), q) ≤ d̂(p, q).Key Fact:

←↩ Qα ↪→ Qβ ←↩ Qγ ↪→

↪→ R̂α ↪→ R̂β ↪→ R̂γ ↪→

↪→ ↪→ ↪→

Relaxed Rips:

Sparse Rips Zigzag:

∼
=

∼
=

← H(Qα) → H(Qβ) ← H(Qγ) →

This can be used to show that projection onto a net is a 
homotopy equivalence.



For all p, q ∈ P , d̂(πα(p), q) ≤ d̂(p, q).Key Fact:

←↩ Qα ↪→ Qβ ←↩ Qγ ↪→

↪→ R̂α ↪→ R̂β ↪→ R̂γ ↪→

↪→ ↪→ ↪→

Relaxed Rips:

Sparse Rips Zigzag:

∼
=

∼
=

→ H(Qα) → H(Qβ) → H(Qγ) →

This can be used to show that projection onto a net is a 
homotopy equivalence.



Why is the filtration only linear size?



Why is the filtration only linear size?

Standard trick from Euclidean geometry:



Why is the filtration only linear size?

Standard trick from Euclidean geometry:

1 Charge each simplex to its vertex with the earliest deletion time.



Why is the filtration only linear size?

Standard trick from Euclidean geometry:

1 Charge each simplex to its vertex with the earliest deletion time.

2 Apply a packing argument to the larger neighbors.



Why is the filtration only linear size?

Standard trick from Euclidean geometry:

1 Charge each simplex to its vertex with the earliest deletion time.

2 Apply a packing argument to the larger neighbors.

3 Conclude average O(1) simplices per vertex.



Why is the filtration only linear size?

Standard trick from Euclidean geometry:

1 Charge each simplex to its vertex with the earliest deletion time.

2 Apply a packing argument to the larger neighbors.

3 Conclude average O(1) simplices per vertex.

(

1

ε

)O(d2)
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Really getting rid of the zigzags.

Xα =

⋃

β≤α

Qα

This is (almost) the clique complex of a hierarchical spanner!
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