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Abstract
We construct a logical framework supporting datatypes that mix
binding and computation, implemented as a universe in the depen-
dently typed programming language Agda 2. We represent binding
pronominally, using well-scoped de Bruijn indices, so that types
can be used to reason about the scoping of variables. We equip
our universe with datatype-generic implementations of weaken-
ing, substitution, exchange, contraction, and subordination-based
strengthening, so that programmers need not reimplement these op-
erations for each individual language they define. In our mixed,
pronominal setting, weakening and substitution hold only under
some conditions on types, but we show that these conditions can
be discharged automatically in many cases. Finally, we program
a variety of standard difficult test cases from the literature, such
as normalization-by-evaluation for the untyped λ-calculus, demon-
strating that we can express detailed invariants about variable usage
in a program’s type while still writing clean and clear code.
Categories and Subject Descriptors F.3.3 [Logics and Meanings
Of Programs]: Studies of Program Constructs—Type structure
General Terms Languages, Verification

1. Introduction
There has been a great deal of research on programming lan-
guages for computing with binding and scope (bound variables,
α-equivalence, capture-avoiding substitution). These languages are
useful for a variety of tasks, such as implementing domain-specific
languages and formalizing the metatheory of programming lan-
guages. Functional programming with binding and scope involves
two different notions of function: functions-as-data and functions-
as-computation. Functions-as-data, used to represent abstract syn-
tax with variable binding, have an intensional, syntactic, character,
in the sense that they can be inspected in ways other than func-
tion application. For example, many algorithms that process ab-
stract syntax recur under binders, treating variables symbolically.
On the other hand, functions-as-computation, the usual functions of
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functional programming, have an extensional character—a function
from A to B is a black box that, when given an A, delivers a B. A
function-as-data determines a function-as-computation by substi-
tution (plugging a value in for a variable), but not every function-
as-computation determines a function-as-data, because the syntax
appropriate for a particular problem may not allow the expression
of every black box.

In previous work (Licata et al., 2008), we began to study a
programming language that provides support for both functions-
as-data and functions-as-computation as two different types. Our
framework provides one type constructor⇒ for functions-as-data,
used to represent variable binding, and another type constructor
⊃ for functions-as-computation, used for functional programming.
This permits representations that mix the two function spaces. As a
simple example of such integration, consider a syntax for arithmetic
expressions constructed out of (1) variables, (2) numeric constants,
(3) let binding, and (4) arbitrary binary primitive operations, repre-
sented by functions-as-computation of type nat ⊃ nat ⊃ nat. In
SML, we would represent this syntax with the following datatype:

datatype arith = Var of var
| Num of nat
| Letbind of arith * (var * arith)
| Binop of arith * (nat -> nat -> nat) * arith

We use ML functions(-as-computation) to represent the primops.
However, because SML provides no support for functions-as-data,
we must represent variable binding explicitly (with a type var), and
code notions such as α-equivalence and substitution ourselves.

In contrast, our framework naturally supports mixed datatypes
such as this one. We specify it by the following constructors:

num : arith⇐ nat
letbind : arith⇐ arith⊗ (arith⇒ arith)
binop : arith⇐ arith⊗ (nat ⊃ nat ⊃ nat)⊗ arith

The symbol ⇐ is used for datatype constructors, which have the
form D ⇐ A, for a datatype name D and a type A. We use
⇒ (functions-as-data) to represent the body of the letbind, and ⊃
(functions-as-computation) to represent the primops.

Our framework takes a pronominal approach to the variables
introduced by functions-as-data: variables are thought of as pro-
nouns that refer to a designated binding site, and thus are intrinsi-
cally scoped. This is in contrast to the nominal approach taken by
languages such as FreshML (Pitts and Gabbay, 2000; Pottier, 2007;
Shinwell et al., 2003), where variables are thought of as nouns—
they are pieces of data that exist independently of any scope. The
pronominal approach inherently requires some notion of context
to be present in the language’s type system, so that variables have
something to refer to; we write 〈Ψ〉A as the classifier of a pro-
gram of type A with variables Ψ. The practical advantage of these
contextual types is that they permit programmers to express useful
invariants about variable-manipulating code using the type system,
such as the fact that a λ-calculus evaluator maps closed terms to
closed terms.



In a pronominal setting, the interaction of functions-as-data
and functions-as-computation has interesting consequences for the
structural properties of variables, such as weakening (introduc-
ing a new variable that does not occur) and substitution (plugging
a value in for a variable). For example, one might expect that it
would be possible to weaken a value of type A to a function-as-
data of type D ⇒ A. However, this is not necessarily possible
when A itself is a computational function type: Contextual com-
putational functions of type 〈Ψ〉A ⊃ B are essentially interpreted
as functions from 〈Ψ〉A to 〈Ψ〉B , and 〈Ψ〉D ⇒ A classifies val-
ues of type A in an extended context Ψ, x : D . Now, suppose we
are given a function f of type 〈Ψ〉A ⊃ B ; we try to construct a
function of type 〈Ψ〉D ⇒ (A ⊃ B). This requires a function from
〈Ψ, x : D〉A to 〈Ψ, x : D〉B . Since f is a black box, we can only
hope to achieve this by pre- and post-composing with appropriate
functions. The post-composition must take 〈Ψ〉B to 〈Ψ, x : D〉B ,
which would be a recursive application of weakening. However, the
pre-composition has a contravariant flip: we require a strengthening
function from 〈Ψ, x : D〉A to 〈Ψ〉A in order to call f—and such a
strengthening function does not in general exist, because the value
of type A might be that very variable x. Similarly, substitution of
terms for variables is not necessarily possible, because substitu-
tion requires weakening. Put differently, computational functions
permit the expression of side conditions that inspect the context,
which causes the structural properties to fail. As a concrete exam-
ple, consider computational functions of type 〈·〉 (arith ⊃ arith),
which are defined by case-analysis over closed arithmetic expres-
sions, giving cases for constants and binops and let-binding—but
not for variables, because there are no variables in the empty con-
text. Weakening such a function to type arith ⇒ (arith ⊃ arith)
enlarges its domain, asking it to handle cases that it does not cover.

What are we to do about this interaction of binding and com-
putation? One option is to work in a less general setting, where
it does not come up. For example, in nominal languages such as
FreshML (Shinwell et al., 2003), the type of names is kept open-
ended (it is considered to have infinitely many inhabitants). Thus,
any computational function on syntax with binding must account
for arbitrarily many names, and is therefore weakenable. How-
ever, many functions on syntax are only defined for certain classes
of contexts (e.g., only closed arithmetic expressions can be eval-
uated to a numeral), and the nominal approach does not allow
these invariants to be expressed in a program’s type (though they
can be reasoned about externally using a specification logic (Pot-
tier, 2007)). Alternatively, in languages based on the LF logical
framework, such as Twelf (Pfenning and Schürmann, 1999), Del-
phin (Poswolsky and Schürmann, 2008), and Beluga (Pientka,
2008), the structural properties always hold, because computational
functions cannot be used in LF representations of logical systems.

In our framework, we take a more general approach, which
requires admitting that weakening and substitution may not always
be defined. Thus, we should be more careful with terminology, and
say that the type D ⇒ A classifies values of type A with a free
variable of type D. In some cases, D ⇒ A determines a function
given by substitution, but in some cases it does not. In this sense,
our approach is similar to representations of binding using well-
scoped de Bruijn indices (Altenkirch and Reus, 1999; Bellegarde
and Hook, 1994; Bird and Paterson, 1999), which are pronominal,
because variables are represented by pointers into a context, but
make no commitment to weakening and substitution. However,
our framework improves upon such representations by observing
that weakening and substitution are in fact definable generically,
not for every type D ⇒ A, but under certain conditions on the
types D and A. For example, returning to our failed attempt to
weaken A ⊃ B above, if variables of type D could never appear in
terms of type A, then the required strengthening operation would

exist. As a rough rule of thumb, one can weaken with types that
do not appear to the left of a computational arrow in the type
being weakened, and similarly for substitution. Our framework
implements the structural properties generically but conditionally,
providing programmers with the structural properties “for free” in
many cases. This preserves one of the key benefits of working in
LF, where weakening and substitution are always defined.

In our previous work (Licata et al., 2008), we investigated the
logical foundations of a pronominal approach to mixing binding
and computation. In the present paper, we give an implementa-
tion of (a slight variant of) our framework, and we demonstrate
the viability of our approach by programming some standard dif-
ficult test cases from the literature. For example, we implement
normalization-by-evaluation (Berger and Schwichtenberg, 1991;
Martin-Löf, 1975) for the untyped λ-calculus, an example consid-
ered in FreshML by Shinwell et al. (2003). Our version of this al-
gorithm makes essential use of a datatype mixing binding and com-
putation, and our type system verifies that evaluation maps closed
terms to closed terms.

Rather than implementing a new language from scratch, we con-
struct our type theory as a universe in Agda 2 (Norell, 2007), a
dependently typed functional programming language that provides
good support for programming with inductive families, in the style
of Epigram (McBride and McKinna, 2004). This means that we
(a) give a syntax for the types of our type theory and (b) give a
function mapping the types of our language to certain Agda types;
the programs of our language are then the Agda programs of those
types. This implementation strategy allows us to reuse the consid-
erable implementation effort that has gone into Agda, and to exploit
generic programming within dependently typed programming (Al-
tenkirch and McBride, 2003) to implement the structural proper-
ties; additionally, it permits programs written using our framework
to interact with existing Agda code. Also, our development pro-
vides a successful example of prototyping a new language with an
interesting type system using a dependently typed programming
language. In our Agda implementation, we have chosen to repre-
sent variable binding using well-scoped de Bruijn indices.

In summary, we make the following technical contributions:
(1) We show that our previous type theory for integrating bind-
ing and computation can be implemented as a universe in Agda.
The types of the universe permit concise, “point-free” descriptions
of contextual types: a type in the universe acts as a function from
contexts to Agda types. (2) We implement a variety of structural
properties for the universe, including weakening, substitution, ex-
change, contraction, and subordination-based strengthening (Virga,
1999), all using a single generic map function for datatypes that
mix binding and computation. (3) We define the structural prop-
erties’ preconditions computationally, so that our framework can
discharge these conditions automatically in many cases. This gives
the programmer free access to weakening, substitution, etc. (when
they hold). (4) We program a variety of examples, and demonstrate
that we can express detailed invariants about variable usage in a
program’s type while still writing clean and clear code.

In this paper, we consider only a simply-typed universe, for
writing ML-like programs that manipulate binding in a well-scoped
manner; we leave dependent types to future work. Also, the com-
panion code for this paper (see http://www.cs.cmu.edu/~drl/)
is written in “Agda minus termination checking,” as many of our
examples require non-termination; we discuss which parts of our
code pass the termination checker below.

The remainder of this paper is organized as follows: In Sec-
tion 2, we introduce our language and its semantics in Agda. In
Section 3, we present examples. In Section 4, we discuss the struc-
tural properties. In Sections 5 and 6, we discuss related work and
conclude. Appendix A contains a brief introduction to Agda.



2. Language Definition
2.1 Types
The grammar for the types of our language is as follows:

Defined atoms D ::= . . .
Var. Types C ::= (a subset of D)
Contexts Ψ ::= [] | (Ψ, C)
Types A ::= 0+ | 1+ | A⊗B | A⊕B | listA | A ⊃ B

D+ D | C# | Ψ⇒∗ A | 2A
∀c ψ.A | ∃c ψ.A | ∀≤CA | ∃≤CA

The language is parametrized by a class of defined atoms D,
which are the names of datatypes. A subset of these names are
variable types, which are allowed to appear in contexts. This dis-
tinguishes certain types C which may be populated by variables
from other types D which may not. This definition of VarType
permits only variables of base type, rather than the full language
of higher-order rules that we considered in previous work (Licata
et al., 2008). Contexts are lists of variable types, written with ’cons’
on the right.

The types on the first line have their usual meaning. The type
D+ D is the datatype named by D. Following Delphin (Poswolsky
and Schürmann, 2008), we include a type C# classifying only the
variables of type C. The type Ψ ⇒∗ A classifies inhabitants of
A in the current context extended with Ψ. The type 2A classifies
closed inhabitants of A. The types ∀c and ∃c classify universal
and existential context quantification; ∀≤CA and ∃≤CA provide
bounded quantification over contexts containing only the type C.

2.1.1 Agda implementation
We now represent these types in Agda. Those readers who are not
fluent in dependent programming can find a review of Agda syntax,
well-scoped de Bruijn indices, and universes in Appendix A. We
represent defined atoms, variable types and contexts as follows:

DefAtom = DefinedAtoms.Atom

data VarType : Set where
. : (D : DefAtom) {_ : Check(DefinedAtoms.world D)}

-> VarType

Vars = List VarType

DefinedAtoms.Atom is a parameter that we will instantiate later.
DefinedAtoms.world returns true when D is allowed to appear
in the context; Check turns this boolean into a proposition (Check
True is the unit type; Check False is the empty type; see Ap-
pendix A for an introduction). A VarType is thus a pair of an atom
along with the credentials allowing it to appear in contexts.

We represent the syntax of types in Agda as follows:

data Type : Set where
–– types that have their usual meaning
1+ : Type
_⊗_ : Type -> Type -> Type
0+ : Type
_⊕_ : Type -> Type -> Type
list_ : Type -> Type
_⊃_ : Type -> Type -> Type
–– datatypes and context manipulation
D+ : DefAtom -> Type
_# : VarType -> Type
_⇒*_ : Vars -> Type -> Type
2 : Type -> Type
∀c : (Vars -> Type) -> Type
∃c : (Vars -> Type) -> Type
∀≤ : VarType -> Type -> Type
∃≤ : VarType -> Type -> Type

The only subtlety in this definition is that we represent the bod-
ies of ∀c and ∃c by computational functions in Agda. This choice
has some trade-offs: on the one hand, it means that the bodies of
quantifiers can be specified by any Agda computation (e.g. by re-
cursion over the domain). On the other hand, it makes it difficult to
analyze the syntax of Types, because there is no way to inspect
the body of the quantifier. Indeed, this caused problems for our
implementation of the structural properties, which we solved by
adding certain instances of the quantifiers (∀⇒ and ∃⇒, discussed
below), which would otherwise be derived forms, as separate Type
constructors. In future work, we may pursue a more syntactic treat-
ment of the quantifiers (which would of course be easier if we had
good support for variable binding. . . ).

A rule, which is the type of a datatype constructor, pairs
the defined atom being constructed with a single premise type
(no/multiple premises can be encoded using 1+ and ⊗):

data Rule : Set where
_⇐_ : DefAtom -> Type -> Rule

We will make use of a few derived forms:

• We write (∀⇒ A) for (∀c \Ψ -> Ψ ⇒* A), and similarly
for ∃⇒ (note that \ x -> e introduces an anonymous func-
tion). This type quantifies over a context Ψ and immediately
binds it around A. Similarly, we write [ Ψ ]* A for 2 (Ψ⇒*
A)
• We write (C ⇒ Ψ) for⇒* with a single premise.
• We write (C +) for (D+ C) when C is a variable type.
• We write bool for 1+ ⊕ 1+ and A option for A ⊕ 1+.

2.2 Semantics
A universe is specified by a inductive datatype of codes for types,
along with a function mapping each code to a Set. In this case,
the Types above are the codes, and the semantics is specified in
Figure 1 by a function < Ψ > A, mapping a context and a Type
to an Agda Set. The first six cases interpret the basic types of the
simply-typed λ-calculus as their Agda counterparts, pushing the
context inside to the recursive calls.

The next two cases interpret datatypes. We define an auxiliary
datatype called Data which represents all of the data types defined
in the universe. Data is indexed by a context and a defined atom,
with the idea that the Agda set Data Ψ D represents the values
of datatype D in context Ψ. For example, the values of Data Ψ
arith will represent the arithmetic expressions defined by the sig-
nature given in the introduction. There are two ways to construct a
datatype: (1) apply a datatype constructor to an argument and (2)
choose a variable from Ψ. Constants are declared in a signature,
represented with a predicate on rules InΣ : Rule -> Set, where
InΣ R is inhabited when the rule R is in the signature. The first con-
structor, written as infix ·, pairs a constant with the interpretation of
the constant’s premise. The second constructor, ., injects a variable
from Ψ into Data.1 See the appendix for the definition of the type
∈, which represents well-scoped de Bruijn indices (Altenkirch and
Reus, 1999; Bellegarde and Hook, 1994; Bird and Paterson, 1999).
A DefAtom D is in the context if there exist credentials c for which
the VarType formed by (. D {c}) is in the list Ψ.

Finally, we provide a collection of types that deal with the
context: Ψ ⇒* A extends the context (we write + for append); 2
A clears the context. The quantifiers ∀c and ∃c are interpreted as
the corresponding Agda dependent function and pair types. Finally,

1 Agda allows overloading of datatype constructors between different types,
and we tend to use . for injections from one type to another, as with
VarType above.



AllEq : Vars -> VarType -> Set
AllEq Ψ D = Check (List.all (eqVarType D) Ψ)

mutual
data Data (Ψ : Vars) (D : DefAtom) : Set where
_·_ : {A : Type}

-> InΣ (D ⇐ A) -> < Ψ > A -> Data Ψ D
. : {c : _} -> (. D {c}) ∈ Ψ -> Data Ψ D

<_>_ : Vars -> Type -> Set
–– basic types
< Ψ > 1+ = Unit
< Ψ > 0+ = Void
< Ψ > (A ⊗ B) = (< Ψ > A) × (< Ψ > B)
< Ψ > (A ⊕ B) = Either (< Ψ > A) (< Ψ > B)
< Ψ > (list A) = List (< Ψ > A)
< Ψ > (A ⊃ B) = (< Ψ > A) -> (< Ψ > B)
–– data types
< Ψ > (D+ D) = Data Ψ D
< Ψ > (D #) = D ∈ Ψ
–– context manipulation
< Ψ > (Ψnew ⇒* A) = < Ψ + Ψnew > A
< _ > (2 A) = < [] > A
< Ψ > (∃c τ) = Σ \ Ψ’ -> < Ψ > (τ Ψ’)
< Ψ > (∀c τ) = (Ψ’ : Vars) -> < Ψ > (τ Ψ’)
< Ψ > (∀≤ D A) =

(Ψ’ : Vars) -> AllEq Ψ’ D -> < Ψ + Ψ’ > A
< Ψ > (∃≤ D A) =

Σ \ (Ψ’ : Vars) -> AllEq Ψ’ D × < Ψ + Ψ’ > A

Figure 1. Semantics

the types ∀≤ D A and ∃≤ D A quantify over contexts Ψ’ for
which AllEq Ψ’ D holds. The type AllEq says that every variable
type in Ψ is equal to the given type D (List.all is true when
its argument is true on all elements of the list; eqVarType is a
boolean-valued equality function for variable types). (We could
internalize AllEq Ψ’ D as a type alleq D—given meaning by
< Ψ > (alleq D) = AllEq Ψ D—in which case the bounded
quantifier could expressed as a derived form, but we have not
needed alleq D in a positive position in the examples we have
coded so far.)

An Agda datatype is strictly positive if it does not appear to
the left of any Agda function types (->) in its own definition; this
positivity condition ensures that the user does not define general
recursive types (e.g. µD.D → D), which can be used to inhabit
any type and to write non-terminating code. The above type Data
does not pass the positivity checker: it is defined mutually with
<_>_, and <_>_ occurs to the left of an Agda function type in
the meaning of ⊃. In this paper, we wish to program with general
recursive types, so we will ignore this failure of positivity checking.
An interesting direction for future work would be to consider a total
variant of our framework, which admits only strictly positive types.
This would require a more refined explanation of the construction
of the defined atoms in the universe, e.g. using containers (Abbott
et al., 2005), because the positivity of a defined atom D depends on
the rules for D in the signature InΣ.

We also define versions of 2 and ∀⇒ that construct Agda Sets,
so that we do not need to write < [] > 2 A and so on as the Agda
type of a term. (We intentionally use a very similar notation for
these; to a first approximation, one can read our examples without
keeping this distinction in mind.)

� : Type -> Set
� A = < [] > A

∀⇒_ : Type -> Set
∀⇒_ A = (Ψ : Vars) -> < Ψ > A

subst : (A : Type) {D : VarType}
{_ : Check(canSubst (un. Cut) A)}

-> (∀⇒ (D ⇒ A) ⊃ (D +) ⊃ A)

weaken : (A : Type) {D : VarType}
{_ : Check (canWeaken (un. D) A)}

-> (∀⇒ A ⊃ (D ⇒ A))

strengthen : (A : Type) {D : VarType}
{_ : Check (canStrengthen (un. D) A)}

-> ∀⇒ (D ⇒ A) ⊃ A

exchange2 : (A : Type) {D1 D2 : VarType}
-> (∀⇒ (D2 ⇒ D1 ⇒ A) ⊃ (D1 ⇒ D2 ⇒ A))

contract2 : (A : Type) {D : VarType}
-> (∀⇒ (D ⇒ D ⇒ A) ⊃ (D ⇒ A))

weaken*/bounded : (A : Type) (Ψ : Vars) {D : VarType}
-> (AllEq Ψ D)
-> {canw : Check (canWeaken (un. D) A)}
-> (∀⇒ A ⊃ (Ψ ⇒* A))

Figure 2. Type signatures of structural properties

2.3 Structural Properties
In Figure 2, we present the type signatures for the structural prop-
erties; this is the interface that users of our framework see.

For example, the type of substitution should be read as follows:
for any A and D, if the conditions for substitution hold, then there
is a function of type (∀⇒ (D ⇒ A) ⊃ (D +) ⊃ A) (for any
context, given a term of type A with a free variable, and something
of type D + to plug in, there is a term of type A without the free
variable). Weakening coerces a term of type A to a term with an
extra free variable; strengthening does the reverse; exchange swaps
two variables; contraction substitutes a variable for a variable.
We also include an n-ary version of weakening for use with the
bounded quantifier: if A can be weakened with D, then A can be
weakened with a whole context comprised entirely of occurrences
of D.

We discuss the meaning of the conditions (canSubst, etc.)
below; in all of our examples, they will be discharged automatically
by our implementation.

3. Examples
In this section, we illustrate programming in our framework, adapt-
ing a number of examples that have been considered in the liter-
ature (Pientka, 2008; Poswolsky and Schürmann, 2008; Shinwell
et al., 2003). Throughout this section, we compare the examples
coded in our framework with how they are/might be represented in
Twelf, Delphin, Beluga, and FreshML. We endeavor to keep these
comparisons objective, focusing on what invariants of the code are
expressed, and what auxiliary functions the programmer needs to
define. Aside from Twelf, we are not expert users of these other
systems, and we welcome feedback from those who are. Several
additional examples are available in the companion Agda code, in-
cluding a translation from λ-terms to combinators, a type checker
for simply-typed λ-calculus terms, an evaluator for λ-calculus with
mutable references (using variables to represent locations), and an
alternate version of normalization-by-evaluation, which has sim-
pler types at the expense of slightly more-complicated code.

To use our framework, we give a type DefAtom representing the
necessary datatypes names, along with a datatype
data InΣ : Rule -> Set where

defining the datatype constructors.



We use the following naming convention: Defined atoms are
given names that end in A; e.g., for the signature for arithmetic
expressions given in the introduction, we will define natA and
arithA. For types of variables, we define <atom>C to be <atom>A
injected into VarType:

arithC = . arithA

We define <atom> to be the Type constructed by D+ <atom>A; e.g.:

nat = D+ natA
arith = D+ arithA

3.1 Evaluating Arithmetic Expressions
We define a signature for the arithmetic example mentioned above:

zero : InΣ (natA ⇐ 1+)
succ : InΣ (natA ⇐ nat)

num : InΣ (arithA ⇐ nat)
letbind : InΣ (arithA ⇐ arith ⊗ (arithC ⇒ arith))
binop : InΣ (arithA ⇐ arith ⊗

(nat ⊃ nat ⊃ nat) ⊗
arith)

Natural numbers are specified by zero and successor. Arithmetic
expressions are given as a mixed datatype, with⇒ used to represent
the body of the letbind and ⊃ used to represent primops.

Next, we define an evaluation function that reduces an expres-
sion to a number:

eval : � (arith ⊃ nat)
eval (num · n) = n
eval (letbind · (e1 , e2)) = eval (subst arith _ e2 e1)
eval (binop · (e1 , f , e2)) = f (eval e1) (eval e2)
eval (. ())

Evaluation maps closed arithmetic expressions to natural num-
bers (the type expression � (arith ⊃ nat) reduces to the Agda
function type Data [] arithA → Data [] natA). Constants
evaluate to themselves; binops are evaluated by applying their code
to the values of the arguments; let-binding is evaluated by substitut-
ing the expression e1 into the letbind’s body e22 and then eval-
uating the result. A simple variation would be to evaluate e1 first
and then substitute its value into e2. The final clause covers the
case for variables with a refutation pattern: there are no variables in
the empty context.

Comparison. This example provides a nice illustration of the
benefits of our approach: Substitution is provided “for free” by
the framework, which infers that it is permissible to substitute for
arithC variables in arith. The type system enforces the invariant
that evaluation produces a closed natural number.

It is not possible to define the type arith in Twelf/Delphin/Beluga,
as LF representations cannot use computational functions. One
could program this example in FreshML, but it would be necessary
to implement substitution directly for arith, as FreshML does not
provide a generic substitution operation.

Agda checks that eval’s pattern matching is exhaustive. How-
ever, Agda is not able to verify the termination of this function, as it
recurs on a substitution-instance of one of the inputs. Setting aside
the computational functions in binop, it would be possible to get
the call-by-value version of this code to pass Twelf’s termination

2 The arith argument to subst is the type A in the D ⇒ A argument to
substitution; Agda’s type reconstruction procedure requires this annotation.
The underscore is the context argument instantiating the ∀⇒ in the type
of subst; this could be eliminated by adding an implicit context quantifier
(whose meaning is { Ψ : Vars } -> ...) to the universe. The cre-
dentials for performing substitution are marked as an implicit argument, so
there is no evidence of it visible in the call to subst.

checker, which recognizes certain substitution instances as smaller.
We have not yet investigated how to explain this induction principle
to Agda.

3.2 Closure-based Evaluator
Next, we implement a closure-based evaluator for the untyped λ-
calculus. λ-terms and closures are represented by types exp and
clos as follows:

lam : InΣ (expA ⇐ (expC ⇒ exp))
app : InΣ (expA ⇐ exp ⊗ exp)

closure : InΣ (closA ⇐ (∃⇒ (expC ⇒ exp) ⊗
(expC # ⊃ 2 clos)))

Expressions are defined by the usual signature, as in LF. The type of
closures, clos, is a recursive type with one constructor closure.
The premise of closure should be read as follows: a closure is
constructed from a triple (Ψ , e , σ), where (1) Ψ is an ex-
istentially quantified context; (2) e is an expression in Ψ with an
extra free variable, which represents the body of a λ-abstraction;
and (3) σ is a substitution of of closed closures for all the variables
in Ψ. We represent a substitution as a function that maps each ex-
pression variable in the context (classified by the type expC #) to
a closure. The type of the premise provides a succinct description
of all of this: ∃⇒ introduces the variables in the existentially quan-
tified context into scope without explicitly naming the context;⇒
extends the context with an additional variable; (expC #) ranges
over all of the variables in scope. For comparison, in Ψ this type
reduces to the Agda type

Σ \(Ψ’ : Vars) -> (Data (Ψ + Ψ’ „ expC) expA) ×
(expC ∈ (Ψ + Ψ’) -> Data [] closA)

(where we write „ for cons on the right).
In this example, unlike the above evaluator for closed arithmetic

expressions, we recur over open expressions, so eval is quantified
over an unknown context Ψ using ∀⇒. Evaluation takes two further
arguments: (1) an expression with free variables in Ψ, and (2) an
environment, represented by a function that yields a closed closure
for each expression variable in Ψ; eval returns a closed closure.

env : Type
env = expC # ⊃ 2 clos

eval : � (∀⇒ exp ⊃ env ⊃ 2 clos)
eval Ψ (. x) σ = σ x
eval Ψ (lam · e) σ = closure · (Ψ , e , σ)
eval Ψ (app · (e1 , e2)) σ
with eval Ψ e1 σ

... | closure · (Ψ’ , e’ , σ’) =
eval (Ψ’ „ expC) e’

(extend{(2 clos)} _ σ’ (eval Ψ e2 σ))
... | . x = impossible x

A variable is evaluated by applying the substitution. A lam eval-
uates to the obvious closure. To evaluate an application, we first
evaluate the function position. To a first approximation, the reader
may think of Agda’s with syntax as a case statement in the body
of the clause, with each branch marked by ... |. Case-analyzing
the evaluation of e1 gives two cases: (1) the value is constructed by
the constructor closure; (2) the value is a variable.

In the first case, we evaluate the body of the closure in an
extended environment. The call to the function extend extends the
environment σ’ so that the last variable is mapped to the value of
e2. The definition of extend is as follows:

extend : {A : Type} {D : VarType}
-> (∀⇒ (D # ⊃ A) ⊃ A ⊃ (D ⇒ D #) ⊃ A)

extend Ψ σ new i0 = new
extend Ψ σ new (iS i) = σ i



At the call site of extend, we must explicitly supply the type A (in
this case 2 clos) to help out type reconstruction. The underscore
stands for the instantiation of the ∀⇒, which is marked as an
explicit argument, but can in this case be inferred.

The second case is contradicted using the function impossible,
which refutes the existence of a variable at a non-VarType—which
clos is, because we never wish to have clos variables.

The context argument Ψ to eval does not play an interesting
role in the code, but Agda’s type reconstruction requires us to
supply it explicitly at each recursive call. In future work, we may
consider whether this argument can be inferred. Agda is unable to
verify the termination of this evaluator for the untyped λ-calculus,
as one would hope.

When writing this code, one mistake a programmer might make
is to evaluate the body of the closure in σ instead of σ’, which
would give dynamic scope. If we make this mistake, Agda high-
lights the occurrence of σ and helpfully reports the type error that
Ψ’ != Ψ, indicating that the context of the expression does not
match the context of the substitution.

Comparison. In Twelf, one cannot represent substitutions σ us-
ing computational functions, because these are not available for
use in LF encodings. However, because the domain of the substi-
tution is finite, a first-order representation of substitutions could be
used. Additionally, Twelf does not provide the 2 and ∃⇒ connec-
tives that we use here to describe the contexts of closures. While
it should be possible for the programmer to express the neces-
sary context invariants using explicit contexts (Crary, 2008), this
is a fairly heavy encoding technique. Because of these two limi-
tations, the resulting Twelf code would be more complicated than
the above. One would hope for better Delphin and Beluga imple-
mentations than a port of the Twelf code, but Delphin lacks exis-
tential context quantification and 2, and Beluga lacks the param-
eter type exp #, so our definition of clos cannot be straightfor-
wardly ported to either of these languages.3 One could implement
this example in FreshML (Shinwell et al., 2003), but the type sys-
tem would not enforce the invariant that closures are in fact closed.
To our knowledge, a proof of this property for this example has not
been attempted in Pure FreshML (Pottier, 2007), though we know
of no reason why it would not be possible.

3.3 Variable Manipulation
Next, we consider a suite of simple variable manipulations.

3.3.1 Size
First, we compute the size of a λ-term. Addition is defined as usual,
with a contradictory variable case because no natA variables are
allowed.

plus : � (nat ⊃ nat ⊃ nat)
plus (zero · _) m = m
plus (succ · n) m = succ · (plus n m)
plus (. ()) _

size : (∀⇒ exp ⊃ 2 nat)
size Ψ (. x) = succ · (zero · _)
size Ψ (app · (e1 , e2)) = succ · (plus (size Ψ e1)

(size Ψ e2))
size Ψ (lam · e) = succ · (size (Ψ „ expC) e)

Agda successfully termination-checks these functions.

3 Beluga provides a built-in type of substitutions, written [Ψ’]Ψ, so one
might hope to represent closures as ∃ψ.([ψ, x : exp]exp) × [.]ψ; how-
ever, the second component of this pair associates an expression with each
expression variable in ψ, whereas, in this example, we need to associate a
closure with each expression variable in ψ.

The type of size expresses that it returns a closed natural num-
ber. For comparison, we implement a second version that does not
make this invariant explicit:

size’ : � (∀≤ expC (exp ⊃ nat))
size’ Ψ bound (. x) = succ · (zero · _)
size’ Ψ bound (app · (e1 , e2)) =
succ · (plus’ Ψ bound (size’ Ψ bound e1)

(size’ Ψ bound e2)) where
plus’ : � (∀≤ expC (nat ⊃ nat ⊃ nat))
plus’ Ψ b = weaken*/bounded (nat ⊃ nat ⊃ nat) Ψ b []

plus
size’ Ψ bound (lam · e) =

strengthen nat _ (size’ (Ψ „ expC) bound e)

Without the 2, size must return a number in context Ψ: in the ap-
plication case, we must weaken plus into Ψ, and in the lam case
we must strengthen the extra expC variable out of the recursive call.
Strengthening expression variables from natural numbers is permit-
ted by our implementation of the structural properties because nat-
ural numbers cannot mention expressions; we use a subordination-
like analysis to determine this (Virga, 1999). To ensure that these
weakenings and strengthenings are permitted, we type size’ with
a bounded quantifier over exp.

Comparison. The first version is similar to what one writes in
FreshML, except in that setting there is no need to pass around a
context Ψ. In the second version, the strengthening of the recur-
sive result in the lam case is analogous to the need, in FreshML
2000 (Pitts and Gabbay, 2000), to observe that nat is pure (always
has empty support); FreshML (Shinwell et al., 2003) does not re-
quire this.

In Beluga, one can express either the first or second ver-
sions. In Twelf and Delphin, one can only express the second
variation, as these languages do not provide 2. However, the
Twelf/Delphin/Beluga syntax for weakening and strengthening is
terser than what we have been able to construct in Agda: weaken-
ing is handled by world subsumption and is not marked in the proof
term; strengthening is marked by pattern-matching the result of the
recursive call and marking those variables that do occur, which in
this case does not include the expression variable. For example, the
lam case of size in Twelf looks like this:

- : size (lam ([x] E x)) (succ N)
<- ({x : exp} size (E x) N).

Twelf’s coverage checker verifies that expression variables can
be strengthened out of natural numbers when checking this case.
We would like to explore a similarly terse syntax for weaken-
ing/strengthening in future work.

3.3.2 Counting occurrences of a variable
A simple variation is to count the number of occurrences of a dis-
tinguished free variable. The input to this function has type (expC
⇒ exp), and we count the occurrences of the bound variable:

cnt : ∀⇒ (expC ⇒ exp) ⊃ 2 nat
cnt Ψ (. i0) = succ · (zero · _)
cnt Ψ (. (iS _)) = zero · _
cnt Ψ (app · (e1 , e2)) = plus (cnt Ψ e1) (cnt Ψ e2)
cnt Ψ (lam · e) = cnt (Ψ „ expC) (exchange2 exp Ψ e)

In the first two cases, we pattern-match on the variable: when it
is the last variable, the last variable occurs once; when it is not, it
occurs zero times. The lam case recurs on the exchange of e, so
that the last variable remains the one we are looking for. Agda fails
to termination-check this example because it recurs on the result
of exchange. Because this use of exchange is a common recursion
pattern for (exp -> exp) in Twelf, we plan to consider a derived
induction principle that covers this case in future work.



Comparison. Pattern-matching on variables is represented us-
ing higher-order metavariables in Twelf/Delphin/Beluga and using
equality tests on names in FreshML. The exchange needed in the
lam case is written as a substitution in the Twelf/Delphin/Beluga
version of this clause. In Twelf one would write:

- : cnt ([x] lam ([y] E x y)) N
<- ({y:exp} cnt ([x] E x y) N).

In the input to this clause, the metavariable E, which stands for the
body of the function, refers to the last variable in the context (the
lam-bound variable) as y and the second-last variable (the variable
being counted) as x. In the recursive call, y is exchanged past the
binding of x, so the instantiation E x y swaps “last” and “second-
last”.

3.3.3 Computing free variables
Next, we consider a function computing the free variables of an
expression, of type (∀⇒ exp ⊃ list (expC #))—in any con-
text, this function accepts an expression in that context and pro-
duces a list of variables in that context. This typing ensures that we
do not accidentally return a bound variable.

remove : {D : VarType}
-> (∀⇒ (D ⇒ list (D #)) ⊃ list (D #))

remove Ψ [] = []
remove Ψ (i0 :: ns) = (remove Ψ ns)
remove Ψ ((iS i) :: ns) = i :: (remove Ψ ns)

fvs : (∀⇒ exp ⊃ list (expC #))
fvs Ψ (. x) = [ x ]
fvs Ψ (lam · e) = remove Ψ (fvs (Ψ „ expC) e)
fvs Ψ (app · (e1 , e2)) = (fvs Ψ e1) ++ (fvs Ψ e2)

In the lam case, we use the helper function remove to remove the
lam-bound variable from the recursive result. The function remove
takes a list of variables, itself with a distinguished free variable,
and produces a list of variables without the distinguished variable.
If the programmer were to make a mistake in the second clause by
accidentally including i0 in the result, he would get a type error.
Agda successfully termination-checks this example.

Comparison. For comparison with FreshML (Shinwell et al.,
2003), the type given to remove here is analogous to their Figure 6:

remove : (<name> (name list)) -> name list

where <a>τ is a nominal abstractor. The authors comment that they
prefer the version of remove in their Figure 5:

remove : name -> (name list) -> name list

where the name to removed is specified by the first argument, rather
than using a binder.

Using dependent types, we can type this second version of
remove as follows:

remove : (Ψ : Vars) (i : exp ∈ Ψ)
-> List (exp ∈ Ψ) -> List (exp ∈ (Ψ - i))

where Ψ - i removes the indicated element element from the list.
This type is of course expressible in Agda, but we have not yet
integrated dependent types into our universe.

3.3.4 η-Contraction
In Twelf/Delphin/Beluga, one can recognize η-redices by writing
a meta-variable that is not applied to all enclosing locally bound
variables. E.g. in Twelf one would write

- : contract (lam [x] app F x) F.

The metavariable F:exp is bound outside the scope of x, and thus
stands only for terms that do not mention x. (To allow it to mention
x, we would bind F:exp -> exp and write (F x) in place of F.)

Unfortunately, Agda does not provide this sort of pattern match-
ing for our encoding—pattern variables are always in the scope of
all enclosing local binders—so we must explicitly call a strength-
ening function that checks whether the variable occurs:

strengthen? : ∀⇒ (expC ⇒ exp) ⊃ exp option
strengthen? Ψ (. i0) = Inr _
strengthen? Ψ (. (iS i)) = Inl (. i)
strengthen? Ψ (app · (e1 , e2))
with strengthen? Ψ e1 | strengthen? Ψ e2

... | Inl e1’ | Inl e2’ = Inl (app · (e1’ , e2’))

... | _ | _ = Inr _
strengthen? Ψ (lam · e)
with strengthen? (Ψ „ expC) (exchange2 exp Ψ e)

... | Inl e’ = Inl (lam · e’)

... | _ = Inr _

contract-η : ∀⇒ exp ⊃ exp option
contract-η Ψ (lam · (app · (f , . i0))) = strengthen? Ψ f
contract-η Ψ _ = Inr <>

We conjecture that strengthen? could be implemented datatype-
generically for all purely positive types (no ⊃ or ∀c or ∀≤)—it
is not possible to decide whether a variable occurs in the values
of these computational types (cf. FreshML, where it is not pos-
sible to decide whether a name is in the support of a function).
This strengthening function is not an instance of the generic map
that we define below, as it changes the type of the term (exp to
exp option); in future work, we plan to consider a more general
traversal that admits this operation.

3.4 Normalization by Evaluation
In Figure 3, we present a serious example mixing binding and

computation, β-normalization-by-evaluation for the untyped λ-
calculus. NBE works by giving the syntax a semantics in terms
of computational functions (evaluation) and then reading back
a normal form (reification). The NBE algorithm is similar to a
Kripke logical relations argument, where one defines a type- and
context-indexed family of relations [[A]] inΨ. The key clause of this
definition is:

([[A arrowB]] in Ψ) = ∀Ψ′. ([[A]] in Ψ,Ψ′) ⊃ ([[B]] in Ψ,Ψ′)

That is, the meaning of A arrowB in Ψ is a function that, for any
future extension of the context, maps the meaning of A in that
extension to the meaning of B in that extension. In our type theory,
we represent (a simply-typed version of) this logical relation as a
datatype sem. The datatype constructor corresponding to the above
clause would have the following type:

sem ⇐ (∀⇒ sem ⊃ sem)

However, for the argument to go through, we must ensure that the
context extension Ψ’ consists only of variables of a specific type
neu, so we use a bounded context quantifier below.

We represent the semantics by the datatypes neu and sem in
Figure 3. The type neu (neutral terms) consists of variables or
neutral terms applied to semantic arguments (napp); these are the
standard neutral proofs in natural deduction. A sem (semantic term)
is either a neutral term or a semantic function. A semantic function
of type (∀≤ neuC (sem ⊃ sem)) is a computational function
that works in any extension of the context consisting entirely of
neu variables.

We define reification first, via two mutually recursive functions,
reifyn (for neutral terms) and reify (for semantic terms). It
is typical in logical relations arguments to use two independent
contexts, one for the syntax and one for the semantics. Thus, we



napp : InΣ (neuA ⇐ neu ⊗ sem)
neut : InΣ (semA ⇐ neu)
slam : InΣ (semA ⇐ (∀≤ neuC (sem ⊃ sem)))

reifyn : ∀⇒ ∀c \ Ψs -> (var2var neuC Ψs expC)
⊃ [ Ψs ]* neu ⊃ exp

reifyn Ψe Ψs σ (. x) = . (σ x)
reifyn Ψe Ψs σ (napp · (n , s)) =
app · (reifyn Ψe Ψs σ n , reify Ψe Ψs σ s)

reify : ∀⇒ ∀c \ Ψs -> (var2var neuC Ψs expC)
⊃ [ Ψs ]* sem ⊃ exp

reify Ψe Ψs σ (slam · ϕ) =
lam · reify (Ψe „ expC) (Ψs „ neuC)

(extendv2v Ψs Ψe σ)
(ϕ [ neuC ] _ (neut · (. i0)))

reify Ψe Ψs σ (neut · n) = reifyn Ψe Ψs σ n
reify Ψe Ψs σ (. x) = impossible x

appsem : ∀⇒ sem ⊃ sem ⊃ sem
appsem _ (slam · ϕ) s2 = ϕ [] _ s2
appsem _ (neut · n) s2 = neut · (napp · (n , s2))
appsem _ (. x) _ = impossible x

evalenv : Vars -> Type
evalenv Ψs = (expC #) ⊃ ([ Ψs ]* sem)

eval : ∀⇒ ∀c \Ψs -> evalenv Ψs
⊃ exp ⊃ ([ Ψs ]* sem)

eval Ψe Ψs σ (. x) = σ x
eval Ψe Ψs σ (app · (e1 , e2)) =

appsem Ψs (eval Ψe Ψs σ e1) (eval Ψe Ψs σ e2)
eval Ψe Ψs σ (lam · e) = slam · ϕ where
ϕ : < Ψs > (∀≤ neuC (sem ⊃ sem))
ϕ Ψ’ ctxinv s’ = eval (Ψe „ expC) (Ψs + Ψ’) σ’ e where

σ’ : < Ψe > (expC ⇒ (evalenv (Ψs + Ψ’)))
σ’ i0 = s’
σ’ (iS i) = weaken*/bounded sem Ψ’ ctxinv Ψs (σ i)

Figure 3. Normalization by evaluation

parametrize these functions by two contexts, one consisting for
neu variables for the semantics, and the other consisting of exp
variables for the syntax. We will write Ψs for the former and Ψe
for the latter.

In the type of reify, we must name one of these contexts, be-
cause each context scopes over two disconnected parts of the type.
We choose to name the semantic context and let the expression con-
text be the ambient one. The outer ∀⇒ thus binds the expression
context, whereas we use the full binding form ∀c for the seman-
tic context. The type of reify then says that, under some con-
dition expressed by the type var2var, reify maps semantics in
the semantic context (recall that [ Ψ ]* A stands for 2 (Ψ ⇒*
A); lexically, [ Ψ ]* A binds more tightly than⊃) to expressions
(in the ambient expression context). The type var2var C1 Ψ1 C2
means that every variable of type C1 in Ψ1 maps to a variable of
type C2 in the ambient context. It is defined in a library as follows:

var2var : VarType -> Vars -> VarType -> Type
var2var C1 Ψ1 C2 = ([ Ψ1 ]* (C1 #)) ⊃ (C2 #)

Even though reify is given a precise type describing the scop-
ing of variables, its code is as simple as one could want. To reify
neutral terms: The reification of a variable is the variable given in
the substitution. The reification of an application is the applica-
tion of the reifications. To reify semantic terms: The reification of a
function (slam · ϕ) is the λ-abstraction of the reification of an in-
stance of ϕ. In the recursive call, the expression context is extended
with a new exp variable (which is bound by the lam) and the se-

mantic context is extended with a new neu variable. We instantiate
the semantic function ϕ, which anticipates extensions of the con-
text, with this one-variable extension ([ x ] constructs a singleton
list), and apply it to the variable. The library function extendv2v
makes the "parallel" extension of a var2var in the obvious way,
mapping the one new variable to the other:

extendv2v : {D1 D2 : VarType} -> (Ψs : Vars)
-> ∀⇒ (var2var D1 Ψs D2)
⊃ D2 ⇒ (var2var D1 (D1 :: Ψs) D2)

extendv2v Ψs Ψe σ (i0) = i0
extendv2v Ψs Ψe σ (iS i) = iS (σ i)

The neutral-to-semantic coercion is reified recursively, and we dis-
allow sem variables from the context.

To define evaluation, we first define an auxiliary function
appsem that applies one semantic term to another. This requires
a case-analysis of the function term: when it is an slam (i.e. the
application is a β-redex), we apply the embedded computational
function, choosing the nil context extension, and letting the argu-
ment be s2. When the function term is neutral, we make a longer
neutral term.

The type of eval is symmetric to reify, except the environ-
ment that we carry along in the induction maps expression variables
to semantic terms rather than just variables. The type evalenv
Ψs means that every expression variable in the ambient context is
mapped to a semantic value in Ψs. A variable is evaluated by look-
ing it up; an application is evaluated by combining the recursive
results with semantic application. A lam is evaluated to an slam
whose body ϕ has the type indicated in the figure. When given a
context extension Ψ’ and an argument s’ in that extension, ϕ eval-
uates the original body e in an extended substitution. The new sub-
stitution σ’ maps the λ-bound variable i0 to the provided seman-
tic value, and defers to σ on all other variables. However, σ pro-
vides values in Ψs, which must be weakened into the extension Ψ’.
Fortunately, the bounded quantifier provides sufficient evidence to
show that weakening can be performed in this case, because sem’s
can be weakened with neu variables.

Normalization is defined by composing evaluation and reifica-
tion. We define a normalizer for closed λ-terms as follows:

emptyv2v : � (var2var neuC [] expC)
emptyevalenv : � (evalenv [])

norm : � (exp ⊃ exp)
norm e = reify [] [] emptyv2v (eval [] [] emptyevalenv e)

Our type system has verified the scope-correctness of this code,
proving that it maps closed terms to closed terms. Amusingly,
Agda accepts the termination of this evaluator for the untyped λ-
calculus, provided that we have told it to ignore its issues with our
universe itself—a nice illustration of the need for the positivity
check on datatypes. Our companion code includes an alternate
version of NBE, which has simpler types (it does not maintain
separate contexts Ψe for expressions and Ψs for semantics) at the
expense of more-complicated code (various appeals to weakening
and strengthening are necessary).

Comparison. The type sem is a truly mixed datatype: the premise
(∀≤ neuC (sem ⊃ sem)) uses both⇒ and ⊃ (recall that there
is a ⇒ buried in the definition of ∀≤). Because it uses ⊃ in a re-
cursive datatype, it is not representable in LF. Because it uses⇒, it
would not even be representable in Delphin/Beluga extended with
standard recursive types (that did not interact with the LF part of the
language). Despite the fact that our implementation enforces strong
invariants about the scope of variables, the code is essentially as
simple as the FreshML version described by Shinwell et al. (2003),
aside from the need to pass the contexts Ψe and Ψs along. Invari-
ants about variable scoping can be proved in Pure FreshML (Pot-



tier, 2007), but we would like to enforce these invariants within a
type system, not using an external specification logic. Relative to a
direct implementation in Agda, our framework provides the weak-
ening function needed in the final case of eval for free.

4. Structural Properties
The structural properties are implemented by instantiating a generic
traversal for < Ψ > A. The generic traversal has the following
type:

map : (A : Type) {Ψ Ψ’ : Vars}
-> (Co A Ψ Ψ’) -> < Ψ > A -> < Ψ’ > A

This should be read as follows: for every A Ψ Ψ’, under the
condition Co A Ψ Ψ’, there is a map from terms of type A in Ψ
to terms of type A in Ψ’.

Co : Type -> Vars -> Vars -> Set is a variable rela-
tion, a type-indexed family of relations between two contexts. Co
is in fact a (module-level) parameter to the generic map; it must
provide (1) a variable or term in Ψ’ for each variable in Ψ that the
traversal runs into; and (2) enough information to keep the traversal
going inductively. We will instantiate Co with a specific relation for
each traversal; e.g., for weakening with a variable of type D, Co will
relate Ψ to (Ψ „ D) under appropriate conditions on D and A.

For expository purposes, we present a slightly simplified ver-
sion of the traversal first; the generalization is described with weak-
ening below.

4.1 Compatibility
We ensure that Co provides the two pieces of information men-
tioned above using the notion of compatibility. Suppose that Co and
Contra are variable relations. We say that Co and Contra are com-
patible iff there is a term

compat : ({A : Type} {Ψ Ψ’ : Vars}
-> Co A Ψ Ψ’ -> Compat A Ψ Ψ’)

where Compat is defined as follows:

Compat : Type -> Vars -> Vars -> Set
Compat (D #) Ψ Ψ’ = (D ∈ Ψ) -> (D ∈ Ψ’)
Compat (D+ D) Ψ Ψ’ =

({A : Type} -> (c : InΣ (D ⇐ A)) -> Co A Ψ Ψ’)
× ({ch : _} -> (. D {ch}) ∈ Ψ -> < Ψ’ > D+ D)

Compat (A ⊃ B) Ψ Ψ’ = Contra A Ψ’ Ψ × Co B Ψ Ψ’
Compat (Ψ0 ⇒* A) Ψ Ψ’ = Co A (Ψ + Ψ0) (Ψ’ + Ψ0)
Compat (list A) Ψ Ψ’ = Co A Ψ Ψ’
Compat (2 A) Ψ Ψ’ = Unit
–– ...

Compat imposes certain conditions on Co and Contra. For exam-
ple, for variable types D #, it says that Co (D #) Ψ Ψ’ induces
a map from variables of type D in Ψ to variables in Ψ’. For defined
atoms D+ D, Compat says that Co (D+ D) Ψ Ψ’ induces a map
from variables in Ψ to terms in Ψ’, and that Co A Ψ Ψ’ holds for
every premise A of every constant inhabiting D. In all other cases,
Compat provides enough information to keep the induction going
in map below. This amounts to insisting that Co (or Contra) holds
on the subexpressions of a type in all appropriate contexts. For ex-
ample, the condition for Ψ0 ⇒* A is that Co holds for A in the
contexts extended with Ψ0.

In the usual monadic traversals of syntax (Altenkirch and Reus,
1999), Co _ Ψ Ψ’ is taken to be (D : VarType) -> D ∈ Ψ
-> < Ψ’ > D—i.e. a realization of every variable in Ψ as a term
in Ψ’. In our setting, this does not suffice to define a traversal, be-
cause (1) it does not provide for the contravariant flip necessary to
process the domains of computational functions and (2) it does not
allow us to express a conditional traversal, where conditions on the

map : (A : Type) {Ψ Ψ’ : Vars}
-> (Co A Ψ Ψ’) -> < Ψ > A -> < Ψ’ > A

map (D+ Dat) co (. x) = (snd (compat co) x)
map (Dat #) co x = ((compat co) x)
map (A ⊃ B) co e =

\ y -> (map B (snd (compat co))
(e (map’ A (fst (compat co)) y)))

map (Ψ0 ⇒* A) co e = map A (compat co) e
map (list A) co [] = []
map (list A) co (x :: xs) =

map A (compat co) x :: map (list A) co xs
map (D+ Dat) co (_·_ {A} c e) =

c · map A (fst (compat co) c) e
map (2 A) co e = e
–– ... more cases

Figure 4. Map (excerpt)

types ensure that the traversal will only find certain variables, and
thus that only those variables need realizations. Compatibility en-
sures that Co provides enough information for Contra to process
the contravariant positions to the left of a computational arrow. Ad-
ditionally, it permits conditional traversals: below, we will instanti-
ate Co so that it is uninhabited for certain A.

4.2 Map
Suppose that Co and Contra are compatible, and assume a function

map’ : (A : Type) {Ψ Ψ’ : Vars}
-> (Contra A Ψ Ψ’) -> < Ψ > A -> < Ψ’ > A

that is the equivalent of map for the Contravariant positions.
Then we implement map in Figure 4. In the first and second

cases, the compatibility of Co induces the map on variables that we
need. In the third case, we pre-compose the function with map’ and
post-compose with map. In all other cases, map simply commutes
with constructors, or stops early if it hits a boxed term.

4.3 Exchange/Contraction
Exchange and contraction are implemented by one instantiation of
map. In this case, we take

Co A Ψ Ψ’ = Contra A Ψ Ψ’ = (Ψ ⊆ Ψ’ × Ψ’ ⊆ Ψ)

where ⊆ means every variable in one context is in the other. It is
simple to show that these relations are compatible, because Co (a)
provides the required action on variables directly and (b) ignores its
type argument, so the compatibility cases for the type constructors
are easy. Exchange is defined by instantiating the generic map with
Co, where map’ is taken be map itself, which works because Co =
Contra.

4.4 Strengthening
Next, we define a traversal that strengthens away variables that,
based on type information, cannot possibly occur. The invariant for
strengthening is the following:4

Co : Type -> Vars -> Vars -> Set
Co A Ψ Ψ’ = Σ \(D : VarType) ->

Σ \(i : D ∈ Ψ) ->
Check(irrel (un. D) A) × Id Ψ’ (Ψ - i)

Here i, a pointer into the initial context Ψ is the variable to be
strengthened away; the propositional equality constraint repre-
sented by the Identity says that the final context Ψ’ is the ini-
tial context with i removed. The type Check(irrel (un. D) A)

4 For concision, we suppress some details arising from the implementation
of irrel, which takes a visited list as an extra argument; see the companion
code for details.



computes to Unit when strengthening is possible, and Void when
it is not. Here un. simply peels off the injection of a defined atom
into a VarType.

The crucial property of irrel is that Check(irrel (un. D)
(D+ D)) computes to Void. This forbids strengthening a variable
of type D out of a term of type D. This is necessary because we
cannot satisfy the usual compatibility condition for (D+ D), which
would require mapping all variables—including the variable-to-be-
strengthened i—to a term of type D that does not mention i.

More generally, Check(irrel (un. D) A) means that vari-
ables of type D can never be used to construct terms of type A, which
ensures that strengthening never runs into variables of the type be-
ing strengthened. The function irrel D A is defined by traversing
the graph structure of types (i.e., it unrolls the definitions of defined
atoms) and checks not (DefinedAtoms.eq D Dat) for each de-
fined atom Dat it finds.

To account for contravariance, we must define strengthening
simultaneously with weakening by irrelevant assumptions, which
is similar. About 250 lines of Agda code shows that these two
relations together are compatible. Their traversals are then defined
by instantiating map twice, mutually recursively—each is passed to
the other as map’ for the contravariant recursive calls.

4.5 Weakening
In addition to weakening by irrelevant types (e.g. weakening a nat
with an exp), we can weaken by types that do not appear to the left
of a computational arrow (e.g., weakening an exp with an exp).

For a simple version of weakening, the variable relation is
similar to strengthening, but uses a different computed condition,
and flips the role of Ψ and Ψ’ (now Ψ’ is bigger):

Co : Type -> Vars -> Vars -> Set
Co A Ψ Ψ’ = Σ \(D : VarType) ->

Σ \(i : D ∈ Ψ’) ->
Check(canWeaken (un. D) A) × Id Ψ (Ψ’ - i)

The function canWeaken is a different graph traversal than before:
this time, we check irrel (un. D) A for the left-hand side of
each computational arrow A ⊃ B. Weakening can then be defined
using strengthening in contravariant positions, as irrel is exactly
the condition that strengthening requires.

This suffices for a simple version of weakening. However, we
can be more clever, and observe that types of the form ∀⇒ A are al-
ways weakenable, because their proofs are explicitly parametrized
over arbitrary extensions of the context. Similarly, ∀≤ C A is
weakenable with any context composed entirely of C’s. Capitalizing
on this observation requires a slight generalization of the traversal
described above: computationally, weakening ∀⇒ A does not re-
cursively traverse the proof of A, like map usually does, but stops
the traversal and instantiates the context quantifier appropriately.
Thus, our actual implementation of map is parametrized so that, for
each type A, either it is given sufficient information to transform
A directly (a function < Ψ > A -> < Ψ’ > A), or it has enough
information to continue recursively, as in the compatibility condi-
tions described above. We use the former only for weakening the
quantifiers (map < Ψ - i > (∀⇒ A) to < Ψ > (∀⇒ A)). We
refer the reader to our Agda code for details. All told, weakening
takes about 210 lines of Agda code to define and prove compatible.

4.6 Substitution
Substitution is similar to weakening and strengthening. Its invari-
ant has the same form, using a condition canSubst (un. D) A.
This condition ensures two things: (1) that D is irrelevant to the left-
hand-sides of any computational arrow, so that substitution can be
defined using weakening-with-irrelevant-assumptions in the con-
travariant position, and (2) that D is weakenable with all variable

types bound by A, so that the term being plugged in for the variable
can be weakened as substitution goes under binders. Substitution
takes about 220 lines to define and prove compatible.

5. Related Work
We have provided comparisons with several other systems through-
out the paper: Relative to LF-based systems such as Twelf (Pfen-
ning and Schürmann, 1999), Delphin (Poswolsky and Schür-
mann, 2008), and Beluga (Pientka, 2008), our framework per-
mits definitions that mix binding and computation; this is essen-
tial for defining the datatype sem in the NBE example. Relative
to FreshML (Pottier, 2007; Shinwell et al., 2003), our framework
enforces invariants about variable scoping in the type system. Such
invariants can be proved in Pure FreshML (Pottier, 2007), but we
would like to enforce these invariants within a type system, not
using an external specification logic.

Aydemir et al. (2008) provide a nice overview of various tech-
niques that are used to implement variable binding, including
named, de Bruijn, {locally / globally} {named /nameless}, and
weak higher-order abstract syntax (Bucalo et al., 2006; Despey-
roux et al., 1995). More recently, Chlipala (2008) has advocated
the use of parametric higher-order abstract syntax. We have chosen
well-scoped de Bruijn indices (Altenkirch and Reus, 1999; Bel-
legarde and Hook, 1994; Bird and Paterson, 1999) for our Agda
implementation, a simple representation that makes the pronoun
structure of variables explicit. It would be interesting to investigate
whether any benefits can be obtained by implementing our uni-
verse with a different representation. Relative to these techniques
for representing binding, the advantage of our framework is that it
provides datatype-generic implementations of the structural proper-
ties, including substitution. Both the Hybrid frameworks (Ambler
et al., 2002; Capretta and Felty, 2007; Momigliano et al., 2007),
Hickey et al. (2006)’s work, and Lambda Tamer (Chlipala, 2007)
describe languages or tools for specifying data with binding, pro-
viding generic implementations of the structural properties. How-
ever, to the best of our knowledge, these logical frameworks do not
make the computational functions of the meta-language available
for use in the framework (except inasmuch as they are, in some
cases, used to represent binding itself). In contrast, our universe
includes both⇒ and ⊃.

In this work, we have created a universe of contextual types in
Agda. Contextual types appear in Miller and Tiu’s work (Miller and
Tiu, 2003), as well as in contextual modal type theory (Nanevski
et al., 2007). Miller and Tiu’s self-dual ∇ connective is closely re-
lated to ⇒, also capturing the notion of a scoped constant. How-
ever, the ∇ proof theory adopts a logic-programming-based dis-
tinction between propositions and types, and∇ binds a scoped term
constant in a proposition. In our setting,⇒ allows the meaning of
certain propositions (defined atoms) to vary.

Fiore et al. (1999) and Hofmann (1999) give semantic accounts
of variable binding. In a sense, the present paper gives a semantics
for our type theory, where binding is represented by an indexed in-
ductive definition. However, this semantics does not shed any new
light on the datatype-generic definition of the structural properties;
it would be interesting to explore a semantic characterization of the
conditions under which weakening and substitution are definable.

6. Conclusion
In this paper, we have constructed a logical framework supporting
datatypes that mix binding and computation: Our framework is im-
plemented as a universe in the dependently typed programming lan-
guage Agda. Binding is represented in a pronominal manner, so the
type system can be used to reason about the scoping of variables.
Our implementation provides datatype-generic implementations of



the structural properties (weakening, subordination-based strength-
ening, exchange, contraction, and substitution). We have used the
framework to program a number of examples, including a scope-
correct version of the normalization-by-evaluation challenge prob-
lem discussed by Shinwell et al. (2003). We believe that these ex-
amples demonstrate the viability of our approach for simply-typed
programming.

We hope also to have clarified the gap between LF-based sys-
tems for programming with binding, such as Twelf, Delphin, and
Beluga, and a generic dependently typed programming language
like Agda. For simply-typed programming, the benefits of the LF-
based systems that we were unable to mimic include: (1) the ability
to write pronominal variables with a named syntax; and (2) a conve-
nient syntax for applying the structural properties. For example, the
syntax of weakening and strengthening is relatively heavy in our
setting. In Twelf, weakening is silent, and strengthening (includ-
ing strengthen? used in the η-contraction example) is marked by
saying which variables do occur, using a non-linear higher-order
pattern. In our Agda implementation, weakening must be marked
explicitly, and strengthening requires one to enumerate those vari-
ables that do not occur instead. However, the more convenient syn-
tax seems within reach for a standalone implementation of our
framework; e.g., weakening could be implemented using a form
of coercive subtyping.

Of course, one way in which all of the LF-based systems out-
pace ours is that they support dependent types, which are crucial
for representing logics and for mechanizing metatheory. Our most
pressing areas of future work are to investigate a dependently typed
extension of our universe, and to address the termination issues that
we have deferred here. One key issue for the dependently typed
version will be the equational behavior of the structural properties,
which we have not yet investigated. We would hope that they have
the right behavior up to propositional equality (otherwise there is a
bug in the code presented here), but it remains to be seen whether
we can get Agda’s definitional equality to mimic the equations
proved automatically by, e.g., Twelf. That said, the fact that the map
function defined in Section 4 commutes with all term constructors
definitionally in Agda gives us some hope in this regard.

A. Agda Overview
In this section, we review Agda’s syntax, we show a simple ex-
ample of well-scoped de Bruijn indices, and we give a simple
example of a universe. We refer the reader to the Agda Wiki
(http://wiki.portal.chalmers.se/agda/) for more intro-
ductory materials.

A.1 Well-scoped de Bruijn indices in Agda
We review the representation of well-scoped de Bruijn indices
as an indexed inductive definition (Altenkirch and Reus, 1999;
Bellegarde and Hook, 1994; Bird and Paterson, 1999). Agda data
types are introduced as follows:

data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A

Set classifies Agda classifiers, like the kind type in ML or Haskell.
Mixfix constructors are declared by using _ in an identifier; e.g., ::
can now be used infix as in Zero :: (Zero :: []).

Functions are defined by pattern-matching:

append : {A : Set} -> List A -> List A -> List A
append [] ys = ys
append (x :: xs) ys = x :: (append xs ys)

The curly-braces mark an implicit dependent function space.
Applications to implicit arguments are not marked in the program;

e.g., we do not explicitly apply append to the Set argument A.
Agda attempts to infer implicit function arguments and reports an
error if they cannot be reconstructed.

Indexed datatypes are defined using a notation similar to
GADTs in GHC. For example, we define a datatype ∈ representing
indices into a list:

data _∈_ {A : Set} : A -> List A -> Set where
i0 : {x : A} {xs : List A} -> x ∈ (x :: xs)
iS : {x y : A} {xs : List A} -> y ∈ xs -> y ∈ (x :: xs)

For any Set A, and terms x and xs of type A and List A, there
is a type x ∈ xs. The first constructor, i0, creates a proof of x
∈ (x :: xs)—i.e. x is the first element of the list. The second
constructor iS, creates a proof of x ∈ (y :: xs) from a proof
that x is in the tail.

As a simple example of dependent pattern matching, we define
an n-ary version of iS:

skip : {A : Set} (xs : List A) {ys : List A} {y : A}
-> y ∈ ys -> y ∈ (append xs ys)

skip [] i = i
skip (x :: xs) i = iS (skip xs i)

We use an implicit-quantifier for all arguments but the list xs;
explicit-quantifiers are written with parentheses instead of curly-
braces. The fact that this code type-checks depends on the compu-
tational behavior of append; e.g., in the first case, the expression
append [] ys reduces to ys, so we can return the index i un-
changed.

Well-scoped syntax for the untyped λ-calculus is defined as
follows:

data Term (Γ : List Unit) : Set where
. : <> ∈ Γ -> Term Γ
Lam : Term (<> :: Γ) -> Term Γ
App : Term Γ -> Term Γ -> Term Γ

The type Unit is defined to be the record type with no fields, with
inhabitant written <>. We represent variables as indices into a list
Γ containing elements of the one-element type Unit. (Such lists
are isomorphic to natural numbers, but this illustrates the pattern
for variables of more than one type.) The constructor . makes a
term from an index into Γ, which represents a variable. The body
of Lam can refer to all of the variables in Γ, as well as a new
bound variable represented by extending Γ to (<> :: Γ). The K
combinator λx.λy.x is represented as follows: Lam (Lam (. (iS
i0))). The values of Term Γ correspond exactly to the λ-terms
with free variables in Γ.

A.2 Universes
A universe is specified by a inductive datatype of codes for types,
along with a function mapping each code to a Set. For example,
a simple universe with an empty type, a unit type, and binary
products is specified as follows:

data Type : Set where
0+ : Type
1+ : Type
_⊗_ : Type -> Type -> Type

Element : Type -> Set
Element 0+ = Void
Element 1+ = Unit
Element (τ1 ⊗ τ2) = (Element τ1) × (Element τ2)

In the right-hand side of Element, we write A × B for the Agda
pair type, etc.

Datatype-generic programs are implemented by recursion over
the codes; e.g, every element of the universe can be converted to a
string:



show : (τ : Type) -> Element τ -> String
show 0+ ()
show 1+ <> = "<>"
show (τ1 ⊗ τ2) (e1 , e2) =
"< " ^ (show τ1 e1) ^ " , " ^ (show τ2 e2) ^ " >"

In the first clause, the empty parentheses are a refutation pat-
tern, telling Agda to check that the type in question (in this case
Element 0+) is uninhabited, and allowing the programmer to elide
the right-hand side.

As another example, we will often view booleans as a two-
element universe, with only True inhabited:

data Bool : Set where
True : Bool
False : Bool

Check : Bool -> Set
Check True = Unit
Check False = Void

Because Agda implements extensionality for Unit (there is only
one record with no fields), terms of type Check True can be left
implicit and inferred.
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