
View Patterns in GHC

Dan Licata Simon Peyton-Jones

MSR Cambridge

Pattern Matching and Abstract Types

It is common to define an abstract type:

type Seq a

empty :: Seq a

<| :: a → Seq a → Seq a

|> :: Seq a → a → Seq a

...

Dan Licata AngloHaskell 2007 1

Pattern Matching and Abstract Types

And a concrete view of it for pattern matching:

type Seq a

...

data ViewL a = EmptyL

| a :< (Seq a)

viewl :: Seq a → ViewL a

Dan Licata AngloHaskell 2007 2

Pattern Matching and Abstract Types

And a concrete view of it for pattern matching:

type Seq a

...

data ViewL a = EmptyL

| a :< (Seq a)

viewl :: Seq a → ViewL a

But using the view is a little inconvenient

Dan Licata AngloHaskell 2007 3

Using the View

Case instead of equations:
map f s = case viewl s of

EmptyL → empty

x :< xs → f x <| map f xs

Dan Licata AngloHaskell 2007 4

Using the View

Case instead of equations:
map f s = case viewl s of

EmptyL → empty

x :< xs → f x <| map f xs

Or use pattern guards:

map f s | EmptyL <- viewl s = empty

map f s | x :< xs <- viewl s = f x <| map f xs

Dan Licata AngloHaskell 2007 5

Using the View

Case instead of equations:
map f s = case viewl s of

EmptyL → empty

x :< xs → f x <| map f xs

Or use pattern guards:

map f s | EmptyL <- viewl s = empty

map f s | x :< xs <- viewl s = f x <| map f xs

But neither of these nest well

Dan Licata AngloHaskell 2007 6

View Patterns to the Rescue

Idea: apply a function inside a pattern:

map f (viewl → EmptyL) = empty

map f (viewl → x :< xs) = f x <| map f xs

Dan Licata AngloHaskell 2007 7

View Patterns to the Rescue

Idea: apply a function inside a pattern:

map f (viewl → EmptyL) = empty

map f (viewl → x :< xs) = f x <| map f xs

prs :: Seq a → Seq (a,a)

prs(v → EmptyL) = empty

prs(v → x :< (v → EmptyL)) = empty

prs(v → x :< (v → x’ :< xs)) = (x,x’) <| prs xs

v = viewl

Dan Licata AngloHaskell 2007 8

View Patterns to the Rescue

Or even, using an extension we’ll talk about later:

prs :: Seq a → Seq (a,a)

prs(→ EmptyL) = empty

prs(→ x :< (→ EmptyL)) = empty

prs(→ x :< (→ x’ :< xs)) = (x,x’) <| prs xs

Dan Licata AngloHaskell 2007 9

View Patterns in GHC

1. What are view patterns?

2. How do you use them?

3. How are they implemented?

Dan Licata AngloHaskell 2007 10

View Patterns in GHC

1. What are view patterns?

2. How do you use them?

3. How are they implemented?

Dan Licata AngloHaskell 2007 11

View Patterns

New form of pattern: (expr → pat)

Typing: If expr has type A → B

and pat matches a B

then (expr → pat) matches an A.

Dan Licata AngloHaskell 2007 12

View Patterns

New form of pattern: (expr → pat)

Typing: If expr has type A → B

and pat matches a B

then (expr → pat) matches an A.

Evaluation: To match (expr → pat) against v ,
match pat against (expr v) .

Dan Licata AngloHaskell 2007 13

View Patterns

New form of pattern: (expr → pat)

Typing: If expr has type A → B

and pat matches a B

then (expr → pat) matches an A.

Evaluation: To match (expr → pat) against v ,
match pat against (expr v) .

Scoping: The variables bound by (expr → pat)

are the variables bound by pat .

Dan Licata AngloHaskell 2007 14

View Patterns

New form of pattern: (expr → pat)

Typing: If expr has type A → B

and pat matches a B

then (expr → pat) matches an A.

Evaluation: To match (expr → pat) against v ,
match pat against (expr v) .

Scoping: The variables bound by (expr → pat)

are the variables bound by pat .

But what’s in scope in expr?

Dan Licata AngloHaskell 2007 15

Scoping

It’s useful for “earlier” variables to be bound “later” in the
pattern.

Parametrized views:

bits :: Int → ByteStr → Maybe (Word, ByteStr)

parsePacket :: Int → ByteStr → ...

parsePacket n (bits n → Just (hdr, bs)) = ...

Dan Licata AngloHaskell 2007 16

Scoping

It’s useful for “earlier” variables to be bound “later” in the
pattern.

Pattern synonyms/first-class patterns:

f :: (A → Maybe B) → A → ...

f g (g → Just n) = ...

Dan Licata AngloHaskell 2007 17

Scoping

Rule: variables to the left (in tuples, constructors, curried
arguments) are in scope

OK BAD
(x, x → y) (x → y, x)

C x (x → y) C (x → y) x

f x (x -> y) = ... f (x → y) x = ...

Dan Licata AngloHaskell 2007 18

Scoping

But expressions in let bindings may not refer to other
bindings from the same let .
OK
let x = ... in

let (x -> y) = ... in y

BAD
let x = ... in

(x -> y) = ... in y

(More on this later)

Dan Licata AngloHaskell 2007 19

One Little Extension

Writing the view expression can be tiresome:

prs :: Seq a → Seq (a,a)

prs(v → EmptyL) = empty

prs(v → x :< (v → EmptyL)) = empty

prs(v → x :< (v → x’ :< xs)) = (x,x’) <| prs xs

v = viewl

Dan Licata AngloHaskell 2007 20

One Little Extension

Writing the view expression can be tiresome:

prs :: Seq a → Seq (a,a)

prs(v → EmptyL) = empty

prs(v → x :< (v → EmptyL)) = empty

prs(v → x :< (v → x’ :< xs)) = (x,x’) <| prs xs

v = viewl

Can we avoid writing it some of the time?

Dan Licata AngloHaskell 2007 21

Implicit View Function

Define a type class

class View a b where

view :: a → b

Then (→ pat) means (view → pat)

Dan Licata AngloHaskell 2007 22

Implicit View Function

Define a type class

class View a b where

view :: a → b

Then (→ pat) means (view → pat)

instance View (Seq a) (ViewL a) where

view = viewl

...

prs(→ x :< (→ x’ :< xs)) = (x,x’) <| prs xs

Dan Licata AngloHaskell 2007 23

Implicit View Function

Define a type class

class View a b where

view :: a → b

• Add instances for the “canonical” views of abstract
types

• Maybe a functional dependency in one direction or
the other? Otherwise infer
prs :: ∀a,b. View a (ViewL b) =>

a -> Seq (b,b)

Dan Licata AngloHaskell 2007 24

And That’s It

One new form of pattern, and one new type class in the
prelude

• No new form of declaration (e.g. ’view’ or ’pattern
synonym’)

• View expressions are ordinary Haskell functions:
don’t need to be written with view patterns in mind
(e.g., Data.Sequence) and can be called from
ordinary Haskell code

• No changes to import or export mechanisms

• Static and dynamic semantics are simple

Dan Licata AngloHaskell 2007 25

View Patterns in GHC

1. What are view patterns?

2. How do you use them?

3. How are they implemented?

Dan Licata AngloHaskell 2007 26

Join lists

data JList a = Empty

| Single a

| Join (JList a) (JList a)

data JListView a = Nil | Cons a (JList a)

The view is used in its own definition:
...

view (Join (view -> Cons xh xt) y) =

Cons xh (Join xt y)

view (Join (view -> Nil) y) = view y

Dan Licata AngloHaskell 2007 27

Partial Views

Use Maybe-targeted views for pattern-matching ad-hoc
data such as XML or strings:

ifs :: String -> Maybe Integer

ffs :: String -> Maybe Float

add (ifs -> Just n, ifs -> Just n’) = ...

add (ffs -> Just f, ffs -> Just f’) = ...

add _ = print “whoops, bad string”

Dan Licata AngloHaskell 2007 28

Other (ab)uses

Both patterns:
both :: a -> (a,a)

both x = (x,x)

f (both -> (xs, h : t)) = h : (xs ++ t)

Iterator style:
map f [] = []

map f (x : (map f -> xs)) = f x : xs

Dan Licata AngloHaskell 2007 29

Other (ab)uses

Both patterns:
both :: a -> (a,a)

both x = (x,x)

f (both -> (xs, h : t)) = h : (xs ++ t)

Iterator style:
map f [] = []

map f (x : (map f -> xs)) = f x : xs

See the GHC Wiki for more idioms (n+k patterns, named
constants,...)

Dan Licata AngloHaskell 2007 30

View Patterns in GHC

1. What are view patterns?

2. How do you use them?

3. How are they implemented?

Dan Licata AngloHaskell 2007 31

Static Semantics

GHC checks lexical scoping in a pass called the
renamer, before type checking

• Patterns were not already in the recursive loop with
expressions

• Some plumbing needed to change to deliver the
appropriate contexts for checking view expressions

Type checking was comparatively easy!

Dan Licata AngloHaskell 2007 32

Desugaring into Core

GHC compiles pattern matching using the matrix
algorithm in the SPJ/Wadler chapter of [SPJ’87].

1. Match a matrix of patterns
p11 . . .
...
p1n . . .

against a vector of variables (x1, . . .)

2. Identify the maximal group of rows from the top
whose leftmost patterns can be put into the same
case statement.

Dan Licata AngloHaskell 2007 33

Desugaring into Core

View patterns with the same expression can be put in the
same case. When top maximal group is
e → p1 . . .
...
e → pn . . .

1. Recursively match (x′
, . . .) against

p1 . . .
...
pn . . .

2. Wrap (let x
′ = e x in . . .) around it

Dan Licata AngloHaskell 2007 34

Efficiency of Generated Code

So view functions that line up in a column only get
applied once:

prs :: Seq a → Seq (a,a)

prs(v → EmptyL) = empty

prs(v → x :< (v → EmptyL)) = empty

prs(v → x :< (v → x’ :< xs)) = (x,x’) <| prs xs

desugars into the 2 applications of v that you’d write ex-

plicitly

Dan Licata AngloHaskell 2007 35

View Patterns in GHC

1. What are view patterns?

2. How do you use them?

3. How are they implemented?

Dan Licata AngloHaskell 2007 36

Related Work

View patterns have been implemented in HaMLet-S
[Rossberg], Humlock [Murphy et al.], and F# [Syme et al.]

Lots of other proposals for views/pattern synonyms:
Wadler Burton et al. Okasaki Erwig
Palao et al. Odersky et al. Reppy et al. Tullsen
. . .

See the GHC Wiki for discussion and comparison

Dan Licata AngloHaskell 2007 37

View patterns

1. Make it a little easier to pattern-match abstract types

2. Provide a sort of first-class pattern as well

3. Are a simple extension that’s easy to implement

Will be in GHC HEAD within the next couple of weeks

Dan Licata AngloHaskell 2007 38

Thanks for listening!

Dan Licata AngloHaskell 2007 39

	Pattern Matching and Abstract Types
	Pattern Matching and Abstract Types
	Pattern Matching and Abstract Types
	Using the View
	Using the View
	Using the View
	View Patterns to the Rescue
	View Patterns to the Rescue
	View Patterns to the Rescue
	View Patterns in GHC
	View Patterns in GHC
	View Patterns
	View Patterns
	View Patterns
	View Patterns
	Scoping
	Scoping
	Scoping
	Scoping
	One Little Extension
	One Little Extension
	Implicit View Function
	Implicit View Function
	Implicit View Function
	And That's It
	View Patterns in GHC
	Join lists
	Partial Views
	Other (ab)uses
	Other (ab)uses
	View Patterns in GHC
	Static Semantics
	Desugaring into Core
	Desugaring into Core
	Efficiency of Generated Code
	View Patterns in GHC
	Related Work
	View patterns
	

