Dependently Typed Programming
with Domain-Specific Logics

Domain-specific logics

Type systems for reasoning about a specific
application domain/programming style:

* Cryptol: cryptographic protocols
* Ynot/HTT: imperative code

% Aura and PCML5: access to controlled resources

Domain-specific logics

Type systems for reasoning about a specific
application domain/programming style:

* Cryptol: cryptographic protocols
* Ynot/HTT: imperative code

% Aura and PCML5: access to controlled resources

Cryptol

Track length in type \

swab : Word 32 — Word 32
swab[abcd]=[bacd]

e

Pattern-match as four Word 8’s

Cryptol

swab : Word 32 — Word 32
swab [abcd]=[bcd]

Cryptol

swab : Word 32 & Word 32

swab [ab cd] = [b/zé]

Type error!

Domain-specific logics

Type systems for reasoning about a specific
application domain/programming style:

* Cryptol: cryptographic protocols
* Ynot/HTT: imperative code

% Aura and PCML5: access to controlled resources

YNot

* Start with lax modality for mutable state: OA

* Index with pre/postconditions:

STPAQ

s

Postconditon:
I1a:A, initial: heap, final:heap. prop

Precondition:
heap — prop

YNot

read : IIr:loc. ST (r —4 —) A (Aaif. f =1 A
Vu:A. (r — v)i1 — a = Valv)

write : IIr:loc. [Tv:A. ST (r < —) unit (Aai f. a = Valtt A
f = update_locirv)

Domain-specific logics

Type systems for reasoning about a specific
application domain/programming style:

* Cryptol: cryptographic protocols
* Ynot/HTT: imperative code

* Aura and PCML5: access control

Security-typed PL

Authorization logic [Garg + Pfenning]:

* Resources (F): files, database entries, ...

* Principals (K): users, programs, ...
* Permissions: K mayread F, ...
* Statements by principals: K says A, ...

* Proofs

Security-typed PL

Principals and resources:

sort : type.
princ : sort.
res :sort.

term : sort -> type.
admin : term princ.
dan :term princ.
bob :term princ.

Security-typed PL

Permissions:

aprop : type.

owns : term princ -> term res -> aprop.
mayrd : term princ -> term res -> aprop.
maywt : term princ -> term res -> aprop.

Security-typed PL

Propositions:

prop : type.

atom : aprop -> prop.

Implies : prop -> prop -> prop.

says :term princ -> prop -> prop.
all . (term S -> prop) -> prop.

\ HOAS

Security-typed PL

Judgements: = (A true) and
I = (Kaffirms A)

CORCESRIVDC:

/ ciis
true . prop -> conc.

affirms : term princ -> prop -> conc.

\ K affirms A

Security-typed PL

Judgements: hyp : prop -> type.
|- :conc -> type.

Sequent A1 ...An=20C
\Atrue or K affirms A

represented by

Al hyp->...->Anhyp->|-C

Security-typed PL

Proofs:

saysr : |- (K says A) true
<- |- K affirms A.

saysl : ((K says A) hyp -> |- K affirms C)
<- (A hyp -> |- K affirms C).

Security-typed PL

Policy:
ownsplan :
(atom (dan owns /home/dan/plan)) hyp.

danplan :
(dan says (all [p] atom (p mayrd /home/dan/plan))) hyp.

Security-typed PL

Access controlled-primitives:

read : Vr:term res.
VD : |- (atom (self mayrd r)) true.

string

need a proof of authorization to call read!

Security-typed PL

Compute with derivations:

* Policy analysis

* Auditing: log cut-full proofs;
eliminate cuts to see who to blame [Vaughn+08]

Domain-specific 1ogics

Type systems for reasoning about a specific
application domain/programming style:

* Cryptol: cryptographic protocols
* Ynot/HTT: imperative code

* Aura and PCML5: access control

Domain-specific 1ogics

How are they implemented?

* Cryptol: stand-alone
* Ynot/HTT: extension of Coq

% Aura and PCML5: stand-alone

FProblems

* Engineer compiler, libraries, documentation
* Train/convince programmers
* Hard to use multiple DSLs in one program

* Programmer can’t pick the appropriate abstraction

This work

A host language that makes it easy to:
* Represent domain-specific logics
* Reason about them (mechanized metatheory)

¥ Use them to reason about code
(certified software)

Ingredients

¢ functional programming
e effects: state, exceptions, ...
e polymorphism and modules

¢ binding and scope
e dependent types
e total programming

Thesis contributions

Previous work [LICSO08]:

Integration of binding and computation
using higher-order focusing

Thesis contributions

Proposed work:

Theory Practice

® Dependency ® Meta-functions

® Effects ® Term reconstruction

® Modules

Outline

% Previous work

* Proposed work

¥ Related work

Outline

% Previous work

* Proposed work

¥ Related work

Polarity |Girard 93]

Sums A + B are positive:
* Introduced by choosing inl or inr

* Eliminated by pattern-matching

ML functions A — B are negative:

* Introduced by pattern-matching on A
* Eliminated by choosing an A to apply to

Focusing [Andreoli '92]

Sums A + B are positive:
* Introduced by choosing inl or inr

* Eliminated by pattern-matching

ML functions A — B are negative:

* Introduced by pattern-matching on A
* Eliminated by choosing an A to apply to

Focusing [Andreoli '92]

Sums A + B are positive: Focus =
* Introduced by choosing inl or inr make choices

* Eliminated by pattern-matching

ML functions A — B are negative:

* Introduced by pattern-matching on A
* Eliminated by choosing an A to apply to

Focusing [Andreoli '92]

Sums A + B are positive:
* Introduced by choosing inl or inr

* Eliminated by pattern-matching

ML functions A — B are negative:

* |Introduced by pattern-matching on A
* Eliminated by choosing an A to apply to

Focusing [Andreoli '92]

Sums A + B are positive: Inversion =

* Introduced by choosing inl or inr respond to all
=& : possible choices
* Eliminated by pattern-matching

ML functions A — B are negative:

* |Introduced by pattern-matching on A
* Eliminated by choosing an A to apply to

Binding + computation

1. Computation: negative function space (A — B)

2. Binding: positive function space (P = A)

% Specified by intro Au.V

* Eliminated by pattern-matching

Arithmetic expressions

Arithmetic expressions with let-binding:

let x be (const 4) in (plus x X)

e ;:=const n

let x be el In e2
plus el e2
times el e2
sub el e2

mod el e2

div el e?

Arithmetic expressions

Arithmetic expressions with let-binding:

let x be (const 4) in (plus x X)

e ;:=const n

let x be el In e2
plus el e2
times el e2

sub el e2
mod el e? Suppose we want

div el e2 to treat binops
uniformly...

Arithmetic expressions

Arithmetic expressions with let-binding

e ::=constn
| let x be el in e2
| binop el ¢ e2

where ¢ : (nat = nat — nat) is
the code for the binop.

Arithmetic expressions

const : nat = exp
let : exp = (exp = exp) = exp

binop :exp = (nat = nat — nat) = exp = exp

let x be (const 4) in (X + X)

represented by

let (const 4) (Ax.binop x add x)

where add:(nat = nat — nat) is the code for addition

35

Structural properties

|dentity, weakening, exchange, contraction,
substitution, subordination-based strengthening

* Free in LF

* May fail when rules use computation

Weakening

Can’t necessarily go from

— proof by induction

ficnat:=-nat: <

to
extends nat with new

datatype constructor

(weaken f) : nat = (nat = nat)

doesn’t have a case for the new variable!

Structural properties

Our solution:

% AX.V eliminated by pattern-matching:
Nothing forces = to be structural

* But structural props may be implemented
generically for a wide class of rule systems

Structural properties

const : nat = exp
let : exp = (exp = exp) = exp

binop :exp = (nat = nat — nat) = exp = exp

* Can’t weaken exp with nat:
could need new case for — in a binop

* Can weaken exp with exp:
doesn’t appear to left of —

Higher-order focusing

Zeilberger’s higher-order focusing:
* Specify types by their patterns
* Type-independent focusing framework

* Focus phase = choose a pattern
* Inversion phase = pattern-matching

Higher-order focusing

Zeilberger’s higher-order focusing:

Inversion = pattern-matching is open-ended

Represented by meta-level functions
from patterns to expressions

Use datatype-generic programming
to implement structural properties!

Higher-order focusing

A LI’Il-p tAY

e

Pattern-bound Inference rule context:
variables
let : exp = (exp = exp) = exp,

Higher-order focusing

Al;WlEpp AT Ay; WiEpor i BY
A1, M0 W IF (pr,p2) i A* ®@BY

A;WIiEp i AT A;WIiEp::B*

A;WYIEinlp:AT®&B" A;WYiFinrp:AT® B

Higher-order focusing

u:P<=Aj--- <A €(L,¥)
A WiEpr AT o0 A WPlEpy it A)

Al,....,. A ;WlFupy...pp it P

A;W,u:Rl-p::B*
A;PIFAu.p::R= B*

Higher-order focusing

Inversion = pattern-matching:
(case(e:<V¥Y>Aof) : C

@ : Functionfrom(A; Y I-p:: A) to
expressions of type C in A

Infinitary: when A is nat,
one case for each numeral

Outline

% Previous work

* Proposed work

¥ Related work

Proposed work

Theory Practice

® Dependency ® \Meta-functions

® Effects ® Term reconstruction

® Modules

Proposed work

Theory Practice

® Dependency ® \eta-functions

® Effects ® Term reconstruction

® Modules

Dependency

Three levels of ambitiousness

* Dependency on LF
* Dependency on positive data

* Dependency on negative computation, too

Dependency on LF

First-order quantifiers over LF terms:

W

g M:A A;UIEpT (M)

Pattern-bound
variables

A;UIE(M,p)::3da(th)

2

LF context Meta-function
mapping LF terms
to positive types

Dependency on LF

Derived elimination form is infinitary, with one case
for each LF term M of appropriate type

pres: V E E":exp, T:tp.
Ve EESe T ENP R0 ste piEiES
= oREC Rt

Dependency on LF

Meta-function T used for logical relations:

HT (arr T2 T) E =
V E2:exp. HT T2 E2 — HT T (app E E2)

Defined by recursion on T

Positively dependent

* Integrate = and — as in LICS paper

* Allow dependency on patterns for positive types:
subsumes LF

* No need to compare negative computations for
equality

Negatively dependent

* After-the-fact verification
* Predicates on higher-order store in HTT

* Judgements about computationally higher-order
syntax

Proposed work

Theory Practice

® Dependency ® \Meta-functions

® Effects ® Term reconstruction

® Modules

Effects

* See proposal document for refs

* Open question:

Controlling effects and

programmer-defined indexed modalities

Defined in LF

Proposed work

Theory Practice

® Dependency ® \Meta-functions

® Effects ® Term reconstruction

® Modules

Practice

* Finitary syntax for meta-functions:
1. positive (unification) variables

2. structural properties

* Term reconstruction: steal from Twelf/Agda

Outline

% Previous work

* Proposed work

¥ Related work

Related work

Why is our language is better for programming with
DSLs than...

* NuPRL, Coq, Epigram, Agda, Omega, ATS, ...
* Twelf, LF/ML, Delphin, Beluga

* Nominal logic/FreshML

Conclusion

Thesis statement:

The logical notions of polarity and focusing provide
a foundation for dependently typed programming
with domain-specific logics, with applications to
certified software and mechanized metatheory.

Conclusion

Proof:

* Theory: polarized type theory with support for
binding, dependency, effects, modules

* Practice: meta-functions, reconstruction,
Implementation, examples

Thanks for listening!

