Dan Licata and Robert Harper Carnegie Mellon University

Dan's thesis

New dependently typed programming language for programming with binding and scope

Applications:

- * Domain-specific logics for reasoning about code
- * Mechanized metatheory

Dan's thesis

New dependently typed programming language for programming with binding and scope

Applications:

- * Domain-specific logics for reasoning about code
- * Mechanized metatheory

Based on polarized type theory

Polarity [Girard '93]

Sums A + B are positive data:

- * Introduced by choosing inl or inr
- * Eliminated by pattern-matching

- * Introduced by pattern-matching on A
- * Eliminated by choosing an A to apply to

Sums A + B are positive data:

- * Introduced by choosing inl or inr
- * Eliminated by pattern-matching

- * Introduced by pattern-matching on A
- * Eliminated by choosing an A to apply to

Sums A + B are positive data:

- * Introduced by choosing inl or inr
- * Eliminated by pattern-matching

Focus = make choices

- * Introduced by pattern-matching on A
- * Eliminated by choosing an A to apply to

Sums A + B are positive data:

- * Introduced by choosing inl or inr
- * Eliminated by pattern-matching

- * Introduced by pattern-matching on A
- * Eliminated by choosing an A to apply to

Sums A + B are positive data:

- * Introduced by choosing inl or inr
- * Eliminated by pattern-matching

Inversion = respond to all possible choices

- * Introduced by pattern-matching on A
- * Eliminated by choosing an A to apply to

Zeilberger's higher-order formalism:

* Type theory organized around distinction between positive data and negative computation

Positive Data products (eager) sums natural numbers inductive types

Negative Computation products (lazy) functions streams coinductive types

Zeilberger's higher-order formalism:

- * Type theory organized around distinction between positive data and negative computation
- * Pattern matching represented abstractly by meta-level functions from patterns to expressions, using an iterated inductive definition

Applications so far:

* Curry-Howard for pattern matching [Zeilberger POPL'08; cf. Krishnaswami POPL'09]

- * Curry-Howard for pattern matching [Zeilberger POPL'08; cf. Krishnaswami POPL'09]
- * Logical account of evaluation order [Zeilberger APAL]

- * Curry-Howard for pattern matching [Zeilberger POPL'08; cf. Krishnaswami POPL'09]
- * Logical account of evaluation order [Zeilberger APAL]
- * Analysis of operationally sensitive typing phenomena [Zeilberger PLPV'09]

- * Curry-Howard for pattern matching [Zeilberger POPL'08; cf. Krishnaswami POPL'09]
- * Logical account of evaluation order [Zeilberger APAL]
- * Analysis of operationally sensitive typing phenomena [Zeilberger PLPV'09]
- * Positive function space for representing variable binding [LZH LICS'08]

Positive function space

- * Permits LF-style representation of binding: framework provides α-equivalence, substitution
- * Eliminated by pattern matching = structural induction modulo α

Positive function space

- * Permits LF-style representation of binding: framework provides α-equivalence, substitution
- * Eliminated by pattern matching = structural induction modulo α

But no dependent types...

Contributions:

- 1. Extend higher-order focusing with a simple form of dependency
- 2. Formalize the language in Agda

Key idea: Allow dependency on positive data, but not negative computation

Key idea: Allow dependency on positive data, but not negative computation

Enough for simple applications:

- * Lists indexed by their lengths (Vec[n:nat])
- * Judgements on higher-order abstract syntax represented with positive functions

Key idea: Allow dependency on positive data, but not negative computation

Avoids complications of negative dependency:

- * Equality is easy for data, hard for computation
- * Computations are free to be effectful

- 1. Type and term levels share the same data (like Agda, Epigram, Cayenne, NuPRL, ...)
- 2. But have different notions of computation (like DML, Omega, ATS, ...)

Polarized type theory

Intuitionistic logic:

$$A^{+} ::= nat | A^{+} \otimes B^{+} | 1 | A^{+} \oplus B^{+} | 0 | \downarrow A^{-}$$

 $A^{-} ::= A^{+} \rightarrow B^{-} | A^{-} & B^{-} | \top | \uparrow A^{+}$

Polarized type theory

Intuitionistic logic:

$$A^{+} ::= nat | A^{+} \otimes B^{+} | 1 | A^{+} \oplus B^{+} | 0 | \downarrow A^{-}$$

 $A^{-} ::= A^{+} \rightarrow B^{-} | A^{-} & B^{-} | \top | \uparrow A^{+}$

Allow dependency on values of purely positive types (no \$\dagger\$A^-)

Polarized type theory

Intuitionistic logic (see paper):

$$A^{+} ::= nat | A^{+} \otimes B^{+} | 1 | A^{+} \oplus B^{+} | 0 | \downarrow A^{-}$$

$$A^- ::= A^+ \rightarrow B^- \mid A^- \& B^- \mid \top \mid \uparrow A^+$$

Minimal logic (this talk):

$$A^{+} ::= nat | A^{+} \otimes B^{+} | 1 | A^{+} \oplus B^{+} | 0 | \neg A^{+}$$

Purely positive types: no $\neg A^+ (= \downarrow (A^+ \rightarrow \#))$

Outline

- 1. Simply typed higher-order focusing
- 2. Positively dependent types

Outline

- 1. Simply typed higher-order focusing
- 2. Positively dependent types

- * Specify types by their patterns
- * Type-independent focusing framework
 - * Focus phase = choose a pattern
 - ** Inversion phase = pattern-matching

- * Specify types by their patterns
- * Type-independent focusing framework
 - * Focus phase = choose a pattern
 - ** Inversion phase = pattern-matching

Patterns

Proof pattern gives us the outline of a proof, but leaves holes for refutations

A false
$$\neg B$$
 true $\neg A$ true $\neg B \oplus \neg C$ true $\neg A \otimes (\neg B \oplus \neg C)$ true

Patterns

A₁ false, ..., A₁ false ⊩ A true

Patterns

 A_1 false, ..., A_n false $\Vdash A$ true

Δ

 $\Delta \Vdash A$ true: there is a proof pattern for A, leaving holes for refutations of $A_1 \dots A_n$

Pattern rules

$$\Delta_1 \Vdash A \text{ true } \Delta_2 \Vdash B \text{ true}$$

$$\Delta_1 \Delta_2 \Vdash A \otimes B \text{ true}$$

$$\Delta \Vdash A \text{ true}$$

$$\Delta \Vdash A \oplus B \text{ true}$$

$$\Delta \Vdash B \text{ true}$$

$$\Delta \Vdash A \oplus B \text{ true}$$

(no rule for 0)

Proof terms

B false ⊩ ¬B true

A false ⊩ ¬A true

B false $\Vdash \neg B \oplus \neg C$ true

A false, B false $\Vdash \neg A \otimes (\neg B \oplus \neg C)$ true

Proof terms

B false $\vdash \neg B$ true

inl

 K_2

 K_1

A false ⊩ ¬A true

B false $\Vdash \neg B \oplus \neg C$ true

A false, B false $\Vdash \neg A \otimes (\neg B \oplus \neg C)$ true

(K₁, inl K₂)
continuation variables

- * Specify types by their patterns
- * Type-independent focusing framework
 - * Focus phase = choose a pattern
 - ** Inversion phase = pattern-matching

Focused proofs

iterated inductive definition

$$\Delta \Vdash A \text{ true} \qquad \Gamma \vdash \Delta$$

$$\Gamma \vdash A \text{ true}$$

$$\Delta \Vdash A \text{ true } \xrightarrow{} \Gamma, \Delta \vdash \#$$

$$\Gamma \vdash A \text{ false}$$

A false
$$\epsilon \Delta \longrightarrow \Gamma \vdash A$$
 false $\Delta \Gamma \vdash A$ true $\Gamma \vdash \Delta$

Focused proofs

iterated inductive definition

$$\Delta \Vdash A \text{ true} \qquad \Gamma \vdash \Delta$$

$$\Delta \Vdash A \text{ true} \xrightarrow{} \Gamma, \Delta \vdash \#$$

$$\Gamma \vdash A \text{ false}$$

A false
$$\in \Delta \longrightarrow \Gamma \vdash A$$
 false

A false
$$\in \Delta$$
 $\Gamma \vdash A$ true

$$\Gamma \vdash \Delta$$

Example continuation

K deriv. of
$$\frac{\Delta \Vdash \neg A \otimes (\neg B \oplus \neg C) \text{ true } \longrightarrow \Gamma, \Delta \vdash \#}{\Gamma \vdash \neg A \otimes (\neg B \oplus \neg C) \text{ false}}$$

Example continuation

K deriv. of
$$\frac{\Delta \Vdash \neg A \otimes (\neg B \oplus \neg C) \text{ true } \longrightarrow \Gamma, \Delta \vdash \#}{\Gamma \vdash \neg A \otimes (\neg B \oplus \neg C) \text{ false}}$$

$$(K_{1}, inl K_{2}) \mapsto \begin{array}{c} E_{1} \\ \Gamma, K_{1}:A \text{ false, } K_{2}:B \text{ false, } \vdash \# \\ K_{1}:A \text{ false, } K_{3}:C \text{ false, } \vdash \# \\ \Gamma, K_{1}:A \text{ false, } K_{3}:C \text{ false, } \vdash \# \\ \end{array}$$

Outline

- 1. Simply typed higher-order focusing
- 2. Positively dependent types

Higher-order focusing

all the changes are here

- * Specify types by their patterns
- * Type-independent focusing framework
 - * Focus phase = choose a pattern
 - * Inversion phase = pattern-matching

Positively dependent types

- 1. Allow indexing by closed patterns
 - = values of purely positive types

Patterns

nat: $\frac{\Delta \Vdash \text{nat true}}{\Delta \Vdash \text{nat true}} s$

Patterns

```
\Delta \Vdash \text{nat true}
nat:
                    · ⊩ nat true
                                                              \Delta \Vdash \text{nat true}
vec[p :: \cdot \Vdash nat true]:
                               · ⊩ vec[z] true
           \Delta_1 \Vdash \text{bool true} \quad \Delta_2 \Vdash \text{vec}[p] \text{ true}
                        \Delta_1 \Delta_2 \Vdash \text{vec}[s p] \text{ true}
```

Positively dependent types

- 1. Allow indexing by closed patterns
 - = values of purely positive types
- 2. Syntax of (Σx :A.B) specified by pattern-matching: gives type-level computation (large eliminations)

```
List: \Sigma nat (p \mapsto \text{vec}[p])
```

Pattern: (pair 2 (cons true (cons false nil)))

```
Check: \Sigma bool (true \mapsto 1; false \mapsto 0)
```

Only pattern: pair true <>

```
Recursive Vec: \Sigma nat (z \mapsto 1;
                                             S(Z) \rightarrow bool;
                                             s(s(z)) \mapsto bool \otimes bool;
                                       [] \Vdash A true \longrightarrow T(p) type
           A type
                                        \Sigma A T type
                     \cdot \Vdash \stackrel{\rho}{A} true \qquad \triangle \Vdash \tau(p) true \qquad pair \\ \triangle \Vdash \Sigma A \tau true
```

Logical relations: define predicate by recursion on representation of object-language type

- 1. Simply-typed: Iterated inductive definition
 - Patterns defined first
 - Pattern-matching quantifies over them

- 1. Simply-typed: Iterated inductive definition
 - Patterns defined first
 - Pattern-matching quantifies over them
- 2. Dependent: Mutual definition
 - Patterns classified by types
 - Σ A τ quantifies over patterns

- 1. Simply-typed: Iterated inductive definition
 - Patterns defined first
 - Pattern-matching quantifies over them
- 2. Dependent: Mutual definition
 - Patterns classified by types
 - Σ A τ quantifies over patterns

Why does this make sense?

Induction-Recursion

1. Inductively define the syntax of positive types

$$A^{+} ::= A^{+} \otimes B^{+} | 1 | A^{+} \oplus B^{+} | 0 | \neg A^{+}$$

$$| nat | vec[p] | \Sigma A^{+} \tau$$

2. Simultaneously, recursively define patterns for A+

$$\Delta \Vdash A \oplus B = def = Either (\Delta \Vdash A) (\Delta \Vdash B)$$

Induction-Recursion

- τ quantifies over type A, which is smaller than Σ A τ
 - 1. Define the type A
 - 2. Define the patterns for A
 - 3. Define the types Σ A τ (quantifies over pats for A)
 - 4. Define the patterns for $\Sigma A \tau$
 - 5....

head :: $(\Sigma \operatorname{nat} (n \mapsto \operatorname{vec}[s n])) \to \operatorname{bool}$

```
head :: (\sum nat (n \mapsto vec[s n])) \rightarrow bool
...contrapositive...
```

head :: $(\kappa : bool false) \vdash \Sigma nat (n \mapsto vec[s n]) false$

```
head :: (\sum nat (n \mapsto vec[s n])) \rightarrow bool
...contrapositive...
```

head :: $(\kappa : bool false) \vdash \sum nat (n \mapsto vec[s n])$ false ...one premise...

head ::
$$\Delta \Vdash \Sigma \text{ nat } (n \mapsto \text{vec}[s \ n]) \text{ true}$$

$$\longrightarrow (K : bool false), \Delta \vdash \#$$

```
head :: \Delta \Vdash \Sigma \text{ nat } (n \mapsto \text{vec}[s \ n]) \text{ true}
\longrightarrow (K : bool false), \Delta \vdash \#
```

head (pair $_$ (cons x $_$)) \mapsto throw x to K

(no case for head (pair n nil)!)

See Paper

- * Agda encoding
- * Examples coded using Agda representation
- * Discussion of type equality
 - * Types are equal iff they have the same patterns: induces an identity coercion
 - * $(\Sigma A \tau) = (\Sigma A' \tau')$:
 compare τ and τ' extensionally

Positively dependent types

Contributions:

- 1. Extend higher-order focusing with a simple form of dependency
- 2. Formalize the language in Agda

Positively dependent types

- 1. Type and term levels share the same data
- 2. But different notions of computation
 - Terms: Pattern-match results in E :: Γ ⊢ #
 (can add effects to this judgement)
 - Types: Pattern-match T results in types (pure)

Future work

- * Integrate with LICS work on variable binding
- * Implement positively dependent types in GHC or ML
- * Negatively dependent types, too?

Thanks for listening!