Dependently Typed Programming
with Domain-Specific Logics
(Thesis Proposal DRAFT)

Daniel R. Licata
Carnegie Mellon University
drl@cs.cmu.edu

October 6, 2008

Abstract
We propose a thesis defending the following statement:

The logical notions of polarity and focusing provide a foundation for
dependently typed programming with domain-specific logics, with ap-
plications to certified software and mechanized metatheory.

1 Introduction

Type systems have proved to be effective and scalable farmatilods. Explicating the
type structure of a program has both short- and long-ternefitsn In the short-term,
types help programmers write working code quickly; as ML &faskell programmers
know, it is often the case that once you set up the types psopbe code writes it-
self. Of course, most of software development happens vitell the first programmer
writes the first version of a piece of code: more time is spealving old code to meet
new circumstances, and combining programs into largeesyst Types help with the
long-term tasks of software reuse and evolution becausegive a foundation for
modularity: a programmer can specify the interface of a congmt without revealing
its implementation. Interfaces limit the coupling of a ateys's components and pro-
vide formal guidance about how components can be composkehvatved. They also
serve as machine-checked documentation, helping newarogers understand the
pieces of a software system: types explain how and why a anogvorks.

However, some of the effectiveness and scalability of tyystesns has been the
result of concentrating on relatively simple propertiestthdmit automated verification
with little programmer input. One approach to lifting thdgeitations has been to
design domain-specific type systems such as the following:

e Cryptol [29] is a language for implementing cryptographiotpcols. These al-
gorithms typically involve complex operations on bit vestof various lengths—

e.g., concatenating four 8-bit words to make a 32-bit wordyp®l’s type sys-
tem tracks the lengths of vectors statically, providing@igrconstraints on these
operations that rule out many programming errors.

e Many programs must manipulate sensitive resources (eugegs information
in a database) in a secure manner. Security-typed progragnianguages such
as Aura [38] and PCMLS5 [6] employ authorization logics totistaly prevent
unauthorized access to controlled resources.

e Ynot [50], an implementation of Hoare Type Theory [48], pd®s a separation
logic for reasoning about imperative code.

These language’s type systems doeain-specific logic€DSLs) for reasoning about
a particular programming style or application domain. Dowspecific logics extend
the class of properties that programmers can specify anflyvévioreover, they of-
fer a range of verification options, from simple logics fompile safety checks (as in
Cryptol), which often admit effective decision procedyressophisticated logics for
proving full correctness (as in Ynot), which require noiviall proofs.

Despite these advantages, adopting new applicationfgpkiguages has costs,
such as the engineering effort required to build and maintiaé infrastructure sup-
porting a new language—documentation, libraries, a fasipil@m—and the time spent
training new programmers to use the language. Addition&lgating each domain-
specific logic in isolation makes it difficult for programsitten using different domain-
specific type systems to be composed—e.g., if an applicatitmimplements a cryp-
tographic protocol and manipulates sensitive resourcégsé costs can be mitigated
by giving a singlehost languagenside of which various domain-specific logics can
be constructed: one engineering effort is shared by all D$tegrammers need only
learn new libraries; and modules using different DSLs candreposed.

The central contribution of this thesis will be a new hosgiaage for programming
with domain-specific logics. This language will make it eBmyprogrammers to define
logical systems, reason about them, and use them to reason @de. It will have
applications both teertified software-using DSLs to reason about code—andch-
anized metatheoryrformalized reasoning about DSLs, combining the advantages
functional programming languages such as ML and Haskeli pribof assistants such
as Twelf [53] and Coq [18].

To program with domain specific logics, we require a languadfeenough to rep-
resent and compute with logical systems. Our approach tesepting logical systems
builds on LF [34], a logical framework providing two main irglients: dependent
types, which are necessary to adequately represent thetiledapparatus of logical
systems, and a function space for representing binding eopes—bound variables,
a-conversion, and substitution at the level of syntax, angoliyetical judgements,
such as the consequence relation of a logic, at the leveloaifpr While LF functions
are suitable for representing variable binding, they pfewio account of computation
with logical systems, as is provided by the function spacégda and Coq or ML
and Haskell. Consequently, it is necessary to combine LR sdtme further mech-
anism for computation, such as the separate computatianglbges of Twelf [53],
Delphin [56], and Beluga [54].

In previous work [42], we began to investigate an alterratipproach, using the
logical notions of polarity [32] and focusing [4] to integearepresentational and com-
putational functions as two types in a single, simply-typedical framework. Rep-
resentational functions adequately represent bindingreds computational functions
allow computation by structural recursion on syntax andvdéons. This integrated
approach provides a novel and rich logical framework, allhgninference rules that
mix iterated inductive definitions [44] (using computa@bifunctions) and hypotheti-
cal judgements (using representational functions).

Technically, our work exploits the Curry-Howard corresgdence between focused
proofs and pattern-matching functional programs, follagvZeilberger’s higher-order
formulation of focusing [72, 73]. This formalism has threzyKeatures: First, the syn-
tax of programs reflects the interplayfotus(choosing patterns) anversion(pattern
matching), with individual types defined by their patterpityg rules. Second, the syn-
tax of types igpolarized distinguishing positive data (introduced by focus, efiated
by inversion) from negative computation (introduced byeirsion, eliminated by fo-
cus). This provides a natural framework for integratingresentations of logics (as
positive types) and computation with them (as negativesypehird, pattern matching
is represented abstractly geta-functions- functions in the ambient mathematical
system in which our type theory itself is defined—from patssimexpressions (hence
higher-order focusing and the syntax and typing rules of our type theory are défine
by iterated inductive definitions [44]. This allows our tyfheory to be computation-
ally open-ended (cf. Howe [37]) with respect to the meanifgadtern-matching—any
method of transforming every pattern fdrinto an expression of typ®& counts as a
pattern-match fromd to B—and affords the freedom to use several different notations
for pattern matching in a single program, and to import fiored from other languages
and systems.

While this previous work has shown promise, it requires a nemath extensions to
make a practical language for programming with domain-iigdogics.

Proposed Work

This thesis will support the following statement:

Thesis Statement:The logical notions of polarity and focusing provide a
foundation for dependently typed programming with donsgaeific log-
ics, with applications to certified software and mechanizedatheory.

This statement has both a theoretical component and agabctimponent. To justify
that the logical notions of polarity and focusing provideoaridation for dependently
typed programming with domain-specific logics, we will defatype theory with full
support for programming with domain-specific logics, preed in the polarized style
described above. Relative to our previous work, this tygeth will add the following
features:

e Dependent typesOur previous work considers only a simply-typed framework,
which is not expressive enough for representing deductpstems. A major
component of the proposed work is adding dependent typdsstadlculus.

e Effects and Modules.Our previous work is a simple core calculus, which lacks
support for many common programming features, such as ctatipoal effects
and modules. We will investigate whether the polarized fadism offers any
new insights into the type theoretic accounts of these featu

To justify that this language has applications to certifiefiveare and mechanized
metatheory, we will build a prototype implementation andgram several examples.
To do so, we must bridge the gap between the above type thedrg asable imple-
mentation:

e Syntax for meta-functions. Higher-order focusing leaves pattern matching ab-
stract, relying on an infinitary representation using nietee! functions. In prac-
tice, we must give a traditional, finitary account of thes¢arfenctions as a basis
for an implementation.

e Type and term reconstruction. To make programming practical, we must con-
sider conveniences such as type and term reconstruction.

In the remainder of this thesis proposal, we discuss ther¢hieal (Section 2) and
practical (Section 3) components of the proposed work inena@tail.

2 Theory
2.1 Dependent types

Our previous work [42] considers only a simply-typed franogky which is not expres-
sive enough for representing deductive systems. Thisdiioit can be addressed by
adding dependent types—types that contain programs. Howedeing dependency
to a programming language is difficult, chiefly because tyjpecking a dependently
typed language requires comparing programs for equalitys places constraints on
the run-time programming language: for example, it is muatdbr to reason about the
equality of programs that utilize storage effects than aepufunctional programs. To
manage these difficulties, it is useful to consider regddbrms of dependency, rather
than choosing priori to allow dependency on all run-time programs. We can conside
three levels of dependency:

1. Dependency on framework dataFirst, we may scale back from the integrated
approach to binding and computation described above, dwmd itk “off the
shelf” as a data-level representational framework, witleatirely separate com-
putational language. This approach, which is taken by Tvizgfphin, and Bel-
uga, is simple, as it requires comparing only LF terms foredityy However, it
sacrifices the advantages of mixing binding and computdtiahwe have dis-
cussed in previous work. As a baseline, we show below howdowat for this
form of dependency in our polarized calculus.

2. Dependency on purely positive datdn the thesis, we will consider a simple
generalization, based on the observation that it shoultb@ddo complicated to

allow dependency on positiviiatg; it is only allowing dependency on negative
computationghat creates complications. This approach will allow dejgsrty
on any purely positive data (types with no negative subcamapts). It permits
inference rules that mix binding and computation, whildrieng the subjects
of those rules in order to avoid the complications arisiranfrfull dependency
on computation.

3. Full dependencyMore ambitiously, we may consider a type theory that permits
full dependency on both data and computation. The primavamigdge of full
dependency is that it allows after-the-fact verificationcomputations, using
dependency to state properties of them.

To establish a baseline for the thesis work, and to introduoepolarized formalism,
we now consider the first form of dependency in detail. Thettheory consists of:

e A representational language, the LF logical framework.

e A computational language based on polarized intuitionisigic. The computa-
tional language is specified by:

— Defining its types (Figure 1) and patterns (Figure 3).
— Afocusing framework (Figure 4) and its operational sen@n(Figure 5)

We discuss LF in Section 2.1.1, types and patterns in Se2tib2, and the focusing
framework in Section 2.1.5.

211 LF

We briefly review the LF methodology for representing langesand logics [34]: LF
generalizes the ML datatype mechanism with (1) dependgeistand (2) support for
binding and scope. The judgements of a domain-specific (@f&Lt) are represented
as LF types, where dependency is used to ensure adequadyatides in a DSL are
represented as canonical-formal,n-long) LF terms. LF function types are used to
represent binding and scope, including the bound varialflBSL syntax and the con-
texts of DSL hypothetical judgements. Structural inductaver canonical LF terms
corresponds to induction over DSL syntax and derivationsiuctive proofs about a
DSL can be recast as proofs by induction on the the LF reptaten.
We use a presentation of LF with with syntax for canonicaffsionly [68]:

LF kind K type [ITu:A. K
LFtype A aMan‘HUA]AQ
LF term M uMp. ..M, | Au.M

LF signature X
LF context v
LF world w

8K |3 uzA
S|P uc A
{Uy,...}

All LF judgements are tacitly parametrized by a fixed signafd. In the following,
we will make use of the judgements:

e U, Atype The typeA is awell-formed in¥
e V. M:A ThetermM is a canonical form of typel in ¥

e U U e W The contextV’ is in the world (set of contexts)V. This
judgement also ensures that ¥, ¥’ ctx, i.e., that the contex®¥, ¥’ is well-
formed.

We refer the reader to the literature for the definitions @fsi judgements: Watkins
et al. [68] discuss type formation and typing; one possil@énition of worlds)V is
the regular worlds notation of Twelf [53].

2.1.2 Polarity and Focusing

Natural deduction is organized around introduction anchielation: For example, the
disjoint sum typed & B is introduced by constructoisl andinr and eliminated by
pattern-matching; the computational function type— B is introduced by pattern-
matching on the argumemt and eliminated by application. Polarized logic [4, 31,
39, 41, 72] partitions types into two classes, calpezsitive (notatedA*) and nega-
tive (notatedA”). Positive types, such &s, are introduced by choice and eliminated
by pattern-matching, whereas negative types, such-agare introduced by pattern-
matching and eliminated by choice. More specifically, positypes areconstructor-
oriented they are introduced by choosing a constructor, and elitathdy pattern
matching against constructors, like datatypes in ML. Niggatypes aredestructor-
oriented they are eliminated by choosing an an observation, anddotred by pattern-
matching against all possible observatiods—{+ B is observed by supplying a value
of type A, and therefore defined by matching against such values)c€borresponds
to Andreoli’'s notion offocus and pattern-matching correspondsirieersion These
distinctions can be summarized as follows:

| introduceA | eliminateA
by focus by inversion
by inversio by focus

A is positive
A is negative

In higher-order focusing [42, 72, 73], types are specifiegdtyerns, which are used
in both focus and inversion: focus phases choose a pattérreas inversion phases
pattern-match. In this section, we define the types and mpattef our language—
constructor patterns for positive types, and destructtiepas for negative types. Note
that patterns must be defined prior to the focusing framewogkented in Section 2.1.5,
which uses an iterated inductive definition quantifyingrabem to specify inversion.

2.1.3 Types

We present the rules for type formation in Figure 1. The judgets(¥) A* type and
(U) A” type define the well-formed types, which are considered reldtven LF con-
text ¥. The basic positive types of polarized type theory are petsl(d* ® B* and
1), sums @* & B* and 0), and shift|(47), the inclusion of negative types into positive
types. The formation rules for these types carry the LF odnbethrough unchanged.

Pos.type A" = |A|1|A'®@B |0]|A"@® B"
[3a(r) | U= A7 | DA" | 3 (&)
wherer" i={ M — A" | ...}

PriE{ U= AT

Neg.type A~ == (A" |A"—= B |T|A&B"
[Va(r) [A AT | oA [V ()
wherer” i={ M +— A" |...}

Y= { ¥ AT}

CPT ¢ = (D)4
CNT c o= (A
(T) A” type
() A" type (V) A"type (V) B" type
() A type (¥) 1type (¥) A" ® B" type
(U) A type (¥) B type
(¥) 0type (¥) A" ® B" type
UheAtype (VEeM:A — (U)77(M)type) (-) A" type
(W) 3a(77) type (W) OA" type
|_|_|: \I/, \I// ctx
(T, T) A" type (PHV eW — (¥)y" (V) type)
(W) ¥ = A’ type (@) Iw(¥") type
(¥) A" type
(U) A"type (V) A"type (V) B type
(T) TA" type (¥) A* — B type
(¥) A type (V) B type
() T type (¥) A"&B type
UheAtype (Vhe M: A — (U)7 (M)type) (-) A" type
(U)Va(r7) type (¥) oA type
l_LF \I/, \Ij/ ctx
(¥, 0') A" type (VW eW — (U)y (V') type)
() @' A A type () Yw (¥7) type

We write (¥) A" ok iff Fir U ctx and(¥) A" type, and similarly for(¥) A ok. We write A ok
iff (¥) A" ok forall z: (¥) A in A.

Figure 1: Type formation

Con. pattern p = x| (| (p,p2)|inlp|inrp

| (M, p) | AT.p [boxp | (¥,p)
e|p;n|fst;n|snd;n

| M ;n | unpack W.n | undia;n | ¥;n

Dest. pattern

3
|

Context. con. pat. ¢ == U.p
Context. dest. pat. d == W.n
Context A = | Az C7

Figure 2: Constructor and destructor pattern syntax

The remaining positive types are for programming with LFier The most basic
of these is existential quantification of an LF term, writt&n(w*), where A is an LF
type, andr* is a meta-function from LF term&/ of type A to positive types. We notate
meta-functions* by their graphs—i.e., by a possibly infinite set of non-ovgpiag
pattern branches of the fordd — A*. The formation rule for¥) 3 4(7*) requires
that A be an LF type in, and thatr* deliver a positive type inl for every LF term
in W: we notate iterated inductive definitions by inference niemises of the form
(i — J=2). By convention, we tacitly universally quantify over mefarables that
appear first in the premise of an iterated inductive definjten the second premise of
the rule means “for alin, if ¥ k. M : Athen(¥) 7" (M) type”.

The body of the existential type, (7*) may be computed from the existentially-
quantified LF term in interesting ways. For example, if we mefan LF typenat of
natural numbers with constructazsro andsucc, then we can define a positive type of
lists as follows (we may also define it in more traditional wjay

list (A+) = 3nat(Tlist)
where

Tlist ZErO = 1

Tlist (Succ zero) = A

Tuist (succ (succ zero)) = A"®A

Tlist (SUCC (SUCC (SUCC Zero))) = A ® (A+ ® A+)

That is, for everynat n, 7;;5:(n) is the tuple typg A*)™. An implementation of our
type theory would provide a traditional finitary notatiorr fresenting meta-functions
T*, e.g., allowingr;;s; to be defined by recursion.

There are three additional positive types for programmiity WF. The typest =
A" andOA* allow for computational language values that manipulagelth context;
their formation rules manipulate the LF context in the sanag was their patterns do
(see below). Finally, the typ&y,(¢)) allows existential quantification over the LF
contexts in a worldV. As with 34(7"), the body of the existential is specified by an
abstract pattern-match, this time on LF contexts. Thisnaloypes to be defined by
computation with LF contexts.

The type formation rules for negative types are analogouwessvhetimes abbrevi-
ate(¥) A" by writing C'* and similarly forC".

Operationally, the type formation rules are syntax-deedcand well-moded (none

A;UlEp: A"

2 (U)YA ;U Iz [A”

A;UlEp 0 A" Ao Uk pg it BT
SUIE() 1 A1, Ao W IE (pr,p2) : A" ® B*

(no rule for 0)

AUlEp: A AU IFp:: B*
A;Ulkinlp:: A"® B* A;Ulrinrp:: A*® B*
UheM:A A;UIFp:T (M) A lEpo A
AU - (M, p) = 3a(r) AV - boxyp :: OA"
AU U Fp: A VR eW A;UIEp:(P)
AsUIFAY p W = A AW I (W) p) = I (YY)

A;UlEn: A >C

Wk en TAT > (U) A

A ;UlEp A" Ag;Ulkn: B >C°
A1, A0V Fpin: A"— B >C"

(no rule forT)

A;UlEn: A >C" A;Vilkn: B >C"
A;UI-fst; n:: A &B™ > C° A;UlFsnd;n:: A &B™ > C"

UhkeM:A AU (M) >CF
As;UIEMin:Valr)>C"
AU U A >CY
AW I unpack W/.n U/ A A7 > C”

A lFna A" >C*
AW - undia;n 0A” > C*

UET eW A;UFnpay (P)>C
AU T n s Vw (') > CF

]ch;: (U) A" and A IF d = (F) A™ > C°

AU Ep: A A;UlEn: A" >C"
Al U.p (W) A* AlF U (W) A > C*

Figure 3: Constructor and destructor patterns
9

of the meta-variables appearing in the judgements need tuessed), with botlr
and A as inputs. The rules fqi) A assume and maintain the invariant that ¥ ctx.

2.1.4 Patterns

We present the syntax of patterns in Figure 3 and the rulepdtiern formation in
Figure 3.

Constructor Patterns Positive types are specified by the judgemantV - p ::
A*, which typesconstructor patterns This judgement means thatis a constructor
pattern forA*, using the LF variables i, and binding negative contextual variables
z:(Uy) A, in A for all subterms of negative types. The LF variableslirare free

in p and A* but notA: negative assumptions i have no free LF variables, because
the free variables ofA™ are bound by the context. Like datatype constructors in
ML, constructor patterns are used both to build values amattern match. Logically,
constructor patterns correspond to udingar right-rulesto showA* from A; linearity
ensures that a pattern binds a variable exactly once.

The patterns for products and sums are standard. The ortigrpdor | A™ is a
variablez bound inA: one may not pattern-match on negative types such as compu-
tational functions. Note that is bound with a contextual typgl') A™ capturing the
current context: this contextual type binds the free LF variables4Asf and ensures
that the free LF variables of a term are properly tracked ®yyipe. Moreover| A™ is
theonlytype at which pattern variables are allowed: patterns mayimal variables at
positive types.

Next, we consider the patterns for computing with LF termise Ppattern fod 4 (7+)
is a pair whose first component is an LF tefvh of type A, and whose second com-
ponent is a pattern for the positive typg M)—the type of the second component is
computed by applying the meta-functiento M. For example, returning to the above
example of lists defined a%..:(7:5:), we have the pattertzero, ()) representing “nil”,
because;;(zero) = 1. The patterns fo = A* andOA* manipulate the LF context:
AW.p binds LF variables (we writd for the bare variables o, without any types),
whereasbox p wraps a pattern that is independent of the LF context. Theeqpator
Iy (") pairs an LF contex¥ with a pattern for the type (¥), analogously tal 4 (77).

Destructor Patterns Negative connectives are specified by the judgerend I+

n :: A" > C*, which typeddestructor patternsA destructor pattern describes the shape
of an observation that one can make about a negative typgudigement means that
n observes the negative type to reach the positive conclusiart’, using the LF vari-
ables in¥ and binding the pattern variablesin The context¥ scopes over and A~
but notA and C*—Ilike assumptions, the conclusi@r, which abbreviateg¥,) A7,

is modally encapsulated, potentially in a different cohteanW. Logically, destructor
patterns correspond to usitigear left-rulesto decomposel™ to C*. Because we are
defining an intuitionistic, rather than classical, typeditye destructor patterns are not
quite dual to constructor patterns: constructor pattemg&mo conclusions, whereas
destructor patterns have exactly one.

10

The destructor patterns for the basic types are explainéalles/s: a negative pair
A"&B"~ can be observed by observing its first component or its secontponent;
negative pairs are lazy pairs whose components are expnsssihereas positive pairs
A* ® B* are eager pairs of values. A functigi — B~ can be observed by applying it
to an argument, represented here by the constructor pattemd then observing the
result. As a base case, we have shifted positive typeswhich represent suspended
expressions computing values of tygé A suspension can be observed by forcing it,
written e, which runs the suspended expression down to a value; thehtext V is
encapsulated in the conclusion of the force. The destryetierns for the remaining
types are analogous to their positive counterparts: usalegquantification over LF
termsV 4 (77) is eliminated by choosing an LF tertf to apply to, and observing the
result; and similarly for universal context quantificatiofinally, ¥ A A~ andoA”
manipulate the LF context of a negative type.

Contextual Patterns In the focusing framework below, we will require contextyal
encapsulated patterns with no free LF variables. Contégarestructor patterns have
the form W.p; they are well-typed whep is well-typed in¥. Contextual destructor
patterns are similar. In contextual pattefg and contextual typegl) A, the context
¥ is considered a binding occurrence for all its variablesjcwimay be freelya-
converted.

Mode and Regularity The pattern typing rules in Figure 3 are syntax-directed and
well-moded: the assumptions and conclusionC* of destructor pattern typing, and
the assumption® of constructor pattern typing, are outputs (synthesizedlereas

all other components of the judgements are inputs. The judgés assume that their
inputs are well-formed and guarantee that their outputsvateformed:

Proposition 1 (Pattern Regularity)
o If C*okandA IF ¢ :: C* thenA ok.
o If CyokandA I d :: Cy > C* thenC* ok and A ok.

2.1.5 Focusing Framework

We present our focusing framework for polarized intuitstig type theory in Figure 4,
which is essentially unchanged from our previous work [4Pfe extension with de-
pendent types is localized to the types and their constrstid destructor patterns.
In these rulesl” stands for a sequence of pattern contextbutI" itself is treated in
an unrestricted manner (i.e., variables are bound once itterp, but may be used
any number of times within the pattern’s scope). As a matteotation, we regard the
diacritic marks on metavariables such@sandC" as part of the name of the metavari-
able, not as a modifier, SG6* andC" are two unrelated types. The focusing rules are
syntax-directed and well-moded, with all pieces of the prdent as inputs.

11

Context IT' == - |[A

Pos. Value v* 1= ¢|[o] Neg. Cont. &k~ = d[o];k" |k thenc+ k*
Pos. Cont. k™ 1= e]|cont™(¢) | €| kj thenc+ k3 Neg. Value o~ == z|val'(¢") |z | fix(z.v7)
where¢" = {cre]|- -} where¢” :={d—e|---}
Expression e 1= v '|zek |v ec- k| caseve+ v of k¥ | casec+ eof kF Substitution o = - |o,v /2 |id]| o1, 02
AlFc:C" Tho: A
Lkclo]:: C”
]r kT Cp > CF
(AlFc::Cy — T,AF¢'(c): CY) C;=C Ciok Thky:Chp>C; ThHki:C;>C"
'k cont™(¢") : Cy > C° The: Cyp > C7 ['F kjthenes ki : C5 > CF

TFk=C >cC

Albd:C >C) TkFo:A THE :CH>C" Cook THE =C >C) THE :Cy)>C"

TFdo) k= C > C TFk thengs k' = O > C°
THo:C
(AlFd:C >C — T,AF¢(d):C") 2:Coel C =G T,z:C kv :C
TFval (¢): C TFz:C T Ffix(z.v): C
The:C

o O z:C el THE =C >C"
ko' C* F'Fzek :C*

C ok TTHv :C” THE =C >CF Ciok TR ::Cy; THE :Cy>C Ciok T'ke:Cy THE :Cy>C"
v ec-k : C* F}—casev(;gtfoflf:C" F}—case(;geofW:C"

'Fo:A T'Fv :C” ACT oy : Ay Thos: Ay
'-:. Pkov/z:Ajz:C” I'kHid: A IT'kFor,00 i A1, A
identity principle# ’ cut principle# ‘ convenient principle#

Figure 4: Focusing Rules

12

Canonical Terms First, we discuss canonical terms, which are typed by thexed
rules in Figure 4. The first two judgements define focusing iamdrsion for positive
types. The judgemerit - »* :: C* defines positive values (right focus): a positive
value is a constructor pattern under a substitution forrée ¥ariables. The judgement
I' = k" : Cy > C* defines positive continuations (left inversion): a positaontinu-
ation is a case-analysis, specified by a meta-funepiofiom patterns to expressions.
The premise of the rule asserts that for all constructorepastc for Cj, ¢*(c) is an
expression of the appropriate type using the variables tdyn: (by our above con-
vention about iterated inductive definitions,andc are universally quantified here).

The next two judgements define focusing and inversion fontgative types. The
judgemenfl - £™ :: C” > C* defines negative continuations (left focus): a negative
continuation is a destructor pattern under a substitutiont$ free variables followed
by a positive continuation consuming the result of the destr. The destructor pat-
tern, filled in by the substitution, decompos@s to some positive typ€';. The posi-
tive continuation reflects the fact that it may take furthase-analysis of’; to reach
the desired conclusio*. The judgement' - v~ : C~ defines negative values (right
inversion): a negative value is specified by a meta-functi@t gives an expression
responding to every possible destructor.

The judgement’ F e : C*, types expressions, which are neutral states: from an
expression, one can right-focus and introduce a value,fofdeus on an assumption
in I and apply a negative continuation to it. Finally, a substtul' - o : A provides
a negative value for each hypothesis.

At this point, the reader may wish to work through some ins¢snof these rules
(using the above pattern rules) to see that they give thectageypings for familiar
types. First, the typ€] A%)&(1A}) is inhabited by a lazy pair of expressions:

Dhe (W) A, TFes: (U)A)
T val (W.(fst; €)) — es | (W.(snd;€)) — e2) : () (TAY)&(1A3)

Second, a functiof| A7) @ (| 4,) — 1B" is defined by two cases:

Doz (W) AT e : (U)B" T,y:(¥) Ay b oep: (V) B”
I'Fval (Winlz) — e | (T.inry) — e2) : (¥) (A7) & (L A3) — 1B*

In both of these examples, the bindingsin the contextual patterns are unused,
because there are no LF types mentioned before shifts. Asaanpe where the con-
textual bindings are relevant, consider an LF tgperepresenting terms of the untyped
A-calculus. A function fronexp to exp is represented by the following negative value:

I'ker: (¥)Jep(-+— 1)
D Hval (W.M;5€) — er,...) : {U) Vexp (= = 1(Bexp (= — 1)))

In a more familiar notation, the type of this term is writtén: exp.3_: exp.1; we as-
sume the meta-functionsallow constant functions, notated by a catch-all casA
negative value of this type is given by a meta-function wia@®ain is destructor pat-
terns for (¥) Ve (- — 1(Zexp (- — 1))). All destructor patterns for this type have the

13

form W.(M; ;¢) whereW . M : exp because the only destructor pattern fors
application to an LF term, and the only destructor pattem|fts e. Thus, a negative
value of this type is specified by anrule with one case for eackiterm in ¥, and the
term M in each pattern is in the scope of the variables bound by

Non-canonical Terms To make a convenient programming language, we add non-
canonical forms and general recursion in the boxed rulesgarg 4. The first class of
non-canonical forms are internalizations of the cut ppies for this presentation of in-
tuitionistic logic; these terms create opportunities feduiction. The most fundamental
cuts,v” e- k” andcaseve+ v* of £, put a value up against a continuation. The three
remaining cut principlesasec- e of k" andk™ thenc+ k* andk;, thenc- k7, allow con-
tinuations to be composed: the first composes a continuatitthan expression, the
second composes a negative continuation with a positiveantkthe third composes
two positive continuations. The second class of non-ca@bhdorms are internaliza-
tions of the identity principles, which say that terms need Ime fully n-expanded.
Negative identity £) allows a variable to be used as a value, whereas positiveitge
() is the identity case-analysis. The identity substitutje) maps negative identity
across each assumptiondn Finally, we allow substitutions to be appended, ()

so that the identity substitution can be combined with oshudstitutions, and we allow
general-recursive negative valués(z.v")).

Operational Semantics The operational semantics of our language, defined by the
judgemente ~ ¢’ in Figure 5, are quite simple and essentially unchanged fsam
previous work [42]. Reduction happens when a focus termisipagainst the corre-
sponding inversion term. E.g., in the ryle, a positive value: [o] is being scrutinized
by a positive continuatioront’(¢"); this is reduced by applying the meta-function
¢*(c), which performs the pattern matching, and then applyingstitestitutions to
the result. Though the types of terms are computationalgtevant, the operational
semantics maintain the annotations on cuts in the intef@ssionple type safety result.
We elide the definition of substitutiore (o : A], and similarly for the other syntactic
categories), which is standard, except that it carriesytped of the substituted terms
so that the substitution into e £~ can be defined to be” e- k™~ whenv™/z € ¢ and
x:C™ €A,

Type safety is proved by the usual simple structural inaurcti

Theorem 1(Type safety)

Progress: If C* ok and- - e : C* thene = v* or e ~ ¢’.

Preserv.: If C* ok and- e : C* ande ~ ¢’ then- ¢’ : C*.

2.1.6 Proposed work

Next, we discuss some aspects of this calculus that we wlbes further in the thesis.
Type Equality Canonical terms (the unboxed rules in Figure 4) contain pe fn-

notations, and can be checked against a single type arorfativided at the outside.
However, non-canonical terms have either too little tygerimation or too much. Cuts

14

AlFc::C* ¢'(c)defined
casev e+ ¢ [o] of cont™(¢") ~ ¢"(c) [0 : A]

pr

casev oy v*of (kg thenc: ki) ~ casect (casevcg v of k) of k7

idk*
caseveo+ v of €~ v”

AlFd:Cy>C ¢ (d)defined
val'(¢) ec; (d[o]; k) ~ casecr (6 (d) [o: A of b

K

= = " = = - k
v ec (kythengt ki) ~ casec: (v” ocr k) of k

e~ e

k'ee
casec+ eof k' ~» casec+ e’ of k*

k'ev
casec+ v of k¥ ~» casevg+ v of k°

Figure 5: Operational Semantics

15

have too little type information because they do not obeystitgformula property, so
we annotate them with the mediating type. On the other haedtities have too much
type information: for example, when is used as a value, both the type in the con-
text and a type to check against are given. Consequently,digpcking identity terms
requires comparing two types for equality. Moreover, theniity termsz ande are
the only terms that force two arbitrary types to be compared for dtyddecause;-
expansion pushes the type equality check down to base t{foe.other instances of
this phenomenon, see LFR [43], where subtyping at highezstyp characterized by
an identity coercion, and OTT [2], where grexpanded identity coercion is induced
by proofs of type equality).

Inthe rules, we writel; = C'» for “syntactic” equality of types, which is a congru-
ence with meta-functions compared extensionally—i.e., tveda-functions are equal
if they agree on all inputs. However, this notion of equatian lead to undecidability
of type checking: extensional equality of the meta-funwiappearing in types ()
will not in general be decidable. Decidability may be restbin various ways: One
option is to restrict- and to a class of meta-functions whose equality is decidable.
For example, if only finite branching without recursion, amat arbitrary type-level
computation, is allowed, then equality may be decidabléerAbtively, we may imple-
ment a sound but conservative approximation to type equaljt= C for use in type
checking. When this tactic fails to prove a true equality, pnegrammer can prove
the equality by manually-expanding the identity coercion (the identity rules are ad
missible given the other rules of the system). As a practitafter, it may be more
convenient to prove equalities explicitly, rather thanbgxpanded identity coercions,
in which case we could permit explicit equality proofs astpdrthe identity terms,
perhaps by internalizing proofs of type equality as a typthalanguage. We plan to
explore these options in the thesis.

Dependent Pattern Matching Our rules for pattern-matching decompose LF terms
and contexts with an infinitary rule, giving one case for elaetterm of the appropriate
type (e.g.,nat is pattern-matched with the-rule). For example, we illustrate how
meta-functions give an abstract account of dependentrpattatching. Consider the
nat type defined byero andsucc, with an identity type defined in LF as follows:

id : nat -> nat -> type.
refl : {n :nat } id n n.

What are the patterns of typ&.:(n — Jnat(m — id n m))? In Twelf, one would
write (X , (X , refl X)) , Where the unification variabl¥ must be used non-
linearly for the pattern to be well-typed. In our formalisome is required to enumerate
all closed instances of this pattern:

(zero, (zero, refl zero))
(succ zero, (succ zero, refl (succ zero)))

Because of the use of meta-functions, the patterns presabteve do not include
a number of features found in other pattern languages for5l35 %4, 56]: unification

16

variables for LF terms, non-linear patterns, unificatiomiatles over LF variables,
and context variables. These features may play a role imtipeementation of meta-
functionse, v, andr, which we will explore in the thesis.

Richer Forms of Dependency In the thesis, we will also explore the richer forms of
dependency discussed above.

2.2 Effects

A realistic programming language must account for programgmwith computational
effects; in the thesis, we plan to treat computational ésfedthin the focusing formal-
ism described above. As an example, we consider mutableerefes in this section.

In Figure 6, we present the revised focusing rulestands for a store typing, with
assumptions: loc[C"*] . There are three new forms of expression: First, one can allo
cate a new reference celew [: loc[C"] := v".e), which binds a variablé standing
for the cell, initialized tov*. Next, one can set the value of a célt£ v*; ¢). Finally,
one can get!(; £*) the contents of a cell, pattern-matching the value helcettdth the
positive continuatiork®. In many presentations of mutable references, locatioosroc
only behind-the-scenes in the operational semantics.idmptiesentation, we do expect
programmers to explicitly mention in-scope location valkés!/ in get/set expressions.

In the focus rules{[o] and d[o]; k*), the store typing is carried into the pattern
judgements. In Figure 2.2, we add one new typE A*, whose pattern packs a location
variable as a value of reference type. The inversion rutest{(¢*) andval™(¢7))
quantify over all extensions of the current store typing.isTénsures that inversions
continue to work after new reference cells have been gegrbrdt also accounts for
pointer equality A value of typeref A*is eliminated by a pattern-match that uncovers
the underlying location. A programmer may give cases fohdacation/; in scope,
testing pointer equality with those known locations. Hoerewecause the inversion
must work in any future location typing, he must also give @lgall case for unknown
locations. In the remaining rules, the store typing is eatthrough in the same manner
asT.

The operational semantics (Figure 8) and type safety prneo$t@aightforward:

Lemma 1 (Store Typing Weakening)
1. fX; Al JandY > X thenX ; Al- 7.
2. 1f¥%; '+ Jand¥ > X thenX ;T + J.
3. If Xy F M : ¥ andXj > X, thenXj M : ¥ and

Theorem 2(Type safety)

Progress: If ¥ ;- e: C*andX + M :¥ thene = v* or there exis{M’, ¢’) such
that (M , e) ~ (M’ ¢).

Preservation: If £;-F e: C*andX + M:X and(M , e) ~ (M', ¢’) then there
existsY’ such that’ > Y and¥ + M’: ¥ andY ;- ¢’ : C*.

17

Linear context A = | Ajz:C
Unrestricted context I' = - |T,A

Store typing Y = X, 1:loc[C]
S;ko" e CF

YAl e Ct X;THo: A
Yi;kclo]: C7

’E;Fl—k*:C&>C*

> — X5AkFc:Cf — XT,AEF ¢ (c): C)) cy=cC* S:Tkky:Cp>0C7 S;TRE:C;>CF
YTk cont'(¢"): Cp > C* Y:T'ke: Cp > C* YTk kjthengr ki« G > C*

’E;Fl—k-:: c>cC

S;AlRd:CT>Cf X;Tko:A X;THE :Cyp>CF S;THE = C >Cp X;THE :Chp>C"

;T Hdo k" C” > C” Y FE thengs k"2 €7 > C7
X>:Tko : C
>y — E5ARd:C >C" — YT,AR¢(d): CY) z:C, el C =0C, S>;Tye:C ko : C7
YT kval (¢7): C” >;Tkz:C” ;T Ffix(zv™) : C7

Y;T'ke: C*

S;Tko" e CF z:C" el S;THE =C >C"
YTk : CF Y;Thzek : C”

S;PEv' i Cp 3, l:loc[Cp] ;T Fe: C7 liloc[Cy] €X X5T kv = Cy Y;Tke:C”
YTk newl:loc[C)] :=v".e: C* YTk l:=v"e: C°

l:loc[Chl € X X;THE :Cp>C”
S;THW K C*

Y;'kov :C° S;THE =C >C" ;T :Cy S;THE:Cj>C" E;Tke:Cy, S;THE:CH>C"

S;ThHov ec-k : C* E;FFcasevcgv*ofk*:C+ Z;chaseggeofk*:O+
;TFo:A X;THov : C ACT X:Tkor: A1 Y;Thog: Ay
DI R Y;Thov /e :Ajz:C7 X:;Tkid: A YT ko0 : Ay, Ao
’identityprinciple# ‘cutprinciples“ ‘convenientprinciple#

Figure 6: Focusing rules with state

18

l:loc[A"] € &
Sk ref AT
> flows through the remaining pattern rules as an unrestricoadext.

Figure 7: Pattern rules for references
SoFM:X%
SoFM:Y YokovtCF

Yo b Yo FM[l:=c+ v']: X, l:loc[C7]

(M, e)~ (M',e")

AlFc::C" ¢'(c)defined
(M , caseve+ ¢ [o] of cont™(¢")) ~ (M, ¢"(c) [0 : A])

pr

(M, casevcr v™of (kj thengt k7)) ~ (M , casec (casever v of kj) of k7)

(M , caseve+ v'of €) ~ (M, v") idk

AlFd:Cy>C" ¢ (d)defined o
(M ,val’(¢") ec: (d[o]; k7)) ~ (M , casec+ (¢ (d) [0 : A]) of k7)

(M, v ec; (kythengr k7)) ~ (M , casecr (v ¢y k™) of k7) Kk

(M fix(z.v") oz k™) ~ (M, v [(fix(z.v7)/z) : (z: Cp)] ec; k™) fix

(M, e)~ (M, e

(M ,casec+ eof k") ~» (M’ , casec+ €’ of k¥)

k'ee

(M , casec+ v" of k™) ~ (M , caseve+ v' of k¥) Kev

new

(M ,newl:loc[C"] :=v".€) ~ (M|l :=c+ v'] , e)

(Ml =], 1= 050) o (M[l =cr 0],) >

[l :==c+v]eM
(M VU5 5%) ~ (M, casever v' of kY)

get

Figure 8: Operational Semantics with references

19

2.2.1 Proposed Work: Controlling Effects

In the above calculus, storage effects are pervasive, inathaexpression of type*
may perform storage effects. To integrate effects with ddpacy, it is useful to make
a type distinction between pure and impure computationthdnhesis, we will explore
an approach to controlling effects based on indexed pmarite.g. distinguishing be-
tween(mPure A+ which may have effects, arfé*"* A*, which may not. We conjecture
that the Hoare triple type in HTT [48] can be seen as a padituprecise indexed
polarity, where the index describes the pre- and post-¢immdi of the computation.
Allowing programmers to define indexed polarities may thilexaHTT to be recov-
ered as a domain-specific logic.

2.3 Proposed Work: Polymorphism and Modularity

Our language for programming with domain-specific logiaguiees strong support for
modularity, both to manage the construction of DSLs theweseand to exploit DSLs
in giving rich interfaces to components. In the thesis, wangb reconsider the type
theoretic foundations of modularity (e.g., [21]) from thelgrized perspective. There
are many interesting issues to address in the design of magiatems for dependently
typed programming languages, and in particular for langsagith LF-like support
for variable binding. For example, full dependently typedgramming raises issues
of information hiding: through dependency, the well-typesds of a piece of code can
depend on thémplementatiorof a value, not just its type. Consequently, one may
not freely replace one implementation of an interface witlother. A module sys-
tem should allow programmers to decide when implementat&e are revealed to a
module’s clients, and to replace one module with anothérttas equivalent behavior.
Another issue is that LF notoriously lacks polymorphismdstatypes like lists must
be replicated for each element type. A treatment of polyrismp and modularity in
our setting would address this shortcoming.

3 Practice

The goal of the practical portion of this thesis is to buildiarplementation that is
good enough for testing the type theory by programming witimeé domain-specific
logics. Thus, we expect to produce a basic prototype, notrgaleimentation that is
well-engineered enough to be a competitor to, say, SML anelfTithough we hope
this thesis will eventually lead to such an implementafiol particular, the speed of
the type checker and operational semantics will be givey enbugh attention as is
necessary to support some reasonable examples.
There are two main gaps between the above type theory andticptamplemen-

tation:

3.1 Proposed Work: Syntax for Meta-functions

The above type theory does not commit to a syntax for metatims, ¢, ¢. This has
its benefits—we are now free to consider different implemna of meta-functions

20

without disturbing the meta-theoretic properties of ourgaage—but an implemen-
tation must actually provide at least one such syntax. A Enignguage of meta-
functions could consist of two ingredients: First, we mayega syntax of meta-
patterns, extending the grammar for constructor pattemdth meta-variables rang-
ing over patterns. A meta-function can then be specified byigefiist of meta-
pattern/expression pairs, where the expression is alldwede meta-variables bound
by the pattern to construct values. Type checking these-fuatdions will require de-
termining exhaustiveness of patterns (Dunfield and Pief2Bhdescribe some recent
work addressing this problem). Second, we may give a fixekctdn of datatype-
generic programs witnessing the structural properties Bf(lveakening, exchange,
contraction, substitution, subordination-based stiesging). This language of meta-
functions would allow pattern matching up to a finite depthjch is sufficient for the
value level, because we have general recursion in the lgegugor expressive type-
level computation, we may also include recursively definedarfunctions with named
auxiliary functions (unless we have already investigatgitiependency, in which case
the value-level functions could serve this role). More ainhbsly, we may investigate
ways of making datatype-generic programming availabl&éogrogrammer.

3.2 Proposed Work: Term Reconstruction

Because dependent types are so precise, they create maorguriiies for omitting
type and term arguments to functions and using unificatieadonstruct them. Indeed,
programming without such term reconstruction is usually tedious to be practical.
To achieve a usable implementation with compelling exasple must implement
some form of type and term reconstruction. However, inagmascpossible, we hope
to rely on existing technology [51, 53].

3.3 Examples

Finally, we sketch two simple examples of programming witiméin-specific logics.

These examples are programmable in the baseline calcusicsiloed above. In the
thesis, we will consider extensions and more-sophisticat@mples that illustrate the
additional technology for dependency, effects, and madylthat we develop.

3.3.1 Certified Software: Security-Typed Programming

Security-typed languages, such as Aura [38] and PCML5 E#,an authorization logic
to control access to resources. The basic ingredients dfitiim@zation logic are:

e Resources, such as files and database entries, and prinsuyzdl as users and
programs.

e Atomic propositions describing permissions—e.g., a prémsK mayread
F for a principalK and file resourcé.

e AmodalityK says A meaning that principa{ affirms the truth of proposition
A. Thesays modality permits access control policies to be specifiechasp-

21

gregation of statements by many different principals, Wwhgimportant when
different principals have jurisdiction over different esces.

Beyond these simple ingredients, there are many choicetheltogic first-order or
higher-order, intuitionistic or classical? What laws shibtiiesays modality satisfy?
How are principals and resources represented? How areiaist statements au-
thenticated? Unlike Aura [38] and PCML5 [6], which provideefil answers to these
questions, our type theory allows programmers to programynaiferent authoriza-
tion logics, and to combine code written using differentiésgn a single program.

An Authorization Logic In this section, we define a first-order, intuitionistic awth
rization logic, wheresays is an indexed lax modality (indexed monad), following
Garg and Pfenning [30]. For simplicity, we consider only aécollection of prin-
cipals and resources, represented in LF, and a fixed accesslqoolicy. We present
an LF encoding of this logic in Figure 9. There are two sortsenis,princ ipals
andres ources, with a distinguished principsglf on behalf of whom the programs
runs. Propositions include atomic propositions (classifig LF typeaprop), implica-
tion, universal quantification over terms, and Ha/smodalityK says A. The logic
is defined as a sequent calculus with one kind of hypothésisyp) and two kinds
of conclusions:A true , andK affirms A —the judgement on which theays
modality is based. We mix prefix, infix, and postfix notatiomrtatch the standard syn-
tax for these judgements; note that binds more loosely thattue andaffirms
so|- A true is|- (A true) . The rules for atomic propositions, implication,
and universal quantification are standard, and the mffes saysr , andsaysl give
the return and bind operations for the lax modality. We idelout as an explicit rule,
for reasons discussed below. This LF encoding uses higler-@abstract syntax to
represent the syntax of propositions (eail,) and to manage the assumptions of the
sequent calculus (e.qg., all left rules as welbdls andimpr add assumptions to the
context; thealll rule uses LF function application to perform substitutidd¥ing LF
to define logics saves programmers the bureaucracy of imgiényg variable binding
concretely.

In Figure 10, we define principals and resources specific tapgtication, along
with an access control policy for them. As a very simple exempe may control
reads to files on a file system. To do so, we define principaléilloowners (in this
case,dan), resources for files/lijome/dan/plan) and two atomic propositions,
stating that a principal owns a resource (writténowns R) and that a principal may
read a resourceK(mayrd R). The access-control policy is defined by loading the
LF context with certain initial hypotheses; in this casettban owns his plan file
(ownsplan), that Dan says that all principals may read his pldanplan), and
that if the owner of a resource says that some principal cad it then that princi-
pal can read itdrantrd). This last axiom provides a controlled way of escaping
from the affirmation monad back to truth. Programmers carvearopositions in
the logic by constructing LF terms representing derivagjdior example, it is simple
to show thaself may read the filéhome/dan/plan by constructing a derivation
of |- (atom (self mayrd /home/dan/plan)) true . The derivation uses
danplan , ownsplan , andgrantrd , as well as logical rules.

22

sort : type.
princ : sort.
res : sort.

term : sort -> type.
self : term princ.

aprop : type.

prop . type.

atom : aprop -> prop.

implies : prop -> prop -> prop.

says . term princ -> prop -> prop. %infix says.
all : (term S -> prop) -> prop.

hyp . prop -> type. %postfix hyp.

conc : type.

true . prop -> conc. %postfix true.

affirms : term princ -> prop -> conc. %infix affirms.

|- : conc -> type.
init : (atom X) hyp -> |- (atom X) true.

aff @ |- K affirms A
<- |- A true.
impr : |- (implies A B) true

<- (A hyp -> |- B true).
impl : ((implies A B) hyp -> |- J)
<- |- A true
<- (B hyp -> |- J).
saysr : |- (K says A) true
<- |- K affirms A.
saysl : (K says A) hyp -> |- K affirms C)
<- (A hyp -> |- K affirms C).
allr : |- (all ([c] A c)) true
<- {c:term S } |- (A c) true.
alll : (@all A) hyp -> |- J)
< (A T) hyp -> |- J).
cut : |- J
<- |- A true
<- (A hyp -> |- J).

Figure 9: LF Signature for Authorization Logic

23

dan . term princ.
/home/dan/plan : term res.

owns : term princ -> term res -> aprop. %infix owns.
mayrd : term princ -> term res -> aprop. %infix mayrd.

ownsplan : (atom (dan owns /home/dan/plan)) hyp.
danplan : (dan says
(all [p] atom (p mayrd /home/dan/plan))) hyp.

grantrd : all ([p] (all ([q] (all [r]
implies (atom (p owns r))
(implies (p says atom (g mayrd r))
(atom (q mayrd 1)) hyp.

Figure 10: A Policy For File Access

Access-Controlled Operations Now that we have a logic for specifying authoriza-
tion, we may use it to give rich types to functions that intenaith resources, such as
a function for reading the contents of a file:
read : (-) Vriterm res.

V_|- (atom (self mayrd r)) true.

T string

To write this type, we use an informal concrete syntax fora¥fenctions, allowing
ourselves to writé¢/ X : A.B* for the typeV 4 (X — B*) when the meta-function can be
defined uniformly with only one pattern branch binding a reddable X . To remain
in the formalism presented above, we defitiing as(3-:Istring.1), wherelstring
as an LF type representing lists of characters.

To call this function, a programmer must provide a file reseur as well as a
proof that the program may read The resource is used as the file name, and the
function returns the contents of the file. The intended ilavdrof this DSL is that a
proof of self mayrd F implies that the filg= exists and that the program has the
appropriate file system permissions to read it; if this ifasatris violated (i.e. the DSL
itself is incorrect), themead will abort, e.g. by looping or raising an exception. If
a client program uses this interface for all reads, thenestls are authorized by the
access control policy. It is important thaad is typed in the empty LF context (i.e.,
that its contextual type i§) A7): otherwise, clients could simply bind new LF variables
standing for proofs and use them to justify a calt¢ad .

How isread implemented? One option is to simply ignore the proof, map th
resource to a string, and call a primitive read function (Mcertbt include 1/0O effects
in the above presentation of our type theory, but they ar@lk&ino add). In this case,
dependency is used only to enforce an invariant, with noibgam the actual run-
time behavior. Alternatively, following Vaughan et al. [6Tve may wishread to
log the provided proofs for later audit. Administrators ass®e such logs to diagnose
unexpected consequences of an access-control policyinggeguires a function
tostring : (-) VJconc. V(- J). 1'string

24

which should be implemented by induction on LF terms.

Policy Analysis We can use computation with LF terms to investigate the ptigse
of the stated access control policy. As a very simple exanvypéemay wish to know
that the only owner ofhome/dan/plan isdan. We can encode this theorem with
a negative value of the following type. Because we includedegal recursion in the
language, a term with this type is not necessarily a prodfiaudo not uséix to write
this particular term.

onlydan : () VP :term princ
V_: (atom (P owns /home/dan/plan)) hyp
19_:id P dan .1

This theorem says: for any princip@that ownghome/dan/plan , Pisdan, where
id is an LF type family representing equality:

id > term S -> term S -> type.
refl :id T T.

We implementonlydan with a meta-function on destructors:

onlydan = val”(dan ;ownsplan ;e (refl () [])

A meta-functiong implementingonlydan is well-typed when:
(AlFd= (YA >C" — -Fo¢(d): C)

where A” is the type ascribed tonlydan above. In this LF signature and context, the
only destructor pattern of this type @&an ; ownsplan ;e, in which caseA is empty
and C" is the contextual typé) 13_:id dan dan .1—the result type is refined by
the case analysis. The positive valuefl |, ()) [-] inhabits this type.

Auditing and Cut Elimination ~ We have deliberately includezlit as a rule in our
authorization logic because the time and space costs ofalizing proofs can be large,
and proofs using cut suffice as justifications fead . Moreover, logging cut-full
proofs may provide clues to auditors [67]. On the other hardpfs with cut may
contain irrelevant detours that make it difficult to see whdtame for unexpected
consequences of a policy, whereas the correspondingeeipfoof expresses the direct
evidence used to grant access. Thus, it is important to keetal@liminate cuts from
log entries during auditing. Fortunately, Garg and Pfegri80] give a Twelf proof of
cut admissibility for their logic, and exploiting open-estthess, we can import their
Twelf code as a function in our language.

Let W stand for LF contexts of the form

xliterm S1 ,x2:iterm S2 ,...,pl:Al hyp ,pl:A2 hyp ,...

25

for someSi andAj (in Twelf, these contexts are described brggular worldsdecla-
ration [53]). The key lemma in cut elimination is cut admiskty, which is stated as
follows:

vV -FWeWw

Uk A:prop

Uk C:prop

Uk D:|-cf A true

Uk D' : I A hyp.|-cf C true
3 Wk, D":|cf C true

We write|-cf for the cut-free version df , which is specified by all the rules for this
judgement in Figure 9 except fout . Cut admissibility proves that one can substitute
cut-free evidence foA for a hypothesis oA and obtain a cut-free result.

The proof of this theorem is a meta-function which can be useidhplement a
negative value of the following type:

(-)Yw. YA:prop .
vC' : prop .
VD :|-cf A true
VD' : (II_:A hyp.|-cf C true).
1(3D” : |-cf C true .1)

Here we writeVy.A™ for V(¥ — ¥ A A7); this type quantifies over all contexts in
the world W and then immediately binds the contextdn. A value of this type is
implemented as follows:

val’ (U;unpack U.A; C;D; D' ;e — (gp(¥, A, C,D,D"), () ['])

Inverting the possible destructors for this type yieldsatlyethe premises of the Twelf
theorem. To construct a result, we use the notajjoto call Garg and Pfenning’s Twelf
code to compute an LF term. Twelf is a logic programming laaggufor programming
with LF terms, so their proof is not a function but a total tela, which may associate
more than one output with each input. We can resolve thisdesarminism by simply
choosing to return the first result produced by Twelf's preeérch.

Alternatively, once we have designed a meta-function lagguporting this Twelf
proof of cut admissibility will make for a good test case.

3.3.2 Mechanized Metatheory: Logical relations for Gdel's T

Twelf’s computational language for proving metatheoreimsua languages and logics
represented in LF permits ont{A-statements over LF types. Moving to a higher-order
functional programming language like Delphin [56], BeldG4], and our type theory
has a number of advantages. For example, when proving deltfgaf a judgement7

in Twelf, one must inductively axiomatize its negatiory and prove non-contradiction
(I N=J) — 0 explicitly. With more quantifier complexity, one can defing/ as

26

J — 0, so non-contradiction is implemented by function applaatand prove decid-
ability (7 v (J — 0)).

Additionally, because Twelf allows onkj3-statements over LF types, it is not pos
sible to formalize a logical relations argument by intetjprg the types of an object
language as the types of the Twelf computational langdidg#hile Delphin and Bel-
uga have sulfficient quantifiers to interpret object-languggpes, they do not permit
the definition of a type by induction on an LF term, which seemsessary to de-
fine a logical relation by induction on object-language s/pBecause our type theory
provides type-level computation, we can conduct such &gilations arguments di-
rectly, using the quantifiers of our computational languagies of course possible
to formalize this style of argument in a dependent type theoich as Coq or Agda
which similarly provides large eliminations; the advargaxf our approach is that the
programmer can carry out a logical relations argument wisiag LF to represent the
language’s binding structure.

As an example, we show how type-level computation with Lifnecan be used
to type a logical relations argument for the termination a@fdél's T (simply-typed
A-calculus with iteration over natural numbers). For siroipy, we index terms with
their types so that only well-typed terms are representaine we give a call-by-name
evaluation relation on closed terms where successor itetid¢azily. Binderdam and
iter are represented using higher-order abstract syntax, andwdluation relation
uses LF application to perform substitution.

The ultimate theorem we would like to prove is:

(yVAtp .VEitm A 3E:tm A .JDeeval E E' .1

The logical relations proof of this theorem works by consting a closed term model,
interpreting the types of @Glel's T as the types of the programming language. The
logical relation is defined by induction on object-languagees. In our calculus, this

is represented by a meta-functibhfrom LF terms to positive types:

(‘FrA:tp and- F E:tm A — (-) ht(A E) type)
htnate = 3_:htnat E .1
ht(arr A1 A2)E = 3((A uE): II_.tm Al.tm A2).
dD:eval E (lam (Au.E"))
(VEL:tm Al .ht(Al,E1) — Tht(A2,[ELU]E")

Here we use one-level pattern-matching and inductive tah®tate the meta-function
ht, which maps every Gdel's T type and closed term to a positive type. The case for
arr says thak evaluates to a lambda, and moreover, for every hereditritginating
argument, the substitution into the body of the lambda igdigarily terminating. We
write [EL/U]E2 for LF substitution, which is defined as a meta-function ortéffms.
The base case refers to an auxiliary relatidmat which is defined as follows:

11t is possible to formalize logical relations arguments in by interpreting types as quantifiers in a
specification logic encoded in LF [59], but this requiresépdndent verification of the consistency of the
specification logic, which is often tantamount to the theogsra is trying to prove.

27

tp : type.
nat : tp.
arr @ tp > tp > tp.

tm : tp -> type.

z © tm nat.

s : tm nat -> tm nat.

iter : tm nat -> tm C -> (tm C -> tm C) -> tm C.
lam : (tm A -> tm B) -> tm (arr A B).

app : tm (arr A B) -> tm A -> tm B.

eval Ttm A > tm A -> type.
eval/z s eval z z

evalls :eval (s E) (s E).
eval/lam > eval (lam E) (lam E).

evalliterz : eval (iter E Ez Es) EZ’

<- eval E z

<- eval Ez EZ'.
evalliters : eval (iter E Ez Es) ES’

<- eval E (s E)

<- eval (Es (iter E' Ez Es)) Es'.
eval/app : eval (app E1 E2) F

<- eval E1 (lam E)

<- eval (E E2) E'.

Figure 11: LF Representation ofd@el's T

28

htnat : tm nat -> type.
htnat/z : htnat E

<- eval E z.
htnat/s : htnat E

<- eval E (s E)

<- htnat E'.

The fundamental lemma of logical relations states that ell-typed terms are in
the relation. One difficultly is that the relation is definexlyofor closed terms, but
for the sake of the proof, the theorem must be generalizedhsider open terms.
The standard maneuver is to interpret open terms under aadiog substitution of
hereditarily terminating terms. To do this, we need a tyg@esenting substitutions,
which we may define in LF as follows:

tplist : type.
tnil : tplist.
tcons : tp -> tplist -> tplist.

subst : tplist -> type.
snil @ subst tnil.
scons : tm A -> subst As -> subst (tcons A As).

The typetplist codes an LF contextu(:tm, d:of u A ,...) by the list (cons
A ... tnil). The indexed lis(subst As) contains oném of type A for eachA
in As.

We also need a type expressing that a substitution contaneslitarily terminating
terms:

(-FirAs:tplist and- . Es :subst As — (-) hts(As, ES) type)
hts tnil snil =1
hts (tcons A A2) (scons E Es) = ht(A,E) ® hts(As, Es)

Then the fundamental lemma is stated as follows, whg@ntain LF contextsy(:tm, d:of u A ,...).

(YVw(¥ —> U AVA:tp VE : tm A
o(VEs : subst (tpsW).hts(Es, (tps¥)) — Tht(AE [ES]))))

For anyW in W, given ank of typeAin ¥, along with a closed hereditarily terminating
substitutionEs for each of the free variables &, we produce a proof that the simul-
taneous substitutioB [Es] is hereditarily terminating. The typeis used to express
the fact that the substitution consists of closed terms.rii@@-operatiortps W, codes
a contextV as atplist ; itis defined by induction o®&. The meta-functioft [ES]
implements simultaneous substitution for LF terms. Thigasfanction need not be
implemented directly for this instance: it can be deriveahira generic simultaneous
substitution theorem for LF.

We implement this type by induction df using standard lemmas (closure under
head expansion, and an inductive lemma showing that thetdteis in the relation).
The proof uses several extensional type equalities inuglproperties of simultaneous
substitution. These equalities are true (e.g., they weveqat by Harper and Pfenning

29

[33] in the course of studying LF using logical relationg)ddecause we treat equality
extensionally, they are not reflected in the proof term. Wanpb study a concrete
language for type equality proofs in the thesis.

We consider a fully fleshed-out version of this logical rielas proof to be an in-
teresting test case for our implementation.

4 Related Work

The work described in this thesis will make two technicaltdbutions relative to prior
work: First, we will investigate issues such as variabledbig, dependency, effects,
and modules from from the perspective of polarized type mjree@ mathematically
interesting endeavor that has already led to new insighitsh ss our integration of
variable binding and computation in previous work [42]. & [31, 32] and fo-
cusing [4] are logical ideas whose type-theoretic appbcat have just begun to be
explored. For example, they can be used to explain evatuatider [40, 72], and they
draw out the duality between proofs and refutations in caaiienal interpretations
of classical logic (see, for example, Curien and Herbel® [Eilinski [24], Selinger
[61], Zeilberger [72]).

Second, the language we arrive at will provide better supforrprogramming
with domain-specific logics than existing languages do. hg point, we can justify
this claim by contrasting our integrated approach to big@ind computation [42] with
the way one programs with variable binding in these exidiimguages.

Dependently Typed Programming Languages There has been a great deal of work
on integrating various forms of dependent types into pcatfirogramming languages
and their implementations [5, 13, 14, 15, 16, 22, 26, 27, 45,41, 52, 62, 63, 65,
69, 70, 71, 74], building on dependently typed proof asststauch as NuPRL [17]
and Coq [9]. However, none of these languages provide lustipport for repre-
senting variable binding and hypothetical judgementschviaire essential ingredients
of domain-specific logics. Thus, programmers must implemariable binding on a
case-hy-case basis, using one of the following techniques.

Variable binding can be implemented in a variety of ways @Segkemir et al. [7] for
a survey). Among the concrete representation techniquespproach is most similar
to representations where the context of a term is marked ityjite, such as de Bruijn
representations using nested types or dependency [1, 8)ri@ijese representations,
binders introduce a new constructor for variables, whiah explicitly injected into
terms. Our framework builds this use of dependency into éimguiage: all types are
contextual and all datatypes may be extended by rule vasahtroduced by logical
connectives. This creates an opportunity to implementsiral properties once for all
types, including negative types such as computationalifumg, and to abstract away
from the concrete implementation of variables themselvesin-&F, we can provide a
named notation without requiring the programmer to manageas.

Alternatively, it is tempting to try to reuse the computatd function space of a
functional programming language to represent binding tiethaive approach admits
too many functions. One solution to this problem is to use edigate to identify

30

those computational functions that are in fact substitufienctions [3, 12, 20, 35,
47]. Another solution is to bind meta-language variableamfabstract type defined
only by an axiomatic characterization of the propertiesariables [11]. In contrast,
our representational functions provide a direct means efadtely encoding binding,
without requiring side conditions or axioms.

Twelf, Delphin, Beluga In systems based on the LF logical framework [34], LF is
taken as a pure representation language, and a separatésigyevided for compu-
tation. In Twelf [53], LF/ML [58] Delphin [56], and Beluga @, the computational
layer is an entirely separate language. iBatann et al. [60] describe an approach in
which the same arrow is used for both computation and reptagen, with primitive
recursion isolated by a modality, but computation is noeletts segregated because
the computational modality cannot appear in rules. Thesgifséd approaches have
the advantage that all representations automatically tiegtructural properties of a
hypothetical judgement, with the disadvantage that aegacoding techniques, which
rely on embedding computation in data, are not possible. @pproach removes this
stratification, allowing rules that embed computationhwiite consequence that not all
representable rule systems satisfy the structural priggertowever, we may imple-
ment strengthening, weakening, and substitution geribrigcader certain subordina-
tion conditions. Consequently, our framework providesargperations implementing
the structural properties “for free” for all rule systemdfidable in simply-typed LF,
as well as for many more rule systems that use iterated iivdudéfinitions. Another
contribution relative to existing LF-based approachesds tve provide an account of
type-level computation with LF terms, as illustrated in thgical-relations example
above.

Technically, our contextual modalityl’) A is different than that of contextual
modal type theory [49] and Beluga, where contextual vaeslalre eliminated by sub-
stitution. Because side conditions, expressed as conqmaiafunctions, can invalidate
structural properties such as weakening and substitudiaeh thus the type theory must
not commit to these properties by building them into the nreaof contextual types.
Instead of eliminating contextual types by substitutiome, allow pattern matching on
contextual types, and view substitution as an admissitdeety (when it is true!),
defined in the meta-function language.

Our contextual types are also related to those inf® [46]. Miller and Tiu’s self-
dual vV connective is closely related te and A, also capturing the notion of a scoped
constant. An essential difference, however, is that bex#hesV proof theory adopts
a logic programming-based distinction between propasitiand typesV quantifies
over a type and forms a proposition), it is significantly leabtle than our work. For
exampleV cannot appear in the domain of&(in contrast to=).

Nominal Logic Nominal logic [28] is a theory of names and binding that hasrnbe
implemented in several programming languages (e.g., Medb5, 64] and the Is-
abelle nominal datatype package [66]). The differencesden the nominal approach
and ours stem from the fact that FreshML separates fresh ig@meration from the
binding of a name in a scope, whereas in our type theory ruliables do not ex-

31

ist outside of the scope in which they are bound. Nominalddgtilitates the di-
rect representation of informal algorithms that use namiéisowrt being explicit about
their scope, whereas our approach follows the LF methogotdgecasting these al-
gorithms in terms of a more disciplined binding structurep&rating name generation
from scoping makes it more difficult to determine what nanresfeee in a computa-
tion, requiring freshness analyses [55], specificatiofick{p7], or stateful operational
semantics [64] in order to ensure that functions respeetjuivalence of representa-
tions. In contrast, the free rule variables of all computasi are tracked by our type
system, and respect far-equivalence is achieved simply, by quotienting pattems b
«a-equivalence.

Semantics Fiore et al. [25] and Hofmann [36] give semantic accounts afable
binding. It would be interesting to see whether these seimaotounts can be extended
to rule systems which permit computational functions impises.

5 Plan

In summary, | will substantiate my thesis statement by

e Designing a polarized type theory for programming with damegpecific logics,
with support for dependent types, computational effectd, @lymorphism.

e Implementing that type theory and programming several gtem
The time spent on the thesis will be apportioned as follows:

40% Theory

20% Dependency
5% Effects
15% Polymorphism and modularity

40% Practice

10% Meta-function language
10% Term reconstruction
20% Implementation and examples

20% Writing

Acknowledgements

This thesis proposal is based on research papers authanddg yeith Noam Zeilberger
and Robert Harper.

32

References

(1]
(2]
(3]

[4]
(5]
(6]
[7]

(8]
9]

(10]
(11]

(12]

(13]
(14]
(15]
(16]

(17]

(18]
(19]

(20]

(21]
(22]

(23]

T. Altenkirch and B. Reus. Monadic presentations of lambda ternmsyugeneralized
inductive types. ICSL 1999: Computer Science LogidNCS, Springer-Verlag, 1999.

T. Altenkirch, C. McBride, and W. Swierstra. Observational equalitgw! In Program-
ming Languages meets Program Verification WorksR607.

S. Ambler, R. L. Crole, and A. Momigliano. Combining higher orddésaact syntax
with tactical theorem proving and (co)induction. Ihternational Conference on Theorem
Proving in Higher-Order Logicspages 13-30, London, UK, 2002. Springer-Verlag.
J.-M. Andreoli. Logic programming with focusing proofs in linear ilogJournal of Logic
and Computation2(3):297-347, 1992.

L. Augustsson. Cayenne - a language with dependent typdsitdmational Conference
on Functional Programmingl998.

K. Avijitand R. Harper. A language for access control. TechniReport CMU-CS-07-140,
Carnegie Mellon University, Computer Science Department, 2007.

B. Aydemir, A. Chargé&raud, B. C. Pierce, R. Pollack, and S. Weirich. Engineering for-
mal metatheory. IPACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languagespages 3-15, 2008.

F. Bellegarde and J. Hook. Substitution: A formal methods caseystsithg monads and
transformationsScience of Computer Programmir28(2—3):287-311, 1994.

Y. Bertot and P. Casran. Interactive Theorem Proving and Program Development:
Coq'Art: The Calculus of Inductive Constructiongexts in Theoretical Computer Sci-
ence. Springer, 2004.

R. S. Bird and R. Paterson. De Bruijn notation as a nested datalgpenal of Functional
Programming 9(1):77-91, 1999.

A. Bucalo, M. Hofmann, F. Honsell, M. Miculan, and |. Scagnettonsistency of the
theory of contextsJournal of Functional Programmind.6(3):327—-395, May 2006.

V. Capretta and A. Felty. Combining de Bruijn indices and higheepabstract syntax in
Coq. InProceedings of TYPES 200Ilume 4502 of ecture Notes in Computer Science
pages 63—77. Springer-Verlag, 2007.

C. Chen and H. Xi. Combining programming with theorem proving. Iriternational
Conference on Functional ProgrammiriZ005.

J. Cheney and R. Hinze. Phantom types. Technical Report STRP0003-1901, Cornell
University, 2003.

B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiersPtogramming Lan-
guage Design and Implementati@005.

J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Neculap&nhdent types for low-
level programming. IfEuropean Symposium on Programmi2§07.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, Lifemer, R. W. Harper,
D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. Sal®aand S. F. Smith.
Implementing Mathematics with the NuPRL Proof Development Syskrentice Hall,
1986.

Coq Development TeanThe Coq Proof Assistant Reference ManuldRIA, 2007. Avail-
able fromhttp://coq.inria.fr/ .

P.-L. Curien and H. Herbelin. The duality of computationAiM SIGPLAN International
Conference on Functional Programmingages 233-243, 2000.

J. Despeyroux, A. Felty, and A. Hirschowitz. Higher-ordertedxst syntax in Cog. In
M. Dezani-Ciancaglini and G. Plotkin, editotaternational Conference on Typed Lambda
Calculi and Applicationsvolume 902 ofLecture Notes in Computer Scienpages 124—
138, Edinburgh, Scotland, 1995. Springer-Verlag.

D. Dreyer, K. Crary, and R. Harper. A type theory for higleeder modules. IPACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

J. Dunfield and F. Pfenning. Tridirectional typechecking. AGM SIGPLAN-SIGACT
Symposium on Principles of Programming Languageo4.

J. Dunfield and B. Pientka. Case analysis on higher-order data. raft:D
http://www.cs.mcgill.ca/~complogic/beluga/ , February 2008.

33

(24]
(25]
(26]

(27]

(28]

(29]
(30]

(31]

(32]
(33]

(34]

(35]

(36]
(37]

(38]

(39]
[40]
(41]
[42]
(43]

[44]

[45]
[46]

[47]

(48]

A. Filinski. Declarative continuations and categorical duality. Mastidesis, University
of Copenhagen, 1989. Computer Science Department.

M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable bigd In IEEE Sympo-
sium on Logic in Computer Scienc999.

C. Flanagan. Hybrid type checking. ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languagepages 245-256, 2006.

S. Fogarty, E. Pasalic, J. Siek, and W. Taha. Concoqtion: inbees now! InACM
SIGPLAN symposium on Partial evaluation and semantics-based progranipulation
pages 112-121, New York, NY, USA, 2007. ACM Press. ISBN 9783%93-620-2.

M. J. Gabbay and A. M. Pitts. A new approach to abstract syntaodvuing binders. In
IEEE Symposium on Logic in Computer Sciempages 214—-224. |IEEE Press, 1999.

I. Galois. Cryptol reference manual, 2002.

D. Garg and F. Pfenning. Non-interference in constructivearizhtion logic. InProceed-
ings of the 19th IEEE Computer Security Foundations Workshop (CSkVZAGG.

J.-Y. Girard. Locus solum: From the rules of logic to the logic of suldathematical
Structures in Computer Sciencél(3):301-506, 2001.

J.-Y. Girard. On the unity of logicAnnals of pure and applied 10gi&9(3):201-217, 1993.

R. Harper and F. Pfenning. On equivalence and canonicaisfon the LF type theory.
ACM Transactions on Computational Logi&61-101, 2005.

R. Harper, F. Honsell, and G. Plotkin. A framework for definingits. Journal of the
Association for Computing Machiner0(1), 1993.

J. Hickey, A. Nogin, X. Yu, and A. Kopylov. Mechanized metasening using a hybrid
HOAS/de Bruijn representation and reflection. AGM SIGPLAN International Confer-
ence on Functional Programminpgages 172-183, New York, NY, USA, 2006. ACM.

M. Hofmann. Semantical analysis of higher-order abstradesyrin [IEEE Symposium on
Logic in Computer Scien¢@&999.

D. J. Howe. On computational open-endedness in MariifisLtype theory. InIEEE
Symposium on Logic in Computer Scienuages 162—172. IEEE Computer Society, 1991.

L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J.@&ch and S. Zdancewic. Aura:
A programming language for authorization and audit. A@GM SIGPLAN International
Conference on Functional Programmirigp08.

O. Laurent. Etude de la polarisation en logiqueThése de doctorat, UniversitAix-
Marseille I, Mar. 2002.

P. B. Levy. Call-by-push-valuePhD thesis, Queen Mary, University of London, 2001.

C. Liang and D. Miller. Focusing and polarization in intuitionistic logic. LnDlparc
and T. A. Henzinger, editor&SL 2007: Computer Science Logiolume 4646 oLNCS
pages 451-465. Springer-Verlag, 2007.

D. R. Licata, N. Zeilberger, and R. Harper. Focusing on bindimdj@mputation. InREEE
Symposium on Logic in Computer Scier®@08.

W. Lovas and F. Pfenning. A bidirectional refinement type sydtarhF. Electronic Notes
in Theoretical Computer Scienck96:113-128, 2008.

P. Martin-Lof. Hauptsatzfor the intuitionistic theory of iterated inductive definitions. In
J. E. Fenstad, editoRroceedings of the Second Scandinavian Logic Sympogiages
179-216, Amsterdam, 1971. North Holland.

C. McBride and J. McKinna. The view from the leflournal of Functional Programming
15(1), 2004.

D. Miller and A. F. Tiu. A proof theory for generic judgments: Anterded abstract. In
IEEE Symposium on Logic in Computer Sciemages 118-127, 2003.

A. Momigliano, A. Martin, and A. Felty. Two-level hybrid: A systerarfreasoning using
higher-order abstract syntax. imernational Workshop on Logical Frameworks and Meta-
Languages: Theory and Practic2007.

A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism andasegion in Hoare Type

Theory. INACM SIGPLAN International Conference on Functional Programmpages
62-73, Portland, Oregon, 2006.

[49] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal thipery. Transactions on

34

(50]

(51]

(52]

(53]

(54]

[55]

[56]
[57]
(58]
[59]
(60]
(61]
(62]
(63]

(64]

(65]
(66]

(67]

[68]

(69]

[70]
[71]

[72]

Computational Logic2007. To appear.

A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. 8it&l. Ynot: Reasoning
with the awkward squad. IACM SIGPLAN International Conference on Functional Pro-
gramming 2008.

U. Norell. Towards a practical programming language based on dependenttiygoey.
PhD thesis, Chalmers University of Technology, 2007.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simpication-based
type inference for GADTs. IPACM SIGPLAN International Conference on Functional
Programming 2006.

F. Pfenning and C. Séihmann. System description: Twelf - a meta-logical framework
for deductive systems. In H. Ganzinger, editoternational Conference on Automated
Deduction pages 202—206, 1999.

B. Pientka. A type-theoretic foundation for programming with higbeter abstract syn-
tax and first-class substitutions. ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languagepages 371-382, 2008.

A. M. Pitts and M. J. Gabbay. A metalanguage for programming wotlmiol names modulo
renaming. In R. Backhouse and J. N. Oliveira, editbtathematics of Program Construc-
tion, volume 1837 of_ecture Notes in Computer Scienpages 230-255. Springer-Verlag,
Heidelberg, 2000.

A. Poswolsky and C. Sémmann. Practical programming with higher-order encodings and
dependent types. IBuropean Symposium on Programmi2g08.

F. Pottier. Static name control for FreshML. IEEE Symposium on Logic in Computer
Science2007.

S. Sarkar. A cost-effective foundational certified code syst€hesis Proposal, Carenegie
Mellon University, 2005.

J. Sarnat and C. S@mann. Structural logical relations. IREE Symposium on Logic in
Computer Science008.

C. Schurmann, J. Despeyroux, and F. Pfenning. Primitive recursion iffirdr-order ab-
stract syntaxTheoretical Computer Scienc266:1-57, 2001.

P. Selinger. Control categories and duality: on the categoricahsges of the lambda-mu
calculus.Mathematical Structures in Computer Scient#(2):207-260, 2001.

Z. Shao, V. Trifonov, B. Saha, and N. Papaspyrou. A typeesysor certified binaries.
ACM Transactions on Programming Languages and Syst&n{$):1-45, 2005.

T. Sheard. Languages of the future. @onference on Object-Oriented Programming,
Systems, Languages, and Applicatic2304.

M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Prograimgrwith binders made
simple. INACM SIGPLAN International Conference on Functional Programmpages
263-274, August 2003.

M. Sozeau. ROGRAM-ing finger trees in Coq. IMCM SIGPLAN International Confer-
ence on Functional Programmingssociation for Computing Machinery, 2007.

C. Urban. Nominal techniques in Isabelle/HOlournal of Automatic Reasoning008.
To appear.

J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic. Evidelnased audit. IProceed-
ings of the 21st IEEE Computer Security Foundations Sympo®itteburgh, PA, USA,
June 2008.

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A corenirlogical framework I:
Judgments and properties. Technical Report CMU-CS-02-101afrepnt of Computer
Science, Carnegie Mellon University, 2002. Revised May 2003.

E. Westbrook, A. Stump, and I. Wehrman. A language-basptbagh to functionally cor-
rect imperative programming. Imternational Conference on Functional Programmjng
2005.

H. Xi and F. Pfenning. Eliminating array bound checking througpehdent types. In
Conference on Programming Language Design and Implemenjdté@8.

H. Xi, C. Chen, and G. Chen. Guarded recursive datatypeticatsrs. INnACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langua2fe33.

N. Zeilberger. On the unity of dualityAnnals of Pure and Applied Logi@53(1-3), 2008.

35

Special issue on “Classical Logic and Computation”.

[73] N. Zeilberger. Focusing and higher-order abstract syntax AGM SIGPLAN-SIGACT
Symposium on Principles of Programming Languagesges 359-369, 2008.

[74] C. Zenger.Indizierte TypenPhD thesis, Universit at Karlsruhe, 1998.

36

