
10-601: Homework 6
Due: Sunday, 9 November 2014 11:59pm (Autolab)

TAs: Daniel Ribeiro Silva, Jingwei Shen

Name:
Andrew ID:

Please answer to the point, and do not spend time/space giving irrelevant details. You should not
require more space than is provided for each question. If you do, please think whether you can
make your argument more pithy, an exercise that can often lead to more insight into the problem.
Please state any additional assumptions you make while answering the questions. You need to
submit a single PDF file on autolab. Please make sure you write legibly for grading.

You can work in groups. However, no written notes can be shared, or taken during group discus-
sions. You may ask clarifying questions on Piazza. However, under no circumstances should you
reveal any part of the answer publicly on Piazza or any other public website. The intention of this
policy is to facilitate learning, not circumvent it. Any incidents of plagiarism will be handled in
accordance with CMU’s Policy on Academic Integrity.

?: Code of Conduct Declaration

• Did you receive any help whatsoever from anyone in solving this assignment? Yes / No.

• If you answered yes, give full details: (e.g. Jane
explained to me what is asked in Question 3.4 )

• Did you give any help whatsoever to anyone in solving this assignment? Yes / No.

• If you answered yes, give full details: (e.g. I pointed
Joe to section 2.3 to help him with Question 2 ).

?: Notification

If you have any questions, please post it on Piazza or email:

Daniel Ribeiro Silva: drsilva@andrew.cmu.edu

Jingwei Shen: js1@andrew.cmu.edu

1

http://www.cmu.edu/policies/documents/Academic%20Integrity.htm


HW6 10-601 Andrew ID:

1 Clustering in Computer Vision: Image Segmentation

In this homework you will apply your knowledge of clustering to a common problem in computer
vision: image segmentation. Don‘t worry, no computer vision knowledge is required to complete
this assignment. All computer vision and image analysis code will be provided to you. You‘ll only
need to focus on implementing the clustering algorithm and some simple code for creating and
visualizing the segments.

1.1 Introduction

In computer vision, it is common to want to divide a given image into homogeneous regions. This
task is commonly referred to as image segmentation. Image 1 below shows an example of such a
task, where each segment is represented by a different color. It is very interesting to notice that
this algorithm is completely unsupervised (we never provide any labels).

One of the many possible approaches to achieve such results is to do clustering and group sim-
ilar pixels together. However, doing clustering directly on the pixels themselves tends to yield
bad results, since individual pixels are unable to encode local features such as color gradients or
edges/contours. We can solve this problem by applying filters to the image and extracting a feature
vector (based on the filter responses) for each pixel. These filter responses will encode local features
of the image and will result in a much better segmentation performance.

For this homework, you don’t need to understand how such filters work, or how we obtain the
feature vector. The code for that will be provided. All you need to keep in mind is that each pixel
(x,y) of the image will be associated with a 99-dimensional feature vector, and your task will be to
do clustering on these vectors.

(a) Original (b) Segmented

Figure 1: Image segmentation using visual words approach

1.2 Segmentation by Visual Words

In this homework, we‘ll use a simplified version of the visual word approach to do segmentation on
images. This method consists of 3 steps:

1. Extract feature vectors:
Each pixel of each image will be represented as a 99-dimensional feature vector (or point).
This feature vector is a result of the responses of filters applied to the image. We will provide

2



HW6 10-601 Andrew ID:

a method to extract the feature vectors.

2. Cluster points (compute dictionary):
We will use K-Means to cluster the points obtained in the previous step. A good choice of K
for this problem is a number between 100 and 300.
At this step we‘ll obtain K clusters. Each cluster is represented by its center and is a visual
word. I.e., upon clustering we‘ll obtain K visual words. The set of all K visual words is a
dictionary.

Figure 2: Feature vector extraction and clustering

3. Segmentation:
Once the dictionary is computed at step 2, we‘ll perform the segmentation. Basically, each
visual word will correspond to a segment in the image. For any given image, we‘ll extract
its feature vectors (one per pixel) and check what cluster it belongs to. In other words, for
each feature vector of this new image we will find the cluster center (visual word) it is closest
to and associate the corresponding pixel to that cluster (visual word). More specifically: we
have K clusters (c1, . . . , ck). Each cluster is represented by a point in a 99-dimensional space
(our feature space). For each pixel pi in any given image, we extract its feature vector fi
(a point in this same 99-dimensional space) and we’ll find its closest cluster. If the closest
cluster to fi is, say, c5 then pixel pi will belong to the cluster/visual word 5. Once we do that
for all pixels, our image will be represented by the cluster each pixel belongs to. If we paint
each cluster with a different color, then we’ll get our segmentation (just as in Figure 1).

3



HW6 10-601 Andrew ID:

Figure 3: Segmentation of images based on clusters

1.3 Dataset

In this homework, you will use a dataset containing 173 different images of basilicas. They are part
of the SUN dataset (http://groups.csail.mit.edu/vision/SUN/).

1.4 Provided Files

Since we are dealing with images, we will use some image analysis libraries, which have different
behaviors in Matlab and Octave. For this homework, you can choose to develop on Matlab or on
Octave. In the provided files you‘ll find two folders: matlab and octave. If you are developing
in Matlab, please use the files from the matlab folder and if you are developing in Octave, use
the files from the octave folder. If you choose to develop in Matlab, please just make sure that
your K-Means method also runs in Octave without any problems. Further instructions about the
provided code can be found in the sections below.

1.5 Getting Your Hands Dirty

Now it‘s time for you to start doing some work. We are providing all the image analysis and
computer vision methods, but it will be up to you to implement the clustering algorithm and to
generate the final segmentation based on the result of your clustering.

This homework consists of 3 parts, and you must do them in this order, since each step depends
on the previous one:

4



HW6 10-601 Andrew ID:

1. Implement K-Means

2. Compute dictionary (by completing and running computeDictionary.m)

3. Visualize segmentation (by completing and running segmentation.m)

1.5.1 K-Means Clustering [60 Points]

Your first task is to implement the K-Means algorithm. Just as in previous homeworks, you‘ll
have to implement it in Matlab/Octave. We have already created a file with a method having the
signature below. Your job is to write the implementation of this method (open the existing file and
write your code in there). We provide a script for testing tour code (testKMeans.m). Make sure
you run this test and get a coherent result.

[clusterCenters, clusterBelonging] = k_means(data, k, startPoints)

where

• data: the points to be clustered. It is a N × F matrix containing N points of dimension F .

• K: the number of clusters to be generated by K-Means.

• startPoints: the starting points of your K-Means algorithm. It is a K×F matrix containing
K points of dimension F . This is an optional argument, which means that your code should
be able to handle the case where no start points are provided. I.e., it should be able to
generate such points. There are many ways of doing that. A simple option is to select K
random (and distinct!) points from data.

• clusterCenters: the centers of the clusters found by K-Means. It is a K×F matrix containing
the K cluster centers obtained.

• clusterBelonging: the cluster each data point belongs to. Each cluster is represented by an
integer from 1 to K and respects the order of the clusterCenters matrix. In other words,
the first cluster in clusterCenters is represented by 1, and so on. The output variable
clusterBelonging is a N × 1 matrix.

Make sure that this particular file runs without errors on Octave (even if you are developing in
Matlab!).

1.5.2 Computing the Dictionary [20 Points]

Now that you have implemented the K-Means clustering algorithm, we will use it to compute the
dictionary of visual words. in this part, you will implement steps 1 and 2 described in Section 1.2.

We are providing you a file called computeDictionary.m as a base for this part. You must imple-
ment your code in that file. The file contains some base structural code to guide you.

For this part, we are giving you a file called data.mat which contains two objects:

• imagePaths: a cell array containing the path to (i.e. file name of) the images on the dataset.
The images are located in the folder called basilica. Make sure you don‘t change the structure
of the provided folders and files.

5



HW6 10-601 Andrew ID:

• filterBank: list of filters used to generate the feature vectors. Don’t worry too much about
this object. Just use it as specified below.

In this part, you will read all images from imagePaths, extract the feature vectors for each pixel
and then perform clustering to obtain the dictionary.

OBSERVATION 1: You will perform K-Means only once, with the feature vectors of all the
images in the dataset - there is not a separate clustering process for each image.

OBSERVATION 2: The number of feature vectors obtained from all images is huge (many
hundreds of thousands of them). Running K-Means on all these points would be too slow. We
highly recommend you to run it only for a sub-sample of them. For example, you could randomly se-
lect 1% of the points and then perform clustering on them to obtain your dictionary of visual words.

Your dictionary is simply the set of the cluster centers obtained in K-Means (i.e. the clusterCenters
output variable). It will be a matrix of size K×F , where K is the number of clusters/visual words
and F is the dimension of the feature space. In this case, F = 99 and you are free to choose K.
We strongly suggest an integer between 100 and 300.

Create a variable called dictionary that contains that result (you can simply do dictionary =
clusterCenters;) and save it to a file:

save(’dictionary.mat’, ’dictionary’);

Below you will find the instructions to get the feature vectors for each pixel and some other notes
(most of this code is already provided anyways).

NOTE 1: In order to get the path of the i− th image (and store it in a variable called img path),
type:

img_path = imagePaths{i};

NOTE 2: In order to read the image with the path stored in img path (and store it in a variable
called I) type:

I = imread(img_path);

NOTE 3: In order to get the feature vectors for the pixels in an image I type:

featurePoints = extractFilterResponses(I, filterBank);

The variable featurePoints in the example above will be of size N × 99 where N is the number of
pixels in the image I.

6



HW6 10-601 Andrew ID:

1.5.3 Doing the Segmentation [20 Points]

Now that you have computed the dictionary of visual words, we will perform segmentation in a
new image. You will select your own image to perform segmentation on. In order to do so, find
your own JPG image of a basilica (use Google, Bing, Baidu, ...) and save it as myBasilica.jpg in
your root folder (together with your other scripts).

NOTE: If the size if your selected image is huge, we suggest resizing it to something like 400 pixels
of width or height. Also, try to find an image that is not too small.

We are providing you a file called segmentation.m as a base for this part. You must implement
your code in that file. The file contains some base code to guide you.

In this script, you will read your selected image myBasilica.jpg, extract the feature vectors for
each of its pixels and find their corresponding clusters based on the dictionary you computed in the
previous section. Basically, what you‘ll be doing here is finding, for each feature vector, its closest
cluster. The function pdist2 can be particularly helpful in this task.

If your image has dimension w× h then your final result should be a matrix of size w× h with the
cluster belonging for each pixel. This matrix must be named imageSegments. In other words, if
the pixel (i, j) has a feature vector that belongs to cluster c then imageSegments(i, j) = c.

HINT: If you want to reshape a list of elements into a matrix, you can use the method reshape.
In this particular case, your code would look something like:

imageSegments = reshape(closestCluster,[size(I,1) size(I,2)]);

Once you obtained your imageSegments, it is very easy to visualize it. All you have to do is use
the imagesc method, as shown below:

imagesc(imageSegments);

The result should be something like the one in Figure 1.

Save the image you generate of the segments as myBasilicaSegmented.jpg and submit it together
with your original myBasilica.jpg image.

1.6 Submission

The submission should be a tgz file containing ONLY “report.pdf”, “k means.m”, “computeDic-
tionary.m”, “dictionary.mat”, “segmentation.m”, “myBasilica.jpg”, and “myBasilicaSegmented.jpg”.
Please do not change file names. Use the following command to create the tar file:

tar -cvf hw6.tgz report.pdf k_means.m computeDictionary.m dictionary.mat segmentation.m

myBasilica.jpg myBasilicaSegmented.jpg

Your report.pdf file should contain your Code of Conduct Declaration, your choice for the value of
K, and the image you selected with the segmentation result (something like Figure 1).

Autolab will only grade your K-Means implementation. The rest of the submission will be hand-
graded.

Good luck and have fun!

7


	Clustering in Computer Vision: Image Segmentation 
	Introduction
	Segmentation by Visual Words
	Dataset
	Provided Files
	Getting Your Hands Dirty
	K-Means Clustering [60 Points]
	Computing the Dictionary [20 Points]
	Doing the Segmentation [20 Points]

	Submission


