
Approximate Centerpoints with Proofs∗

Gary L. Miller

glmiller@cs.cmu.edu

Donald R. Sheehy

dsheehy@cs.cmu.edu

October 13, 2009

Abstract

We present the IteratedTverberg algorithm, the first deterministic algorithm
for computing an approximate centerpoint of a set S ∈ R

d with running time sub-
exponential in d. The algorithm is a derandomization of the IteratedRadon al-
gorithm of Clarkson et al and is guaranteed to terminate with an O(1/d2)-center.
Moreover, it returns a polynomial-time checkable proof of the approximation guaran-
tee, despite the coNP-Completenes of testing centerpoints in general. We also explore
the use of higher order Tverberg partitions to improve the runtime of the determinis-
tic algorithm and improve the approximation guarantee for the randomized algorithm.
In particular, we show how to improve the O(1/d2)-center of the IteratedRadon

algorithm to O(1/d
r

r−1) for a cost of O((rd)d) in time for any integer r > 1.

1 Introduction

A centerpoint of a set S ⊂ R
d is a point c such that every closed half-space containing c

also contains at least n
d+1

points of S. Intuitively, every hyperplane through a c divides
S into roughly equal parts. A centerpoint is a natural generalization of the median to
higher dimensions. In fact, a centerpoint is an approximate median of the set f(S) for
every linear projection f : S → R. They are used as robust estimators in statistics,
because they are invariant under affine transformation and robust to outliers [5]. They
are also used in mesh partitioning[7].

The Tukey depth of a point x is the minimum number of points of S contained in a
half-space containing x. Thus, a centerpoint is a point with Tukey depth at least n

d+1
.

More generally, c is a β-center if it has depth at least βn. We consider the problem of
finding an approximate centerpoint. In particular we will give a deterministic algorithm
for computing a n

2(d+1)2
-center.

The Centerpoint Theorem asserts that every set n points in R
d has a centerpoint.

This was first established by a theorem of Rado [14], which deals with general measures
of which point sets are a special case. The more direct proof for the case of centerpoints
of point sets is due to Danzer et al[4]. Centerpoints Theorem is tight in that there exist
point sets for which no point has depth greater than n

d+1
.

The existence of centerpoints can be proven directly from either of two classic
theorems of convexity theory, Helly’s Theorem and Tverberg’s Theorem. In Section 3,
we discuss how these two proofs of the centerpoint theorem lead to different perspectives
for designing algorithms for computing centerpoints.

∗This work was supported in part by the National Science Foundation under grants CCF-0635257

1

The exact complexity of computing centerpoints in higher dimensions is not known.
The decision problem of testing if a given point is a centerpoint is coNP-Complete [16].
However, a simple corollary of Tverberg’s Theorem guarantees the existence of a sub-
set of centerpoints, call them Tverberg points, that admit polynomial-time checkable
proofs. Moreover, testing if a point is a Tverberg point is NP-Complete[16]. In this
case, the decision problem is well understood but sheds little light on the hardness of
the search problem of actually finding a centerpoint.

The fastest known algorithm for computing a centerpoint of S ⊂ R
d is due to

Chan [1] and computes a β-center in time O(nd−1) in expectation, where β is the
maximum achievable for the set S. Such a β-center is also known as a Tukey median.

The IteratedRadon algorithm of Clarkson et al was the first algorithm that com-
putes an approximate centerpoint in time sub-exponential in d [2]. The algorithm
computes a O(1/d2)-center with high probability. Section 3 describes how this algo-
rithm resembles the proof of the Centerpoint Theorem via Helly’s Theorem.

The main operation in the IteratedRadon algorithm is to replace sets of points
by their Radon point, a point in the common intersection of the convex hull of two
disjoint subsets. Radon’s Theorem guarantees the existence of such a point. Tverberg’s
Theorem is a generalization of Radon’s Theorem that guarantees a common intersection
for a larger collection of subsets.

In this paper, we use the intuition from Tverberg’s Theorem to iteratively construct
a proof of depth for an approximate centerpoint. The result is a new approximation
algorithm, IteratedTverberg , that derandomizes the IteratedRadon algorithm
of Clarkson et al. In Section 4, we prove that the IteratedTverberg algorithm
produces a a O(1/d2)-center in time sub-exponential in d. Moreover, the center comes
with a polynomial-time checkable proof of its depth.

We elaborate on this intuition in Section 5, showing how solving larger sub-problems
can be used to speed up the run time of the deterministic algorithm and to improve
the approximation ratio of the randomized version.

2 Related Work

Centerpoints are the most well known definition of a geometric median [6]. Like many
such medians, it can be computed via linear programming and the problem of finding
a “best” centerpoint can be written as a maximum feasible subsystem problem (see
[5] for a survey of computational aspects of data depth). The linear constraints are
just the set of hyperplanes intersecting d + 1 points of S. There are O(nd+1) of these.
Consequently, any linear programming method will require time nO(d), limiting their
usefulness to low-dimensional instances.

In the plane, centerpoints can be computed in linear time [9]. Several algorithms are
known to compute centerpoints in R

3 in O(n2 polylog n) time [3, 13]. The best known
algorithm for d ≥ 3 is due to Chan and runs in O(nd−1) randomized time[1]. Chan’s
algorithm computes the deepest possible centerpoint, also known as a Tukey median.
He conjectures that the O(nd−1) runtime is optimal for this problem in the algebraic
decision tree model. However, the exact complexity of computing centerpoints is not
known. In particular, it is not known if it is possible to compute a centerpoint in time
polynomial in n and d.

Several approximation algorithms for centerpoints exist in the literature. Many
approaches using random sampling are known [11, 16, 2]. Verbarg showed that for
dense points, the mean is a good approximate centerpoint[18]; it is a β-center where β
depends on the density.

The only previously known algorithm to compute a centerpoint in time sub-exponential
in d is the IteratedRadon algorithm of Clarkson et al [2]. The IteratedRadon al-

2

gorithm returns a O(1/d2)-center with high probability in time polynomial in n and
d. IteratedRadon is a Monte Carlo algorithm and there is no way known to verify
that the point returned by the algorithm is indeed a centerpoint. The inner loop of
IteratedRadon depends on the following classic theorem [15].

Theorem 2.1 (Radon’s Theorem, 1921) Given n > d + 1 points S ⊂ R
d, there

exists a partition (U,U) of S such that conv(U) ∩ conv(U) 6= ∅.
We call a partition of d + 2 points as described in the Theorem, a Radon partition,

and we call a point in the intersection, a Radon point.
The simplest version of the IteratedRadon algorithm works as follows. Build a

balanced (d + 2)-ary tree of height h. Fill in the leaves with points from the input
set S by sampling them uniformly at random. Each interior node of the tree is filled
in with the Radon point of its children. A height of h = lg n is needed to compute
a O(1/d2)-center with high probability, resulting in a runtime that is O((d lg n)lg d).
Thus it is sub-exponential in d but not polynomial.

Several different modifications to the basic IteratedRadon algorithm are pre-
sented in [2]. In one version, the running time is reduced to O(poly(n, d)) by reusing
the Radon points the same way the input points are reused. Other variations of the
algorithm incorporate linear programming to solve larger subproblems. These variants
are able to produce (1 + ε) n

d+1
-centers. All of these results use random sampling and

it is shown that the center of a sample is an approximate center for the whole set,
allowing for sub-linear-time algorithms.

It is not known how to derandomize the other versions of IteratedRadon . We
do, however, explore a variation on the linear programming based solution. We present
a new way to leverage these larger subproblems and analyze the impact on both the
randomized and the deterministic algorithms (see Section 5).

3 Two Proofs of the Centerpoint Theorem

Theorem 3.1 (The Centerpoint Theorem) Given

a set of n points S ⊂ R
d, there exists a centerpoint c ∈ R

d such that every closed

half-space containing c also contains at least n
d+1

points of S.(Rado [14], 1947, Danzer
et al [4], 1963)

The Centerpoint Theorem is most often presented as an easy consequence of Helly’s
Theorem. It is also possible to prove the existence of centerpoints via Tverberg’s
Theorem (see [12] for a comprehensive treatment). The relationship between these two
proofs gives insight into the relationship between the IteratedRadon algorithm and
its derandomization presented in this paper.

Theorem 3.2 (Helly’s Theorem [8], 1913) Given a collection of compact, convex

sets X1, . . . , Xn ⊂ R
d. If every d + 1 of these sets have a common intersection, then

the whole collection has a common intersection.

The Centerpoint Theorem follows from Helly’s Theorem as follows. Consider the
set H of all open half-spaces that contain more than dn

d+1
points of S. For each such

half-space h ∈ H , let Ph denote conv(S ∩ h), a compact, convex set containing the
same points of S as h. Any d + 1 of the half-spaces have a common intersection at one
of the points of S, and thus every d + 1 of the Ph’s also have a common intersection.
We apply Helly’s Theorem to the family of sets PH = {Ph | h ∈ H}. The common
intersection guaranteed by Helly’s Theorem is exactly the set of all centerpoints.

The most common elementary proof of Helly’s Theorem makes extensive use of
Radon’s Theorem, despite that Helly’s Theorem technically came first (though pub-
lished second). The proof first considers the case where there are only d+2 sets. The

3

Figure 1: Radon points for R
2 and R

3. Tverberg points for r = 3 in R
2 and R

3.

hypothesis of the Theorem implies the existence of d + 2 points, each taken from the
common intersection of d + 1 of the sets. The Radon point of these d + 2 points satis-
fies the conclusion of the Theorem. The proof for n > d + 2 sets uses induction. The
inductive step again considers a set of points taken from each of the common inter-
sections of n − 1 sets, and shows the Radon point of this set satisfies the Theorem.
Unraveling this induction into an algorithm, we arrive at something very much like the
IteratedRadon algorithm except with far too many Radon point computations to
be computationally feasible. This is why IteratedRadon uses random sampling used
to get avoid paying for the combinatorial blowup in the number of sets. The Iter-

atedTverberg algorithm we present shows how to make this sampling deterministic
(Section4).

The Centerpoint Theorem can also be proven via Tverberg’s generalization of
Radon’s Theorem.

Theorem 3.3 (Tverberg’s Theorem [17], 1966) Given (d + 1)(r − 1) + 1 points

S ⊂ R
d, there exists a partition of S into S1, . . . , Sr, such that

Tr
i=1 conv(Si) 6= ∅.

Observe that Radon’s Theorem is a special case of Tverberg’s Theorem when r = 2.
Say that a point c is a Tverberg point if it is in the common intersection of the

convex hulls in the Tverberg partition. Then, setting r = ⌈n/d + 1⌉ yields a Tverberg
point contained in the convex hull of ⌈n/d + 1⌉ pairwise disjoint subsets of S. Any
half-space containing c must also contain at least one point from each of the subsets
and therefore, c is a centerpoint.

Observe that the centerpoints guaranteed by Tverberg’s Theorem come equipped
with a polynomial-time checkable proof. Given the partition, we need only verify that
the point is in the convex hull of each part. If any part in the partition has more
than d + 1 points then by Carathéodory’s Theorem, there is a subset of size d + 1 that
contains the Tverberg point is its convex hull. We may therefore assume the convex
hulls are simplices of dimension at most d, so checking can be done quickly. The key
insight in derandomizing the IteratedRadon algorithm is to actively construct these
Tverberg partitions for the intermediate points used in the algorithm.

4 Derandomizing the IteratedRadon algorithm

The IteratedTverberg algorithm looks very similar to the IteratedRadon algo-
rithm. The key difference is that each successive approximation computed along the
way carries with it a proof of its quality as a centerpoint. The proof is in the form of a
Tverberg partition of a subset of the inputs. Define the depth of a Tverberg point to
be the number of parts in the corresponding Tverberg partition. The depth is at least
the Tukey depth.

4

When we combine d + 2 points of depth r into a Radon point c, we can rearrange
the proofs to get a new proof that c has depth 2r as shown in the following Lemma.

Lemma 4.1 Given a set P of d + 2 Tverberg points of depth at least r with disjoint

partitions, the Radon point of P has depth at least 2r.

Proof: Let (P1, P2) be the Radon partition for P , and let c be the Radon point. For
each pi ∈ P , order the parts in the proof partition of pi and call the jth part Ui,j . We
build a proof that c has depth at least 2r. The parts in the new proof are of the form
S

pi∈Pk
Ui,j for k ∈ {1, 2} and j ∈ {1, . . . , r}.

To show that the new proof is correct, it suffices to show that for any choice of j
and k, the new approximation c is contained in conv(

S

pi∈Pk
Ui,j). What follows is the

long proof of the intuitive statement that a convex combination of convex combinations
is itself a convex combination of the base set.

Because c is a Radon point, we know that c ∈ conv(Pk). Also, the Tverberg points
pi ∈ Pk are each contained in conv(Ui,j). So, we can write c =

P

pi∈Pk
λipi and

pi =
P

um∈Ui,j
αmum, where

P

λi =
P

αm = 1 and λi, αm ≥ 0. Combining these two

convex combinations, we see that

c =
X

pi∈Pk

λi

X

um∈Ui,j

αmum (1)

=
X

um∈
S

pi∈Pk
Ui,j

λiαmum. (2)

To show that this is indeed a convex combination, we note that

X

i,m

λiαm =
X

i

λi(
X

m

αm) =
X

i

λi(1) = 1.

The preceding Lemma implies a simple deterministic algorithm for computing an
approximate centerpoint. Construct a (d + 2)-ary tree with n leaves. Fill the leaves
with the points of S. Fill in each interior node of the tree by the Radon point of its
children. The height of the tree is logd+2 n, so Lemma 4.1 implies that the depth of

the root is 2logd+2 n = O(n1/ lg(d+2)). Not too shabby for such a simple algorithm, but
the depth of the output is only sub-linear in n. To get an O(1

d2)-center, we need to
find a way to build this tree higher, and in order to do that, we need more leaves. The
following Lemma gives a hint as to where we can look to find some more points to stick
in the leaves.

Lemma 4.2 If there is a proof that a point p has depth r, there exists such a proof

that contains at most r(d + 1) points of S.

Proof: Let P1, . . . , Pr be the sets in the proof for p. This means that p ∈ conv(Pi)
for each i = 1 . . . r. By Carathéodory’s Theorem, there exists a subset P ′

i ⊂ Pi of at
most d + 1 points such that p ∈ conv(P ′

i). So, the sets P ′

1, . . . , P
′

r is the desired proof
of the correct size.

We refer to this economizing of proofs as pruning. In the algorithm, pruning is
applied to the proofs generated by combining smaller proofs as in Lemma 4.1. In
such instances, the convex combination is known. Moreover, if the combined proofs
were each pruned, then the total number of points in the combined sets is at most
(d + 1)2, and the pruned set can be found by subtracting O(d2) affine dependences,
each requiring a linear system solve at a cost of O(d3) time. So, each pruning operation
takes O(d5) time.

5

a) b) c)

d) e) f)

Figure 2: The IteratedTverberg algorithm: (a) Sets of d + 2 points are divided into
Radon partitions. (b) d+2 Radon points are combined into a second-order Radon partition.
(c) A proof polygon is formed by taking the convex hull of two subpartitions, one from each
of the Radon points in the second order partition. (d) The proof polygon is pruned to a
simplex. (e) All of the proof polygons before the pruning phase. (f) The proof simplices
after the reduction.

Algorithm 1 IteratedTverberg

Input: S ∈ R
d : |S| = n

while B
lg

l

n

2(d+1)2

m is empty do

Let i be the max such that bucket Bi has at least d + 2 points
Pop d + 2 points q1, . . . , qd+2 from Bi

Let 〈c, {U1, U2}〉 = Radon(q1, . . . , qd+2)
Let Sjk be the kth part of the proof for qj

for ℓ = 1, 2 do

for k = 1, . . . , 2i do

Add Prune(c,
⋃

qj∈Uℓ
Sjk) to proof

Push the excess points to B0

end for

end for

Push 〈c, proof〉 to Bi+1

end while

return any 〈c, proof〉 from B
lg

l

n

2(d+1)2

m

6

Theorem 4.3 The IteratedTverberg algorithm always returns a β-center of depth

at least
l

n
2(d+1)2

m

.

Proof: Clearly, if the algorithm terminates then it returns a point of the desired
depth and its corresponding proof. Suppose for contradiction that the algorithm does
not terminate. Then, at some time t, it is impossible to pick i because every bucket
has fewer than d + 2 points. Let h be the maximum such that Bh is nonempty at time
t. For any point p in a bucket Bi, the proof for p contains at most 2i(d + 1) input
points. Since all of the proofs in all of the buckets are disjoint, we have

h
X

i=0

2i(d + 1)2 ≥ n. (3)

Therefore,

2h+1 − 1 ≥ n

(d + 1)2
, (4)

and thus,

2h >
n

2(d + 1)2
. (5)

However, this is impossible because it implies that h > lg n
2(d+1)2

, and therefore

B
lg

‰

n

2(d+1)2

ı is nonempty. This would have caused the algorithm to break out of the

while loop and terminate, contrary to our assumption.

Theorem 4.4 The IteratedTverberg algorithm requires O
“

n1+lg(d+2)

(d+1)2 lg(d+2)−1

”

time.

Proof: Let tk be the time required to compute a point of depth 2k. In the base case
t0 = 1. Let R be the time to compute the Radon point and partition for d+2 points in
R

d. Let P be the time to Prune a set of proofs where the base set has at most (d+ 1)2

points.
We bound tn as follows.

tk ≤ (d + 2)tk−1 + R + 2kP (6)

≤ (d + 2)k +
k−1
X

i=0

(d + 1)i(R + 2kP) (7)

≤ (d + 2)k

„

1 +
R + 2kP

d + 1

«

(8)

Observe that R = O(d3) and P = O(d5) by näıve algorithms for computing Radon
partitions and Carathéodory subsets respectively. By Theorem 4.3, the final depth is

n
2(d+1)2

, so we are interested in k = lg n
2(d+1)2

. Plugging in these values yields the

following.

tk ≤ (d + 2)
lg n

2(d+1)2 (d3(n + 1)/(d + 1) + 1) (9)

= O

„

n1+lg(d+2)

(d + 1)2 lg(d+2)−1

«

(10)

7

5 Leveraging larger subproblems

The Radon point of a set of d+2 points has Tukey depth at least 2 and, thus, is a center-
point for that set. Both the IteratedRadon algorithm and the IteratedTverberg

algorithm replace sets of d + 2 points with their centerpoint using Radon’s Theorem.
In this section we address the result on these algorithms if we instead solve larger
subproblems. Rather than combining points in sets of d + 2, we look at sets of size
(d + 1)(r − 1) + 1 for some fixed r. The centerpoint of such a set has Tukey depth at
least r. It is not known how to solve these larger problems in time sub-exponential in
d. However, if n is large and d is not too large, it may be feasible to solve subproblems
in O(dd) time even though O(nd) is prohibitive. In fact, we will see that this can even
lead to an asymptotic speedup for the IteratedTverberg algorithm.

5.1 Improving the approximation for the IteratedRadon

Algorithm

The Radon point of d + 2 points is a centerpoint of the subset. Consider the following
modified version of the IteratedRadon Algorithm.

We can run the same iterative algorithm as before except using r-partitions instead
of 2-partitions. In fact, it is not necessary to keep around the partition, it actually
suffices just to find any centerpoint of (d + 1)(r − 1) + 1 points at each round. We can
go through the analysis from [2] and see the impact of r in the quality of the centerpoint
achieved.

The analysis works by looking at any projection of the point set to the line. We
compute the probability fh(x) that the tree of iterations with height h returns a center
of depth at most x. Without loss of generality, the projections of the points of S land
on 1

n
, 2

n
, . . . , 1. It follows that f0(x) ≤ x. The quality of the center will be nx where x

is such that fh(x) is very small.
At each iteration, the centerpoint is at least r deep in the projection. There are

`

(d+1)(r−1)+1
r

´

choices for the r points less than the centerpoint in the projection. By
the union bound,

fh(x) ≥

(d + 1)(r − 1) + 1

r

!

fh−1(x)r. (11)

Say, β =
`

(d+1)(r−1)+1
r

´−1
.

fh(x) ≥ β−1fh−1(x)r (12)

≥ β−1(β−rfh−2(x)r2

) (13)

≥ β−1 · β−r · · ·β−rh

f0(x)rh

(14)

≥ β
1−rh

r−1 xrh

(15)

≥ β
1

r−1

x

β
1

r−1

!rh

(16)

Now, since β = O((rd)−r), we can choose x smaller than O((rd)
−r

r−1) and the
probability fh(x) vanishes as desired. So, even for a choice of r = 3, we can improve
the quality of the resulting centerpoint by a O(

√
d) factor.

8

5.2 Speeding up the IteratedTverberg Algorithm

In this section, we show how the same trick of solving larger subproblems can speed
up the run time of the deterministic algorithm. Tverberg’s Theorem guarantees the
existence of a partition of S into r sets whose convex hulls have a common intersection
as long as |S| > (d+1)(r−1)+1. Say T (r) is the time required to compute a Tverberg
partition into r parts. To the best of our knowledge, nothing better than brute force
is known for computing Tverberg partitions for r > 2.

We will show that a slight modification to the IteratedTverberg algorithm to
use Tverberg r-partitions instead of Radon partitions results in a nlg r/T (r) speedup.
Thus, for n large enough, we get an asymptotic speedup.

The modified algorithm simply makes recursive calls on sets of ⌈n/r⌉ points and
combines them in sets of (r − 1)(d + 1) + 1. The analysis is virtually identical to the
original version except we give up a factor of r/2 in the depth of the output. As for
the running time, the new algorithm now has a recursion tree with higher fan out and
the resulting run time is O((d + 2)logr nT (r)) = O(nlg(d+2)/ lg rT (r)).

6 Conclusions and Open Problems

We have presented the IteratedTverberg algorithm, the first algorithm that deter-
ministically computes an approximate centerpoint in time sub-exponential in d. By
combining intuition from both Helly’s Theorem and Tverberg’s Theorem, our method
sheds an interesting new light on the problem of computing centerpoints. It still remains
open whether it is possible to compute approximate centerpoints deterministically in
time polynomial in n and d. We conjecture that it is.

We also extended both our algorithm and the IteratedRadon algorithm by look-
ing at the impact of solving larger subproblems. One consequence of this work is that
any new results on quickly computing centerpoints for small point sets can be used
to improve these algorithms. Currently, it is not known how to compute centerpoints
of more than 2d + 2 points in time polynomial in d. However, we conjecture that
computing the centerpoint of 2d + 3 points in R

d is NP-hard.
In the IteratedRadon algorithm, it was not clear if the factor of d appearing

in the output depth approximation ratio was intrinsic to the problem or merely an
artifact of the analysis. This same factor of d shows up in our analysis of the Iter-

atedTverberg algorithm in a completely different way, implying that perhaps it is
intrinsic to the problem. Finding the optimal approximation ratio that can be achieved
by a deterministic algorithm in sub-exponential time remains an open problem.

It is also open as to whether the IteratedTverberg algorithm can be significantly
sped up by doing the pruning step lazily. In such a variant, the “extra” points that
get pruned out would be points with proofs of their own, possibly allowing the reuse of
more computation. Thus far we have been unable to analyze the lazy pruning version
of the algorithm.

The reader is directed to the survey of Kalai [10] for many other interesting problems
related to Tverberg points.

The computation of centerpoints draws a compelling correspondence between fun-
damental theorems in convexity theory, Helly’s Theorem and Tverberg’s Theorem, and
fundamental complexity classes of NP and coNP. It is our hope that future work will
further elucidate this correspondence.

9

References

[1] T. Chan. An optimal randomized algorithm for maximum Tukey depth. In SODA:

ACM-SIAM Symposium on Discrete Algorithms, 2004.

[2] K. Clarkson, D. Eppstein, G. Miller, C. Sturtivant, and S.-H. Teng. Approximating
center points with iterated Radon points. International Journal of Computational

Geometry and Applications, 6(3):357–377, Sep 1996. invited submission.

[3] R. Cole, M. Sharir, and C. K. Yap. On k-hulls and related problems. SIAM J.

Comput., 16(1):61–77, 1987.

[4] L. Danzer, B. Grünbaum, and V. Klee. Helly’s theorem and its relatives. In Proc.

Symp. Pure Math, volume VII, 1963.

[5] K. Fukuda and V. Rosta. Data depth and maximum feasible subsystems. In
Avis, Hertz, and Marcotte, editors, Graph Theory and Combinatorial Optimiza-

tion, Springer, 2005. 2005.

[6] J. Gil, W. L. Steiger, and A. Wigderson. Geometric medians. Discrete Mathemat-

ics, 108(1-3):37–51, 1992.

[7] J. Gilbert, G. Miller, and S. Teng. Geometric mesh partitioning: Implementation
and experiments. SIAM J. Scientific Computing, 19(6):2091–2110, 1998.

[8] E. Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jber.

Deutsch. Math, 32:175–176, 1923.

[9] S. Jadhav and A. Mukhopadhyay. Computing a centerpoint of a finite planar set of
points in linear time. Discrete & Computational Geometry, 12(3):291–312, 1994.

[10] G. Kalai. Combinatorics with a geometric flavor: Some examples. Geom. Funct.

Anal., 2000.

[11] J. Matoušek. Approximations and optimal geometric divide-and-conquer. In 23rd

ACM Symp. Theory of Computing, pages 512–522, 1991.

[12] J. Matoušek. Lectures on Discrete Geometry. Springer-Verlag, 2002.

[13] N. Naor and M. Sharir. Computing a point in the center of a point set in three
dimensions. In CCCG: Canadian Conference in Computational Geometry, 1990.

[14] R. Rado. A theorem on general measure. J. Lond. Math. Soc., 21:291–300, 1947.

[15] J. Radon. Mengen Konvexer Körper, die Einen Gemeinschaftlichen Punkt En-
thalten. Mathematische Annalen, 83:113–115, 1921.

[16] S.-H. Teng. Points, Spheres, and Separators: A Unified Geometric Approach to

Graph Partitioning. PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, Aug. 1991. Available as Technical Report
CMU-CS-91-184.

[17] H. Tverberg. A generalization of Radon’s theorem. J. Lond. Math. Soc., 41:123–
128, 1966.

[18] K. Verbarg. Approximate center points in dense point sets. Information Processing

Letters, 61(5):271–278, 1997.

10

