
Canonicity for 2-Dimensional Type Theory

Daniel R. Licata∗ Robert Harper ∗

Carnegie Mellon University
{drl,rwh}@cs.cmu.edu

Abstract
Higher-dimensional dependent type theory enriches conventional
one-dimensional dependent type theory with additional structure
expressing equivalence of elements of a type. This structure may
be employed in a variety of ways to capture rather coarse identi-
fications of elements, such as a universe of sets considered mod-
ulo isomorphism. Equivalence must be respected by all families of
types and terms, as witnessed computationally by a type-generic
program. Higher-dimensional type theory has applications to code
reuse for dependently typed programming, and to the formalization
of mathematics. In this paper, we develop a novel judgemental for-
mulation of a two-dimensional type theory, which enjoys a canon-
icity property: a closed term of boolean type is definitionally equal
to true or false. Canonicity is a necessary condition for a compu-
tational interpretation of type theory as a programming language,
and does not hold for existing axiomatic presentations of higher-
dimensional type theory. The method of proof is a generalization
of the NuPRL semantics, interpreting types as syntactic groupoids
rather than equivalence relations.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages

General Terms Languages, Theory

1. Introduction
A growing body of work [4, 8, 9, 12, 14, 15, 22–24] on intensional
dependent type theory [11, 16, 18] elucidates the latent higher-
dimensional structure given by the Martin-Löf intensional identity
type. The identity type, IdAM N , is the type of evidence for equiv-
alence of the objects M and N of type A. The elimination rule
for the identity type ensures that type families indexed by A re-
spect equivalence at A: if F is an A-indexed family of types, and
α : IdA M N , then F [M ] and F [N ] are isomorphic types. Sim-
ilarly, families of objects indexed by A must respect equivalence

∗ This research was sponsored in part by the National Science Foundation
under grant number CCF-0702381 and CCF-1116703 and by the Microsoft-
Carnegie Mellon Center for Computational Thinking. The views and con-
clusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or im-
plied, of any sponsoring institution, the U.S. government or any other entity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

at A: mappings are functional in their domain, in that application
to equivalent elements yields equivalent results. Objects of iden-
tity type are themselves subject to higher equivalences inhabiting
the iterated identity type IdIdA M N α β, and so on, indefinitely.
This higher-dimensional structure is the key to establishing sur-
prisingly close connections between type theory, category theory
(interpreting types as higher-dimensional groupoids, and equiva-
lences as morphisms), and homotopy theory (interpreting types as
topological spaces, and equivalences as paths). The interplay be-
tween these viewpoints is a source of much current investigation.

However, experience with intensional type theory, both as a
programming formalism and as a language for formalizing math-
ematics, suggests that the general principles of equivalence orig-
inally proposed by Martin-Löf are too restrictive. For example,
equivalence at function types amounts to definitional equality,
whereas in mathematical practice one tends to identify functions
extensionally—two functions are equal iff they take equal argu-
ments to equal results. Equivalence of types themselves is similarly
restrictive. Formally, this is typically considered as equivalence for
members of a universe, which is a type whose elements themselves
determine types. The standard account of equivalence for universes
amounts to equivalence of presentations: two types are equivalent
if they are written the same way. However, it is common mathe-
matical practice to identify isomorphic sets—to treat two sets as
interchangable when there are functions back and forth that com-
pose to the identity.

This motivates extensions of intensional type theory with
coarser notions of equivalence: Altenkirch [2], Altenkirch et al.
[3], Hofmann [10] investigate functional extensionality. Voevod-
sky’s univalence axiom [23] goes further by treating elements of
universes as equivalent whenever the spaces they determine are
weakly equivalent in the sense of homotopy theory. A particular
case of univalence, considered here, arises when considering the
universe set of extensional sets: two sets are deemed equivalent iff
they are isomorphic. This amounts to introducing a new canoni-
cal form, iso(f, g, α, β), of the identity type Idset A B, given by
functions f : A → B and g : B → A and evidence α and β
witnessing their inverse relationship to one another. However, this
represents a more significant departure from the traditional view of
equivalence than might at first be apparent. Since two sets can be
isomorphic in many ways, isomorphism must be treated as a com-
putationally relevant structure imposed on two sets, rather than as
a computationally irrelevant property of them. For example, the set
2 of booleans is isomorphic to itself both by the identity function
and by the negation function, which swaps the two booleans. Thus,
the type Idset 2 2 is not a proof-irrelevant proposition, but has real
computational content. A higher-dimensional type is one, such as
set, whose identity type has computational content.

Higher-dimensional type theory has several applications in pro-
gramming and formal mathematics. In programming, postulating
that equivalence of sets is isomorphism has the consequence that
all families of types respect isomorphism. For example, consider



the family of types Mon[A], where A : set, representing monoids
on A:

Mon[A] =
Σm : A→ A→ A.
Σ u : A.
Σ assoc : (Πx, y, z : A.Id (m (m x y) z ) (m x (m y z ))).
Σ unitl : (Πx : A.Id (m u x ) x).
Σ unitr : (Πx : A.Id (m x u) x).1

A monoid consists of a multiplication operation m, a unit oper-
ation u, together with proofs that these satisfy the monoid laws.
Monoid structures are useful for a parallel reduce operator, which
schedules computation in an arbitrary way while producing a de-
terministic result. In current dependent type theories, a program-
mer must show that each individual type family, such as Mon, re-
spects isomorphism—that A ∼= B entails Mon[A] ∼= Mon[B].
This is particularly laborious for dependently typed program-
ming, where isomorphisms arise frequently from type refinements;
e.g. if the type vec[n : N] classifies vectors of length n, then
Σ n:N. vec[n] is isomorphic to the unrefined type list. More-
over, it is unnecessary, as there is in fact no way to define a
family that does not respect isomorphism. In contrast, in higher-
dimensional type theory, the elimination rule for the identity type
induces a monoid structure on B from a monoid structure on A,
and shows that these structures are isomorphic: using substitutiv-
ity of Id-types substC : IdA M N → C [M ]→ C [N ], given any
iso(f , g , α, β) : Idset A B , the term

substMon(iso(f, g, α, β)) : Mon[A]→ Mon[B]

induces an isomorphism between monoid structures.
The same idea also has applications to the formalization of

mathematics: a proof assistant based on higher-dimensional type
theory supports the common informal mathematical practice of
identifying isomorphic sets. Another application is to the formal-
ization of homotopy theory in type theory [1] in which types are
interpreted as topological spaces, and equivalences as paths in the
space [4]. Under this correspondence a space may be inductively
defined by giving generators for its points and for its paths. For ex-
ample, the interval, I , may be specified by the endpoints 0, 1 : I
and the path seg : IdI 0 1 between them. Similarly, the circle S1

may be specified as having, say, two points, 0, 1 : S1, and two
paths a : IdS1 0 1 and b : IdS1 1 0. The higher-dimensional struc-
ture of type theory ensures, for example, that a family of types in-
dexed by a space induces an action that transports objects along
paths in the space. These definitions have already been used to for-
malize some basic results in algebraic topology [1]—all higher ho-
motopy groups are abelian; the fundamental group of the circle is
isomorphic to Z—and suggest a new, type-theoretic approach to-
wards more sophisticated problems, like determining the homotopy
groups of the spheres.

A fundamental question that arises in higher-dimensional type
theory concerns the computational behavior of identity elimination.
For example, when we use substMon(iso(f, g, α, β)) to construct
a function Mon[A] → Mon[B], what function does it construct?
The answer lies in the functorial action of the dependent type
constructors, as expressed by Hofmann and Streicher [12]. In this
example, the action of Mon sends the unit to to its image under
f , wraps multiplication with f and g to transfer back and forth
between the two algebras, and uses the cancellation of inverses to
validate the laws. Thus, from a programming standpoint, the main
benefit of higher-dimensional type theory is to equip every type
and term in the language with their functorial actions, as a generic
program. This allows programmers to work up to isomorphism
and other such structures, facilitating code reuse for dependently
typed programs. Topologically, these programs witness the process
of transporting points along paths in spaces.

However, this computational behavior is latent in current pre-
sentations of higher-dimensional type theory, which extend the
canonical members of the identity type, without extending the com-
putation rules for its elimination form. The standard computation
rule for subst says that substC(refl) reduces to the identity func-
tion. Higher dimensional types add new canonical forms of equiva-
lence, such as iso(f, g, α, β), but, in current presentations, no new
computation rules. This runs afoul of the computational interpre-
tation of type theory, which demands that the elimination forms
for a type be post-inverse to the introductory forms. For example,
the term substMon(iso(f, g, α, β)) “gets stuck”, even though it is
well-typed! In logical terms, the property of canonicity [10] of ob-
servable types fails: there are closed terms of, say, boolean type
that are neither equal to true nor equal to false. A weaker notion
of canonicity-up-to-equivalence has been conjectured, but not yet
proved [23].

In this paper, we define a two-dimensional univalent type the-
ory (2TT), and prove that it does enjoy canonicity. 2TT is based
on a judgemental, rather than propositional, account of its higher-
dimensional structure. The key innovation is to consider a judge-
ment of the form Γ ` α : M 'A N stating that α is evidence for
the equivalence of M and N as objects of type A. The computa-
tional content of such equivalences is made explicit by judgemen-
tal operations that ensure that families of types and objects respect
equivalence. Function extensionality and univalence are naturally
accommodated as rules of equivalence, and the induced action ac-
counts for the computational content of the equivalence proofs. As
we show in Section 4, the identity type is reformulated simply as
an internalization of the equivalence judgement (that is, as a hom-
type). The Martin-Löf elimination rule is derivable from this inter-
pretation using the judgemental apparatus for equivalence.

The judgemental formulation, described in Section 2, is adapted
from earlier work [14] on the directed (non-symmetric) case. We
require that the forms of evidence include identity (reflM : M 'A
M ), composition (if α : M 'A N and β : N 'A P then
β ◦α : M 'A P ), and inverse (if α : M 'A N then α−1 : N 'A
M ), corresponding to the reflexivity, symmetry, and transitivity
properties of an equivalence relation. Moreover, these operations
must satisfy the unit, associativity, and inverse laws (on the nose, in
the two-dimensional case) for a groupoid [12], a category in which
all maps are invertible. Preservation of equivalence amounts to the
requirement that families of types be functorial in their indices:
if α : M 'A N , and F is an A-indexed family of types, then
mapx:A.F α : F [M ] → F [N ] is the action of F on evidence
for the equivalence of indices. This action must preserve identities
(the null action) and composition (the composite action), and hence
inverses (the reverse action).

2TT has a simple interpretation in the category of groupoids:
each type is interpreted as a groupoid, with objects modeling terms,
and maps modeling equivalences—in essence, 2TT constructs a
type-theoretic syntax out of the groupoid interpretation of type the-
ory [12]. To justify that 2TT solves the aforementioned problems
with the computational interpretation of higher-dimensional type
theory, we prove canonicity in Section 3, showing that a closed
term of boolean type is definitionally equal to either true or false.
The proof may be seen as a generalization of the semantics of
the NuPRL type theory [5] (in turn based on Tait’s reducibility
method): in our proof, types are interpreted as groupoids [12],
rather than as equivalence relations.

2. Syntax
Judgemental Framework As discussed above, we achieve canon-
icity in 2TT using a judgemental presentation of equivalence. First,
this means that, starting from the usual judgement forms of con-
texts Γ ctx, dependent types Γ ` A type (where Γ ctx), and terms



Identity and composition for Γ ` θ : ∆

Γ ⊇ ∆

Γ ` idΓ
∆ : ∆

Γ2 ` θ2 : Γ3 Γ1 ` θ1 : Γ2

Γ1 ` θ2 [θ1] : Γ3

Γ ` θ : ∆ Γ0 ` δ : θ1 'Γ θ2

Γ0 ` θ[δ] : θ[θ1] '∆ θ[θ2]

θ0 [θ[θ′]] ≡ θ0 [θ][θ′] 1-subst assoc/unit
θ0 [idΓ] ≡ θ0
idΓ

Γ[θ] ≡ θ

θ[δ[δ′]] ≡ θ[δ][δ′] 1-resp assoc
θ[reflθ′ ] ≡ reflθ[θ′] 1-resp preserves refl.
θ[θ′][δ] ≡ θ[θ′[δ]] 1-resp for 1-subst

Identity, Inverses, and Composition for Γ ` δ : θ '∆ θ′

Γ ` refl∆
θ : θ '∆ θ

Γ ` δ : θ1 '∆ θ2

Γ ` δ−1 : θ2 '∆ θ1

Γ ` δ1 : θ1 '∆ θ2
Γ ` δ2 : θ2 '∆ θ3

Γ ` δ2 ◦ δ1 : θ1 '∆ θ3

Γ ` δ : θ '∆ θ′

Γ0 ` δ0 : θ0 'Γ θ
′
0

Γ0 ` δ[δ0] : θ[θ0] '∆ θ′[θ′0]

(δ3 ◦ δ2) ◦ δ1 ≡ δ3 ◦ (δ2 ◦ δ1) trans assoc/unit
(δ ◦ refl) ≡ δ
(refl ◦ δ) ≡ δ
(δ ◦ δ−1) ≡ refl inverse
(δ−1 ◦ δ) ≡ refl

δ0 [δ[δ′]] ≡ δ0 [δ][δ′] 2-resp assoc/unit
δ0 [reflid] ≡ δ0
reflidΓ

Γ
[δ] ≡ δ

(δ1 ◦ δ2 )[δ3 ◦ δ4] ≡ δ1 [δ3] ◦ δ2 [δ4] interchange
reflθ[δ] ≡ θ[δ] delegate

Composition for Γ ` A type

Γ ` θ : ∆ ∆ ` A type

Γ ` A[θ] type

∆ ctx ∆ ` C type Γ ` δ : θ1 '∆ θ2 Γ ` M : C [θ1 ]

Γ ` map∆.C δ M : C [θ2 ]

A[θ[θ′]] ≡ A[θ][θ′] 0-subst assoc/unit
A[idΓ] ≡ A

map∆.C reflθ M ≡ M 0-resp functoriality
map∆.C (δ2 ◦ δ1) M ≡ map∆.C δ2 (map∆.C δ1 M)

(map∆.C δ M )[θ0] ≡ map∆.C δ[reflθ0 ] M [θ0] 1-subst for map
(mapC (δ : θ1 ' θ2 ) M )[δ′ : θ′1 ' θ′2] ≡ resp (x.mapC (δ[reflθ′2

]) x) (M [δ′]) 1-resp for map

map∆.C [θ : ∆′] δ M ≡ map∆′.C reflθ[δ] M def. map for A[θ]

Composition for Γ ` M : A

Γ ` θ : ∆ ∆ ` M : A

Γ ` M [θ] : A[θ]

∆ ` M : A Γ ` δ : θ1 '∆ θ2

Γ ` M [δ] : (map∆.A δ (M [θ1])) 'A[θ2] M [θ2]

M [θ[θ′]] ≡ M [θ][θ′] 1-subst assoc/unit
M [idΓ] ≡ M
M [δ[δ′]] ≡ M [δ][δ′] 1-resp assoc/unit
M [reflθ] ≡ reflM [θ] 1-resp preserves refl.
M [θ][δ] ≡ M [θ[δ]] 1-resp for 1-subst

Identity, Inverses, and Composition for Γ ` α : M 'A N

Γ ` reflAM : M 'A M

Γ ` α : M1 'A M2

Γ ` α−1 : M2 'A M1

Γ ` α1 : M1 'A M2

Γ ` α2 : M2 'A M3

Γ ` α2 ◦ α1 : M1 'A M3

Γ0 ` δ0 : θ0 'Γ θ
′
0

Γ ` α : M 'A N

Γ0 ` α[δ0] : (mapΓ.A δ0 (M [θ0])) 'A[θ′0] N [θ′0]

(α3 ◦ α2) ◦ α1 ≡ α3 ◦ (α2 ◦ α1) trans assoc/unit
(α ◦ refl) ≡ α
(refl ◦ α) ≡ α
(α ◦ α−1) ≡ refl inverse
(α−1 ◦ α) ≡ refl
α[δ[δ′]] ≡ α[δ][δ′] 2-resp assoc/unit
α[reflid] ≡ α
(α1 ◦ α2 )[δ3 ◦ δ4] ≡ α1 [δ3] ◦ resp (x.map δ3 x) (α2 [δ4]) interchange
reflM [δ] ≡ M [δ] delegate

Omitted Rules: All judgements respect equality; all equality judgements are congruences.

Derived forms:
resp (x.F ) α means (x .F )[reflid, α/x]
map1

x :A.B αM means mapΓ,x :A.B (reflid, α/x) M

Figure 1. Judgemental Presentation of Equivalence



Empty context:

· ctx (id· is the only canonical substitution) (reflid· is the only canonical equivalence)
θ : · ≡ id· 1-η
δ : θ '· θ′ ≡ refl· 2-η

Term variables:

Γ ctx Γ ` A type

Γ , x :A ctx

x :A ∈ Γ

Γ ` x : A

Γ ` θ : ∆ Γ ` M : A[θ]

Γ ` θ,M/x : ∆, x : A

Γ ` δ : θ '∆ θ′

Γ ` α : (map∆.A δ M) 'A[θ′] N

Γ ` (δ, α/x) : (θ,M/x) '∆,x :A (θ′, N/x)

idΓ,x :A
Γ [θ,M/x] ≡ θ 1-β

x [θ,M/x] ≡ M 1-β
θ : (Γ , x :A) ≡ idΓ[θ], x [θ]/x 1-η

idΓ,x :A
Γ [δ, α/x] ≡ δ 2-β

x [δ, α/x] ≡ α 2-β
δ : θ '(Γ,x :A) θ

′ ≡ idΓ[δ], x [δ]/x 2-η

idΓ,x :A ≡ idΓ, x/x 1-id
(θ,M/x)[θ0] ≡ θ[θ0],M [θ0]/x 1-subst
(θ,M/x)[δ0] ≡ θ[δ0],M [δ0]/x 1-resp

reflθ,M/x ≡ reflθ, reflM/x refl
(δ, α/x)−1 ≡ (δ−1, (resp (x.map∆.A δ

−1 x) α−1)/x) sym
(δ2, α2/x) ◦ (δ1, α1/x) ≡ (δ2 ◦ δ1), (α2 ◦ resp (x.map∆.A δ2 x) α1)/x trans

(δ, α/x)[δ0] ≡ δ[δ0], α[δ0]/x 2-resp

Figure 2. Contexts

Γ ` A type
Γ , x :A ` B type

Γ ` Π x :A.B type

Γ , x :A ` M : B

Γ ` λ x .M : Π x :A.B

Γ ` M1 : Π x :A.B
Γ ` M2 : A

Γ ` M1 M2 : B [M2 /x ]

Γ , x :A ` α : (M x) 'B (N x)

Γ ` λ x . α : M 'Π x :A.B N

Γ ` α : M 'Π x :A.B N Γ ` β : M1 'A N1

Γ ` α β : map1
B β (MM1) 'B[N1/x] (NN1)

(λ x .M ) N ≡ M [N/x] 1-β
M : Π x :A.B ≡ λ x .M x 1-η
(λ x . α1 ) α2 ≡ α1 [refl, α2/x] 2-β
α : M 'Π x :A.B N ≡ λ x . α (reflx ) 2-η

(Π x :A.B)[θ0] ≡ Π x :A[θ0 ].B [θ0 , x/x ] 0-subst
map∆.Π x :A.B δ M ≡ 0-resp

λ x .map∆,x :A.B (δ, refl/x) (M (map∆.A δ−1 x))

(λ x .M )[θ0] ≡ λ x .M [(θ0 , x/x)] 1-subst
(M1 M2 )[θ0] ≡ (M1 [θ0 ]) (M2 [θ0 ]) 1-subst
(λ x .M )[δ] ≡ λ x .M [δ, refl/x ] 1-resp
(M N )[δ] ≡ M [δ] N [δ] 1-resp

reflM ≡ λ x . reflM x refl
(λ x . α)−1 ≡ λ x . α−1 sym
(λ x . α2 ) ◦ (λ x . α1 ) ≡ λ x . α2 ◦ α1 trans
(λ x :A. α)[δ0] ≡ λ x :A[θ′0 ]. α[δ0 , refl/x ] 2-resp
(α1 α2 )[δ0] ≡ (α1 [δ0 ]) (α2 [δ0 ]) 2-resp

Figure 3. Π-Types

Γ ` 2 type Γ ` true : 2 Γ ` false : 2

Γ ` M : 2
Γ , x :2 ` C type
Γ ` M1 : C [true/x ]
Γ ` M2 : C [false/x ]

Γ ` ifx .C (M ,M1 ,M2 ) : C [M/x ]

Γ ` M : 2
Γ , x :2 ` C type
Γ , x :2 ` M1 ,M2 : C
Γ ` α1 : M1[true/x] 'C[true/x] M2[true/x]
Γ ` α2 : M1[false/x] 'C[false/x] M2[false/x]

Γ ` ifx.C(M , α1 , α2 ) : M1[M/x] 'C[M/x] M2[M/x]

(refltrue and reflfalse are canonical)
Γ ` α : M '2 N

Γ ` M ≡ N
reflection

Γ ` α : M '2 N

Γ ` α ≡ reflM
uip

Γ ` α : true '2 false

Γ ` J
(where J is any judgement)

if (true,M1 ,M2 ) ≡ M1 1-β
if (false,M1 ,M2 ) ≡ M2 1-β
M [(N : El(2 ))/x] ≡ if (N ,M [true/x ],M [false/x ]) 1-η

ifx.C(true, α1 , α2 ) ≡ α1 12-β
ifx.C(false, α1 , α2 ) ≡ α2 12-β

α[(reflM : 2 )/x] ≡ if (M , α[refltrue/x ], α[reflfalse/x ]) 12-η

2[θ] ≡ 2 0-subst
map∆.2 δ M ≡ M 0-resp

true[θ] ≡ true 1-subst
false[θ] ≡ false 1-subst

ifx : 2 .C (M ,M1 ,M2 )[θ] ≡ 1-subst
ifx : 2 .C [θ,x/x](M [θ],M1 [θ],M2 [θ])

true[δ] ≡ refltrue 1-resp
false[δ] ≡ reflfalse 1-resp

ifx : 2 .C (M ,M1 ,M2 )[δ : θ1 ' θ2] ≡ 1-resp
ifx : 2 .C [θ2,x/x](M [θ2 ],M1 [δ],M2 [δ])

refl is canonical
−−1,− ◦ − trivial by uip

if (M , α1 , α2 )[δ : θ1 ' θ2] ≡ if (M [θ2 ], α1 [δ], α2 [δ]) 2-resp

Figure 4. Booleans (as an Extensional Set)



Γ ` set type

Γ ` S : set

Γ ` El(S) type

Γ ` α : M 'El(S) N

Γ ` M ≡ N

Γ ` α : M 'El(S) N

Γ ` α ≡ reflM

set[θ0] ≡ set 0-subst
(El(S))[θ0] ≡ El(S [θ0])

map∆.set δ M ≡ M 0-resp
−−1, − ◦ − for set groupoid laws plus below

reflM : El(S) is canonical
−−1,− ◦ −, 2-resp for El(S) trivial by uip

Γ ` bool : set (reflbool is canonical) Γ ` not : bool 'set bool

Γ ` M : 2

Γ ` in M : El(bool)

Γ ` M : El(bool)

Γ ` out M : 2

out (inM) ≡ M 1-β
in (outM) ≡ M 1-η

map∆.El(S) δ true ≡ false if S [δ] ≡ not 0-resp
map∆.El(S) δ false ≡ true if S [δ] ≡ not 0-resp

bool[θ] ≡ bool 1-subst
(in M )[θ] ≡ in M [θ] 1-subst

(out M )[θ] ≡ out M [θ] 1-subst
bool[δ] ≡ reflbool 1-resp
not−1 ≡ not sym
not[δ] ≡ not 2-resp

Figure 5. Universe

Γ ` M : A (where Γ ctx and Γ ` A type), we add a judge-
ment of term equivalences Γ ` α : M 'A M ′ (where Γ ctx
and Γ ` A type and Γ ` M ,M ′ : A). Second, this equivalence
judgement is defined by rules specific to each type A, including
equations explaining the meaning of identity (refl), inverses (α−1),
and composition (α2 ◦α1) at each type. Third, all families of types
and terms respect equivalence, as expressed by the following oper-
ations:

Γ, x :A ` B type Γ ` α : M1 'A M2 Γ ` M : B [M1 /x ]

Γ ` map1
x :A.B αM : B [M2 /x ]

Γ ` α : M 'A N Γ , x :A ` F : B

Γ ` resp (x.F ) α : F [M/x] 'B F [N/x]

map expresses that a family of types indexed by A respects equiv-
alence at A: Given equivalent terms M1 and M2, map determines
a function from B[M1/x] to B[M2/x]. As we discuss below, this
function has an inverse given by map1

x :A.B α
−1 , so B[M1/x] and

B[M2/x] are isomorphic. Similarly, resp (x.F ) α expresses that a
family of terms of typeB (where x is not free inB) with a free vari-
able x :A respects equivalence at A. map1

x :A.B α M computes on
the structure of the family B, while resp (x.F ) α computes on the
structure of the family F . There is an additional resp-like operation
which expresses that equivalences themselves respect equivalence.

To define these operations, it is helpful to consider n-ary fami-
lies such as x1 :A1 , x2 :A2 , . . . , xn :An .B. To this end, we present
2TT as an explicit substitution calculus, with additional judgements
for substitutions Γ ` θ : ∆ (where Γ ctx and ∆ ctx) and equiva-
lences between them Γ ` δ : θ '∆ θ′ (where Γ ctx and ∆ ctx and
Γ ` θ, θ′ : ∆). The treatment of dependent types in Pitts [20]’s sur-
vey article provides an introduction to this style of syntax, with an
explicit substitution judgement and internalized composition prin-
ciples. In full generality, map and resp express respect for equiv-
alence between substitutions for a whole context, and are written
map∆.C δ M and M [δ] respectively. An analogous operation α[δ]
expresses that equivalence itself respects equivalence, while θ[δ]
and δ[δ′] extend these resp-principles to substitutions for an entire
context, and equivalences between them.

The rules for this judgemental framework are presented in Fig-
ure 1. We present the definitional equality rules as equations (e.g.
θ ≡ θ′), as a notational shorthand for inference rules defining typed
equality judgements (e.g. Γ ` θ ≡ θ′ : ∆). By convention, each
equation implicitly has premises asserting that each of the meta-
variables occuring in the equation are well-typed, and maintains
the invariant that the subjects of the equation are well-typed given
these assumptions. Showing that the two sides of the equation have

the same type sometimes involves definitional equality reasoning,
but the equation being defined is never necessary for showing that
its subjects have the same type.

The first three rules define identity and composition for sub-
stitutions. To improve readability, we make weakening admissible
(rather than using de Bruijn form), so the identity substitution id
is really the composition of the identity substitution with projec-
tions that forget any number of variables. We write Γ ⊇ ∆ to mean
that ∆ is obtained from Γ by dropping some number of variables.
All judgements of the form Γ ` J are weakenable: If Γ ` J
and Γ′ ⊇ Γ then Γ′ ` J . Composition of substitutions θ2 [θ2],
which we refer to as 1-substitution, is standard in explicit substi-
tution calculi. The additional composition operation, θ[δ], forces
substitutions to respect equivalence, analogously to resp for terms
above: substitution instances by equivalent substitutions are equiv-
alent. For this reason, we refer to it as 1-resp. The first three equa-
tions say that 1-substitution is associative and unital. In the second
equation, idΓ can in fact be a weakening, in which case θ is tacitly
weakened in the right-hand side. The third equation only makes
sense when Γ ` id : Γ, which we notate by idΓ

Γ. The next two rules
say that 1-resp associates with 2-resp (δ[δ′]), which is the anal-
ogous operation for equivalences (defined below), and preserves
identities refl(defined below).

The next four rules define identity, inverses, and composition
for equivalences. Equivalences are always reflexive (refl), sym-
metric (δ−1), and transitive (δ2 ◦ δ1). Additionally, equivalences
themselves respect equivalence (δ[δ0]), which we call 2-resp. The
equations say that: Transitivity is associative, with unit refl, and
inverses given by −−1. 2-resp is also associative and unital, with
unit Γ ` reflidΓ

Γ
: idΓ 'Γ idΓ (by above, θ[idΓ] equals θ). The in-

terchange law relates 2-resp and transitivity: transitivity followed
by 2-resp is the same as 2-resp followed by transitivity. This is a
coherence requirement between the two forms of composition in a
2-category; we discuss some special cases in the extended version
of this article [13].

The rule delegate delegates 2-resp at reflexivity to 1-resp. We do
not define 2-subst, δ[θ], directly, as this composition is definable as
δ[reflθ].

Next, we define the corresponding operations for dependent
types, terms, and term equivalences. A dependent type A can be
pre-composed with a substitution, written A[θ]; and has a functorial
action map∆.A δ M , which expresses that families of types respect
equivalence. We refer to these as 0-subst and 0-resp. The equations
say: Substitution into types (0-subst) is associative with unit refl.
map is functorial, preserving reflexivity and transitivity. The next
two rules define 1-subst and 1-resp for map, which reassociate the



1-subst/1-resp with the 0-resp. The next rule defines map for a
composition, again by reassociating.

Like all contextual judgements, terms are closed under substi-
tution (M [θ]) and respect equivalence (M [δ]). Because terms are
dependent on the context, the latter requires “adjusting” M [θ1] by
δ so that it lives in the same type as M [θ2]. The equality rules are
analogous to those for substitutions: 1-subst is associative and uni-
tal, and 1-resp is associative and preserves reflexivities.

The rules for term equivalences are analogous to the rules for
equivalences, specifying reflexivity, transitivity, and 2-resp. The
equations say that transitivity is associative, invertible, and unital,
that 2-resp is associative and unital, and that the order of trans and
2-resp can be interchanged. The interchange rule uses the derived
form resp, described above.

Contexts The general methodology for defining a context is to
specify (1) A formation rule for Γ. (2) A substitution rule θ : Γ,
and a hypothesis rule for one of the other judgements (e.g. the
term rule for x for the context former Γ , x :A). These function
as the introduction and elimination rules for the context, which
are products of some sort, eliminated by first projections (which
are implicit in id) and variables (representing projections). (3) An
equivalence rule for δ : θ 'Γ θ′ (4) Equations defining 1-βη (βη
for θ), 2-βη (βη for δ), identity idΓ, 1-subst θ[θ′], 1-resp θ[δ′],
reflexivity reflθ , symmetry δ−1, transitivity δ ◦ δ′, and 2-resp δ[δ′].
In general, refl and δ−1 and δ ◦ δ′ are defined in a type-directed
manner, while the subst/resp principles are defined in a syntax-
directed manner, giving one rule for each syntactic construct.

In Figure 2 we carry out this methodology for the basic contexts:
The empty context has a trivial substitution into it, and a trivial
equivalence from this substitution to itself. For the equations, it
suffices to stipulate that these are unique.

For context extension, if A is a type well-formed in Γ, then Γ
can be extended with a variable of type A. A variable can be used
as a term; the typing rule checks that the variable is in the context.
The substitution into an extended context ∆ ,x :A is a pair of a sub-
stitution θ into ∆ and a term of type A, adjusted by θ (this is anal-
ogous to the usual introduction rule for a Σ-type). An equivalence
between such substitutions is a pair of equivalences, one between
the substitutions, and the other between the terms (adjusted by the
first component). As these substitutions and equivalences are pairs,
the first set of rules gives the expected βη rules, for the projections
given by id and variables. The next rules define the identity, com-
position, and inverse operations componentwise.

Π-types In general, a type is specified by (1) A formation rule for
A. (2) Introduction and elimination rules for terms, defining M :
A. (3) Introduction and elimination rules for equivalences, defining
α : M 'A M ′. (4) Equations defining 1-βη (βη for M ), 2-βη
(βη for α), 0-substitution A[θ], 0-resp mapA δ M , 1-substitution
M [θ], 1-resp M [δ], reflexivity reflM , transitivity α ◦α′, and 2-resp
α[δ].

In Figure 3, we give the rules for dependent function types. The
formation and term rules are standard. The equivalence introduc-
tion rule says that an equivalence at Π can be introduced by giv-
ing a family of equivalences that work for each element—the func-
tion extensionality rule. An equivalence is eliminated by applying
to equivalent arguments, yielding an equivalence between the re-
sults. These rules have been considered in categorically-motivated
accounts of functionally extensional propositional equality [9].

The βη-rules are the expected rules for functions, both at the
term and equivalence levels. We write M [N/x] to abbreviate
M [id, N/x]. Substitution into a Π-type proceeds compositionally.
mapΠ x :A.B is given by pre- and post-composition. 1-subst and
1-resp are both defined compositionally, as is 2-resp. The rule for

refl defines the identity at function type in terms of the component-
wise identity.

The rules for dependent pairs, which are analogous to the rules
for Γ , x :A, are presented in the extended version [13].

Booleans In Figure 4, we give rules for a base type of booleans,
including the usual true, false, and if-then-else constructs. We ad-
ditionally include an if-then-else that eliminates towards equiva-
lences, permitting equivalences to be defined by case distinction.
For simplicity, we specify booleans as an extensional set, corre-
sponding semantically to the discrete groupoid with two objects.
This means that (1) equivalent booleans are definitionally equal
(reflection) and (2) any equivalence is equal to reflexivity (uip).
Finally, we include a rule stipulating that true and false are not
equivalent, which would otherwise require large eliminations to
prove. These rules illustrate that 2TT is compatible with treat-
ing discrete types as in extensional type theory, though a more
intensional treatment of booleans is also possible. The βη-rules
are standard for sum types; 0-resp is trivial because 2 is a con-
stant family; the 0/1-subst rules are standard. The 1-resp rule for if
uses the equivalence-level if-then-else, and is well-typed because of
reflection; the 2-resp rule for if-then-else is analogous. No specific
equations need to be given for −−1 and − ◦ − because of uip.

Sets and elements Finally, we need to seed the type theory with
a base type with non-trivial equivalences, and a family of types
dependent on it, to ensure that we have an example where map
really has computational content. A simple example is to consider
a universe set that contains discrete types. That is, each term S : set
will determine a type El(S) whose elements have no non-identity
equivalences between them. However, set itself is not a discrete
type, because equivalence between sets S and T may be given by
an isomorphism between El(S) and El(T ):

f : S → T
g : T → S

α : λ x . f (g(x)) ' λ x . x
β : λ x . g(f (x)) ' λ x . x

iso(f, g, α, β) : S 'set T

Then map1
a:set.C (iso(f, g, α, β)) asserts that all families of types

respect isomorphism of sets.
In Figure 5, we define a simple universe of sets. We make

two simplifications: first, the universe contains a code for exactly
one set, booleans; second, equivalences are given explicitly by the
two automorphisms on 2, refl (the identity function) and not. The
approach readily scales to a richer universe closed under Π and
Σ, following our previous work [14], and to programmer-defined
isomorphisms given by iso(f, g, α, β), as we show in the extended
version of this article [13]. The first four rules define the type
set and the family El(−), and give reflection and uip for El(−),
expressing discreteness of sets in the universe. The equations for
0-subst are compositional; 0-resp for set is trivial because it is
a constant family. For M : El(S), 1-resp generates an equation
mapEl(S) δ M [θ1] ≡ M [θ2] by reflection, so no equations for
M [δ] are necessary.

The next four inference rules specify the type 2: El(bool) is
isomorphic to 2 by in and out and their βη rules. The two equiv-
alences bool 'set bool are reflbool (identity) and not (negation);
map not is computationally relevant, as it interchanges true and
false. The symmetry rule says that not is involutive.

3. Properties
3.1 Consistency
To show that the calculus is consistent, we can adapt Hofmann and
Streicher’s groupoid interpretation [12] to our formulation of 2TT.
We have given a proof for a similar formalism for directed type the-
ory in previous work [14]. We interpret each judgement as follows:



[[Γ]] is a category. [[Γ ` θ : ∆]] is a functor [[θ]] : [[Γ]] −→ [[∆]].
[[Γ ` δ : θ1 '∆ θ2]] is a natural transformation [[δ]] : [[θ1]] '
[[θ2]] : [[Γ]] −→ [[∆]]. [[A]] is a functor [[A]] : [[Γ]] −→ GPD,
where GPD is the (large) category of groupoids and functors. Terms
and term equivalences are interpreted as “dependent” functors and
natural transformations. Because the details of this proof have
been covered in previous work, we do not review them here. As
a corollary of the interpretation, we get various consistency results:
[[2]] is the discrete category on two objects, so the interpretation
shows that it is not the case that · ` true ≡ false : 2, or that
· ` α : true '2 false. Moreover, if the calculus is extended with
an empty type 0 interpreted as the empty category, the interpre-
tation implies that not all types are inhabited. We do not attempt
a proof-theoretic proof of consistency of definitional equality, e.g.
using reduction or normalization-by-evaluation [7]. Proving con-
sistency using these approaches typically involves giving a decision
procedure for definitional equality, and equality for 2-dimensional
type theory is not decidable, due to the equality reflection rules for
identity types discussed in in Section 4. Given this, we also exploit
equality reflection for 2 and El(S), though these types could be
treated in a more intensional way instead.

3.2 Canonicity
Our main new result in this paper is to check a kind of complete-
ness, verifying that we have not omitted any necessary definitional
equations for map, resp, etc. Specifically, we show that the equa-
tions of 2TT are sufficient to equate a closed term of type 2 to a
value:
THEOREM 3.1: CANONICITY. If · ` M : 2 then either · ` M ≡
true : 2 or · ` M ≡ false : 2.
This result fails for higher-dimensional type theory based on the
univalence axiom [23], due to stuck applications of Id-elimination,
as illustrated in the introduction—though it is currently conjectured
that every closed term of boolean type may be equivalent to a value.
In our setting, we prove the stronger result that canonicity holds for
definitional equality.

The proof is organized as follows: First, we define the seman-
tic domains into which we interpret, which consist of syntactically
presented groupoids and functors. Using the usual terminology of
logical relations, we say that an expression is “reducible” iff it is a
member of these semantic domains. In a simple logical relations ar-
gument, open terms are reducible iff they take reducible arguments
to reducible results. For 2-dimensional type theory, this general-
izes to both (1) taking reducible terms to reducible terms and (2)
taking reducible equivalences to reducible equivalences—i.e. func-
toriality. Analogous definitions are necessary for dependent types,
dependently typed terms, and equivalences. Next, we show that the
semantic domains are closed under the type formers, and prove the
fundamental theorem, which says that all well-typed expressions
are reducible. Finally, we obtain canonicity as a corollary.

3.2.1 Theorem Statement
Syntactically presented groupoids and functors
DEFINITION 3.2. A groupoidG is presented by Γ (where Γctx) iff

1. The set of objects of G, written Ob G, is a subset of the equiv-
alence classes of substitutions · ` θ : Γ modulo definitional
equality. Due to the preponderance of brackets in the syntax of
2TT, we write «θ» for the equivalence class of θ.

2. The set of morphisms «θ1» −→G «θ2» is a subset of the
equivalence classes of equivalences · ` δ : θ1 'Γ θ2 modulo
definitional equality.

3. identity at «θ» is given by «reflθ», composition of «δ2» and
«δ1» is given by «δ2 ◦ δ1», and the inverse of «δ» is given by
«δ−1».

Note that we choose representatives of equivalence classes at vari-
ous points in this definition; these uses are well-defined by the con-
gruence laws for definitional equality. We write 〈Γ〉 to mean some
groupoid that is presented by Γ, and use the analogous notation for
the other syntactic presentations defined below.

Analogously, we define what it means for a groupoid to be
presented by a closed type:
DEFINITION 3.3. A groupoid G is presented by A (where · `
A type) iff

1. Ob G is a subset of the equivalence classes of terms · ` M : A
modulo definitional equality.

2. The set of morphisms «M1» −→G «M2» is a subset of the
equivalence classes of equivalences · ` α : M1 'Γ M2

modulo definitional equality.
3. identity at «M» is given by «reflM», composition of «α2» and

«α1» is given by «α2 ◦ α1», and the inverse of «α» is given by
«α−1».

A functor may be presented by a term with one free variable:
DEFINITION 3.4. A functor F : 〈A〉 −→ 〈B〉 is presented by M
(where x : A ` M : B ) iff

1. For all «N» ∈ Ob 〈A〉, F («N») = «M [N/x]».
2. For all «α» : «N1» −→〈A〉 «N2», F («α») = «M [α/x]».

Let GPD be the category of groupoids and functors between
them. A functor into GPD may be presented by a type:
DEFINITION 3.5. A functor F : 〈Γ〉 −→ GPD is presented by A,
where Γ ` A type iff

1. For all «θ1» ∈ Ob 〈Γ〉, F («θ1») is presented by A[θ1].
2. For all «δ» : «θ1» −→〈Γ〉 «θ2», F («δ») is presented by

x : A[θ1 ].mapA δ x.

We write 〈A〉 for a functor presented by A.
Observe that all of these definitions respect definitional equality.

For example, if G is presented by Γ, and Γ ≡ Γ′, then G is also
presented by Γ′.

Reducible expressions Given these definitions, we can define the
invariants about each syntactic category that are demanded by the
proof:
DEFINITION 3.6. Given groupoids 〈Γ〉 and 〈∆〉, define the set
RedSubst 〈Γ〉 〈∆〉 (reducible substitutions) to be those substitu-
tions Γ ` θ : ∆ such that

1. For all «θ1» ∈ Ob 〈Γ〉, «θ[θ1]» ∈ Ob 〈∆〉
2. For all «δ» : «θ1» −→〈Γ〉 «θ2», «θ[δ]» : «θ[θ1]» −→〈∆〉

«θ[θ2]»

θ necessarily preserves identity and composition, by the corre-
sponding rules of definitional equality. Thus, if θ ∈ RedSubst〈Γ〉〈∆〉,
then we can define a functor θ∗ : 〈Γ〉 −→ 〈∆〉 using the given ac-
tions on objects and arrows.
DEFINITION 3.7. Given 〈Γ〉 and 〈∆〉 and θ1, θ2 ∈ RedSubst〈Γ〉〈∆〉,
define the set RedEquiv〈Γ〉〈∆〉 θ1 θ2 (reducible equivalences) to con-
tain those Γ ` δ : θ1 '∆ θ2 such that for all «δ′» : «θ′1» −→〈Γ〉
«θ′2», «δ[δ′]» : «θ1 [θ′1]» −→〈∆〉 «θ2 [θ′2]»
As a special case, this means that for any θ ∈ Ob 〈Γ〉, «δ[reflθ]» :
«θ1 [θ]» −→〈∆〉 «θ2 [θ]». This family of morphisms is natural (a
consequence of the interchange law rule of definitional equality).
Consequently, if δ is reducible, then it determines a natural isomor-
phism δ∗ : 〈θ1〉 ' 〈θ2〉 : 〈Γ〉 −→ 〈∆〉. We write RedEquiv θ1 θ2

for RedEquiv〈Γ〉〈∆〉 θ1 θ2 when the contexts are unambiguous.



DEFINITION 3.8. Given a groupoid 〈Γ〉 and a functor 〈A〉 :
〈Γ〉 −→ GPD, define the set RedTm〈Γ〉 〈A〉 (reducible terms)
to be those terms Γ ` M : A such that

1. For all «θ1» ∈ Ob 〈Γ〉, «M [θ1]» ∈ Ob 〈A〉(«θ1»)
2. For all «δ» : «θ1» −→〈Γ〉 «θ2»,

«M [δ]» : «mapA δ M [θ1]» −→〈A〉(«θ2») «M [θ2]»

We write RedTm 〈A〉 for RedTm〈Γ〉 〈A〉 when the context is
unambiguous.

DEFINITION 3.9. Given M,N ∈ RedTm〈Γ〉 〈A〉, define the
set RedEquiv M N (reducible equivalences) to contain those
Γ ` α : M 'A N such that for all «δ» : «θ1» −→〈Γ〉 «θ2»,
«α[δ]» : «mapA δ M [θ1]» −→〈A〉(«θ2») «N [θ2]»

Theorem Statement Using these definitions, we are in a position
to state the fundamental theorem.

In the remainder of this section, we will define partial functions
[[Γ]] and [[A]] such that:
THEOREM 3.10: FUNDAMENTAL THEOREM.

1. If Γ ctx then [[Γ]] is a groupoid presented by Γ.
2. If Γ ≡ Γ′ then [[Γ]] = [[Γ′]].
3. If Γ ` θ : ∆ then θ ∈ RedSubst [[Γ]] [[∆]]

4. If Γ ` δ : θ1 '∆ θ2 then δ ∈ RedEquiv[[Γ]]

[[∆]] θ1 θ2.
5. If Γ ` A type then [[A]] is a functor [[Γ]] −→ GPD presented

by A.
6. If Γ ` A ≡ A′ type then [[A]] = [[A′]].
7. If Γ ` M : A then M ∈ RedTm[[Γ]] [[A]]

8. If Γ ` α : M 'A N then α ∈ RedEquiv[[Γ]]

[[A]] M N

The proof is by mutual induction on the given derivations.
As usual, the interpretation is defined compositionally, in terms

of semantic counterparts of each type constructor:

[[·]] = ·
[[Γ, x : A]] =

R
[[Γ]]

[[A]]

[[Π x :A.B ]] = Π[[A]] [[B]]
[[2]] = const(2)

[[set]] = const(set)
[[El(M)]] = El[M∗]

[[A[θ]]] = [[A]][θ∗]

These should be understood as partial functions, due to the typing
constraints on the semantic type formers, as described below. The
fundamental theorem states that they are defined on all well-typed
expressions.

3.2.2 Definitions of Semantic Contexts and Types
First, we give the inductive steps of the interpretation of contexts
and types, describing the semantic analogue of each context and
type constructor. For each context, we define a groupoid, and for
each type, we define a functor 〈Γ〉 −→ GPD. Moreover, we prove
that these constructions are presented by the appropriate contexts
and types. The type-directed definitional equalities for refl, −−1,
and − ◦ −, as well as the equations defining mapA , are used in
these verifications.

Contexts Corresponding to the empty context, let · be the groupoid
with one object, «id·», and one identity arrow, «reflid·», and all
compositions and inverses defined to be «reflid·». Observe that this
is presented by ·: the objects are classes of closed substitutions;
the morphisms of closed equivalences; identity is «refl»; «δ»−1 is
«δ−1» = «refl» by 2η; and similarly for composition.

For context extension, given 〈Γ〉 and 〈A〉 : 〈Γ〉 −→ GPD, the
Grothendieck construction constructs a fibration from the total cat-

egory
R
〈Γ〉〈A〉 to 〈Γ〉 given by a projection functor p. Concretely,

we define
R
〈Γ〉〈A〉 so that it is presented by Γ, x : A:

1. An object «(θ,M/x)» is the equivalence class of a pair, where
«θ» ∈ Ob 〈Γ〉 and «M» ∈ Ob 〈A〉(«θ»).

2. A morphism «(δ, α/x)» : «(θ1,M1/x)» −→R
〈Γ〉〈A〉 «(θ2,M2/x)»

is the equivalence class of a pair, where «δ» : «θ1» −→〈Γ〉
«θ2» and «α» : «mapA δ M1» −→〈A〉(«θ2») «M2»

3. Identity is defined to be

«refl(θ,M/x)» : «(θ,M/x)» −→R
〈Γ〉〈A〉 «(θ,M/x)»

To verify that this is a morphism, we must show that it is
the equivalence class of a pair of morphisms, each in the ap-
propriate category. By definitional equality, «refl(θ,M/x)» =
«(reflθ, reflM/x)», so it remains to show that

«reflθ» : «θ» −→〈Γ〉 «θ»
«reflM» : «mapA reflθ M» −→〈A〉(«θ») «M».

For the first, because 〈Γ〉 is presented, «reflθ» is a mor-
phism in 〈Γ〉 (and is in fact the identity). For the second,
«mapA reflθ M» = «M» by definitional equality, and because
〈A〉 is presented, 〈A〉(θ) is presented by A[θ], and therefore
«reflM» is a morphism (and moreover is the identity).
The verification of the definition of symmetry by «δ»−1 =
«δ−1» and composition by «δ1» ◦ «δ1» = «δ2 ◦ δ1» is similar.
The groupoid equations hold because they hold for definitional
equality.

Observe that
R
〈Γ〉〈A〉 is presented by Γ, x : A. Because

R
〈Γ〉〈A〉

is only defined when the base is presented by a context Γ, and
〈A〉 : 〈Γ〉 −→ GPD, the equation for [[Γ , x :A]] has tacit side
conditions that [[Γ]] is presented by Γ, and that [[A]] : [[Γ]] −→ GPD.
In the proof of the fundamental theorem, we show that these are
satisfied for well-formed syntax.

Types We define [[2]] to be the constant functor returning the
groupoid 2, the discrete groupoid with two objects, «true» and
«false», and only identity arrows «refltrue» and «reflfalse». A priori,
it is not necessarily the case that all terms of type 2 are objects of
this groupoid—only the ones that are equal to true or false—but
the fundamental theorem will show that, in fact, they all are. To
see that this is presented by 2, we must show: (1) that for any θ, 2
is presented by 2[θ]. Because “presented by” respects definitional
equality, and 2[θ] ≡ 2, it suffices to show that it is presented by
2, which it is—the conditions on inverses and composition follow
from uip. (2) That for any δ, the identity functor (which is the
action of a constant functor) is presented by x.map2 δ x. Again
using respect for equality, by the definition of map for 2, it suffices
to show that the identity functor is presented by x.x—which it is,
using the β rules for x [θ] and x [δ].

Similarly, we define [[set]] to be the constant functor deliver-
ing the groupoid set with one object, «bool», and two arrows,
«reflbool» and «not», such that «reflbool» is the identity and «not»−1

= «not» (the definitions of the remaining compositions are forced
by the groupoid laws). The verification that it is presented by set is
analogous to the above for 2.

For El, first observe that because const(set) is a constant
functor, an M ∈ RedTm〈Γ〉 const(set) determines a func-
tor M∗ : 〈Γ〉 −→ set. Thus, it suffices to define a functor
El : set −→ GPD and interpret El(M) by composition. For
our simple universe, El is defined as follows: On objects, take
El(«bool») to be the discrete groupoid with two objects, «in true»
and «in false». For a richer universe, with more type construc-
tors, this definition would be extended to analyze the other pos-
sible codes for types. A functor between discrete groupoids is de-



termined by a function between their sets of objects, so for mor-
phisms, take El(«reflbool») to be the identity function, and El(not)
to be the function that interchanges «in true» and «in false». This
is well-defined because, by the semantic consistency argument,
true 6≡ false and reflbool 6≡ not, so we can map these equiva-
lence classes to different results. It is simple to verify that this obeys
the functor laws. It remains to check that El[«M»] is presented by
El(M). We have two obligations:

1. For all «θ» ∈ Ob 〈Γ〉, El[«M»](θ) is presented by El(M )[θ].
Because M is reducible, «M [θ]» is an object of set, and there-
fore equals «bool». This means that M [θ] ≡ bool, so in the
syntax we can derive that El(M )[θ] ≡ El(bool) by pushing
the substitution inside, and then using congruence and transitiv-
ity. The verification that El(«bool») is presented by El(bool)
is analogous to the above.

2. For all «δ» : «θ1» −→ «θ2», El[«M»](«δ») is presented
by x.mapEl(M) δ x. Due to discreteness/uip, the morphism
part is trivial, so we show the objects, which amounts to:
assuming «N» ∈ Ob El[«M»](θ1), we must show that
«mapEl(M) δ N» ∈ Ob El[«M»](θ2). As in the first part, we
know that El[«M»](θ1) and El[«M»](θ2) are both El(«bool»),
and that El(M )[θ1] ≡ El(M )[θ2] ≡ El(bool). More-
over, because M is reducible, «M [δ]» is a morphism in set,
which means that it is either «reflbool» or «not». In the first
case, (x.mapEl(M) δ x) ≡ (x.mapEl(M) refl x) ≡ x.x by
0-resp functoriality. In the second, (x.mapEl(M) 6 x) agrees
with the semantic negation function on «in true» and «in false»
by 0-resp for El(−).

To interpret A[θ], we overload F [G] to mean functor compo-
sition. We verify that, when 〈A〉 : 〈∆〉 −→ GPD and θ ∈
RedSubst 〈Γ〉 〈∆〉, 〈A〉[θ∗] is presented by A[θ].

1. First, for an object «θ′» ∈ 〈Γ〉, we must show that 〈A〉(θ∗(«θ′»))
is presented by (A[θ])[θ′]. By respect for equality, it suf-
fices to show presentation by A[θ[θ′]]. By definition of θ∗,
θ∗(«θ′») = «θ[θ′]» ∈ Ob 〈∆〉. Thus, by definition of 〈A〉,
〈A〉(«θ[θ′]») is presented by A[(θ[θ′])], as we needed to show.

2. Second, for a morphism «δ» : «θ1» −→〈Γ〉 «θ2», we must
show that 〈A〉[θ∗](«δ») is presented by x.mapA[θ] δ x. This
follows from the equation for map for composition, equating it
to x.mapA (reflθ[δ]) x.

Finally, we come to ΠA B. First we interpret closed Π-types:
given a groupoid 〈A〉 and a functor 〈B〉 : 〈x : A〉 −→ GPD, we
construct a groupoid π〈A〉 〈B〉, which is the dependent analogue of
the functor category 〈B〉〈A〉:

1. An object is an equivalence class «λ x .M », where M ∈
RedTm 〈x : A〉〈B〉.

2. A morphism «λ x .M » −→(π〈A〉 〈B〉) «λ x .N » is «λ x . α»,
where α ∈ RedEquiv M N .

3. Identity at «λ x .M » is «reflλ x .M ». To see that this is a mor-
phism, we have to show that it is the equivalence class of a func-
tion, whose body is reducible. But «reflλ x .M » = «λ x . reflM »,
so it suffices to show that reflM ∈ RedEquiv M M . By def-
inition, this means that for any δ : θ1 −→〈x : A〉 θ2, «M [δ]» :
«mapB δ M [θ1]» −→ «M [θ2]». But this follows immediately
from M ∈ RedTm B, which is necessary for «λ x .M » to
be an object. The definitions of inverse and composition are
analogous; the groupoid equations hold because they hold for
definitional equality.

Observe that π〈A〉 〈B〉 is presented by Π x :A.B .

Next, for a functor 〈B〉 : 〈Γ , x :A〉 −→ GPD, its restriction
to «θ» ∈ Ob Γ, is the functor 〈B〉|«θ» : 〈x : A(«θ»)〉 −→ GPD
defined by

〈B〉|«θ»«(M/x)» = 〈B〉«(θ,M/x)»
〈B〉|«θ»«(α/x)» = 〈B〉«(reflθ, α/x)»

Observe that 〈B〉|«θ» is presented by B [θ, x/x]. The restriction thus
corresponds to holding the Γ part of the functor fixed at a particular
object.

Now we can define the functor Π〈A〉 〈B〉 : 〈Γ〉 −→ GPD,
given 〈A〉 : 〈Γ〉 −→ GPD and 〈B〉 : 〈Γ , x :A〉 −→ GPD:

Π〈A〉 〈B〉(«θ») = π〈A〉(«θ») 〈B〉|«θ»
Π〈A〉 〈B〉(«δ» : «θ1» −→〈Γ〉 «θ2») = 〈x.mapΠ x :A.B δ x〉

First, observe that for each «θ», ΠA B(«θ») is presented by
Π x :A.B [θ] ≡ Π x :A[θ].B [θ, x/x ]. Second, we must verify that
x.mapΠ x :A.B δ x is reducible for any δ, so that it extends to a func-
tor. Observe that the converse holds: If the action on morphisms of
a functor 〈C〉 is presented by mapC , then for any δ, x.mapC δ x
is reducible. Thus, by the assumptions about 〈A〉 and 〈B〉, mapA
and mapB are reducible for any δ. By the definition of map for
Π, we have that

mapΓ.Π x :A.B δ f ≡ λ x .mapΓ,x :A.B (δ, refl) (f (mapΓ.A δ
−1 x ))

By respect for equality, it suffices to show that the RHS is reducible.
This follows from the definition of π and the reducibility of mapA
and mapB .

Using these definitions, it is simple to check the cases of the
fundamental theorem for parts 1, 2, 5, and 6. For parts 1 and 5,
in each case the inductive hypotheses satisfy the pre-conditions of
the designated semantic construction, and we have already verified
that these constructions define groupoids that are appropriately syn-
tactically presented. For parts 2 and 6: the congruence rules hold
because the interpretation is defined compositionally; the equiv-
alence relation rules hold because equality in the meta-language
is an equivalence relation. The only non-trivial equations between
types are the rules that commute substitution with type formers
(e.g. Π x :A.B [θ] ≡ Π x :A[θ].B [θ, x/x ]), which are simple to
verify for the above definitions. Observe that the proof does not
descend into equations between terms, because the only source of
dependency is El(M), where [[El(M)]] ≡ El[M∗], and M∗ auto-
matically respects equality in M .

3.2.3 Reducibility of Substitutions/Terms and Equivalences
Finally, we must show that each θ, M , δ and α is reducible. In
general: To show that an introduction forms is reducible, we will
argue that [[−]] is defined to be “intro forms whose subterms are
reducible”, and that the subterms will be reducible by the induc-
tive hypotheses. To show that an elimination form is reducible, we
will argue that [[−]] tells you that it suffices to check the β-redices,
that the result of reduction is reducible by induction, and that the
elim. form is reducible because definitional equality contains re-
duction. To show that the judgemental operations are reducible,
we will observe that syntactic presentation of [[−]] ensures that all
closed instances of these operations exist, and that, using associa-
tivity laws, the definition of reducibility reduces to checking closed
instances. We show some representative cases for δ, M , and α; the
other cases, including those for θ, are available in the extended ver-
sion [13].

Equivalences between Substitutions The case for refl follows
from θ ∈ RedSubst [[Γ]] [[∆]] and delegate. The case for δ−1 re-
duces to symmetry of morphisms of [[Γ]] and [[∆]] using the equa-
tion δ−1 [δ′] ≡ δ[δ′

−1
]
−1

, which is derivable from interchange.
The case for δ ◦ δ′ is similar, using interchange to push the com-
positions inward. The case for θ[δ] uses 1-resp assoc to associate,



while the case for δ[δ′] uses 2-resp assoc to associate. The case for
(δ, α/x) uses the definition of 2-resp for such pairs.

Terms Case for mapA δ M : On objects, we must show that
«(mapA δ M )[θ]» ∈ Ob [[A[θ2]]](«θ») = Ob [[A[θ2 [θ]]]]. By
1-subst for map, it suffices to show that «mapA δ[reflθ] M [θ]» is.
This follows from the inductive hypotheses for M and δ, which
show that their instances by θ are a morphism and object of the
appropriate categories, and from syntactic presentation of [[A]],
which shows that mapA is functorial, and therefore reducible.
The argument for morphisms is similar, using 1-resp for map.

Case for λ x .M : On objects, we must show that «λ x .M [θ]» ∈
Ob [[Π x :A.B ]](«θ») = Ob π[[A[θ]]] [[B [θ, x/x]]]. By def. subst,
this equals «λ x .M [θ, x/x ]». So it suffices to show that x.M ∈
RedTm[[x : A[θ]]] [[B [θ, x/x]]]. The obligations for both objects and
morphisms follow from the IH M ∈ RedTm[[Γ,x : A]] [[B]], holding
the Γ part fixed at θ. The action on morphisms is similar, using
«(λ x .M )[δ]» = «λ x .M [δ, reflx/x ]».

Case for M1 M2 : On objects, we must show that «M1 M2 [θ]» =
«M1 [θ] M2 [θ]» ∈ Ob [[B[M2/x]]](«θ») = Ob [[B [θ,M2 [θ/x]]]].
By the inductive hypothesis, we know that «M1 [θ]» = «λ x .M ′1 »
where M ′1 is reducible, and that «M2 [θ]» is an appropriate object.
Thus, «M ′1[M2 [θ]/x]» = «(λ x .M ′1 ) M2 [θ]» = «M1 [θ] M2 [θ]» is
an object of the result. The morphism part is analogous, because
M1 M2 [δ] = M1 [δ] M2 [δ].

We omit the cases for M [θ], x , bool, true, false, if, in, and out.

Equivalences between Terms The cases for the judgemental
framework operations (refl, α−1, α ◦ α′, M [δ], α[δ]) are analo-
gous to those for substitutions above.

Case for λ x . α: Given δ, «(λ x . α)[δ]» = «λ x . α[δ, reflx/x ]»,
so it suffices to show that α[δ, reflx/x] is reducible. Picking a sub-
stitution «β/x», the obligation is to show that «α[δ, reflx/x ][β/x]»
is a morphism. This holds by reassociating the substitution, and
then using the IH that α is reducible.

Case for α β: Pick «δ» : «θ1» −→[[Γ]] «θ2». To show:

«α β[δ]» : mapB[M2/x] δ (M1 M2 )[θ1] −→[[B[N1 /x ][θ2]]] (N N1 )[θ2]

By equality, this is«(α[δ]) (β[δ])». The IH gives that α,β are re-
ducible, so

α[δ] : «mapΠ x :A.B δ M [θ1]» −→[[Π x :A.B]](«θ′») «N [θ2]»
β[δ] : «mapA δ M1 [θ1]» −→[[A]] «N1 [θ2]»

To complete the case, we (1) show that if «α′» is a morphism
of π〈X〉 〈Y 〉 and «β′» is a morphism of 〈X〉, then «α′ β′» is a
morphism of 〈Y 〉—the argument uses 2-β-expansion, analogously
to the case for application above. (2) deduce that

(mapΠ x :A.B δ (M [θ1 ])) (mapA δ (M1 [θ1 ]))
≡ mapB[M2/x] δ (M1 M2 )[θ1]

—the proof uses the definition of map for Π, functoriality of map,
cancellation of inverses, and the def. map for A[θ]. This shows that
«(α[δ]) (β[δ])» is a morphism of the appropriate type.

We omit the cases for if and not.

3.2.4 Canonicity
Here, we check that Theorem 3.1 is a corollary of the fundamental
theorem. Assume · ` M : 2. Then M ∈ RedTm[[·]] [[2]], so M ∈
RedTm· const(2). By definition, «id·» ∈ Ob ·, so «M [id·]» ∈
Ob (const(2)(«id·»)). But M [id·] ≡M and const(2)(«id·») =
2, so «M» ∈ Ob 2. By definition of 2, this means «M» = «true»
or «M» = «false», which means that M ≡ true or M ≡ false.

4. Identity Types
In this section, we show how to internalize the judgemental notion
of equivalence as an identity type IdA M N , satisfying the usual

rules. The rules for the identity type are presented in Figure 6. in,
out, and the βη rules for them state that the inhabitants of the iden-
tity type IdA M N are exactly the equivalences M 'A N . The
reflection and uip rules express two-dimensionality: equivalences
themselves are equivalent only if they are equal, and all equiva-
lences between equivalences are the identity. These rules express
strict 2-dimensionality, and are an inherent source of undecidabil-
ity for a strictly 2-dimensional theory; Garner [9] discusses this
point further. The 0-resp rule expresses the action of the Hom-
functor, given by pre- and post-composition. outM determines a
2-cell from a one-cell, and is the first mechanism in our calculus for
introducing variable equivalences. Because 2-resp is determined by
the structure of the equivalence being substituted into, (out M )[δ]
is stuck until M is determined. Canonicity remains true in the pres-
ence of the identity type, interpreting [[IdA M N ]] as the Hom-
functor.

Surprisingly, we can derive the standard J elimination rule for
the identity type. In traditional presentations of MLTT, map (which
is usually called subst) does not entail J. In 2TT, it does, because of
the following properties of the judgemental presentation of equiva-
lence:

1. It axiomatizes the 2-cell structure of types using the operations
refl, −−1, − ◦ − M [δ], and mapC . Our derivation of J uses
unit law equations for these operations:

refl−1 ≡ refl
M [reflθ] ≡ reflM [θ]

refl ◦ α ≡ α
mapC refl M ≡M

2. It interprets the identity type as the Hom-functor. Our deriva-
tion of J exploits the Hom-functor’s action, which defines
mapΓ.IdA M N in terms of pre- and post-composition.

3. It axiomatizes the 2-cell structure of Σ-types as context ex-
tension Γ , x :A. The derivation of J uses the pairing intro-
duction rule for 'Γ,x :A, and the definition of reflθ,M/x ≡
(reflθ, reflM/x).

In traditional type theory, this 2-cell structure is instead derived
from the identity type, which requires taking J as a primitive rule.

We state J in the Paulin-Mohring form [19]:
Γ ` A type Γ ` M : A
Γ, x : A, p : IdA M x ` C type
Γ ` b : C [idΓ ,M/x , reflM /p]
Γ ` N : A Γ ` P : IdA M N

Γ ` JC (b,P) : C [idΓ ,N/x ,P/p] JC(b, in reflM ) ≡ b
and define it by

JC(b, in reflM ) := mapΓ,x :A,p:IdA M x .C (reflidΓ , outP/x, in (reflP )/p) b

As Awodey has observed,1 J can be defined in terms of map,
given, for any A,M,N, P as in the premises of J, an equivalence

(M/x, reflM/p) '(x : A,p : IdA M x) (N/x, P/p)

Homotopically, this says that any path fromM with a free endpoint,
represented by the pair (N,P ), is homotopic to the pair (M, refl)
of M itself and the trivial path. Geometrically, (M, refl) can be
expanded to (N,P ) by dragging M along P .

Here, we observe that this equivalence is in fact provable, by
(outP/x, in (reflP )/p), using the rules described above. Because
we work with total substitutions, we show that

(reflidΓ , outP/x, in (reflP )/p) :
(idΓ,M/x, reflM/p) '(Γ,x : A,p : IdA M x) (idΓ, N/x, P/p)

so that mapC coerces the b to the appropriate type. Unpacking the
pairing introduction rule for equivalence at Γ , x :A, our first goal

1 Personal communication.



Γ ` A type
Γ ` {M ,N} : A

Γ ` IdA M N type

Γ ` α : M 'A N

Γ ` inα : IdA M N

Γ ` M : IdA M N

Γ ` outM : M 'A N (reflinα is canonical if α is)

Γ ` α : P 'IdA M N Q

Γ ` P ≡ Q

Γ ` α : P 'IdA M N Q

Γ ` α ≡ reflP

out (inα) ≡ α 1-β
in (outM) ≡ M 1-η

(IdA M N )[θ] ≡ IdA[θ] M [θ] N [θ] 0-subst
map∆.IdA M N δ P ≡ 0-resp

in (N [δ] ◦ (resp (x.mapA δ x) (outP )) ◦M [δ]−1)

(inα)[θ] ≡ in (α[reflθ]) 1-subst
(inα)[δ] ≡ in (α[δ]) 1-resp

refl is canonical
−−1,− ◦ − trivial by extensionality
(out M )[δ] stuck until M reduces (neutral) 2-resp

Figure 6. Identity Types

is to show that reflidΓ : idΓ 'Γ idΓ, which it clearly does. Next,
the second component of the pair must have type M 'A N (the
“adjustment” mapΓ.A reflidΓ M cancels by the unit law for map),
which outP does. Our final goal is to prove

mapΓ,x :A.IdA M x (reflidΓ , outP/x) (in refl) ' P

In fact, the left-hand-side is definitionally equal to the right-hand,
so reflP gives the result. This follows from the fact that

mapΓ,x :A.IdA M x (reflidΓ , α/x) Q ≡ in (α ◦ out (Q))

I.e. map at this type is post-composition with α (the derivation is
in the extended version [13]).

The computation rule holds because

JC(b, refl) := mapC (reflidΓ , out (in refl)/x, in (reflP )/p) b

which, by 1-β for Id and the definition of refl for Γ , x :A, is
mapC refl b, which is b by the unit law for map.

Conversely, the type-generic operations on equivalence that we
have taken as primitive here (map, M [δ], refl,−−1 −◦−, α[δ]) can
be defined in traditional Martin-Löf type theory using the identity
type IdA M N in place of the equivalence judgement M 'A N ,
as consequences of J . However, many of the equations on these
operations hold only as higher-dimensional equivalences, rather
than as definitional equalities, which breaks definitional canonicity.
A resolution of the conjecture that univalent intensional type theory
satisfies canonicity up to equivalence [23] is an important area of
future work.

5. Related Work
Higher-dimensional type theory is based on a type-directed defi-
nition of equivalence, including extensional equality for functions
and universes. The idea of defining equality in a type directed man-
ner is central to Martin-Löf type theory Martin-Löf [17], especially
as presented in NuPRL [5]. Relative to NuPRL, the main benefit
of a 2-dimensional theory is that all types respect computationally-
relevant notions of equivalence, such as isomorphism of sets; this
generalizes NuPRL, where equality is computationally irrelevant.

A similar contrast applies to OTT [3]: In OTT, equality is a com-
putationally irrelevant proposition, so all types are sets—OTT is
1-dimensional. In contrast, 2TT accounts for computationally rel-
evant notions of equivalence—2-dimensional structure. For exam-
ple, in OTT, coercing any term by any equality proof gives a result
that is equal to the original term. This is not true in 2TT, because,
for example, not exchanges true and false, which are not equal.

Hofmann and Streicher [12] give intensional type theory a se-
mantics in groupoids. 2TT can be seen as an effort to read this
semantics back into the syntax, enriching the type theory with a
number of new equations, such as the computation rules for map
and resp and the type-directed rules for equivalences. They use the
groupoid interpretation to justify an axiomatic account of a universe
of types modulo isomorphism, but this extension does not seem to
enjoy canonicity.

Hofmann [10] justifies various extensional concepts, such as
functional extensionality and quotient types, by a semantics con-
structed in intensional type theory; Altenkirch [2] adapts this con-
struction to coexist better with other type-theoretic features, such as
large eliminations. Canonicity is achieved by defining definitional
equality as equality of denotations. Hofmann [10] does not take
this approach for the groupoid model, because the groupoid model
cannot be defined in intensional type theory without functional ex-
tensionality. An alternative to our current work would be to parallel
this approach, and define a groupoid interpretation into extensional
type theory, and thereby inherit equality from the meta-language.
The benefit of the approach we take here is that it provides a more
direct description of the equational theory, presenting it directly in
terms of the source language.

Garner [9] studies a two-dimensional theory ML2, and shows it
sound and complete for a class of 2-categories. ML2 introduced
the two-dimensional identity types, with reflection and uip for
identity types only, which we adopted in Section 4. It addition-
ally included some new computation rules for Π-types, which in
our notation would be written reflM : Π x :A.B ≡ λ x . reflM x and
(λ x . α : M 'Π x :A.B N ) reflM0 ≡ α[M0/x]. However, it did not
include, e.g., the type-directed rules for map and thus would not
enjoy canonicity in the presence of something like univalence. In
future work, we may consider identifying a class of two-categories
that is sound and complete for 2TT.

Voevodsky’s univalence axiom [23] equips intensional type the-
ory with full homotopy equivalence, which includes isomorphism
for sets, equivalence for categories, and so on. However, the ax-
iomatic account does not satisfy canonicity for definitional equal-
ity. Voevodsky conjectures that every closed term of type nat is
equivalent (using univalence) to one that does not use the univa-
lence axiom (and therefore to a numeral, by canonicity for the base
theory). However, this conjecture has not yet been proved, and our
work suggests an approach to it, as we discuss below. Moreover,
Voevodsky conjectures that this numeral can be computed, which
is not something we have yet established here.

Our presentation here is based on our previous work on 2DTT [14],
a 2-dimensional directed type theory, which generalizes equiva-
lence to an asymmetric notion of transformation. Our presentation
here avoids some of the complexities of 2DTT, like the need to
account for variances of type constructors, but on the other hand
shows that the presentational style can account for symmetry. The
proof of canonicity and the derivation of identity types are novel to
the present work; we conjecture that our proof of canonicity could
be applied to 2DTT as well.

In concurrent work, de Queiroz and de Oliveira [6] have also
developed a type theory with a judgemental notion of equivalence,
which has explicit evidence with a groupoid structure, and which
is internalized by the identity type. Their type theory is weaker
(in the category-theoretic sense), in that every equation is part of
equivalence—including βη-like rules, which we treat as equalities.
However, there is no account of a higher-dimensional base type,



nor a claim of canonicity. A number of equations on equivalences
are oriented as rewrite rules, which are proved terminating and
confluent, but it is unclear what equational theory this decides.

Interestingly, FC [21], the calculus used as an intermediate lan-
guage in the Haskell compiler GHC, has some similarities to 2TT.
While there are no higher-dimensional types in FC , type equali-
ties are witnessed by explicit coercions, written in programs using
a construct similar to map, and the class of coercions is closed un-
der the 2-category operations considered here, such as refl, − ◦ −,
−−1, and−[−]. Moreover, GHC includes a coercion simplification
algorithm, whose purpose is to reduce the size of coercion terms,
which exploits many of the equations on these 2-category opera-
tions. An interesting application of 2TT would be to analyze this
coercion simplification algorithm by translating its reductions into
2TT equations, which might suggest some additional coercion re-
ductions,

Other related work concerns categorical or homotopy-theoretic
semantics of pure intensional type theory. On the homotopy-
theoretic side, Awodey and Warren [4], Warren [24] show how
to interpret intensional type theory into abstract homotopy theory
(i.e. Quillen model categories). Lumsdaine [15] and van den Berg
and Garner [22] show that the syntax of intensional type theory
forms a weak ω-category, and Gambino and Garner [8] shows that
identity types admit a weak factorization system.

6. Conclusion
We have presented a novel formulation of 2-dimensional type the-
ory, 2TT, based on a judgemental account of higher-dimensional
structure. This judgemental account reifies the groupoid structure
of types and the functorial actions of families. 2TT enjoys a canon-
icity property for closed terms of observable type, which we have
proved by a logical-relations style argument in which types are
interpreted as groupoids rather than as equivalence relations. The
identity type can be defined by internalizing this judgemental no-
tion of equivalence, and the judgemental apparatus suffices to de-
rive its standard elimination rule.

One direction for future work is to sharpen the canonicity the-
orem to state that · ` M : bool evaluates to true or to false using
a deterministic operational semantics. The result given here leaves
open the possibility that the derivation of M ≡ true or M ≡ false
proceeds by a non-operational rule, such as the various η princi-
ples, or an instance of equality reflection. The consistency of the
equational theory suggests that such a maneuver cannot be essen-
tial, and hence only the β-like rules, including those for map and
resp, are relevant to canonicity. A possible route to this result would
be to define the groupoid interpretation in extensional type theory,
and then prove a Plotkin-style computational adequacy theorem for
this interpretation to obtain the sharper result.

Another direction for future work is to investigate canonicity
for the many possible variations on 2TT: For example, we may ex-
tend 2TT with standard features in current proof assistants, such
as inductive types. Another possible extension is an impredicative
universe. A third possibility is to consider directed type theory [14],
which has applications to generic programming with abstract syn-
tax and directed homotopy theory. More ambitiously, we may con-
sider an extension to a fully higher-dimensional univalent depen-
dent type theory, for which canonicity remains an open problem.
By analogy with our judgemental formulation, which reifies the
groupoid structure of a type, we would present the syntax in such
a way that it reifies the weak ω-groupoid structure of a type. How-
ever, an obstacle to this generalization is the complexity of the pro-
posed definitions of “weak ω-groupoid” and their adaptation to the
type-theoretic setting.

Acknowledgments We thank Thorsten Altenkirch, Jeremy Avi-
gad, Steve Awodey, Caylee Hogg, Chris Kapulkin, Peter Lums-
daine, Gordon Plotkin, Mike Shulman, Kristina Sojakova, and the
anonymous reviewers for helpful conversations about this work and
feedback on this article.

References
[1] Homotopy type theory Web site. www.homotopytypetheory.org,

2011.
[2] T. Altenkirch. Extensional equality in intensional type theory. In IEEE

Symposium on Logic in Computer Science, 1999.
[3] T. Altenkirch, C. McBride, and W. Swierstra. Observational equality,

now! In Programming Languages meets Program Verification Work-
shop, 2007.

[4] S. Awodey and M. Warren. Homotopy theoretic models of identity
types. Mathematical Proceedings of the Cambridge Philosophical
Society, 2009.

[5] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing Mathemat-
ics with the NuPRL Proof Development System. Prentice Hall, 1986.

[6] R. J. G. B. de Queiroz and A. G. de Oliveira. Propositional equality,
identity types, and direct computational paths. ArXiv e-prints, July
2011.

[7] P. Dybjer and A. Filinski. Normalization and partial evaluation. In
Applied Semantics: International Summer School, APPSEM 2000,
volume 2395 of Lecture Notes in Computer Science, pages 137–192.
Springer-Verlag, September 2000.

[8] N. Gambino and R. Garner. The identity type weak factorisation
system. Theoretical Computer Science, 409(3):94–109, 2008.

[9] R. Garner. Two-dimensional models of type theory. Mathematical.
Structures in Computer Science, 19(4):687–736, 2009.

[10] M. Hofmann. Extensional Concepts in Intensional Type Theory. PhD
thesis, University of Edinburgh, 1995.

[11] M. Hofmann. Syntax and semantics of dependent types. In Semantics
and Logics of Computation, pages 79–130. Cambridge University
Press, 1997.

[12] M. Hofmann and T. Streicher. The groupoid interpretation of type
theory. In Twenty-five years of constructive type theory. Oxford Uni-
versity Press, 1998.

[13] D. R. Licata and R. Haprer. Canonicity for 2-dimensional type theory
(extended version). Technical Report CMU-CS-11-143, Carnegie
Mellon University, 2011.

[14] D. R. Licata and R. Harper. 2-dimensional directed type theory. In
Mathematical Foundations of Programming Semantics (MFPS), 2011.

[15] P. L. Lumsdaine. Weak ω-categories from intensional type theory. In
International Conference on Typed Lambda Calculi and Applications,
2009.

[16] P. Martin-Löf. An intuitionistic theory of types: Predicative part. In
H. Rose and J. Shepherdson, editors, Logic Colloquium ’73, Proceed-
ings of the Logic Colloquium, volume 80 of Studies in Logic and the
Foundations of Mathematics, pages 73 – 118. Elsevier, 1975.

[17] P. Martin-Löf. Constructive mathematics and computer programming.
Philosophical Transactions of the Royal Society of London. Series A,
Mathematical and Physical Sciences, 312(1522):501–518, 1984.

[18] B. Nordström, K. Peterson, and J. Smith. Programming in Martin-
Löf’s Type Theory, an Introduction. Clarendon Press, 1990.

[19] C. Paulin-Mohring. Extraction de programmes dans le Calcul des
Constructions. PhD thesis, Université Paris 7, 1989.

[20] A. M. Pitts. Categorical logic. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,
Volume 5. Algebraic and Logical Structures, chapter 2, pages 39–128.
Oxford University Press, 2000.

[21] M. Sulzmann, M. M. T. Chakravarty, S. P. Jones, and K. Don-
nell. System f with type equality coercions. In ACM Workshop on
Types in Language Design and Implementaion, 2007. Appendix at
http://research.microsoft.com/ simonpj/papers/ext-f/.

[22] B. van den Berg and R. Garner. Types
are weak ω-groupoids. Available from
http://www.dpmms.cam.ac.uk/ rhgg2/Typesom/Typesom.html,
2010.

[23] V. Voevodsky. Univalent foundations of mathematics. Invited talk at
WoLLIC 2011 18th Workshop on Logic, Language, Information and
Computation, 2011.

[24] M. A. Warren. Homotopy theoretic aspects of constructive type theory.
PhD thesis, Carnegie Mellon University, 2008.


