
Positively Dependent Types

1

Dan Licata and Robert Harper
Carnegie Mellon University

2

Dan’s thesis

New dependently typed programming language
for programming with binding and scope

Domain-specific logics for reasoning about code

Mechanized metatheory

Applications:

2

Dan’s thesis

New dependently typed programming language
for programming with binding and scope

Domain-specific logics for reasoning about code

Mechanized metatheory

Applications:

Based on polarized type theory

3

Polarity [Girard ’93]

Sums A + B are positive data:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions A → B are negative computation:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to

4

Focusing [Andreoli ’92]

Sums A + B are positive data:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions A → B are negative computation:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to

4

Focusing [Andreoli ’92]

Sums A + B are positive data:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions A → B are negative computation:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to

Focus =
make choices

5

Focusing [Andreoli ’92]

Sums A + B are positive data:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions A → B are negative computation:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to

5

Focusing [Andreoli ’92]

Sums A + B are positive data:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions A → B are negative computation:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to

Inversion =
respond to all

possible choices

6

Higher-order focusing
Zeilberger’s higher-order formalism:

Type theory organized around distinction between
positive data and negative computation

Positive Data
products (eager)
sums
natural numbers
inductive types

Negative Computation
products (lazy)
functions
streams
coinductive types

7

Higher-order focusing
Zeilberger’s higher-order formalism:

Type theory organized around distinction between
positive data and negative computation

Pattern matching represented abstractly by
meta-level functions from patterns to expressions,
using an iterated inductive definition

8

Higher-order focusing
Applications so far:

8

Higher-order focusing
Applications so far:

Curry-Howard for pattern matching
[Zeilberger POPL’08; cf. Krishnaswami POPL’09]

8

Higher-order focusing
Applications so far:

Curry-Howard for pattern matching
[Zeilberger POPL’08; cf. Krishnaswami POPL’09]

Logical account of evaluation order
[Zeilberger APAL]

8

Higher-order focusing
Applications so far:

Curry-Howard for pattern matching
[Zeilberger POPL’08; cf. Krishnaswami POPL’09]

Logical account of evaluation order
[Zeilberger APAL]

Analysis of operationally sensitive
typing phenomena [Zeilberger PLPV’09]

8

Higher-order focusing
Applications so far:

Curry-Howard for pattern matching
[Zeilberger POPL’08; cf. Krishnaswami POPL’09]

Logical account of evaluation order
[Zeilberger APAL]

Analysis of operationally sensitive
typing phenomena [Zeilberger PLPV’09]

Positive function space for
representing variable binding [LZH LICS’08]

9

Positive function space

Permits LF-style representation of binding:
framework provides α-equivalence, substitution

Eliminated by pattern matching =
structural induction modulo α

9

Positive function space

Permits LF-style representation of binding:
framework provides α-equivalence, substitution

Eliminated by pattern matching =
structural induction modulo α

But no dependent types...

10

Positively dependent types

1. Extend higher-order focusing with
a simple form of dependency

2. Formalize the language in Agda

Contributions:

11

Positively dependent types

Key idea: Allow dependency on positive data,
but not negative computation

11

Positively dependent types

Key idea: Allow dependency on positive data,
but not negative computation

Enough for simple applications:

Lists indexed by their lengths (Vec[n:nat])

Judgements on higher-order abstract syntax
represented with positive functions

12

Positively dependent types

Key idea: Allow dependency on positive data,
but not negative computation

Avoids complications of negative dependency:

Equality is easy for data, hard for computation

Computations are free to be effectful

13

Positively dependent types

1. Type and term levels share the same data
(like Agda, Epigram, Cayenne, NuPRL, …)

2. But have different notions of computation
(like DML, Omega, ATS, …)

14

Polarized type theory

Intuitionistic logic:

A+ ::= nat | A+ ⊗ B+ | 1 | A+ ⊕ B+ | 0 | ↓ A-

A- ::= A+ → B- | A- & B- | ⊤ | ↑ A+

14

Polarized type theory

Allow dependency on values of
purely positive types (no ↓A-)

Intuitionistic logic:

A+ ::= nat | A+ ⊗ B+ | 1 | A+ ⊕ B+ | 0 | ↓ A-

A- ::= A+ → B- | A- & B- | ⊤ | ↑ A+

15

Polarized type theory

A+ ::= nat | A+ ⊗ B+ | 1 | A+ ⊕ B+ | 0 | ↓ A-

A- ::= A+ → B- | A- & B- | ⊤ | ↑ A+

Intuitionistic logic (see paper):

A+ ::= nat | A+ ⊗ B+ | 1 | A+ ⊕ B+ | 0 | ¬ A+

Minimal logic (this talk):

Purely positive types: no ¬A+ (= ↓(A+ → #))

16

Outline

1. Simply typed higher-order focusing

2. Positively dependent types

17

Outline

1. Simply typed higher-order focusing

2. Positively dependent types

18

Higher-order focusing

Specify types by their patterns

Type-independent focusing framework

Focus phase = choose a pattern

Inversion phase = pattern-matching

19

Higher-order focusing

Specify types by their patterns

Type-independent focusing framework

Focus phase = choose a pattern

Inversion phase = pattern-matching

Patterns

Proof pattern gives us the outline of a proof,
but leaves holes for refutations

20

¬A⊗(¬B⊕¬C) true
¬A true ¬B⊕¬C true
A false ¬B true

B false

Patterns

21

A1 false, ..., An false ⊩ A true

Patterns

21

Δ ⊩ A true : there is a proof pattern for A,
leaving holes for refutations of A1 ... An

A1 false, ..., An false ⊩ A true

Δ

Pattern rules

22

Δ₁ ⊩ A true Δ₂ ⊩ B true

Δ₁Δ₂ ⊩ A⊗B true ∙ ⊩ 1 true

Δ ⊩ A true

Δ ⊩ A⊕B true

Δ ⊩ B true

Δ ⊩ A⊕B true
(no rule for 0)

 A false ⊩ ¬A true

Proof terms

B false ⊩ ¬B true

B false ⊩ ¬B⊕¬C trueA false ⊩ ¬A true

A false, B false ⊩ ¬A⊗(¬B⊕¬C) true

continuation variables

≈
(κ₁, inl κ₂)

Proof terms

B false ⊩ ¬B true

B false ⊩ ¬B⊕¬C trueA false ⊩ ¬A true

A false, B false ⊩ ¬A⊗(¬B⊕¬C) true

continuation variables

≈
(κ₁, inl κ₂)

κ₁

κ2

inl

(_,_)

24

Higher-order focusing

Specify types by their patterns

Type-independent focusing framework

Focus phase = choose a pattern

Inversion phase = pattern-matching

Focused proofs

Δ ⊩ A true Γ ⊢ Δ
Γ ⊢ A true

A false ∊ Δ Γ ⊢ A false

Γ ⊢ Δ
A false ∊ Δ Γ ⊢ A true

Γ ⊢ #

Δ ⊩ A true Γ, Δ ⊢ #

Γ ⊢ A false

iterated inductive definition

Focused proofs

Δ ⊩ A true Γ ⊢ Δ
Γ ⊢ A true

A false ∊ Δ Γ ⊢ A false

Γ ⊢ Δ
A false ∊ Δ Γ ⊢ A true

Γ ⊢ #

Δ ⊩ A true Γ, Δ ⊢ #

Γ ⊢ A false

focus inversion

iterated inductive definition

Example continuation

26

p E
Δ ⊩ ¬A⊗(¬B⊕¬C) true Γ, Δ ⊢ #

Γ ⊢ ¬A⊗(¬B⊕¬C) false
K deriv. of

p E
Δ ⊩ A true Γ, Δ ⊢ #

K :: Γ ⊢ A false

p E
Δ ⊩ A true Γ, Δ ⊢ #

K :: Γ ⊢ A false

Example continuation

26

p E
Δ ⊩ ¬A⊗(¬B⊕¬C) true Γ, Δ ⊢ #

Γ ⊢ ¬A⊗(¬B⊕¬C) false

(κ₁, inl κ₂) ↦
 E1

 Γ, κ₁: A false, κ2: B false, ⊢ #

(κ₁, inr κ3) ↦
 E2

 Γ, κ₁: A false, κ3: C false, ⊢ #
{K

K deriv. of

p E
Δ ⊩ A true Γ, Δ ⊢ #

K :: Γ ⊢ A false

p E
Δ ⊩ A true Γ, Δ ⊢ #

K :: Γ ⊢ A false

27

Outline

1. Simply typed higher-order focusing

2. Positively dependent types

28

Higher-order focusing

Specify types by their patterns

Type-independent focusing framework

Focus phase = choose a pattern

Inversion phase = pattern-matching

all the changes are here

29

1. Allow indexing by closed patterns
= values of purely positive types

Positively dependent types

30

Patterns

 ∙ ⊩ nat true

Δ ⊩ nat true

Δ ⊩ nat true
nat: z s

30

Patterns

 ∙ ⊩ nat true

Δ ⊩ nat true

Δ ⊩ nat true
nat: z s

Δ1 ⊩ bool true Δ2 ⊩ vec[p] true

Δ1Δ2 ⊩ vec[s p] true
cons

∙ ⊩ vec[z] true

vec[p :: ∙ ⊩ nat true]:

nil

31

1. Allow indexing by closed patterns
= values of purely positive types

2. Syntax of (Σx:A.B) specified by pattern-matching:
gives type-level computation (large eliminations)

Positively dependent types

32

Dependent pairs

A type [] ⊩ A true τ(p) type

Σ A τ type

p

32

Dependent pairs

∙ ⊩ A true Δ ⊩ τ(p) true

Δ ⊩ Σ A τ true
pair

A type [] ⊩ A true τ(p) type

Σ A τ type

p

p

33

Dependent pairs

A type [] ⊩ A true τ(p) type

Σ A τ type

p

List: Σ nat (p ↦ vec[p])

Pattern: (pair 2 (cons true (cons false nil)))

∙ ⊩ A true Δ ⊩ τ(p) true

Δ ⊩ Σ A τ true
pair

p

34

Dependent pairs

A type [] ⊩ A true τ(p) type

Σ A τ type

p

Check: Σ bool (true ↦ 1; false ↦ 0)

Only pattern: pair true <>

∙ ⊩ A true Δ ⊩ τ(p) true

Δ ⊩ Σ A τ true
pair

p

35

Dependent pairs

A type [] ⊩ A true τ(p) type

Σ A τ type

p

Recursive Vec: Σ nat (z ↦ 1;
 s(z) ↦ bool;
 s(s(z)) ↦ bool ⊗ bool;

 ...)

∙ ⊩ A true Δ ⊩ τ(p) true

Δ ⊩ Σ A τ true
pair

p

36

Dependent pairs

A type [] ⊩ A true τ(p) type

Σ A τ type

p

Logical relations: define predicate by recursion on
representation of object-language type

∙ ⊩ A true Δ ⊩ τ(p) true

Δ ⊩ Σ A τ true
pair

p

37

Well-defined?

37

1. Simply-typed: Iterated inductive definition

• Patterns defined first

• Pattern-matching quantifies over them

Well-defined?

37

1. Simply-typed: Iterated inductive definition

• Patterns defined first

• Pattern-matching quantifies over them

2. Dependent: Mutual definition

• Patterns classified by types

• Σ A τ quantifies over patterns

Well-defined?

37

1. Simply-typed: Iterated inductive definition

• Patterns defined first

• Pattern-matching quantifies over them

2. Dependent: Mutual definition

• Patterns classified by types

• Σ A τ quantifies over patterns

Well-defined?

Why does this make sense?

38

1. Inductively define the syntax of positive types

A+ ::= A+ ⊗ B+ | 1 | A+ ⊕ B+ | 0 | ¬ A+

 | nat | vec[p] | Σ A+ τ

2. Simultaneously, recursively define patterns for A+

Δ ⊩ A ⊕ B =def= Either (Δ ⊩ A) (Δ ⊩ B)

Induction-Recursion

39

Induction-Recursion

A type [] ⊩ A true τ(p) type

Σ A τ type

p

1. Define the type A

2. Define the patterns for A

3. Define the types Σ A τ (quantifies over pats for A)

4. Define the patterns for Σ A τ
5. ...

τ quantifies over type A, which is smaller than Σ A τ

40

Example
head :: (Σ nat (n ↦ vec[s n])) → bool

40

Example

head :: (κ : bool false) ⊢ Σ nat (n ↦ vec[s n]) false

head :: (Σ nat (n ↦ vec[s n])) → bool

...contrapositive...

40

Example

head :: (κ : bool false) ⊢ Σ nat (n ↦ vec[s n]) false

head :: (Σ nat (n ↦ vec[s n])) → bool

...contrapositive...

head :: Δ ⊩ Σ nat (n ↦ vec[s n]) true

 (κ : bool false), Δ ⊢ #

...one premise...

41

Example

head (pair _ (cons x _)) ↦ throw x to κ

(no case for head (pair n nil) !)

head :: Δ ⊩ Σ nat (n ↦ vec[s n]) true

 (κ : bool false), Δ ⊢ #

42

See Paper
Agda encoding

Examples coded using Agda representation

Discussion of type equality

Types are equal iff they have the same patterns:
induces an identity coercion

(Σ A τ) = (Σ A’ τ’) :
compare τ and τ’ extensionally

43

Positively dependent types

1. Extend higher-order focusing with
a simple form of dependency

2. Formalize the language in Agda

Contributions:

44

Positively dependent types

1. Type and term levels share the same data

2. But different notions of computation

• Terms: Pattern-match results in E :: Γ ⊢ #
(can add effects to this judgement)

• Types: Pattern-match τ results in types
(pure)

45

Future work

Integrate with LICS work on variable binding

Implement positively dependent types
in GHC or ML

Negatively dependent types, too?

Thanks for listening!

