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Part I

Overview



What We’ll Learn

Representation of languages and logics in LF.

• Higher-Order Abstract Syntax (HOAS)

• Judgements-as-Types Principle

Mechanization of metatheory using Twelf.

• Relational Metathory.

• Checking Coverage and Totality.
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How We’ll Learn It

Format:

• Lectures on theory [Harper].
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• Mechanizing Metatheory in a Logical Framework.
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What is LF?

LF is a logical framework, a general theory of abstract syntax.

• Hierarchical structure (algebraic terms).

• Binding and scope of identifiers.

• Context-sensitive formation rules.

A language is inductively presented by a collection of generators,
whose types are specified by a signature.
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Simple Arithmetic Expressions

The formation judgement e exp states that e is an arithmetic
expression.

This judgement is inductively defined by these two rules:

n nat
n exp

e1 exp e2 exp
e1 + e2 exp

The judgement e exp is the strongest (most restrictive) judgement
closed under (obeying) these rules.
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Abstract Syntax in LF

Each rule becomes a generator in the LF signature.

Define natural numbers.

nat : type.
z : nat.
s : nat -> nat.

Define abstract syntax of expressions.

exp : type.
num : nat -> exp.
plus : exp -> exp -> exp.
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Simple Arithmetic Expressions

Every arithmetic expression is uniquely represented by a closed LF
term of LF type exp.

p2 + 3q = plus (num (s (s z))) (num (s (s (s z)))).

Moreover, every closed LF term of LF type exp represents a unique
arithmetic expression.

These conditions express the adequacy of the representation of
arithmetic expressions:

e exp iff peq : expr.
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Evaluation Judgement

The evaluation judgement e ⇓ a states that the expression e
evaluates to the answer a.

It is defined by these rules:

n ⇓ n

e1 ⇓ n1 e2 ⇓ n2 n = n1 + n2

e1 + e2 ⇓ n

It is the strongest judgement closed under these rules.



Judgements as Types

Define the type of answers:

ans : type.
anat : nat -> ans.

The judgement is represented by a family of types:

eval : exp -> ans -> type.

The LF type eval peq paq represents derivations of e ⇓ a.

∇ : e ⇓ a iff p∇q : eval peq paq
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Rules as Generators

Each evaluation rule is represented by a generator:

eval/num
: eval (num N) (anum N).

eval/plus
: eval (plus E1 E2) (anum N)

<- eval E1 (anum N1)
<- eval E2 (anum N2)
<- add N1 N2 N.

But what is meant by add?
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Rules as Generators

Must define addition on natural numbers as well:

add : nat -> nat -> nat -> type.

add/z : add z N N.
add/s : add (s M) N (s P) <- add M N P.

Adequacy: ∃D : add pmq pnq ppq iff m + n = p.
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Fully Explicit Form

Eliminating abbreviations, and writing out parameters:

eval/num
: {N:nat} eval (num N) (anum N).

eval/plus
: {N:nat} {N1:nat} {N2:nat} {E1:exp} {E2:exp}
add N1 N2 N ->
eval E2 (anum N2) ->
eval E1 (anum N1) ->
eval (plus E1 E2) (anum N)

Twelf takes care of all of this; you never have to write declarations
in fully explicit form.



Mechanized Metatheory

We can use Twelf to verify properties of representations.

1 Modes: functional dependencies in a type family (relation).

2 Coverage: all cases have been covered.

3 Termination: no circular definitions.

Twelf can prove ∀∃-type properties of representations.

∀M1 : A1 . . . ∀Mk : Ak ∃N1 : B1 . . . ∃Nl : Bl >

This is sufficient for a large body of metareasoning!
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Mode Checking

Let’s verify that add defines a total relation.

add : nat -> nat -> nat -> type.
add/z : add z N N.
add/s : add (s M) N (s P) <- add M N P.

That is, M and N determine P in addM N P:

add : nat -> nat -> nat -> type.
%mode add +M +N -P.
add/z : add z N N.
add/s : add (s M) N (s P) <- add M N P.
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Coverage and Termination

To show that addM N P determines P, given M and N, we check

1 Coverage. There is a clause for every M.

2 Termination. There are no circular dependencies.

Twelf declarations:

%worlds () (add ).
%total M (add M ).

Specifies that add is to be proved total on closed terms of type
nat by structural induction on the first argument.
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Mechanized Metatheory

Twelf has verified that

∀M,N : nat ∃P : nat addM N P.

This statement may be usefully re-phrased as

∀M,N : nat ∃P : nat ∃ D : addM N P >.

Important: we may reason directly about derivations!
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Evaluation Terminates

We may just as easily prove that evaluation terminates!

%worlds () (eval ).
%total E (eval E ).

That is, Twelf has proved

∀E : exp ∃ A : ans ∃ D : evalE A >

This states termination of evaluation, by the adequacy of the
representation.



Adding Bindings

Now enrich expressions with a binding construct:

let x be e1 in e2

with the meaning that x stands for e1 within e2.

The variable x is bound within e2. It serves as a pronoun referring
to the binding site.

• May be renamed, preserving pronoun structure:

let x be 3 in x + x is let y be 3 in y + y .

• May be substituted by an expression, preserving pronoun
structure:

[3/x ](x + x) is 3 + 3.
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Adding Bindings

Enrich expressions with a let-binding:

e1 exp x exp ` e2 exp

let x be e1 in e2 exp

The hypothetical judgement expresses binding structure:

• The variable x may occur within e2.

• The name of the variable does not matter, only its referent.

• Substitution is valid: [e/x ]e2 exp whenever e exp.
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Higher-Order Abstract Syntax

The let construct is given by the declaration

let : exp -> (exp -> exp) -> exp.

Uses higher-order functions to express binding and scope!

Representation:

plet x be e1 in e2q = let pe1q ([x:exp] pe2q).

where the λ-abstraction, [x:exp], expresses the binding and scope
of x in e2.
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Evaluation, Revisited

Consider the rule for evaluation of a let:

e1 ⇓ n1 [n1/x ]e2 ⇓ a

let x be e1 in e2 ⇓ a

Formulated in LF:

eval/let
: eval (let E1 ([x] E2 x)) A
<- eval E1 (anum N1)
<- eval (E2 (num N1)) A.

Substitution is provided for free by LF!
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Enforcing Stronger Invariants

We can track that variables are bound to values.

val : type.
num : nat -> val.

exp : type.
ret : val -> exp.
plus : exp -> exp -> exp.
let : exp -> (val -> exp) -> exp.

As a rule it is good practice to use types to enforce invariants on a
representation.



Higher-Order Rules

We may use hypothetical judements to represent bindings:

e1 ⇓ a1 ret x ⇓ a1 ` e2 ⇓ a2

let x be e1 in e2 ⇓ a2

The evaluation hypothesis governs the variable x in e2.

ret x ⇓ 3 ` (ret, x) + (ret 4) ⇓ 7
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Higher-Order Rules in LF

Higher-order rules are represented using higher-order types:

eval/let
: eval (let E1 ([x] E2 x)) A
<- eval E1 A1
<- ({x:val} eval (ret x) A1 -> eval (E2 x) A2).

The general hypothetical judgement expresses that body is
evaluated relative to

• A fresh variable, x;

• A new axiom, stating that x evaluates to value of E1.
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Higher-Order Rules

The key to understanding higher-order rules is to understand the
LF type theory.

• The type A→ B consists of B’s, possibly using a fresh axioms
for A.

• The type Πx :AB consists of B’s with free variables x of type A
in them.

LF types represent derivabilities, not admissibilities!

• J1 ` J2 represented by pJ1q→ pJ2q.

• |x :A J represented by Πx :pAqpJq.
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Adequacy and Worlds

Adequacy of substitutive evaluation is relative to a closed world
with no free derivation variables.

∇ : e ⇓ a iff p∇q : eval peq paq.

This is expressed by the %worlds declaration:

%worlds () (eval ).
%total E (eval E ).

Adequacy for the higher-order formulation must consider
derivations under hypotheses.
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Adequacy and Worlds

Higher-order evaluation introduces parameters and hypotheses
during evaluation.

Consider worlds (contexts) consisting of blocks of the form

x : val, : eval (ret x) a.

Adequacy is now stated relative to hypotheses represented by
worlds:

∇ : ret x1 ⇓ a1, . . . ⇓ a

iff

x1 : val, : eval (ret x1) a1, · · · ` p∇q : eval peq paq
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Adequacy and Worlds

Worlds are declared in Twelf using %block and %worlds:

%block eval block
: some {A:ans} block {x:val} { :eval (ret x) A}.

%worlds (eval block) (eval ).
%total E (eval E ).

These declarations check termination of the higher-order
formulation of evaluation.



Recap and Prospectus

You’ve now seen all of the basic features of LF and Twelf.

• Signatures to define languages and logics.

• Mode specifications and checking.

• Coverage checking.

• Termination checking.

Next we will cover the LF Type Theory in more detail.

Then we will develop a larger piece of metatheory, the type safety
of MinML.
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Part II

Representation



Theory of Representation

A formal system is represented fully, faithfully, and compositionally
by LF canonical forms of specified type in specified worlds.

• Full: every syntactic object o of class C has a unique
representation poq of type pCq.

• Faithful: every canonical form of type pCq represents a
unique syntactic object of class C .

• Compositional: representation commutes with substitution,
p[o2/x ]o1q = [po2q/x ]po1q.

Let us now make these ideas precise.
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The LF Type Theory

LF is a dependently typed λ-calculus with two levels:

• Families, A, classified by Kinds, K .

• Objects, M, classified by Types, A.

The syntax is classified into levels:

Kind K ::= type | Πx :AK

Family A ::= a | A M | Πx :AB

Canonical Object M ::= R | λx :AM

Atomic Object R ::= x | c | R M
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The LF Type Theory

Intuitively, canonical objects are long βη-normal forms.

• No β-redices: λx :AM N.

• Fully η-expanded: λx :Ay x , not y , if y : Πx :AB.

Formally, these classes are inductively defined without reduction or
expansion.

• Predicativity (clean living) makes this possible.

• Never have to worry about non-canonical objects interfering
with representation.

But substitution must be defined to preserve canonical and atomic
forms!
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The LF Type Theory

An LF context, Γ, is a sequence of variable declarations:

x1 : A1, . . . , xn : An

wherein each Ai may involve the preceding variables.

An LF signature, Σ, is a sequence of constant declarations:{
a1 : K1

c1 : A1

}
, . . . ,

{
am : Km

cm : Am

}

where each Ai or Ki may involve the preceding constants.



The LF Type Theory

An LF context, Γ, is a sequence of variable declarations:

x1 : A1, . . . , xn : An

wherein each Ai may involve the preceding variables.

An LF signature, Σ, is a sequence of constant declarations:{
a1 : K1

c1 : A1

}
, . . . ,

{
am : Km

cm : Am

}

where each Ai or Ki may involve the preceding constants.



The LF Type Theory

Formation judgements of LF:

Γ `Σ K kind

Γ `Σ A⇒ K

Γ `Σ M ⇐ A Γ `Σ R ⇒ A

`Σ Γ ok ` Σ ok

Canonical objects are analyzed, atomic objects are synthesized.



The LF Type Theory

Substitution judgements of LF:

[M/x ]K = K ′

[M/x ]A = A′

[M/x ]N = N ′ [M/x ]R = M ′

The critical case threatens termination:

[λy :AM/x ](x N) = [N/y ]M

But the erased type (dependency-free simple type) of the
substituting object gets smaller!
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Atomic Objects

Variables and constants:

Γ `Σ1,c:A,Σ2 c ⇒ A Γ1, x : A, Γ2 `Σ x ⇒ A

Function application:

Γ `Σ R ⇒ Πx :A1A2 Γ `Σ M ⇐ A1 [M/x ]A2 = A

Γ `Σ R M ⇒ A
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Canonical Objects

Atomic objects of base type are canonical:

Γ `Σ R ⇒ A A 6= Πx :A1A2

Γ `Σ R ⇐ A

Abstractions are canonical at higher type:

Γ, x : A1 `Σ M ⇐ A2

Γ `Σ λx :A1M2 ⇐ Πx :A1A2
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Type Families

Constants:
Γ `Σ1,a:K ,Σ2 a⇒ K

Family instantiation:
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Type Families

Products of families:

Γ `Σ A1 ⇒ type Γ, x : A1 `Σ A2 ⇒ type

Γ `Σ Πx :A1A2 ⇒ type



Kinds

The kind of types:

Γ `Σ type kind

Product of a kind family:

Γ `Σ A1 ⇒ type Γ, x : A1 `Σ K2 kind

Γ `Σ Πx :A1K2 kind
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Representation Methodology

Central principle: capture entailments.

• Syntactic: variables and substitution (general judgement).

• Deductive: derivability consequence relation (hypothetical
judgement).

A lesson of LF is that there is no real distinction between the
syntactic and the deductive.

Advice: represent as wide a class of entailments as possible, to
maximize utility and generality.
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Representation Methodology

Syntactic classes for arithmetic expressions:

• v val values

• e exp expressions

• a ans answers

• e ⇓ a derivations of evaluations

Entailments for arithmetic expressions:

• x val ` v val values with value variables

• x val ` e exp expressions with value variables

• ` a ans closed answers

• ` e ⇓ a closed evaluations
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Representation Methodology

Embed object-language entailments as LF entailments:

x1 val, . . . , xk val ` v val

←→
x1 : val, . . . , xk : val `Σ pvq⇒ val

x1 val, . . . , xk val ` e exp

←→
x1 : val, . . . , xk : val `Σ peq⇒ exp
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Adequacy of Representations

Check that embeddings are compositional, i.e., commute with
substitution:

if x val ` v ′ val and v val, then p[v/x ]v ′q = [pvq/x ]pv ′q.

if x val ` e val and v val, then p[v/x ]eq = [pvq/x ]peq.

Equivalently, check that object language entailments are fully and
faithfully embedded in framework entailment.
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Adequacy of Representations

Embedding for higher-order representation of evaluation:

x1 val, ret(x1) ⇓ a1, · · · ` e ⇓ a

←→
x1 : val, : eval (ret x1) pa1q, · · · `Σ eval peq paq

Compositionality means that evaluation under assumptions is
faithfully represented.
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Consequences of Adequacy

An adequate representation obviates the object language itself!

That is, the object language exists solely as embedded in LF; all
other representations are nugatory.

Representation in LF becomes normative for representations of
object languages.

Experience has shown that it improves our understanding of an
object language to formalize it in LF.
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From Adequacy to Metatheory

Recall: a world is a class of LF contexts.

(Twelf worlds are given as series of blocks.)

Adequacy is always relative to a specified world.

The syntax of a language arises as the atomic objects of certain
types in specified worlds.

(Perhaps a different world for each type).

Mechanized metatheory reduces to structural induction over the
canonical forms of a specified type in a specified world.

(Modulo α-equivalence, i.e., renaming of bound
variables.)
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Part III

Mechanized Metatheory



Metatheory With Twelf

Much standard meta-theory is easily mechanized using Twelf.

• Determinacy of evaluation.

• Decidability of type checking.

• Structural properties such as weakening or substitution.

• Cut elimination for a logic.

• Safety of compiler transformations.

We will consider type safety for a small language. But:

• Scales to serious languages such as Standard ML.

• Useful for much more than just type safety.
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A MinML Fragment of ML

Abstract syntax:

tp : type.
nat : tp.
arr : tp -> tp -> tp.

exp : tp -> type.

z : nat exp.
s : nat exp -> nat exp.

ifz : nat exp -> T exp ->
(nat exp -> T exp) -> T exp.

(Conditional passes predecessor to non-zero case.)



A MinML Fragment of ML

Abstract syntax, cont’d:

fun : {T1:tp} {T2:tp}
((arr T1 T2) exp -> T1 exp -> T2 exp) ->
(arr T1 T2) exp.

app : (arr T1 T2) exp -> T1 exp -> T2 exp.

(Functions are self-referential to support recursion.)



Dynamic Semantics of MinML

Values of a type:

value : T exp -> type.
% mode value +E.

value/z : value z.
value/s : value (s E) <- value E.
value/fun : value (fun ).
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Dynamic Semantics of MinML

Structural operational semantics:

step : T exp -> T exp -> type.
% mode step +E1 -E2.

step/s : step (s E) (s E’) <- step E E’.

step/ifz/arg
: step (ifz E E1 ([x] E2 x)) (ifz E’ E1 ([x] E2 x))
<- step E E’.

step/ifz/z
: step (ifz z E1 ([x] E2 x)) E1.

step/ifz/s
: step (ifz (s E) E1 ([x] E2 x)) (E2 E)
<- value E.
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Dynamic Semantics of MinML

Structural operational semantics, cont’d:

step/app/fun
: step (app E1 E2) (app E1’ E2)
<- step E1 E1’.

step/app/arg
: step (app E1 E2) (app E1 E2’)
<- value E1 <- step E2 E2’.

step/app/beta-v
: step
(app (fun T1 T2 ([f] [x] E f x)) E2)
(E (fun T1 T2 ([f] [x] E f x)) E2)

<- value E2.
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Proving Metatheorems With Twelf

We used Twelf to prove that evaluation terminates:

eval : T exp -> T val -> type.
%mode eval +E -V.
...
%worlds () (eval ).
%total D (eval D ).

We will use the same method to verify metatheorems!
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Proving Metatheorems With Twelf

Progress Theorem: if e : τ , then either e value, or there exists e ′

such that e 7→ e ′.

A constructive proof of progress defines a transformation that
sends a derivation of e : τ into either a derivation of e value or a
derivation of e 7→ e ′ for some e ′.

We define this transformation as a relation, then show that it is
total to prove the theorem.

The content of the proof is a dependently typed program that
performs the transformation and is defined for all inputs.
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Metatheory of MinML

The intrinsic representation guarantees type preservation:

step : T exp -> T exp -> type.

Progress: if E : T exp, then either value E or steps E E’.

Progress, re-formulated: for every object E : T exp, either

• there exists an object Dv of type val E, or

• there exists an object Ds of type steps E E’.

Progress, re-re-formulated: for every object E:T exp, there exists
an object D of type val-or-step E.
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Progress Theorem

Define val-or-step judgement:

val-or-step : T exp -> type.

vos/val : val-or-step E <- value E.

vos/step : val-or-step E <- step E .

State progress theorem relationally:

prog : {E : T exp} val-or-step E -> type.
% mode prog +E -Dvos.

Thus prog E D relates E : T exp to D : val-or-step E.
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Progress Theorem

Axiomatize the progress relation:

- : prog z (vos/val value/z).

- : prog (s E) Dvos’
<- prog E Dvos
<- prog/s Dvos Dvos’.

- : prog (ifz E E1 ([x] E2 x)) (vos/step Dstep)
<- prog E Dvos
<- prog/ifz Dvos Dstep.



Progress Theorem

Axiomatize the progress relation:

- : prog z (vos/val value/z).

- : prog (s E) Dvos’
<- prog E Dvos
<- prog/s Dvos Dvos’.

- : prog (ifz E E1 ([x] E2 x)) (vos/step Dstep)
<- prog E Dvos
<- prog/ifz Dvos Dstep.



Progress Theorem

Axiomatize the progress relation:

- : prog z (vos/val value/z).

- : prog (s E) Dvos’
<- prog E Dvos
<- prog/s Dvos Dvos’.

- : prog (ifz E E1 ([x] E2 x)) (vos/step Dstep)
<- prog E Dvos
<- prog/ifz Dvos Dstep.



Progress Theorem

Axiomatize the progress relation, cont’d:

- : prog (fun ) (vos/val value/fun).

- : prog (app E1 E2) (vos/step Dstep)
<- prog E1 Dvos1
<- prog E2 Dvos2
<- prog/app Dvos1 Dvos2 Dstep.

Prove the theorem:

%worlds () (prog ).
%total Dof (prog Dof ).
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Progress Theorem

To quote Paul Taylor, “Theorems, like management, get all the
credit, but the lemmas do all the work.”

We have reduced progress to three lemmas.

If either value E0 or stepsto E0 E0’, then

1 either value (s E0) or stepsto (s E0) (s E0’);

2 stepsto (ifz E0 E1 ([x] E2 x)) E’;

3 if value E1 or stepsto E1 E1’, then
stepsto (app E0 E1) E’.
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Progress Lemma: Successor

prog/s
: val-or-step E -> val-or-step (s E) -> type.

% mode prog/s +Dvos1 -Dvos2.

- : prog/s
(vos/step Dstep)
(vos/step (step/s Dstep)).

- : prog/s
(vos/val Dval)
(vos/val (value/s Dval)).

% worlds () (prog/s ).
% total (prog/s ).
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Progress Lemma: Conditional

prog/ifz : val-or-step (E : nat exp)
-> {E1} {E2} (step (ifz E E1 ([x] E2 x)) E’)
-> type.

%mode prog/ifz +E +E1 +E2 -Dstep.

- : prog/ifz (vos/step Dstep) (step/ifz/arg Dstep).

- : prog/ifz (vos/val value/z) step/ifz/z.
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Progress Lemma: Application

prog/app
: val-or-step (E1 : (arr T2 T) exp)
-> val-or-step (E2 : T2 exp)
-> step (app E1 E2) E’
-> type.

%mode prog/app +Dvos1 +Dvos2 -Dstep.

- : prog/app
(vos/step Dstep1)

(step/app/fun Dstep1).
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Where From Here?

Twelf is in daily use as a tool for language design and
implementation.

• Natural pattern-driven, dependently typed programming with
direct support for structural features of languages and logics.

• Readable and maintainable proofs, not proof scripts.

• Imposes healthy reality and sanity check on language designs.

• Exposes, and helps correct, subtle design errors early in the
process. (Greatly diminishes POPL deadline anxiety!)

Try it, you’ll like it!
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