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Abstract—Recent work on homotopy type theory exploits an
exciting new correspondence between Martin-Lof’s dependent
type theory and the mathematical disciplines of category theory
and homotopy theory. The category theory and homotopy theory
suggest new principles to add to type theory, and type theory can
be used in novel ways to formalize these areas of mathematics.
In this paper, we formalize a basic result in algebraic topology,
that the fundamental group of the circle is the integers. Though
simple, this example is interesting for several reasons: it illus-
trates the new principles in homotopy type theory; it mixes ideas
from traditional homotopy-theoretic proofs of the result with
type-theoretic inductive reasoning; and it provides a context for
understanding an existing puzzle in type theory—that a universe
(type of types) is necessary to prove that the constructors of
inductive types are disjoint and injective.

I. INTRODUCTION

Recently, researchers have discovered an exciting new cor-
respondence between Martin-Löf’s dependent type theory and
the mathematical disciplines of category theory and homotopy
theory [1, 3, 4, 6, 10, 11, 19, 20, 21]. Under this correspon-
dence, a type A in dependent type theory carries the structure
of an ∞-groupoid, or a topological space up to homotopy.
Terms M : A correspond to objects of the groupoid, or points
in the topological space. Terms of Martin-Löf’s intensional
identity type, written α : IdA(M,N), correspond to morphisms,
or paths in the topological space, between M and N. Iterating
the identity type gives further structure; for example, the type
IdIdA(M,N)(α,β ) represents higher-dimensional morphisms, or
homotopies between paths. This correspondence has many
applications: The category theory and homotopy theory sug-
gest new principles to add to type theory, such as higher-
dimensional inductive types [12, 13, 17] and Voevodsky’s
univalence axiom [7, 20]. Proof assistants such as Coq [2]
and Agda [14], especially when extended with these new
principles, can be used in novel ways to formalize category
theory, homotopy theory, and mathematics in general.

Here, we consider the use of type theory for computer-
checked proofs in homotopy theory. Rather than working with
some concrete implementation of homotopy types (such as
topological spaces or simplicial sets), we use type theory to
give an abstract, combinatorial description of them. In this
way, type theory serves as a logic of homotopy theory. To
illustrate this, we compute what is called the fundamental
group of the circle. To explain the meaning of this, consider a
topological space X . Given a particular base point x0 ∈ X , the

loops in X are the continuous paths from x0 to itself. These
loops (considered up to homotopy) have the structure of a
group: there is an identity path (standing still), composition (go
along one loop and then another), and inverses (go backwards
along a loop). Thus the homotopy-equivalence classes of
such loops form a group called the fundamental group of X
at x0, denoted π1(X ,x0) or just π1(X). More generally, by
considering higher-dimensional paths and deformations, one
obtains the higher homotopy groups πn(X). Characterizing
these is a central question in homotopy theory; they are
surprisingly complex even for a space as simple as the sphere.

Consider the circle (written S1) with some fixed base point
base. What paths are there from base to base? One possibility
is to stand still. Others are to go around clockwise once, or to
go around clockwise twice, etc. Or we can go around counter-
clockwise once, twice, etc. However, up to homotopy, going
around clockwise and then counterclockwise (or vice versa) is
the identity: we can deform this path continuously back to the
constant one. Thus, the clockwise and counterclockwise paths
are inverses in π1(S1). This suggests that π1(S1) should be
isomorphic to Z, the additive group of the on the integers: one
can stand still (0), or go around counterclockwise n times (+n),
or go around clockwise n times (−n). Proving this formally is
one of the first basic theorems of algebraic topology.

In this paper, we formalize such a proof in type theory, using
Agda. Though simple, this example is interesting for several
reasons. First, it illustrates the new ingredients in homotopy
type theory: spaces-up-to-homotopy can be described in a
direct, logical way, which captures their (higher-dimensional)
inductive nature. In particular, our “circle” has a direct induc-
tive presentation rather than a topological one. Voevodsky’s
univalence axiom also plays an essential role in the proof.
Second, as we discuss below, the development of this proof
was an interplay between homotopy theory and type theory,
mixing ideas from traditional homotopy-theoretic proofs with
techniques that are common in type theory. Third, the proof
has computational content: it can also be seen as a program
that converts a path on the circle to its winding number, and
vice versa. Finally, it provides a context for understanding the
familiar puzzle that a universe (type of types) is necessary to
prove seemingly obvious properties of inductive types, such
as injectivity and disjointness of constructors.

The remainder of this paper is organized as follows. In
Section II, we introduce the basic definitions of homotopy



type theory. In Section III, we introduce the methodology that
we will use to calculate π1(S1) using a warm-up example,
proving injectivity and disjointness for the constructors of the
coproduct type. In Section IV, we define the circle as a higher-
dimensional inductive type, and in Section V we prove that
its fundamental group is Z.

II. BASICS OF HOMOTOPY TYPE THEORY

A. Types as Spaces

The central observation in homotopy type theory is that
Martin-Löf’s intensional identity type (traditionally called
propositional equality) equips each type with the structure
of a homotopy type, or, equivalently, an infinite-dimensional
groupoid. Homotopy types are an abstract structure, with
many concrete realizations such as topological spaces up to
homotopy and simplicial sets. To emphasize the homotopy-
theoretic interpretation, we write the identity type between
elements M,N : A as Path M N (leaving A as an implicit
argument1). Path is defined as an inductive family of types,
with one constructor id:

data Path {A : Type} : A � A � Type where
id : {M : A}� Path M M

id (reflexivity of propositional equality) represents the identity
path in the type A. We use the identifier Type for what is
normally called Set in Agda (the type of smaller types),
because the word “set” has another meaning in this context.2

The standard J elimination rule for the identity type (in
the Paulin-Mohring "one-sided" form [16]) expresses that the
paths from a fixed point M, to a variable endpoint x, are
inductively generated by M and id. We call this path induction:

path-induction : {A : Type} {M : A}
(C : (x : A) � Path M x � Type) (b : C M id)
{N : A} (α : Path M N) � C N α

path-induction b id = b

This function is defined by pattern-matching: we give cases
for all possible constructors for α , which in this case is just
id. In each case, the type of the right-hand side is specialized
to that constructor; in this case, C N α is specialized to C M id.
It is crucial that path-induction only applies to a family C
that is parametrized by a variable x standing for the second
endpoint—otherwise, it would imply that all loops of type
Path M M are generated by id, which would be incompatible
with the homotopy-theoretic interpretation.3 Topologically, the
intuition is that a path with a free endpoint can be retracted
back to the other, but a path with two fixed endpoints cannot.

1We assume basic familiarity with Agda; see Norell [15] for an introduction.
We will comment on some of the more idiosyncratic features, such as curly-
braces, which are Agda notation for an implicit parameter: we write PathMN
when A can be inferred, or Path{A}MN to explicitly notate it.

2Agda is a predicative theory, with explicit universe polymorphism, and
ordinarily one would define Path in a universe-polymorphic manner. To avoid
cluttering the presentation, we use Agda’s (inconsistent) --type-in-type
flag to suppress universe levels, but the development can be done with universe
polymorphism instead.

3That all loops are id is normally true in Agda, but the --without-K
option removes this principle.

Paths have a groupoid structure, with inverses and compo-
sition defined as follows:

! : {A : Type} {M N : A}� Path M N � Path N M
! id = id
_◦_ : {A : Type} {M N P : A}� Path N P � Path M N � Path M P
β ◦ id = β

The groupoid laws hold only up to homotopy; in type
theory, this means they are not definitional equalities, but are
witnessed by propositional equalities/paths between paths. For
example, we can prove associativity, unit, and inverse laws for
◦ ! and id (omitting ◦-unit-r and !-inv-r, which are symmetric):

◦-unit-l : {A : Type} {M N : A} (α : Path M N)
� Path (id ◦ α) α

◦-unit-l id = id
◦-assoc : {A : Type} {M N P Q : A}

(γ : Path P Q) (β : Path N P) (α : Path M N)
� Path (γ ◦ (β ◦ α)) ((γ ◦ β ) ◦ α)

◦-assoc id id id = id
!-inv-l : {A : Type} {M N : A} (α : Path M N)

� Path (! α ◦ α) id
!-inv-l id = id

B. Dependent Types as Fibrations

Just as types act like groupoids, type families act like
indexed families of groupoids. In particular, they vary func-
torially with paths in the indexing type:

transport : {B : Type} (E : B � Type)
{b1 b2 : B}� Path b1 b2 � (E b1 � E b2)

transport C id = λ x � x

Logically, transport is a “coercion” by propositional equality.
transport is functorial up to homotopy; e.g. there is a path
between transport C (β ◦ α) and transport C β o transport C α,
where o is function composition.

While the category-theoretic viewpoint on a type family
E : B � Type is as a functor from B to types, the topological
viewpoint is as a fibration. Given two spaces Ẽ and B, a
fibration over B is a continuous map p : Ẽ → B such that for
any e∈ Ẽ, any path in B starting at p(e) has a lifting to a path
in Ẽ starting at e (and these liftings are continuous/functorial).
Ẽ is called the total space, while B is called the base space.

To make the connection with type theory, it is helpful
to consider a slightly different characterization of fibrations:
Given a point b in the base space B, the fiber over b is the
space of points in the total space Ẽ that p maps to b (i.e.
the inverse image p−1(b)). Any path β from b1 to b2 in
B induces an operation from the fiber over b1 to the fiber
over b2. Namely, given e ∈ p−1(b1), we lift β starting at e
and consider the other endpoint of the resulting path; this is
well-defined up to homotopy. These operations respect path
composition, inversion, and so on, in a homotopical way,
yielding a “functor” E sending each b ∈ B to its fiber p−1(b).
Conversely, from any such functor E we can assemble a total
space Ẽ and a fibration p : Ẽ → B with the specified fibers
and path-lifting functions (for groupoids, this is called the
“Grothendieck construction”).



In type theory, the functor description E corresponds di-
rectly to a dependent type E : B � Type, where the type
E b represents the fiber over b, and transport E α represents
the operation induced by path lifting. Given such an E, the
fibration p : Ẽ → B is modeled by the Σ-type Σb:B.E(b) and
its first projection fst : Σb:B.E(b) � B. Thus total spaces are
Σ-types, which we will sometimes write as Σ E.

transport “computes” (up to paths) for each specific de-
pendent type, expressing the definition of path lifting for the
corresponding fibration; we need the following two rules:

transport-Path-right : {A : Type} {M N P : A}
(α ’ : Path N P) (α : Path M N)
� Path (transport (λ x � Path M x) α ’ α) (α ’ ◦ α)

transport-� : {Γ : Type} (A B : Γ � Type) {θ1 θ2 : Γ}
(δ : θ1' θ2) (f : A θ1 � B θ1)

� Path (transport (λ γ � (A γ) � B γ) δ f)
(transport B δ o f o (transport A (! δ )))

The former says that transporting with the family Path M - is
post-composition of paths; the latter that transporting at A � B
is given by pre-composing with transport at A (on the inverse)
and post-composing with transport at B. Both are proved by
matching the input paths as id and returning id.

C. Functions are Functorial

Simply-typed functions correspond to functors between
homotopy types, and have an action at all levels: a function
f : A � B has an action on points, paths, paths between paths,
etc. The action on points is ordinary function application
(f a : B when a : A), while the action on paths is given by

ap : {A B : Type} {M N : A}
(f : A � B) � Path {A}M N � Path {B} (f M) (f N)

ap f id = id

ap acts functorially on identities and composition of paths,
and also on identities and composition of functions.

Dependently typed functions f : (b : B) � E (b) correspond
to sections of the fibration E. In type-theoretic terms, such
a section is a simply-typed function f’ : B � Σ E such that
fst o f’ = (λ x � x) definitionally—the first component of the
result of f’ must be its argument. In one direction, given f as
above, we can define f’ : B � Σ E by λ b � (b, f b).

This correspondence helps us arrive at the the depen-
dently typed analogue of ap; the following discussion is a
bit difficult, but it is very important for understanding the
induction principle for the circle in Section IV. When f has
a dependent function type, and β : Path {B} b1 b2, then f b1
and f b2 should still be related by a path, but f b1 : E b1 and
f b2 : E b2 live in different fibers, i.e. they have different types.
Using the above correspondence between f and f’, we have
ap f’ β : Path {Σ E} (b1, f b1) (b2, f b2)—there is a path in the
total space between (b1, f b1) and (b2, f b2). However, we know
a little bit more: because fst o f’ = (λ x � x), it follows from
functoriality of ap that ap fst (ap f’ β) equals β . Topologically,
this means that ap f’ β projects down to β , or sits above β :

B

Σ E

fst

b1 b2
β

f’ b1 f’ b2
ap f’ β

Thus, to describe the result of applying f to β , it would be
intuitively plausible to ask for a path η̃ in Σ B such that ap fst
η̃ is β . However, is would need to mean definitional equality
here, which cannot be expressed as a type. Instead, we can
represent a path between e1 : E b1 and e2 : E b2 sitting above
β : Path b1 b2 by an η : Path {E b2} (transport E β e1) e2.
That is, we use transport to move e1 into the fiber over b2 and
then give a path in E b2. This representation is correct because
(b1,e1) is always connected to (b2, transport E β e1) by a path
over β (this follows by path induction on β ), and any path
η̃ from (b1,e1) to (b2,e2) in Σ E over β factors as this path
followed by our path η in the fiber over b2.

All this motivates the following the dependently typed
analogue of ap: applying f to β must determine a path between
f b1 and f b2 that sits above β , which is represented by the
following type:

apd : {B : Type} {E : B � Type} {b1 b2 : B}
(f : (x : B) � E x) (β : Path b1 b2)

� Path (transport E β (f b1)) (f b2)
apd f id = id

D. Paths Between Functions
Another kind of application is applying a path between

functions to an argument, to get a path between results:

ap' : ∀ {A} {B : A � Type} { f g : (x : A) � B x}
� Path f g � {x : A}� Path (f x) (g x)

ap' α {x} = ap (λ f � f x) α

λ' : ∀ {A} {B : A � Type} { f g : (x : A) � B x}
� ((x : A) � Path (f x) (g x))
� Path f g

Function extensionality λ' is the converse—functions are
equal if they are pointwise equal, or a path between functions
is a homotopy between them. Agda does not provide this,
so we postulate it.4 We should also give β /η-like equations
relating λ' and ap', but we do not need them in this paper.

E. Paths in the Universe
Voevodsky’s univalence axiom says roughly that isomorphic

types are equal, where "equal" means Path, and "isomorphic"
means a homotopy equivalence,5 or a pair of mutually inverse
functions:

4It is not strictly necessary to postulate it separately, because it follows
from Voevodsky’s univalence axiom.

5Homotopy equivalences have a slightly undesirable property: there can
be multiple different g, α , and β showing that a given f is a homotopy
equivalence. It is common to include an additional coherence cell that fixes
this problem. However, any homotopy equivalence can be improved by
constructing this coherence cell (at the cost of changing α or β ), so we
can suppress this detail.



record HEquiv (A B : Type) : Type where
constructor hequiv
field

f : A � B
g : B � A
α : (x : A) � Path (g (f x)) x
β : (y : B) � Path (f (g y)) y

Rather than stating the univalence axiom in full generality,
we specify only the consequences we need. First, a homotopy
equivalence determines a path between types:

univalence : {A B : Type}� HEquiv A B � Path A B

We need two facts about this axiom:

transport-univ : {A B : Type} (e : HEquiv A B)
� Path (transport (λ (A : Type) � A) (univalence e))

(HEquiv.f e)
!-univalence : {A B : Type} (e : HEquiv A B)

� Path (! (univalence e))
(univalence (!-equiv e))

The first says that transporting with the identity type family
λ A � A on an application of univalence applies the forward
direction of the equivalence. The second says that the inverse
of an application of univalence is the inverse equivalence of
e, where !-equiv (hequiv f g α β) is hequiv g f β α.

F. Integers

We represent integers as follows:

data Positive : Type where
One : Positive
S : (n : Positive) � Positive

data Int : Type where
Pos : (n : Positive) � Int
Zero : Int
Neg : (n : Positive) � Int

It is straightforward to define the successor, predecessor, and
addition functions by case-analysis/induction, and to prove that
succ and pred are mutually inverse, so we have

succ : Int � Int
pred : Int � Int
_+_ : Int � Int � Int
succ-pred : (n : Int) � Path (succ (pred n)) n
pred-succ : (n : Int) � Path (pred (succ n)) n

Therefore, we have a homotopy equivalence between Int and
itself given by adding and subtracting 1:

succEquiv : HEquiv Int Int
succEquiv = hequiv succ pred pred-succ succ-pred

III. INJECTIVITY AND DISJOINTNESS FOR COPRODUCTS

Consider the type of coproducts (binary sums):

data _+_ (A B : Type) : Type where
Inl : A → A + B
Inr : B → A + B

One may expect that constructors are disjoint (Inl a is never
equal to Inr b) and injective (Inl a equals Inl a’ only if a

equals a’). However, a well-known puzzling fact is that this
is not provable in pure Martin-Löf type theory, but requires
a universe or large eliminations. In this section, we use
injectivity and disjointness to introduce the methodology we
will use to calculate π1(S1). The similarities between this proof
and our calculation of π1(S1) offers insight into this puzzling
fact, as we explain in Section VI.

Fix A, B, and a:A. Injectivity and disjointness of Inl can be
phrased as follows (where Void is the empty type):
• Injectivity: If Path (Inl a) (Inl a’) then Path a a’.
• Disjointness: If Path (Inl a) (Inr b) then Void.

Thus, we can regard the injectivity-and-disjointness problem
as the question of characterizing the types Path (Inl a) e for all
e. One way to do this is to define a family of types describing
the desired characterization, which (for reasons to be explained
in Section V) we call Cover:

Cover : A + B → Type
Cover (Inl a’) = Path a a’
Cover (Inr ) = Void

Cover defines a family of types by case analysis, and therefore
depends on having a universe Type of types (this is the step
that is not possible in pure Martin-Löf type theory). We say
that Cover e classifies codes for a path in A + B from the fixed
base point Inl a to the point e.

Suppose that we can encode every path as a code:

encode : {e : A + B} → Path (Inl a) e → Cover e

Then injectivity and disjointness follow immediately, by the
expanding the definition of Cover:

inj : {a’ : A}� Path (Inl a) (Inl a’) � Path a a’
inj {a’} = encode {Inl a’}
dis : {b : B}� Path (Inl a) (Inr b) � Void
dis {b} = encode {Inr b}

However, it is easy to define encode, just by transporting
along Cover:

encode α = transport Cover α id

To encode α : Path (Inl a) e, we transport along α with the
type family Cover, which reduces the goal of constructing an
element of Cover e to that of Cover (Inl a). But Cover (Inl a)
is just Path a a, so we can choose id to complete the proof.

Ordinarily, one stops here, having proved injectivity and
disjointness, which makes sense when equality is thought
of as a mere proposition, without meaningful computational
content. However, in homotopy type theory, where paths have
real content, it is important to know not only that injec-
tivity and disjointness exist, but that they are equivalences.
For example, one might like to know that the paths in the
coproduct between Inls are equivalent to the paths in A (i.e.
that Path {A + B} (Inl a) (Inl a’) is equivalent to Path a a’), so
that one may reason about paths in A through their injection
into the coproduct. To this end, we will show that encode is
an equivalence:



enceqv : {e : A + B} → HEquiv (Path (Inl a) e) (Cover e)
enceqv = hequiv encode decode

decode-encode encode-decode

by defining decode and proofs decode-encode and
encode-decode. decode is defined as follows:

decode : {e : A + B}� Cover e � Path (Inl a) e
decode {Inl a’} α = ap Inl α

decode {Inr } ()

When e is Inl a’, we are given α of type Cover (Inl a’), or
Path a a’. Thus, we get a Path (Inl a) (Inl a’) by applying Inl to
α . When e is Inr, α has type Cover (Inr -), or Void, so the case
is vacuously true. We notate this using an absurd pattern ().

Next, we show that these two functions are mutually inverse.

A. Encoding after Decoding

First, we show that starting from a code (an element of the
cover), decoding it as a path, and then re-encoding it gives
back the original code. We write the proof using a chain of
equations, where the notation x'〈 a 〉 y'〈 b 〉 z � means there
is a path a from x to y and then b from y to z.

encode-decode : {e : A + B} (c : Cover e)
� encode {e} (decode {e} c)' c

encode-decode {Inl a’} α =
encode (decode α) -- (1)
'〈 id 〉

transport Cover (ap Inl α) id -- (2)
'〈 ap' (! (transport-ap-assoc’ Cover Inl α)) 〉

transport (Cover o Inl) α id -- (3)
'〈 id 〉

transport (λ a’ � Path a a’) α id -- (4)
'〈 transport-Path-right α id 〉

α ◦ id -- (5)
'〈 id 〉

α � -- (6)
encode-decode {Inr } ()

The proof begins by casing on e. In the Inl a’ case, α is a
path from a to a’. Between line 1 and line 2, we expand the
definitions of encode and decode, where for decode we know
the case for Inl is selected. Between line 2 and line 3, we
reassociate transport and ap: in general, transport (C o f) α is
the same as transport C (ap f α). Between lines 3 and 4, we
reduce the definition of transport on Inl. Between lines (4)
and (5), we apply the fact that transporting at Path a - is post-
composition. Between lines 5 and 6, we apply one of the unit
laws for composition, which gives the result.

The Inr case is vacuously true, because in this case we have
an element of Cover (Inr -), which is the empty type.

B. Decoding after Encoding

The other direction is

decode-encode : {e : A + B} (α : Path (Inl a) e)
� Path (decode {e} (encode {e} α)) α

Expanding the defnition of encode, we need a path from
(decode (transport Cover α id)) to α, where α is an arbi-
trary path from Inl (a) to e. The key idea is to apply path
induction: To prove the goal for an arbitrary e : A + B and

α : Path (Inl a) e, it suffices to consider the case where e
is Inl a and α is id. In this case, we have to show that
decode (encode id) is id, which is easy: it holds definitionally,
because both transport and ap compute to id on id, so id proves
the result. This argument is formalized as follows:

decode-encode {e} α =
path-induction
(λ e’ α ’ → Path (decode {e’} (encode {e’} α ’)) α ’)
id α

C. Summary

To review, the structure of this proof is: (1) Fix a base
point, and define the “cover”, which is a type of codes for
paths from the base point. (2) Define encode by transporting
along the cover, with an appropriate base case. (3) Define
decode by case-analysis/induction. (4) Prove that encoding
after decoding is the identity, using the induction principle for
codes. (5) Prove that decoding after encoding is the identity,
using path induction. We will follow this same template for
the circle.

IV. THE CIRCLE

In this section, we introduce the representation of the circle
in homotopy type theory. The natural numbers is an inductive
type, with generators zero and successor. One of the new
ingredients in homotopy type theory is higher-dimensional
inductive types (or just higher inductive types) [12, 13, 17]:
inductive types specified by generators not only for points
(terms), but also for paths.

One might draw the circle like this:

base
loop

It has a single point, and a single non-identity loop from this
base point to itself. This translates to a higher inductive type
with two generators:

base : S1

loop : Path {S1} base base

base is like an ordinary constructor for an inductive type, with
the same status as zero or successor. loop is similar, except it
generates a path on the circle. This generator can be used with
the generic groupoid structure to form additional paths, such as
! loop, loop ◦ loop, etc. Some of these paths are “reducible”—
for example, loop ◦ ! loop is homotopic to id.

A. Simple Elimination

That the type of natural numbers is inductively generated by
zero and successor is expressed by its elimination rule: to map
from the natural numbers into a type X, it suffices to specify an
element and an endomorphism of X, to be the images of zero
and successor. Similarly, the elimination rule for S1 expresses
that the circle is inductively generated by base and loop: to
map from the circle into any other type, it suffices to find a
point and a loop in that type:



S1-recursion : {X : Type}
(base’ : X) (loop’ : Path base’ base’)

� S1 � X

Elimination rules require accompanying β -reduction rules,
which for an inductive type state that "the elimination rule,
applied to a generator, computes to the corresponding branch".
In this case, this means that S1-recursion should compute to
base’ when applied to base and to loop’ when applied to loop:

(S1-recursion base’ loop’) base = base’
(S1-recursion base’ loop’) loop = loop’

However, the second equation does not quite make sense,
because S1-recursion base’ loop’ is a function S1 � X and loop
is a path in S1. Thus, we need to use ap to apply this function
to the path:

ap (S1-recursion base’ loop’) loop = loop’

The left-hand side is a path from
(S1-recursion base’ loop’) base to itself, which by the
first β -reduction is Path base’ base’; so the two sides have
the same type.

Thus, the computation rules follow the same general pattern
as for ordinary inductive types, except we need to use the
notion of application appropriate for the level of the generator.

B. Dependent Elimination

To fully characterize an inductive type, we need not just
recursion, but an induction principle (dependent elimination).
The induction principle for natural numbers says that to prove
a property of natural numbers (i.e. inhabit a type family
indexed over natural numbers), it suffices to prove that it
holds for zero and is preserved by successors. Similarly, the
induction rule for S1 says that to prove a property of points
on the circle, it suffices to prove that it holds for base and is
“preserved by going around the loop”.

S1-induction : (X : S1 � Type)
(base’ : X base)
(loop’ : Path (transport X loop base’) base’)

� (y : S1) � X y

Here, X is not just a type, but a dependent type/fibration over
the circle. The natural thing to ask is that base’, the image
of base, should show that X holds for base, or be a point in
the fiber over base. loop’ must be a path from base’ to itself,
but one that projects down to loop in the sense described in
Section II-C—recall that a path from base’ to itself that sits
above loop in the fibration X is represented by the type given to
loop’ above. To see that this is appropriate, note that the result
type (y : S1) � X y represents topologically a section of the
fibration Σ X � S1, which must take each point or path in S1 to
a point or path lying above it; thus we should expect to need
a path lying above loop as input. More syntactically, the point
is basically that the second computation rule for S1-induction
must be well-typed:

(S1-induction base’ loop’) base = base’
apd (S1-induction base’ loop’) loop = loop’

The dependent elimination rule also characterizes an in-
ductive type up to equivalence. S1-induction is equivalent
to asserting that for all X, the type of functions S1 � X is
naturally equivalent to the type of pairs (base’ : X, loop’ :
Path base’ base’) (the premises of S1-recursion). Because the
type theory ensures that functions are groupoid homomor-
phisms, this is exactly the universal property of the free ∞-
groupoid generated by one object and one loop on it.

C. Agda Implementation

Computer proof assistants such as Agda and Coq include
ordinary inductive types, but not yet higher inductive types.
One way to implement the latter is to simply postulate the
generators, the elimination rule, and the computation rules.
With this representation, the computation rules are paths
(propositional equalities), rather than definitional equalities.

Though the question of whether these rules should be
definitional equalities or paths has not yet been settled, it is
certainly more convenient to do proofs if they are definitional
equalities. While it is not possible to achieve this in Agda,
there is a trick using private data types that allows the base
(but not loop) rule to be definitional [8]. Because this simplifies
the proofs, we use this implementation, with a postulate

β loop/rec : {X : Type}
(base’ : X) (loop’ : Path base’ base’)

� Path (ap (S1-recursion base’ loop’) loop) loop’

for the β -rule for loop (and similarly for S1-induction).

V. THE FUNDAMENTAL GROUP OF THE CIRCLE

Given a space X with a specified base point x0, the funda-
mental group π1(X ,x0) (or just π1(X) when x0 is clear from
context) is the group of homotopy classes of loops from x0 to
itself, with path composition as the group operation. In type
theory, this corresponds to the type Path {X} x0 x0, except for
one caveat: For π1(X), the group has a set of elements, which
are paths quotiented by homotopy. This means that any two
paths that are homotopic are equal, but any non-trivial struc-
ture of paths between paths has been collapsed by quotienting.
On the other hand, the type Path x0 x0 may have interesting
paths between paths (i.e., the type Path {Path x0 x0} α β might
not be trivial). Thus, Path x0 x0 corresponds more closely to
what is called the loop space Ω1(X ,x0), the space of loops in
X based at x0, which also may still have non-trivial structure.

It is possible to construct the set π1(X) from the loop space
Ω1(X) by an operation called truncation (in classical topology,
this is just the set of connected components). However, for the
example we consider here, this is not necessary: what we will
prove is that the loop space of the circle Ω1(S1) is Z. Because
the truncation of Z is Z, applying truncation to both sides
shows that π1(S1) is also Z. Moreover, proving that Ω1(S1) is
Z immediately characterizes all the higher homotopy groups of
the circle, because the higher homotopy groups are determined
by iterating the loop space construction. Thus, if Ω1(S1) is Z,
then the higher homotopy groups of S1 must be the same as
the higher homotopy groups of Z, and therefore trivial.



In type theoretic terms, this means that our first goal is to
prove that the type Path {S1} base base is equivalent to Int.
We then check that this equivalence is a group homomorphism,
taking path composition to addition.

A. Classical and Type-theoretic Proofs

Our proof that Ω1(S1) is Z can be seen as a type-theoretic
version of a proof in classical homotopy theory. The classical
proof we start from is usually formulated using “universal
covering spaces”, but we will give an equivalent sketch using
fibrations which transfers more directly to type theory. Recall
the notion of a fibration from Section II-B. For any point
x0 ∈ B, there is a canonical path fibration p : Px0B→ B, where
the points of Px0 B are paths in B starting at x0, and the map
p selects the other endpoint of such a path. The space Px0B
is contractible, i.e. homotopy equivalent to a point, since we
can “retract” any path to its initial endpoint x0. Moreover, the
fiber over x0 is the loop space Ω1(B,x0).

Now consider the “winding” map w : R→ S1, which looks
like a helix projecting down onto the circle:

R

S1

w

base

0

1

2

The map w sends each point on the helix to the point on the
circle that it is “sitting above”; this map is a fibration, and
the fiber over each point is isomorphic to the integers. If we
lift the path that goes counterclockwise around the loop on
the bottom, we go up one level in the helix, incrementing
the integer in the fiber. Similarly, going clockwise around the
loop on the bottom corresponds to going down one level in
the helix, decrementing this count. This fibration is called the
universal cover of the circle.

Now a basic fact is that a map E1→ E2 of fibrations over B
which is a homotopy equivalence between E1 and E2 induces
a homotopy equivalence on fibers. Since R and PbaseS1 are
both contractible, they are homotopy equivalent, and thus the
fibers over base, Z and Ω1(S1), are isomorphic.

It is possible to formalize this classical proof directly in
type theory, by (1) defining the universal cover, (2) proving
that a homotopy equivalence between total spaces induces an
equivalence on fibers, and (3) proving that the total spaces of
both the path fibration and the cover are contractible (this was
the first proof of this result in homotopy type theory [18]).
However, it turns out to be simpler to explicitly construct the
encoding-decoding equivalence, following the template intro-
duced in Section III [9]. Both proofs use the same construction
of the cover (step 1 above). Where the classical proof induces

an equivalence on fibers from an equivalence between total
spaces (step 2), the type-theoretic proof constructs the inverse
map explicitly as a map between fibers. Where the classical
proof uses contractibility (step 3), the type-theoretic proof
uses path induction, circle induction, and integer induction.
These are the same tools used to prove contractibility—indeed,
path induction is contractibility of the path fibration composed
with transport—but it is more convenient to use them to
prove inverses directly. This proof is a good example of how
combining insights from homotopy theory and type theory can
simplify proofs and yield deeper insight.

B. The Universal Cover of the Circle

Recall that fibrations are represented by dependent types
(Section II-B). The path fibration PbaseS

1→ S1 is easy to rep-
resent: it is the dependent type sending x : S1 to Path base x.
The universal cover of the circle (the helix) requires a bit more
thought: since our “circle” is not a topological one, we don’t
have a “real line” that we can wrap around it. However, our
inductive definition of the circle gives us a different way to
define dependent types over it: by circle-recursion.

Cover : S1 � Type
Cover x = S1-recursion Int (univalence succEquiv) x

To define a function by circle recursion, we need to find a point
and a loop in the target. In this case, the target is Type, and
the point we choose is Int, corresponding to our expectation
that the fiber of the universal cover should be the integers. The
loop we choose is the successor/predecessor isomorphism on
Int, succEquiv (Section II), which by univalence determines a
path from Int to Int. Univalence is necessary for this part of
the proof, because we need a non-trivial loop from Int to Int.

It is immediate from this definition that Cover base is Int,
and we can verify that choosing succEquiv as the image of
loop gives the desired path-lifting action: transporting one way
along the cover is successor (going up one level in the helix),
and the other way is predecessor (going down one level):

transport-Cover-loop : Path (transport Cover loop) succ
transport-Cover-loop =

transport Cover loop
'〈 transport-ap-assoc Cover loop 〉

transport (λ x � x) (ap Cover loop)
'〈 ap (transport (λ x � x))

(β loop/rec Int (univalence succEquiv)) 〉
transport (λ x � x) (univalence succEquiv)
'〈 transport-univ 〉

succ �

transport-Cover-!loop : Path (transport Cover (! loop)) pred

For transport-Cover-loop, we re-associate, which creates a β -
redex ap Cover loop for S1-recursion. After reducing this, we
have a term of of the form transport (λ x � x) (univalence e),
which is a β -redex for univalence, and selects the “for-
ward” direction of the equivalence. We omit the proof for
transport-Cover-!loop, which is similar except for additional
reasoning about inverses, using !-univalence from Section II.

The cover can be seen as a type of codes for paths on the
circle. The next step is to define “encoding” and “decoding”



functions and prove that they are an equivalence between
Path base x and Cover x for all x : S1. This is a generalization
of the original statement we intended to prove, which was that
Path base base is equivalent to Cover base (the latter being,
by definition, Int).

C. Encoding

As in Section III, encode is defined by transporting in the
cover. The starting point needs to be an element of Cover base,
which is Int. In this case, a good choice is Zero6:

encode : {x : S1}� Path base x � Cover x
encode α = transport Cover α Zero

The instance encode’ = encode {base} has type
Path base base � Int, as we originally intended.

The interesting thing about this function is that it computes
a concrete number from a loop on the circle, when this loop
is represented using the abstract groupoidal framework of
homotopy type theory. To gain an intuition for how it does
this, observe that by the above lemmas, transport Cover loop
is succ and transport Cover (! loop) is pred. Further, transport
is functorial (Section II), so transport Cover (loop ◦ loop) is
(transport Cover loop) o (transport Cover loop), etc. Thus, when
α is a composition like

loop ◦ ! loop ◦ loop ◦ ...

transport Cover α will compute a composition of functions like

succ o pred o succ o ...

Applying this composition of functions to Zero will compute
the winding number of the path—how many times it goes
around the circle, with orientation marked by whether it is
positive or negative, after inverses have been canceled.

Thus, the computational content of encode follows from
the β -like rules for higher-inductive types and univalence,
and the action of transport on compositions and inverses. This
“computation” happens only up to paths in current homotopy
type theory, so we cannot actually run this program in Agda,
but an alternate formulation might take these equations as
definitional equalities [10].

D. Decoding

The first step in decoding is that, given an integer n, we
compute the n-fold composition loopn:

loop^ : Int � Path base base
loop^ Zero = id
loop^ (Pos One) = loop
loop^ (Pos (S n)) = loop ◦ loop^ (Pos n)
loop^ (Neg One) = ! loop
loop^ (Neg (S n)) = ! loop ◦ loop^ (Neg n)

At this point, if we were working naively, rather than with
Section III or the classical proof in mind, we might think
that this is enough. That is, since what we want overall is an
equivalence between Path base base and Int, we might expect

6We could choose another number as the base case besides Zero, but then
we would need to subtract it off when decoding.

to be able to prove that encode’ : Path base base � Int and
loop^ : Int � Path base base give an equivalence. The problem
comes in trying to prove the “decode after encode” direction:

decode-encode : {α : Path base base}
� Path (loop^ (encode’ α)) α

In Section III, we proved this step using path induction to
reduce α to the identity, which depends crucially on α having
one endpoint free—recall that path induction does not apply
to loops like a Path base base with both endpoints fixed! The
way to solve this problem is to state decode-encode generally
for all x:S1 and α : Path base x:

decode-encode : {x:S1} {α : Path base x}
� Path (loop^ (encode {x} α)) α

However, this does not type check as is, because loop^ works
only for Path base base, whereas here we need Path base x.
This gives a direct way to see the necessity of extending loop^
to a function with a more general type:

decode : {x : S1}� Cover x � Path base x

Of course, the template of Section III and the proof from
classical homotopy theory also lead us to expect to need such
a generalization.

Here is the definition of decode:

decode : {x : S1}� Cover x � Path base x
decode {x} =
S1-induction

(λ x’ � Cover x’ � Path base x’)
loop^
( transport (λ x’ � Cover x’ � Path base x’) loop loop^
' transport (λ x’ � Path base x’) loop

o loop^
o transport Cover (! loop)

' (λ p � loop ◦ p) o loop^ o transport Cover (! loop)
' (λ p � loop ◦ p) o loop^ o pred
' (λ n � loop ◦ (loop^ (pred n)))
' (λ n � loop^ n)
�)
x

decode’s first argument is an arbitrary point on the circle.
Thus, we proceed by circle induction, which requires (1) a
function Cover base → Path base base, which is just loop^,
and (2) a path showing that this function is preserved by
going around the loop. Formally, this means a path from
transport (λ x’ � Cover x’ � Path base x’) loop loop^ to loop^.

Above, we have shown the steps of reasoning required to
give such a path, eliding the proof terms, which we now
discuss informally. The path is constructed by composing
five steps of reasoning, between the six lines above, starting
from transport (λ x’ � Cover x’ � Path base x’) loop loop^.
From line 1 to line 2, we apply the definition of transport
when the outer connective of the type family is �, using
the lemma transport-� from Section II. This reduces the
transport to pre- and post-composition with transport at the
domain and range types. From line 2 to line 3, we apply the



definition of transport when the type family is Path base -
(called transport-Path-right above). From line 3 to line 4,
we apply transport-Cover-!loop. From line 4 to line 5, we
simply reduce the function composition. The final step is
the only significant one: it follows from associativity and
inverses of ◦, together with a lemma loop^-preserves-pred
which gives a Path (loop^ (pred n)) (! loop ◦ loop^ n) for all n.
This lemma is proved by a simple case analysis, again using
associativity/unit/inverse laws.

E. Encoding after Decoding

Computing encode o loop^ is comparatively straightforward.

encode-loop^ : (n : Int) � Path (encode (loop^ n)) n
encode-loop^ Zero = id
encode-loop^ (Pos One) = ap' transport-Cover-loop
encode-loop^ (Pos (S n)) =

encode (loop^ (Pos (S n)))
'〈 id 〉

transport Cover (loop ◦ loop^ (Pos n)) Zero
'〈 ap' (transport-◦ Cover loop (loop^ (Pos n))) 〉

transport Cover loop
(transport Cover (loop^ (Pos n)) Zero)

'〈 ap' transport-Cover-loop 〉
succ (transport Cover (loop^ (Pos n)) Zero)
'〈 id 〉

succ (encode (loop^ (Pos n)))
'〈 ap succ (encode-loop^ (Pos n)) 〉

succ (Pos n) �

The proof is a simple induction on Int, using functoriality of
transport and the transport-Cover-loop lemmas. We omit the
cases for Neg, which are analogous.

To prove the equivalence of Path base base and Int, this
is sufficient. If we additionally want an equivalence between
Path base x and Cover x for general x, then we need to show
that encode-loop^ extends to

encode-decode : {x : S1}� (c : Cover x)
� Path (encode (decode {x} c)) c

encode-decode {x} = S1-induction
(λ (x : S1) � (c : Cover x)

� Path (encode {x} (decode {x} c)) c)
encode-loop^ proof x

This can be proved using circle induction, with encode-loop^
as the image of base. The proof that encode-loop^ is compati-
ble with the loop requires a path between two paths in Int.
The easiest way to define this is to observe that all paths
between paths in Int are equal (that is, Int is an hset or
satisfies uniqueness of identity proofs), which can be proved
by showing that it has decidable equality and then applying
Hedberg’s theorem [5].

F. Decoding after Encoding

As in Section III, the proof for decoding after encoding is
a single path induction: Suppose α is id : Path base base.
Then encode {base} id = Zero, and decode {base} Zero =
loop^ Zero = id, so we need a Path id id—which can be id.

decode-encode : {x : S1} (α : Path base x)
� Path (decode (encode α)) α

decode-encode {x} α =
path-induction

(λ (x’ : S1) (α ’ : Path base x’)
� Path (decode (encode α ’)) α ’)

id α

decode-encode can be seen as an η-rule/induction principle
for paths on the circle, which states that every loop on the
circle is of the form loop^ n for some n:

all-loops : (α : Path base base) � Path α (loop^ (encode α))
all-loops α = ! (decode-encode α)

Consequently, to prove a statement for every Path base base,
it suffices to prove the statement for every path loop^ n, which
can be done using integer induction on n. Recall that the proof
of decode-encode depends crucially on the fact that decode
is defined for a path with a free endpoint. Thus, the essential
parts of this proof are the path induction used here, and the
circle induction used to define decode from loop^. It is crucial
to the methodology for working in homotopy type theory that
this combination of circle and path induction suffices to prove
this induction principle for loops on the circle, as we discuss
further in Section VI.

G. Summary

These lemmas give a homotopy equivalence between
Path base base and Int, establishing that the loop space of
the circle is equivalent to Int:

Ω1 [S1 ] -is-Int : HEquiv (Path base base) Int
Ω1 [S1 ] -is-Int =

hequiv encode decode decode-encode encode-loop^

To identify the fundamental group of S1 with Int as a
group, we also must check that this equivalence is a group
homomorphism. A bijection between carriers is a group ho-
momorphism if one of the functions preserves composition (it
then necessarily preserves inverses and the unit because these
are unique). Thus, it suffices to show that

preserves-composition : (n m : Int)
� Path (loop^ (n + m)) (loop^ n ◦ loop^ m)

The proof is an easy induction, using associativity and unit
of ◦, the lemma loop^-preserves-pred defined above, and an
analogous lemma that loop^ (succ n) is loop ◦ loop^ n.

Categorically, we can understand the proof we have just
given as follows: The higher-inductive type S1 is a descrip-
tion of the free ∞-groupoid with one morphism, represented
abstractly using the groupoidal framework of type theory. The
proof we have given shows that type theory is sufficiently
powerful to relate this abstract description to a concrete
description of the free group on one generator, as the inductive
type Int equipped with the function +.

VI. CONCLUSION

In this paper, we have described a technique for charac-
terizing the path spaces of inductive types in type theory, and
applied it to two examples. For coproducts, we obtain injectiv-
ity and disjointness of constructors. For the circle, we compute



its fundamental group, a basic theorem of algebraic topology.
The proof for the circle illustrates the use of homotopy type
theory as a logic of homotopy theory: using higher inductive
types and the ambient groupoidal framework of the type
theory, we can represent homotopy types and prove interesting
mathematical properties of them. Our technique extends to
other types: Kuen-Bang Hou (Favonia), Chris Kapulkin, Carlo
Angiuli, and the first author have used the same methodology
to prove that the fundamental group of a bouquet of n circles (n
circles around a single point) is the free group on n generators.

Seeing injectivity-and-disjointness in this context provides
a topological explanation for the use of a universe to prove
them: Injectivity and disjointness characterize a path space.
Topological proofs characterizing a path space typically con-
sider an entire path fibration at once (like Path (Inl a)−), rather
than a path with both endpoints fixed (like Path (Inl a) (Inl a′)),
and show that the entire path fibration is equivalent to an
alternate fibration (our “codes”). The codes fibration (like the
universal cover of the circle) is represented in type theory
using induction, which requires a universe or large elimination.

Moreover, the fact that a universe is necessary has analogues
in higher dimensions: it is the first rung on a ladder of
categorical nondegeneracy. Without a universe, the category
of types could be a poset, in which case disjointness at least
would fail. Without a univalent universe, the ∞-category of
types could be a 1-category, in which case the computation
of the fundamental group of the circle would fail. In general,
path spaces of inductive types are only “correct” when the
category of types is sufficiently rich to support them.

In this paper, we have taken an approach to inductive types
where the characterization of the path space is a theorem, not
part of the definition. One might wonder whether we could
take the opposite approach: For coproducts, we might include
injectivity and disjointness of Inl and Inr in the definition;
for the circle, we might include an elimination rule for paths
Path{S1}xy expressing that they are freely generated by loop.
However, there are two problems with this. Conceptually, a
(higher) inductive type is one freely generated structure, even
though it may have more than one kind of generator. As
such, it should have only one elimination rule, expressing
its universal property. More practically, calculating homotopy
groups of a space in algebraic topology can be a significant
mathematical theorem. For example, for the two-dimensional
sphere, π1 is trivial, π2 is Z (like the circle, one level up), but
π3 is also Z, even though the description of the sphere does not
include any generators at this level. This is due to something
called the Hopf fibration, which arises from the interaction of
the lower-dimensional generators with the ∞-groupoid laws.
Indeed, there is no general formula known for the homotopy
groups of higher-dimensional spheres, so we would not know
what characterization to include in the definition, even if we
wanted to.

Fortunately, the examples in this paper suggest that the paths
in inductive types will always be determined by the inductive
description and ambient ∞-groupoid laws—so characterizing
the path spaces explicitly in the definition would be at best

redundant, and at worst inconsistent. Thus, we can pose these
questions about homotopy groups using higher inductive types,
and hope to use homotopy type theory to answer them.
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