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Pattern Matching and Abstract Types

It is common to define an abstract type:

type Seq a

empty :: Seq a

<| :: a → Seq a → Seq a

|> :: Seq a → a → Seq a

...

Dan Licata AngloHaskell 2007 1



Pattern Matching and Abstract Types

And a concrete view of it for pattern matching:

type Seq a

...

data ViewL a = EmptyL

| a :< (Seq a)

viewl :: Seq a → ViewL a
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Pattern Matching and Abstract Types

And a concrete view of it for pattern matching:

type Seq a

...

data ViewL a = EmptyL

| a :< (Seq a)

viewl :: Seq a → ViewL a

But using the view is a little inconvenient
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Using the View

Case instead of equations:
map f s = case viewl s of

EmptyL → empty

x :< xs → f x <| map f xs
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Using the View

Case instead of equations:
map f s = case viewl s of

EmptyL → empty

x :< xs → f x <| map f xs

Or use pattern guards:

map f s | EmptyL <- viewl s = empty

map f s | x :< xs <- viewl s = f x <| map f xs
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Using the View

Case instead of equations:
map f s = case viewl s of

EmptyL → empty

x :< xs → f x <| map f xs

Or use pattern guards:

map f s | EmptyL <- viewl s = empty

map f s | x :< xs <- viewl s = f x <| map f xs

But neither of these nest well
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View Patterns to the Rescue

Idea: apply a function inside a pattern:

map f (viewl → EmptyL) = empty

map f (viewl → x :< xs) = f x <| map f xs
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View Patterns to the Rescue

Idea: apply a function inside a pattern:

map f (viewl → EmptyL) = empty

map f (viewl → x :< xs) = f x <| map f xs

prs :: Seq a → Seq (a,a)

prs(v → EmptyL) = empty

prs(v → x :< (v → EmptyL)) = empty

prs(v → x :< (v → x’ :< xs)) = (x,x’) <| prs xs

v = viewl
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View Patterns to the Rescue

Or even, using an extension we’ll talk about later:

prs :: Seq a → Seq (a,a)

prs( → EmptyL) = empty

prs( → x :< ( → EmptyL)) = empty

prs( → x :< ( → x’ :< xs)) = (x,x’) <| prs xs
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View Patterns in GHC

1. What are view patterns?

2. How do you use them?

3. How are they implemented?
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View Patterns in GHC

1. What are view patterns?

2. How do you use them?

3. How are they implemented?
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View Patterns

New form of pattern: (expr → pat)

Typing: If expr has type A → B

and pat matches a B

then (expr → pat) matches an A.
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View Patterns

New form of pattern: (expr → pat)

Typing: If expr has type A → B

and pat matches a B

then (expr → pat) matches an A.

Evaluation: To match (expr → pat) against v ,
match pat against (expr v) .
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View Patterns

New form of pattern: (expr → pat)

Typing: If expr has type A → B

and pat matches a B

then (expr → pat) matches an A.

Evaluation: To match (expr → pat) against v ,
match pat against (expr v) .

Scoping: The variables bound by (expr → pat)

are the variables bound by pat .
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View Patterns

New form of pattern: (expr → pat)

Typing: If expr has type A → B

and pat matches a B

then (expr → pat) matches an A.

Evaluation: To match (expr → pat) against v ,
match pat against (expr v) .

Scoping: The variables bound by (expr → pat)

are the variables bound by pat .

But what’s in scope in expr?
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Scoping

It’s useful for “earlier” variables to be bound “later” in the
pattern.

Parametrized views:

bits :: Int → ByteStr → Maybe (Word, ByteStr)

parsePacket :: Int → ByteStr → ...

parsePacket n (bits n → Just (hdr, bs)) = ...
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Scoping

It’s useful for “earlier” variables to be bound “later” in the
pattern.

Pattern synonyms/first-class patterns:

f :: (A → Maybe B) → A → ...

f g (g → Just n) = ...

Dan Licata AngloHaskell 2007 17



Scoping

Rule: variables to the left (in tuples, constructors, curried
arguments) are in scope

OK BAD
(x, x → y) (x → y, x)

C x (x → y) C (x → y) x

f x (x -> y) = ... f (x → y) x = ...
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Scoping

But expressions in let bindings may not refer to other
bindings from the same let .
OK
let x = ... in

let (x -> y) = ... in y

BAD
let x = ... in

(x -> y) = ... in y

(More on this later)
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One Little Extension

Writing the view expression can be tiresome:

prs :: Seq a → Seq (a,a)

prs(v → EmptyL) = empty

prs(v → x :< (v → EmptyL)) = empty

prs(v → x :< (v → x’ :< xs)) = (x,x’) <| prs xs

v = viewl
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One Little Extension

Writing the view expression can be tiresome:

prs :: Seq a → Seq (a,a)

prs(v → EmptyL) = empty

prs(v → x :< (v → EmptyL)) = empty

prs(v → x :< (v → x’ :< xs)) = (x,x’) <| prs xs

v = viewl

Can we avoid writing it some of the time?
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Implicit View Function

Define a type class

class View a b where

view :: a → b

Then ( → pat) means (view → pat)
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Implicit View Function

Define a type class

class View a b where

view :: a → b

Then ( → pat) means (view → pat)

instance View (Seq a) (ViewL a) where

view = viewl

...

prs( → x :< ( → x’ :< xs)) = (x,x’) <| prs xs
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Implicit View Function

Define a type class

class View a b where

view :: a → b

• Add instances for the “canonical” views of abstract
types

• Maybe a functional dependency in one direction or
the other? Otherwise infer
prs :: ∀a,b. View a (ViewL b) =>

a -> Seq (b,b)
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And That’s It

One new form of pattern, and one new type class in the
prelude

• No new form of declaration (e.g. ’view’ or ’pattern
synonym’)

• View expressions are ordinary Haskell functions:
don’t need to be written with view patterns in mind
(e.g., Data.Sequence) and can be called from
ordinary Haskell code

• No changes to import or export mechanisms

• Static and dynamic semantics are simple
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View Patterns in GHC

1. What are view patterns?

2. How do you use them?

3. How are they implemented?
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Join lists

data JList a = Empty

| Single a

| Join (JList a) (JList a)

data JListView a = Nil | Cons a (JList a)

The view is used in its own definition:
...

view (Join (view -> Cons xh xt) y) =

Cons xh (Join xt y)

view (Join (view -> Nil) y) = view y
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Partial Views

Use Maybe-targeted views for pattern-matching ad-hoc
data such as XML or strings:

ifs :: String -> Maybe Integer

ffs :: String -> Maybe Float

add (ifs -> Just n, ifs -> Just n’) = ...

add (ffs -> Just f, ffs -> Just f’) = ...

add _ = print “whoops, bad string”
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Other (ab)uses

Both patterns:
both :: a -> (a,a)

both x = (x,x)

f (both -> (xs, h : t)) = h : (xs ++ t)

Iterator style:
map f [] = []

map f (x : (map f -> xs)) = f x : xs
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Other (ab)uses

Both patterns:
both :: a -> (a,a)

both x = (x,x)

f (both -> (xs, h : t)) = h : (xs ++ t)

Iterator style:
map f [] = []

map f (x : (map f -> xs)) = f x : xs

See the GHC Wiki for more idioms (n+k patterns, named
constants,...)
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View Patterns in GHC

1. What are view patterns?

2. How do you use them?

3. How are they implemented?
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Static Semantics

GHC checks lexical scoping in a pass called the
renamer, before type checking

• Patterns were not already in the recursive loop with
expressions

• Some plumbing needed to change to deliver the
appropriate contexts for checking view expressions

Type checking was comparatively easy!
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Desugaring into Core

GHC compiles pattern matching using the matrix
algorithm in the SPJ/Wadler chapter of [SPJ’87].

1. Match a matrix of patterns
p11 . . .
...
p1n . . .

against a vector of variables (x1, . . .)

2. Identify the maximal group of rows from the top
whose leftmost patterns can be put into the same
case statement.
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Desugaring into Core

View patterns with the same expression can be put in the
same case. When top maximal group is
e → p1 . . .
...
e → pn . . .

1. Recursively match (x′
, . . .) against

p1 . . .
...
pn . . .

2. Wrap (let x
′ = e x in . . .) around it
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Efficiency of Generated Code

So view functions that line up in a column only get
applied once:

prs :: Seq a → Seq (a,a)

prs(v → EmptyL) = empty

prs(v → x :< (v → EmptyL)) = empty

prs(v → x :< (v → x’ :< xs)) = (x,x’) <| prs xs

desugars into the 2 applications of v that you’d write ex-

plicitly
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View Patterns in GHC

1. What are view patterns?

2. How do you use them?

3. How are they implemented?
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Related Work

View patterns have been implemented in HaMLet-S
[Rossberg], Humlock [Murphy et al.], and F# [Syme et al.]

Lots of other proposals for views/pattern synonyms:
Wadler Burton et al. Okasaki Erwig
Palao et al. Odersky et al. Reppy et al. Tullsen
. . .

See the GHC Wiki for discussion and comparison
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View patterns

1. Make it a little easier to pattern-match abstract types

2. Provide a sort of first-class pattern as well

3. Are a simple extension that’s easy to implement

Will be in GHC HEAD within the next couple of weeks
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Thanks for listening!
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