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Abstract

Parallel supercomputing has typically focused on the inner

kernel of scientific simulations: the solver. The front and
back ends of the simulation pipeline—problem description

and interpretation of the output—have taken a back seat

to the solver when it comes to attention paid to scala-
bility and performance, and are often relegated to offline,

sequential computation. As the largest simulations move
beyond the realm of the terascale and into the petascale

David R. O’Hallarori*

and performance optimization of scalable parallel solvers
and previous Gordon Bell awards have recognized these
achievements. However, the front and back ends of the
simulation pipeline—problem description and interpretati

of the output—have taken a back seat to the solver when
it comes to attention paid to scalability and performance.
This of course makes sense: solvers are usually the most
cycle-consuming component, which makes them a natural
target for performance optimization efforts for successiv

this decomposition in tasks and platforms becomes increas-9€nerations of parallel architecture. The front and badsen

ingly untenable. We propose an end-to-end approach in

which all simulation componerntsmeshing, partitioning,
solver, and visualization—are tightly coupled and execute

in parallel with shared data structures and no intermediate

I/0. We present our implementation of this new approach
in the context of octree-based finite element simulation of

on the other hand, often have sufficiently small memory foot-
prints and compute requirements that they can be relegated
to offline, sequential computation.

However as scientific simulations move beyond the
realm of the terascale and into the petascale, this decampos
tion in tasks and platforms becomes increasingly untenable

earthquake ground motion. Performance evaluation on up!n particular, multiscale three-dimensional PDE simaias
to 2048 processors demonstrates the ability of the end-to-Ofteén require variable-resolution unstructured meshesfito
end approach to overcome the scalability bottlenecks of the ciently resolve the different scales of behavior. The peobl

traditional approach.

1 Introduction

description phase can then require generation of a massive
unstructured mesh; the output interpretation phase then
involves unstructured-mesh volume rendering of even farge
size. As the largest unstructured mesh simulations mowe int

The traditional focus of parallel supercomputing has been the hundred million to billion element range, the memory

on the inner kernel of scientific simulations: tlselver,

a term we use generically to refer to solution of (numer-
ical approximations of) the governing partial differehtia
ordinary differential, algebraic, integral, or particlgua-
tions. Great effort has gone into the design, evaluation,
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and compute requirements for mesh generation and volume
rendering preclude the use of sequential computers. On the
other hand, scalable parallel algorithms and implemeoniati

for large-scale mesh generation and unstructured mesh vol-
ume visualization are significantly more difficult than thei
sequential counterparts.

We have been working over the last several years to
develop methods to address some of these front-end and
back-end performance bottlenecks, and have deployed them
in support of large-scale simulations of earthquakes [3].
For the front end, we have developed a computational
database system that can be used to generate unstructured
hexahedral octree-based meshes with billions of elements
on workstations with sufficiently large disks [26, 27, 28].30
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that effectively hide I/O costs when transferring indivadiu
time step data to memory for rendering calculations [32],

'For example, in a report identifying the prospects of scalability
of a variety of parallel algorithms to petascale architectures [22],
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which themselves run in parallel and are highly scalable code). All components are tightly coupled and execute on
[16,17,19, 32]. Figure 1 illustrates the simulation pipeli  the same set of processors. The only inputs are a description
in the context of our earthquake modeling problem, and, of the spatial variation of the PDE coefficients (a material
in particular, the sequence of files that are read and written property database for a 3D domain of interest), a simula-
between components. tion specification (earthquake source definition, maximum
frequency to be resolved, mesh nodes per wavelength, etc.),
e and a visualization configuration (image resolution, tfans
— i function, view point, etc.); the only outputs are lightwitig
% & jpeg-formatted image frames generat&sl the simulation
: runs? There is no other file I/O.
FEM mesh Spatial-temporal
~100GB { Integrated parallel meshing, |

output ~10TB Physical
partitioning, solving, and visualizing |

Partitioned mesh
~1000 files

e

Panitioning} —————

Scientific
understanding

{Meshing}— - - —>

) Figure 2:0nline, end-to-end simulation pipeline.
Figure 1:Traditional simulation pipeline.

) o The relative simplicity of the parallel octree structure
However, despite our best efforts at devising scalable p55 certainly facilitated the implementation of Hercules.
algorithms and implementations for the meshing, SOIVer, Neyertheless, additional mechanisms on top of the tree

and visualization components, as our resolution and fidelit g cyre are needed to support different scalable atgosit
requirements have grown to target hundred million to multi- \\:hin the Hercules framework. In particular, we need to
billion element simulations, significant bottlenecks réma  ,qqociate unknowns with mesh nodes. which correspond to
in storing, transferring, and reading/writing multi-tby@® 6 yertices of the octants in a parallel octfeBhe problem

files between these components. In particular, I/O of multi- ¢ 15w to handle octree mesh nodes alone represents a
terabyte files remains a pervasive performapce bottleneck 0 nonrjvial challenge to meshing and solving. Furthermore,
parallel computers, to the extent thae offline approach iy orqer to provide unified data access services throughout
to the meshing—partitioning—solver-visualization siatian the simulation pipeline, a flexible interface to the undieidy

pipeline becomes intractable for billion-unknown unstruc 45116 octree has to be designed and exported such that all
tured mesh simulationdUltimately, beyond scalability and components can efficiently share simulation data.

!/O.tcopcet:_rll_f, tthe b|ggestt I_m:ltatlc;p of t.he Olfﬂ'rl? appfr;ach It is worth noting that while the only post-processing
IS IS Inabifity o support nteractive visualization o component we have incorporated in Hercules is volume

SlthI?t'on:bthe;b'“ty :O debugjmd Crinqnltolr. th? S|th)JIat|on rendering visualization, there should be no technical dif-
atruntime based on volume-rendered visualizations besome ficulty in adding other components. We have chosen 3D

increasingly crucial as problem size increases. volume rendering over others mainly because it is one of the

Thus, we are led to conclude that in order t0 (1) mostdemanding back ends in terms of algorithm complexity
deliver necessary performance, scalability, and portgbil o gifficulty of scalability. By demonstrating that online

for ultrascale unstructured me§h com_putations, (2) avoid integrated, highly parallel visualization is achievabiee
unnecessary bottlenecks associated with multi-terad@e | o5iaplish the viability of the proposed end-to-end appioac

and (3) support runtime visualization steering, we musksee argue that it can be implemented for a wide variety of
an end-to-end solutioto the meshing—partitioning—solver—  ihar simulation pipeline configurations.

visualization pa_r'c_lllel simulation pipeli_ne_. The key i(_jead We have assessed the performance of Hercules on the
replace the trad|t|opal, cumbersome file interface W|_tha}sq Alpha EV68-based terascale system at the Pittsburgh Super-
able, parallel, runtime system that supports the simulatio computing Center for modeling earthquake ground motion

plp(illne 'P tv;/f ;va;qls: .(1) Iprt(.)V'dmg a comrpon fountdatlond in heterogeneous basins. Preliminary performance ane scal
on top of which all simulation components operate, an ability results (Section 4) show:

(2) serving as a medium for sharing data among simulation

components.

Following this design principle, we have implemented a
simulation system namdderculesthat targets unstructured
octree-based finite element PDE simulations running on

o Fixed-size scalability of the entire end-to-end simu-
lation pipeline from 128 to 2048 processors at 64%

20ptionally, we can write out the volume solution at each time

multi-thousand processor supercomputers. Figure 2 illus- Step if necessary for future post-processing—though we are rarely

trates the new computing method. All simulation compo-
nents (i.e. meshing, partitioning, solver, and visuaiorgt

are implemented on top of, and operate on, a unified parallel

octree data structure. There is only one executable (MPI

interested in preserving the entire volume of output, and instead
prefer to operate on it directip-situ.

3In contrast, other parallel octree-based applications such as N-
body simulations do not need to manipulate octants’ vertices.



overall parallel efficiency for 134 million mesh node
simulations

e Isogranular scalability of the entire end-to-end simu-
lation pipeline from 1 to 748 processors at combined
81% parallel efficiency for 534 million mesh node
simulations

e Isogranular scalability of the meshing, partitioning,
and solver components at 60% parallel efficiency on
2000 processors for 1.37 billion node simulations

Already we are able to demonstrate—we believe for
the first time—scalability to 2048 processors of an entire
end-to-end simulation pipeline, from mesh generation to
wave propagation to scientific visualization, using a udifie
tightly-coupled, online, minimal I/O approach.

legal

illegal

o hanging node

O anchored node

Figure 3:Quadtree- and octree-based meshes.

by construction of special transition elements) or weakly

(e.g., via mortar elements or discontinuous Galerkin appro

2 Octree-based finite element method

imation). The simplest technique is to enforce continuity

Octrees have been used as a basis for finite element approxby algebraic constraints that require the displacement of

imation since at least the early 90s [31].

Our interest in the hanging node be the average of the displacement of

octrees stems from their ability to adapt to the wavelengths its anchoredneighbors (indicated by open circles and the
of propagating seismic waves while maintaining a regular subscripta). As illustrated in Figure 3, the displacement
shape of finite elements. Here, leaves associated with theof an edge hanging nod&,, should be the average of its

lowest level of the octree are identified with trilinear hiega

two edge neighbors? andw?, and the displacement of a

dral finite elements and used for a Galerkin approximation face hanging nod@d, should be the average of its four face

of a suitable weak form of the elastic wave propagation neighborsu?, wj, u®, andu!.
The hexahedra are recursively subdivided into of these algebralc constraints will be discussed in the next

equation.

8 elements until a local refinement criterion is satisfied. section.

Efficient implementation

As evident from the figure, when the octree is

For seismic wave propagation in heterogeneous media, thebalanced, an anchored node cannot also be a hanging node.

criterion is that the longest element edge should be suc¢h tha

The previous version of our earthquake modeling code

there result at leagtnodes per wavelength, as determined by was based on an unstructured mesh data structure and linear

the local shear wave velocity and the maximum frequency
of interestf, .. In other wordsh,,,, < f— For trilinear

tetrahedral finite elements [6, 7]. The present octreeebase
method

[8] has several important advantages over that

hexahedra and taking into account the accuracy with which approach:

we know typical basin properties, we usually take= 10.
An additional condition that drives mesh refinement is that
the element size not differ by more than a factor of two
across neighboring elements (the octree is then said to be
balanced. Note that the octree does not explicitly represent
material interfaces within the earth, and instead aca@pts
error in representing them implicitly. This is usually jifisid
for earthquake modeling since the location of interfaces is
known at best to the order of the seismic wavelength, i.e. to
O(h). If warranted, higher-order accuracy in representing
arbitrary interfaces can be achieved by local adjustment of
the finite element basis (e.g., [31]).

Figure 3 depicts the octree mesh (and its 2D counterpart,
a quadtree). The left drawing illustrates a factor-of-two
edge length difference (agal refinement) and a factor-of-
four difference (anllegal refinement). Unless additional
measures are taken, so-calleanging nodeghat separate
different levels of refinement (indicated by solid circlesla
the subscriptl in the figure) result in a possibly discontinu-
ous field approximation, which can destroy the convergence
properties of the Galerkin method. Several possibilities
exist to remedy this situation by enforcing continuity of
displacement field across the interface either strongly.,(e.

e The octree meshes are much more easily generated
than general unstructured tetrahedral meshes, partic-
ularly when the number of elements increases above
50 million.

e The hexahedra provide relatively greater accuracy per
node (the asymptotic convergence rate is unchanged,
but the constant is typically improved over tetrahedral
approximation).

e The hexahedra all have the same form of the element
stiffness matrices, scaled simply by element size and
material properties (which are stored as vectors), and
thus no matrix storage is required at all. This results
in a substantial decrease in required memory—about
an order of magnitude, compared to our node-based
tetrahedral code.

e Because of the matrix-free implementation, (stiffness)
matrix-vector products are carried out at the element
level. This produces much better cache utilization by
relegating the work that requires indirect addressing
(and is memory bandwidth-limited) to vector opera-
tions, and recasting the majority of the work of the



matrix-vector product as local element-wise dense
matrix computations. The result is a significant boost
in performance.

2.2 Octree discretization. We apply standard Galerkin
finite element approximation in space to the appropriate
weak form of the initial-boundary value problem (1)The

rest of this section has been commented out to satisfy the

These features permit earthquake simulations to substaniength requirement; it will be restored in the full paper.

tially higher frequencies and lower resolved shear wave

velocities than heretofore possible. In the next sectiom, w
describe the octree-based discretization and solutioheof t
elastic wave equation.

2.1 Wave propagation model. We model seismic wave
propagation in the earth via Navier's equations of elasto-
dynamics. Letu represent the vector field of the three
displacement components; and . the Lanmé moduli and

p the density distributionp a time-dependent body force
representing the seismic sour¢¢he surface traction vector;
and( an open bounded domaink? with free surfacd rg,
truncation boundary' 45, and outward unit normal to the
boundaryn. The initial-boundary value problem is then
written as:

piv= V- [u(Vut V) + ANV wI] =b in Qx(0,T),

on Tup x (0,T),
on I'yp x(0,7),

nxnxt=mnxnxu/pu

n-t=n-uy/pA+2u)

)
t=0 on I'psx(0,7),
u=0 in Qx{t=0},
=0 in Qx{t=0},

With this model, p waves propagate with velocity=

V(A +2u)/p, and s waves with velocitg = +/u/p. The

continuous form above does not include material attenoatio

which we introduce at the discrete level via a Rayleigh damp-

ing model. The vectob comprises a set of body forces that

equilibrate an induced displacement dislocation on a fault ¢

plane, providing an effective representation of earthquak

rupture on the plane. For example, for a seismic excitation

idealized as a point sourde= —puvAM f(t)Vé(x—£) [4].

In this expressiony is the average earthquake dislocation;
A the rupture areaM the (normalized) seismic moment
tensor, which depends on the orientation of the fafit) the
(normalized) time evolution of the rupture; aéidhe source
location.

Since we model earthquakes within a portion of the
earth, we require appropriately positioned absorbing Heun
aries to account for the truncated exterior. For simpljdity
(1) the absorbing boundaries are given as dashpoisgn

2.3 Temporal approximation. The time dimension

is discretized using central differencesThg rest of this
section has been commented out to satisfy the length require
ment; it will be restored in the full papér.

The combination of an octree-based wavelength-adaptive
mesh, piecewise trilinear Galerkin finite elements in space
explicit central differences in time, constraints thatané
continuity of the displacement approximation, and local-i
space-and-time absorbing boundaries yields a second-orde
accurate in time and space method that is capable of scaling
up to the very large problem sizes that are required for high
resolution earthquake modeling.

3 An end-to-end approach

The octree-based finite element method just described can be
implemented using a traditional, offline, file-based apphoa
[3,19,26,27,32]. However, the inherent pitfalls, as aati

in Section 1, cannot be eliminated unless we introduce a
major change in design principle.

Our new computing model thus follows an online, end-
to-end approach. We view different components of a simu-
lation pipeline as integral parts of a tightly-coupled piata
runtime system, rather than individual stand-alone progra
A number of technical difficulties emerge in the process of
implementing this new methodology within an octree-based
finite element simulation system. This section discusses se
eral fundamental issues to be resolved, outlines the adesf
between simulation components, and presents a sketch of the
ore algorithms.

Some of the techniques presented here are specific to the
target class of octree-based methods. On the other hand, the
design principles are more widely applicable; we hope they
will help accelerate the adoption of end-to-end approaches
to parallel supercomputing where applicable.

3.1 Fundamental issues. Below we discuss funda-
mental issues encountered in developing a scalable octree-
based finite element simulation system. The solutions pro-
vided are critical to efficient implementation of different
simulation components.

which approximate the tangential and normal components 3-1.1 Organizing a parallel octree. The octree serves

of the surface traction vectot with time derivatives of
corresponding components of the displacement vector.
Even though this absorbing boundary is approximate,
it is local in both space and time, which is particularly
important for large-scale parallel implementation. Hipal
we enforce traction-free conditions on the earth surface.

as a natural choice for the backbone structure tying togethe
all add-on components (i.e., data structures and algosithm
We distribute the octree among all processors to exploit
data parallelism. Each processor retaindadtsal instance

of the underlying global octree. Conceptually, each local
instance is an octree by itself whose leaf octants are marked
as eithettocal or remote as shown in Figure 4(b)(c)(d). (For



clarity, we use 2D quadtrees and quadrants in the figures andgrow and shrink dynamically in synergy at runtime to con-

examples.) serve memory and maintain a coherent global parallel actree
The best way to understand the construction of a local

instance on a particular processor is to imagine that there3.1.2 Addressing an octant. In order to manipulate

exists a pointer-based, fully-grown, global octree (see Fi  octants in a distributed octree, we need to be able to igentif

ure 4(a)). Every leaf octant of this tree is markedaa=l if individual octants, for instance to support neighbor-inggdi
the processor needs to use the octant, for example, to mapperations or data migrations.
it to a hexahedral element, cgmoteif otherwise. We then The foundation of our addressing scheme is the linear

apply an aggregation procedure to shrink the size of the tree octree technique [1,13,14]. The basic idea of a linear ectre
The predicate of aggregation is that if eight sibling odant is to encode each octant with a scalar key callémtational

are marked asemote prune them off the tree and make codethat uniquely identifies the octant. Let us label each tree
their parent a leaf octant, marked @snote For example,  edge with a binandirectional codethat distinguishes each
on PE 0, octantg, h, 4, andj (which belong to PE 1) are  child of an internal octant. A locational code is obtained by
aggregated and their parent is marked as a remote leaf octaniconcatenating the directional codes on the path from thie roo
The shrunken tree thus obtained is the local instance onoctant to a target octant [23]. To make all the locational
the particular processor. Note that all internal octantse—th codes of equal length, we may need to pad zeroes to the
ancestors of leaf octants—are unmarked. They exist simply concatenated directional codes. Finally, we append tted lev
because we need to maintain a pointer-based octree stucturof the target octant to the bit-string to complete a location
on each processor. code. Figure 5 shows how to derive the locational code for
octantg, assuming the root octant is at level 0 and the lowest
level supported is 4.

Level 0 concatenate the directional
codes 100100

Level 1 l

pad 2 zeroes
100100« 00

(a) (b) (©) (d)

Figure 4: Parallel octree organization on 3 proces-
sors. Circles marked by | represent local leaf octants;
and those marked by r represent aggregated remote
leaf octants. (a) A global octree. (b)(c)(d) The local (@) (b)
instances on PEO, PE1 and PE2, respectively.

Level 3 ,
append g's level

o Interior octani - Leaf octant 10010000+ 011

Figure 5: Deriving locational codes using a tree

We patrtition a global octree among all processors with structure. (a) A tree representation. (b) Deriving the
a simple rule that each processor is a host for a contiguouslocational code for g.
chunk of leaf octants in the pre-order traversal ordering. T
maintain consistency in the parallel octree, we also esforc The procedure just described assumes the existence of
an invariant that a leaf octant, if marked |€al on one a tree structure to assist with the derivation of a locationa
processor, should not be marked lasal on any other code. Since we do not maintain a global octree structure, we
processors. Therefore, the local instance on one processohave devised an alternative way to compute the locational
differs from that on any other processor, though there may becodes. Figure 6 illustrates the idea. Instead of a tree
overlaps between local instances. For example, a leafioctanstructure, we view an octree from a domain decomposition
marked asemoteon one processor may actually correspond perspective. Adomainis a Cartesian coordinate space that
to a subtree on another processor. consists of a uniform grid o™ x 2" indivisible pixels To

So far, we have used a shallow octree to illustrate how compute the locational code of octaptwe first interleave
to organize a parallel octree on 3 processors. In our simplethe bits of the coordinate of its lower left pixel to produce
example, the idea of local instances may not appear tothe so-called Morton code [21]. Then we appgrslevel to
be very useful. But in practice, a global octree can have compose the locational code.
many levels and needs to be distributed among hundreds or It can be verified that the two methods of deriving
thousands of processors. In these cases, the local instanckcational codes are equivalent and produce the same.result
method pays off because each processor allocates enougfhe second method, though, allows us to compute a globally
memory to keep track of only its share of the leaf octants.  unique address by simple local bit operations.

Due to massive memory requirements and redundant
computational costs, we never—and in fact, are unable to—3.1.3 Locating an octant. Given the locational code
build a fully-grown global octree on a single processor and of an octant, we need to locate the octant in a distributed
then shrink the tree by aggregating remote octants as anenvironment. That is, we need to find out which processor
afterthought. Instead, local instances on different pssces hosts a given octant. Whether we can efficiently locate



o g's left lower corner pixel(4, 8) where an operation is initiated, we use the standard peinter

based octree algorithm [23] to traverse the local instance
binary form (0100, 1000) to manipulate the octant. If the target octant is hosted on
a remote processor, we compute its locational code and
conduct a lookup using the locational code interval table to

interleave the bits to

i 11 1 obtain Morton code find its hosting processor. We store the locational codeef th
; 0100 1000 target octant and the intended operation in a request buffer
0 append g's level destined for the hosting processor. The request buffers are
o izaase s omnzETs | 10010000 < 011 later eXChanged among processors. Each processor executes
the requests issued by its peers with respect to its local
(a) (b) octants. On the receiving end, we are able to locate an

octant using its locational code by reversing the procedure
of deriving a locational code from a tree structure (shown
in Figure 5). Without a locally computed and globally
unique address, such cross-processor operations woudd hav
involved much more work.

Figure 6: Computing locational codes without us-
ing a tree structure. (a) A domain representation. (b)
Computing the locational code for g.

an octant directly affects the performance and scalability

of our system. We have developed a simple but powerful 3.2 |nterfaces. There are two types of interfaces in the
technique based onlacational code interval tabl¢éo solve Hercules system: (1) the interface to the underlying octree
this problem. and (2) the interface between simulation components.

The basis of our solution is a simple fact: the pre-order All simulation components manipulate the underlying
traversal of the leaf octants produces the same ordering asctree to implement their respective functions. For exampl
the ascending locational code ordering. The dotted lines the mesher needs to refine or coarsen the tree structure to
in Figure 5(a) and Figure 6(a) illustrate the two identical effect necessary spatial discretization. The solver needs
orderings, respectively. Since we assign to each processoko attach runtime solution results to mesh nodes. The
a contiguous chunk of leaf octants in pre-order traversal visualization component needs to process the attached data
ordering (as explained in Section 3.1.1), we have effelstive  |n order to support such common operations efficiently, we
partitioned the locational code range in its ascendingrorde jmplement the backbone parallel octree in two abstract data
Each processor hosts a range of ascending locational codegypes (ADTs): oct ant _t andoctree_t, and provide a
that does not overlap with others. small application program interface (API) to manipulate th

Accordingly, we implement a locational interval table as  ADTs. For instance, at the octant level, we provide function
an array that maps processor ids to locational codes. Eacho search for an octant, install an octant, and sprout orgorun
element of the array records the smallest locational codean octant. At the octree level, we support various tree trave
on the corresponding processor (i.e. itleelement records  sal operations as well as the initialization and adjustroént
the smallest locational code on processor This table is the locational code lookup table. This interface allows us
replicated on all processors. In our example (Figure 4éa)), to encapsulate the complexity of manipulating the backbone
locational code interval table contains three entriespnec parallel octrees within the abstract data types.
ing the locational codes of octahtg, andk, respectively. Note that there is one (and the only one) exception to

We use a locational code interval table to perform quick the cleanliness of the interface. We reserve a place-hiider
inverse lookups. That is, given an arbitrary locational&sod  oct ant _t , allowing a simulation component (e.g., a solver)
we conduct a binary search in the locational code interval to install a pointer to a data structure where component-
table and find the interval index (i.e., processor id) of the specific data can be stored and retrieved. Nevertheleds, suc
entry whose locational code is the largest among all thoseflexibility does not undermine the robustness of the Hesule
that are smaller than the given locational code. Note thigitth system because any structural changes to the backbone
is a local operation and incurs no communication cost. octree must still be carried out through a pre-defined API

A locational code interval table is efficient in both space call.
and time. The memory overhead on each processor to  We have also designed binding interfaces between the
store an interval table i©(P), whereP is the number of  simulation components. However, unlike the octree/octant
processors. Even when there are 1 million processors, theinterface, the inter-component interfaces can be cleatdy e
memory footprint of the locational code lookup table is only plained only in the context of the simulation pipeline. Térer
12 MB. Time-wise, the overhead of an inverse lookup is fore, we defer the description of the inter-component in-
O(log P), the cost of a binary search. terfaces to the next section where we outline the core

algorithms of individual simulation components.
3.1.4 Manipulating an octant. There are various sit-
uations when we need to manipulate an octant. For example 3.3 Algorithms. Engineering a complex parallel simu-
we need to search for a neighboring octant when generatinglation system like Hercules not only involves careful soft-
a mesh. If the target octant is hosted on the same processoware architectural design, but also demands non-trivial al

6



gorithmic innovations. This section highlights important by themselves, octants and vertices are not a finite ele-
algorithm and implementation features of Hercules. We have ment mesh. To generate a mesh and make it usable to a
omitted many of the technical details. solver, we must identify the associations between octants
and vertices (mesh connectivity), and between vertices and
3.3.1 Meshing and partitioning. We generate octree  vertices, either on the same processor (hanging-to-aadhor
meshes onlinén-situ [29]. That is, we generate an octree dependencies) or on different processors (inter-processo
mesh in parallel on the same processors where a solver angharing information). Therefore, in order to implement
a visualizer will be running. Mesh elements and nodes steps such a8ALANCETREE and EXTRACTMESH, which
are created where they will be used instead of on remoterequire capabilities beyond those offered by parallelestr
processors. This strategy requires that mesh partitioming  algorithms, we have incorporated auxiliary data structure
an integral part of the meshing component. The partitioning and developed several new algorithms sucpeaallel ripple
method we use is simple [5, 11]. We sort all octants in propagationandparallel octree bucket sortin29].
ascending locational code order, often referred to as the Z-  As mentioned in Section 3.2, the interface between
order [12], and divide them into equal length chunks in such simulation components provides the glue that ties the Her-
a way that each processor will be assigned one and only onecules system together. The interface between the meshing
chunk. Because the locational ordering of the leaf octants and solver components consists of two parts: (1) abstract
corresponds exactly to the pre-order traversal of an actree data types, and (2) callback functions. When meshing is

the partitioning and data redistribution often involveflea

completed, a mesh abstract data typegh_t ), along with

octants migrating only between adjacent processors. When-a handle to the underlying octreedt r ee_t ), is passed

ever data migration occurs, local instances of partiaigati

forward to a solver. Theresh_t ADT contains all the

processors are adjusted to maintain a consistent global dat information a solver would need to initialize an execution

structure. As shown in Section 4, this simple strategy works environment.

On the other hand, a solver controls the

well and yields almost ideal speedup for fixed-size problems behavior of a mesher via callback functions that are passed
The process of generating an octree-based hexahedraas parameters to ttREFINETREEand COARSENTREESteps

mesh is shown in Figure 7. FirslEWTREE bootstraps a

at runtime. The latter interface allows us to perform rumtim

small and shallow octree on each processor. Next, the treemesh adaptation, which is critical for future extensionhef t

structure is adjusted bREFINETREE and COARSENTREE
either statically or dynamically. While adjusting the tree

Hercules framework to support solution adaptivity.

structure, each processor is responsible only for a small3.3.2 Solving. Figure 8 shows the solver component’s
area of the domain. When the adjustment completes, thereworkflow. After the meshing component hands over control,
are many subtrees distributed among the processors. TheheINITENV step sets an execution environment by comput-

BALANCETREE step enforces the 2-to-1 constraint on the
parallel octree. After a balanced parallel octree is olethin

PARTITIONTREE redistributes the leaf octants among the
processors using the space-filling curve partitioning tech

ing element-independent stiffness matrices, allocatind a
initializing various local vectors, and building a communi
cation schedule. Next, theEFSOURCEStep converts an
earthquake source specification to a set of equivalentgorce

nigue. Finally and mostimportantlgxTRACTMESHderives applied on mesh nodes. Then, a solver enters its main loop
mesh element and node information and determines the(inner kernel) where displacements and velocities astmtia
various associations between elements and nodes. Theavith mesh nodes are computed for each simulation time
overall algorithm complexity of the meshing component is step (i.e., thecompDISP step). If a particular time step
O(N log E), whereN andFE are the numbers of mesh nodes needs to be visualized, which is determined eith@riori

and elements, respectively. or at runtime (online steering), theALLvIS step passes
the control to a visualizer. Once an image is rendered,
control returns to the solver, which repeats the procedure
for the next time step until termination. The explicit wave
propagation solver has optimal complexity, K%(.N%) This
stems from the fact that simply writing the solution reqsire
O(N3) complexity, since®(N) mesh nodes are required
for accurate spatial resolution, a¥(N 3 ) time steps for
accurate temporal resolution, which is of the order dictate
by the CFL stability condition.

It should be noted that the parallel octree alone—though The compDIsP step (performing local element-wise
scalable and elegant for locating octants and distributing dense matrix computation, exchanging data between proces-
workloads—is not sufficient for implementing all meshing sors, enforcing hanging node constraints, etc.) presents n
functionality. The key challenge here is how to deal with major technical difficulty, since this inner kernel is by far
octants’ vertices (i.e., mesh nodes). We can calculate thethe most well studied and understood part. What is more
coordinates of the vertices in parallel and obtain a col- interesting is how the solver interacts with other simolati
lection of geometric objects (octants and vertices). But components and with the underlying octree in theEnv,

Upfront adaptation guided by
material property or geometry

e~ e — iy — ey~ G~ €D
Octree and mesh handles
to solver and visualizer

Figure 7:Meshing and partitioning component.

Online adaptation guided by
solver’s output (e.g. error est.)
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DEFSOURCE andCALLVIS steps. from the backbone octree by calling these macéros.

Octree and mesh
handles from mesher j

3.3.3 Visualization. Simulation-time 3D visualization

i N N has rarely been attempted in the past for three main reasons.
ey >+ (Gersoumcd)*-»( Coupisn)—»<Ts sTez> First, scientists are reluctant to use their supercomguatin
locations for visualization work. Second, a data orgamrat

designed for a simulation is generally unlikely to support
efficient visualization computations. Third, performing v
sualization on a separate set of processors requires eepeat
movement of large amounts of data, which competes for
scarce network bandwidth and increases the complexity of
the simulation code.

Figure 8:Solving component.

In the INITENV step, the solver receives ansitu mesh
via an abstract data typeesh_t, which contains such
important information as the number of elements and nodes
assigned to a processor, the connectivity of the local mesh
(element—node association, hanging-anchored node associ

tion), and the sharing information (which processor shares GroTePARAR)—» EENOERAGE)—>EMPOSTINAGE)—> (SAVENAGE D

which local mesh nodes), and so forth. All initialization

work, including the setup of a communication schedule, Figure 9:Visualizing component.

is thus performed in parallel without any communication

among processors.

Along with thenesh_t ADT, the solver also receives a

handle to the backbone octree’s local instancér ee t .

One of the two important applications of tlet r ee_t

ADT is to provide an efficient search structure for defining

earthquake sources (thBEFSOURCESstep). We support

kinematic earthquake sources whose displacements (slips)

are prescribed. The simplest case is a point source. Note

that the coordinate of a point source is not necessarily

that of any mesh node. We implement a point source by

finding the enclosing hexahedral element of the coordinate

and converting the prescribed displacements to an equivale

set of forces applied on the eight mesh nodes of the enclosing

element. For general cases of fault planes or arbitrary faul

shapes, we first transform a fault to a set of point sources andFigure 10: A sequence of snapshot images of

then apply the technique for the single point source maitipl Propagating waves of 1994 Northridge earthquake.

times. In other words, regardless of the kinematic source,

we must always locate the enclosing elements of arbitrary By taking an online, end-to-end approach, we have been

coordinates. We are able to implement fEFSOURCEStep able to incorporate highly adaptive parallel visualizatiato

using the octree/octant interface, which provides theiserv  Hercules. Figure 9 shows how the visualization component

of searching for octants. works. First, theUPDATEPARAM step updates the viewing
The other important application of theect r ee t ADT and rendering parameters. Next, tRENDERIMAGE step

is to serve as a vehicle for the solver to pass data to therenders local data, that is, values associated with blocks

visualization component. Recall that we have reserved aof hexahedral elements on each processor. The details on

place-holder in theoct reet ADT. Thus, we allocate a  the rendering algorithm can be found in [19, 32]. The

buffer that holds results from the solver (displacements or partially rendered images are then composited together in

velocities), and install the pointer to the buffer in theqaa the COMPOSITIMAGE step. We usacheduled linear image

holder. As new results are computed at each time step,compositing(SLIC) [24], which has proven to be the most

the result buffer is updated accordingly. Note that to avoid flexible and efficient algorithm. Previous parallel image

unnecessary double buffering, we do not copy floating- compositing algorithms are either not scalable or designed

point numbers directly into the result buffer. Instead, we for a specific network topology [2, 15, 18]. Finally, the

store pointers (array offsets) to internal solution vestmd SAVEIMAGE step stores an image to disk. Figure 10 shows

implement a set of macros to manipulate the result buffer a sequence of example images. The cost of the visualization

(de-reference pointers and compute results). So from acomponent per invocation i©(zyE3 log E), wherez,y

visualization perspective, the solver has provided a @anci

data service. Once theaLLvIS step transfer the control to a

visualizer, the latter is able to retrieve simulation réslaita

“When visualization does not need to be performed at a given
time step, no data access macros are called; thus no memory access
or computation overhead occurs.



PEs 1 16 52 184 748 2000
Frequency 0.23 Hz 0.5Hz | 0.75Hz 1Hz 15Hz 2Hz
Elements 6.61E+5| 9.92E+6| 3.13E+7 | 1.14E+8| 4.62E+8| 1.22E+9
Nodes 8.11E+5| 1.13E+7| 3.57E+7| 1.34E+8| 5.34E+8| 1.37E+9
Anchored 6.48E+5| 9.87E+6| 3.12E+7 | 1.14E+8| 4.61E+8| 1.22E+9
Hanging 1.63E+5| 1.44E+6| 4.57+6| 2.03E+7| 7.32E+7| 1.48+8
Max leaf level 11 13 13 14 14 15
Min leaf level 6 7 8 8 9 9
Elements/PE 6.61E+5| 6.20E+5| 6.02E+5| 6.20E+5| 6.18E+5| 6.12E+5
Time steps 2000 4000 10000 8000 2500 2500
E2E time (sec) 12911 19804 38165 48668 13033 16709
Replication (sec) 22 71 85 94 187 251
Meshing (sec) 20 75 128 150 303 333
Solver (sec) 8381 16060 31781 42892 11960 16097
Visualization (sec) 4488 3596 6169 5528 558 *
E2E time/step/elem/PE.§) 9.77 7.98 7.93 7.86 8.44 10.92
Solver time/step/elem/PE.§) 6.34 6.48 6.60 6.92 7.74 10.52
Mflops/sec/PE 569 638 653 655 * *

Figure 11: Summary of the characteristics of the isogranular experime nts. The entries marked as “*” are data
points that we have not yet been able to obtain due to various technical reasons.

represent the 2D image resolution afds the number of Pittsburgh Supercomputing Center. The Mflops numbers

mesh elements. were measured using the HP Digital Continuous Profiling
The visualization component relies on the underlying Infrastructure (DCPI) [10].
parallel octree for two purposes: (1) to retrieve simulatio The earth property model is the Southern California

data from the solver, and (2) to implement its adaptive Earthquake Center 3D community velocity model [20] (Ver-
rendering algorithm. We have described the first usage in sion 3, 2002), known as the SCEC CVM model. We query
the previous section. Let us now explain the second. Tothe SCEC CVM model at high resolution offline and in
implement a ray-casting based rendering algorithm, the vi- advance, and then compress, store and index the results in
sualization component needs to traverse the octree steuctu a material database [253(2.5GB in size). Note that this

By default, all leaf octants intersecting a particular raysn is a one-time effort, and the database is reused by many
be processed in order to project a pixel. However, we simulations. In our initial implementation, all processor
might not always want to render at the highest resolution, queried a single material database stored on a parallel file
i.e. at the finest level of the octree. For example, when system. But unacceptable performance led us to to modify
rendering hundreds of millions of elements on a small image our implementation to replicate the database onto locikdis

of 512 x 512 pixels, little additional detail is revealed if we attached to each compute node prior to a simulation.

render at the highest level, unless a close-up view is sglect

Thus, to achieve better performance of rendering without 4.1 Isogranular scalability study. Our main interest
compromising image quality, we perform a view-dependent js understanding how the Hercules system performs as the
pre-processing step to choose an appropriate octree leveproblem size and number of processors increase, maingainin
before actually rendering the image [32]. Operationatly, i more or less the same problem size (or work per time step)
means that we need to ascend the tree structure and rendesn each processor.

images at a coarser level. The small set of API functions that Figure 11 summarizes the characteristics of the isogran-
manipulate the backbone octree (see Section 3.2) serves as gjar experiments.PEs indicates the number of processors
building block for supporting such adaptive visualization  ysed in a simulation.Frequencyrepresents the maximum
seismic frequency resolved by a mesklement Nodes
4 Performance Anchored andHangingcharacterize the size of each mesh.
In this section, we provide preliminary performance result Max leaf Ieveland.Min leaf Ievelrepresen.t the smallest and
that demonstrate the scalability of the Hercules system. !argest elements in each mesh, respectivelgments/Pés
We also describe interesting performance charactermtids ~ US€d as a rough indicator of the workload per time step on
observations identified in the process of understanding the®ach processor. Given the unstructured nature of the finite
behavior of Hercules as a complete simulation system. element meshes, it is impossible to guarantee a constant
The simulations have been conducted to model seismicn“mb.er of elements per propessor. [\Ieverthe!es;, we have
wave propagation during historical and postulated earth- contained the difference to within 10%ime stepsndicates

quakes in the Greater Los Angeles Basin, which comprisest1€ number of explicit time steps executed. TH®2E time
a 3D volume ofl00 x 100 x 37.5 kilometers. We report represents the absolute running time of a Hercules sinoulati

performance o.emieux the HP AlphaServer system at the from the moment the code is loaded onto a supercomputer
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to the moment it exits the system. This time includes the 100% E F

time of replicating a material database stored on a shared 80% 7 .
parallel file system to the local disk attached to each comput 60% A -
node Replicatior), the time to generate and partition an 20% | |

unstructured finite element mesMéshing, the time to
simulate seismic wave propagatiddojvel, and the time to
create visualizations and output jpeg imagéis(alizatior).
E2E time/step/elem/P&ndSolver time/step/elem/Pite the
amortized cost per element per time step per processor for
end-to-end time and solver time, respectivélflops/sec/PE . . I
stands for the sustained megaflops Ser se?:lglnzljoper processolr__..lgure. 12: The percentage contr|bu_t|on_ of each
. . . . Simulation component to the total running time.
Note that the simulations involve highly unstructured
meshes, with the largest elements 64 times as large in edge ] o ) o
size as the smallest ones. Because of spatial adaptivibeoft Structures and algorithms for the entire simulation pips|i
meshes, there are many hanging nodes, which account foithe limiting factor for h|gh |sogranulrf1r scalability on ade
11% to 20% of the total mesh nodes. number of processors is the scalability of the solver proper
A traditional way to assess the overall isogranular paral- rather than front and back end components. Therefore,

lel efficiency is to examine the degradation of the sustained I IIS regsonable to use tr;]e Qegradat||on w;f_the amofrtlzhed
average Mflops per processor as the number of processor§o ver t.|me tc_) measure t.e Isogranuiar: efliciency ot the
increases. In our case, we achieve 28% to 33% of peak per_ent|re simulation pipeline (in place of the end-to-end time

1 . - . . 0 . .
formance on the Alpha EV68 processors (2 GFIops/sec/PE).Wk:‘ICh n If:e_lct mﬂe::hgrea}ter Ehan 100{0 efﬁmer;cy). f\s
However, no degradation in sustained average floatingtpoin shown In Figure L2, the solvertime per step per element per

rate is observed. On the contrary, the rate increases as W@Iiirocessor IS 8'3.&5 ona smgIeIPE and”7|.7;4ft?. on 748 I:gl(y
solve larger problems on larger numbers of processors (up ence, we obtain an isogranular parallel efficiency o O

to 184 processors). This counter-intuitive observationtza a good result consider.ing the high irregglarity of the meshe
explained as follows: the solver is the most floating point- The 2000-PE data point shown in the figure corresponds to

intensive and time-consuming component; as the problem ISOLL#'On ofal.s37 blrl]l!on nodg problerr: W'thouhv'lsuf?“jnfti'
size increases, processors spend more time in the solver ext tis case, we achieve an isogranular parallel efliciency o

20% - ]

0% ‘ . . e e
1PE 16PE  52PE  184PE  748PE 2000PE
O Replicating B Meshing & Solving & Visualizing

ecuting floating-point instructions, thus boosting therailte 60%.
Mflops/s per processor rate. 150
To assess the isogranular parallel efficiency in a more 125
meaningful way, we analyze the running times. Figure 12 @ 100 \-—-‘.//x//'
illustrates the contribution of each component of Herctoes g [ P ——
the total running time. One-time costs such as replicating = 50
the material database and generating a mesh are inconse- 25
quential and are almost invisible in the figire Among 00 1PE 16PE  SOPE | 1B4PE  748PE  2000PE
the recurring costs, visualization has lower per-time step = E2E timel/steplelem/PE —+— Solver-time/step/elem/PE

algorithmic complexity ©(zyE3 log E)) than that of the

solver (O(N)). (I, the number of mesh nodes, is of the Figure 13: The amortized running time per per
order of £/, the number of mesh elements, in an octree—basedstep per element per processor. The top curve

number of processors increase, the solver time overwhelms,ng the lower corresponds to the amortized solver
the visualization time by greater and greater margins. running time.

Figure 13 shows the trends of the amortized end-to-
end running time and solver time per time step per element
per processor.  Although the end-to-end time is always 4 >  Fixed-size scalability study. In this set of ex-
higher than the solver time, as we increase the problem

k g 4 (ﬂeriments, we investigate the fixed-size scalability of the
size, the amortized solver time approaches the end-to-endercyjes system. That is, we fix the problem size and solve

time due to the solver's asymptotic dominance. The key y,o same problem on different numbers of processors to
insight here is that, with careful design of parallel data oy4mine the performance improvement in running time.

SFor the 1.5 Hz (748-PE run) and 2 Hz (2000-PE run) cases, We have conducted three sets of fixed-size scalability
we have computed just 2,500 time steps. Because of this, the€Xperiments, for small size, medium size, and large size
replication and meshingcosts appear slightly more significant in ~ problems, respectively. The experimental setups are shown
the figure than they would had a full-scale simulation of 20,000 in Figure 14. The performance results are shown in Fig-
time steps been executed. Also note that the 2000-PE case does naire 15. Each column represents the results for a set of fixed-
include the visualization component. size experiments. From left to right, we display the plots fo
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PEs |1 2 4 8 16 32 64 128 256 512 1024 2048
Small case (0.23 Hz, 0.8M nodes)) x X X

Medium case (0.5 Hz, 11M nodes) X X X X

Large case (1 Hz, 134M nodes) X X X X

Figure 14:Setup of fixed-size speedup
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Figure 15:Speedups of fixed-size experiments.
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The horizontal axes represent the number of processors. The
vertical axes represent the running time in seconds. The first row shows the end-to-end running time; the second
the meshing and partitioning time; the third the solver time; and the fourth the visualization time.

parallel efficiencies are 66%, 76%, and 64%, for the small

The first row of the plots shows that Hercules, as a sys- case (16 PE vs. 1 PEs), medium case (128 PEs vs. 8 PEs),

11

tem for end-to-end simulations, scales well even for fixed- and large case (2048 PEs vs. 128 PEs), respectively.
size problems. As we increase the numbers of processors
(to 16 times as many for all three cases), the end-to-ending/partitioning component only. Although not perfectisth

running times improve accordingly. The actual running time component achieves reasonable speedups while running on
curve tracks the ideal speedup curve closely. The enddo-en a large number of processors. For earthquake wave propa-

The second row shows the performance of the mesh-



gation simulations, meshes are static and are only generate
just once prior to computation. Therefore, the cost of mesh-
ing and partitioning is dwarfed by thousands of simulation ;

time steps, provided mesh generation is reasonably fast and : %
scalable.

The third row of Figure 15 shows a somewhat surprising
result: the solver achieves almost ideal speedup on husdred
to thousands of processors, even though the partitioning
strategy we used (dividing a Z-ordered sequence of elements
into equal chunks) is rather simplistic. In fact, the solwer (@) (b)
parallel efficiency is 97%, 98%, and 86%, for the small case,
medium case, and large case, respectively. Since solving isFigure 16: Workload distribution.  (a) Elements as-
the most time-consuming component of the Hercules sys- signed on one processor. (b) Unbalanced visualization
tem, its high fixed-size parallel efficiency has improved the workload on two processors.
performance of the entire end-to-end system in a significant
way. 5 Conclusion

The speedup of the visualization component, as shown We have demonstrated that the bottlenecks associated with

in the fr(])urthhroly]v of F'gurT 15, Ids thV;:GVGI‘, Igss s_ansf:_;c(tjor d front-end mesh generation and back-end visualization ean b
even though the general trend of the running time indeed g inateq for ultra-large scale simulations through fidre

shpws |mprovement as more processors are u.sed.l BecausSesign of parallel data structures and algorithms for end-
this component is executeq at each visualization time _Stepto-end performance and scalability. By eliminating the
(usually every 10th solver tlm_e step), the less-than-opitim traditional, cumbersome file interface, we have been able
speedup has a much larger |mpact on_t_he_overall end-to-to turn “heroic” runs—large-scale simulations that often re
end performance than the meshing/partitioning component.quire weeks of preparation and post-processing—into daily

o - ; 0 0 _ :
The visualization parallel efﬂuency is actually 44%, 36%, exercises that can be launched readily on parallel supercom
and 38%, for the small case, medium case, and large caseputers

respectlvely. . . Our new approach calls for new ways of designing
We attribute this performance degradation to the space- ;g implementing high-performance simulation systems.

filling curve based_ partltl_omng strategy, which assigns an Besides data structures and algorithms for each individual
equal numbelof nellghbonng elements to each Processor, a qmation components, it is important to account for the
;trategy that is optimal f(_)rthg so_lver. However, th|s.siggt interactions between these components in terms of both
is suboptimal for the V|sual|zat'|on compongnt, since the control flow and data flow. It is equally important to
workload on each processor (Figure 16(a)) is proportional design suitable parallel data structures and runtime s\sste

to both the number and the _smf the local elements to that can support all simulation components. Although we
be ren_dered.. Therefore, d_|fferent processors may .havehaveimplemented our methodology in a framework that tar-
d'fama“ca”yd'ﬁerer!t block sizego render, as shown n gets octree-based finite element simulations for eartteuak
Figure 16(b). The light blocks represent elements as&gnedmode”ng, we expect that the basic principles and design

to one processor and the dark bloc_ks another processorphimOphy can be applied in the context of other types of
As a result, the workload can be highly unbalanced for large-scale physical simulations
the RENDERIMAGE and COMPOSITIMAGE steps, especially The end-to-end approach calls for new ways of assessing

when larger numbers of processors are involved. To remove e .
. . . parallel supercomputing implementations. We need to take
this performance bottleneck, a viable approach is to use a:

. . into account all simulation components, instead of merel
new hybrid rendering scheme that balances the workload P y

4 S .~ “the inner kernels of solvers. Sustained floating point rates
dynamically by taking into account the cost of transferring . : . .
. . of inner kernels can help explain achieved faster run times.
elements versus that of pixels [9]. An element is rendered

locally only if the rendering cost is lower than the cost But they should not be used as the only indicator of high

of sending the resulting projected image to the processorpfgizgz?ge d(i)srkscne:alztivsglrtl)(/. Ol\rk?]slﬁg:lstﬂ;; Els(,jeg eeg:glruz)é d
responsible for compositing the image. Alternatively, \aa ¢ P ' ' '

- L in the evaluation of the effectiveness of a simulation syste
re-evaluate the space-filling curve based partitioniratsgy : . .
After all, overall turnaround time ighe most important
and develop a new scheme that better accommodates both the . S : .
. . . performance metric for real-world scientific and enginegri
solver and the visualization components. Striking a baanc simulations
between the data distributions for the two is an inheremeiss

for parallel end-to-end simulations.
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