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New dependently typed programming language 
for programming with binding and scope

Domain-specific logics for reasoning about code 

Mechanized metatheory

Applications:

Based on polarized type theory
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Sums  A + B  are positive data:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions  A → B  are negative computation:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to
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Focusing [Andreoli ’92]

Sums  A + B  are positive data:
Introduced by choosing inl or inr

Eliminated by pattern-matching

ML functions  A → B  are negative computation:

Introduced by pattern-matching on A

Eliminated by choosing an A to apply to

Inversion = 
respond to all 

possible choices
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Higher-order focusing
Zeilberger’s higher-order formalism:

Type theory organized around distinction between
positive data and negative computation

Positive Data
products (eager)
sums
natural numbers
inductive types

Negative Computation
products (lazy)
functions
streams
coinductive types
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Higher-order focusing
Zeilberger’s higher-order formalism:

Type theory organized around distinction between
positive data and negative computation

Pattern matching represented abstractly by 
meta-level functions from patterns to expressions,
using an iterated inductive definition
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Applications so far:
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Higher-order focusing
Applications so far:

Curry-Howard for pattern matching
[Zeilberger POPL’08; cf. Krishnaswami POPL’09]

Logical account of evaluation order 
[Zeilberger APAL]

Analysis of operationally sensitive 
typing phenomena [Zeilberger PLPV’09]

Positive function space for 
representing variable binding [LZH LICS’08]
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Positive function space

Permits LF-style representation of binding:
framework provides α-equivalence, substitution 

Eliminated by pattern matching =
structural induction modulo α
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Positive function space

Permits LF-style representation of binding:
framework provides α-equivalence, substitution 

Eliminated by pattern matching =
structural induction modulo α

But no dependent types...
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Positively dependent types

1. Extend higher-order focusing with
a simple form of dependency 

2. Formalize the language in Agda

Contributions:
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Positively dependent types

Key idea: Allow dependency on positive data,
but not negative computation
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Positively dependent types

Key idea: Allow dependency on positive data,
but not negative computation

Enough for simple applications:

Lists indexed by their lengths ( Vec[n:nat] )

Judgements on higher-order abstract syntax
represented with positive functions
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Positively dependent types

Key idea: Allow dependency on positive data,
but not negative computation

Avoids complications of negative dependency:

Equality is easy for data, hard for computation

Computations are free to be effectful
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Positively dependent types

1. Type and term levels share the same data
(like Agda, Epigram, Cayenne, NuPRL, …)

2. But have different notions of computation
(like DML, Omega, ATS, …)
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Polarized type theory

Intuitionistic logic:

A+ ::= nat | A+ ⊗ B+ | 1 | A+ ⊕ B+ | 0 | ↓ A-

A- ::= A+ → B- | A- & B- | ⊤ | ↑ A+
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Polarized type theory

Allow dependency on values of 
purely positive types (no ↓A-)

Intuitionistic logic:

A+ ::= nat | A+ ⊗ B+ | 1 | A+ ⊕ B+ | 0 | ↓ A-

A- ::= A+ → B- | A- & B- | ⊤ | ↑ A+
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Polarized type theory

A+ ::= nat | A+ ⊗ B+ | 1 | A+ ⊕ B+ | 0 | ↓ A-

A- ::= A+ → B- | A- & B- | ⊤ | ↑ A+

Intuitionistic logic (see paper):

A+ ::= nat | A+ ⊗ B+ | 1 | A+ ⊕ B+ | 0 | ¬ A+

Minimal logic (this talk):

Purely positive types: no ¬A+ ( = ↓(A+ → #) )



16

Outline
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2. Positively dependent types



17

Outline

1. Simply typed higher-order focusing

2. Positively dependent types



18

Higher-order focusing

Specify types by their patterns

Type-independent focusing framework

Focus phase = choose a pattern

Inversion phase = pattern-matching



19

Higher-order focusing

Specify types by their patterns

Type-independent focusing framework

Focus phase = choose a pattern

Inversion phase = pattern-matching



Patterns

Proof pattern gives us the outline of a proof, 
but leaves holes for refutations

20

¬A⊗(¬B⊕¬C) true
¬A true ¬B⊕¬C true
A false ¬B true

B false



Patterns
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A1 false, ..., An false ⊩ A true



Patterns
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Δ ⊩ A true : there is a proof pattern for A, 
leaving holes for refutations of A1 ... An

A1 false, ..., An false ⊩ A true

Δ



Pattern rules
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Δ₁ ⊩ A true Δ₂ ⊩ B true

Δ₁Δ₂  ⊩ A⊗B true  ∙ ⊩ 1 true

Δ ⊩ A true

Δ  ⊩ A⊕B true

Δ ⊩ B true

Δ  ⊩ A⊕B true
(no rule for 0)

 A false ⊩ ¬A true



Proof terms

B false ⊩ ¬B true

B false ⊩ ¬B⊕¬C trueA false ⊩ ¬A true

A false, B false  ⊩ ¬A⊗(¬B⊕¬C) true

continuation variables

≈
(κ₁, inl κ₂)



Proof terms

B false ⊩ ¬B true

B false ⊩ ¬B⊕¬C trueA false ⊩ ¬A true

A false, B false  ⊩ ¬A⊗(¬B⊕¬C) true

continuation variables

≈
(κ₁, inl κ₂)

κ₁

κ2

inl

(_,_)
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Higher-order focusing

Specify types by their patterns

Type-independent focusing framework

Focus phase = choose a pattern

Inversion phase = pattern-matching



Focused proofs

Δ ⊩ A true    Γ ⊢ Δ
Γ  ⊢ A true

A false ∊ Δ       Γ ⊢ A false

Γ  ⊢ Δ
A false ∊ Δ    Γ ⊢ A true

Γ  ⊢ #

Δ ⊩ A true       Γ, Δ ⊢ #

Γ  ⊢ A false

iterated inductive definition



Focused proofs

Δ ⊩ A true    Γ ⊢ Δ
Γ  ⊢ A true

A false ∊ Δ       Γ ⊢ A false

Γ  ⊢ Δ
A false ∊ Δ    Γ ⊢ A true

Γ  ⊢ #

Δ ⊩ A true       Γ, Δ ⊢ #

Γ  ⊢ A false

focus inversion

iterated inductive definition



Example continuation

26

p       E
Δ ⊩ ¬A⊗(¬B⊕¬C) true       Γ, Δ ⊢ #

Γ ⊢ ¬A⊗(¬B⊕¬C) false
K deriv. of

p       E
Δ ⊩ A true       Γ, Δ ⊢ #

K :: Γ  ⊢ A false

p       E
Δ ⊩ A true       Γ, Δ ⊢ #

K :: Γ  ⊢ A false
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p       E
Δ ⊩ ¬A⊗(¬B⊕¬C) true       Γ, Δ ⊢ #

Γ ⊢ ¬A⊗(¬B⊕¬C) false

(κ₁, inl κ₂) ↦ 
      E1

      Γ, κ₁: A false, κ2: B false, ⊢ #

(κ₁, inr κ3) ↦ 
      E2

      Γ, κ₁: A false, κ3: C false, ⊢ #
{K

K deriv. of

p       E
Δ ⊩ A true       Γ, Δ ⊢ #

K :: Γ  ⊢ A false

p       E
Δ ⊩ A true       Γ, Δ ⊢ #

K :: Γ  ⊢ A false
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Outline
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2. Positively dependent types
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Higher-order focusing

Specify types by their patterns

Type-independent focusing framework

Focus phase = choose a pattern

Inversion phase = pattern-matching

all the changes are here
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1. Allow indexing by closed patterns
= values of purely positive types

Positively dependent types
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Patterns

 ∙ ⊩ nat true

Δ ⊩ nat true

Δ  ⊩ nat true
nat: z s
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Patterns

 ∙ ⊩ nat true

Δ ⊩ nat true

Δ  ⊩ nat true
nat: z s

Δ1 ⊩ bool true    Δ2 ⊩ vec[p] true 

Δ1Δ2  ⊩ vec[s p] true
cons

∙  ⊩ vec[z] true

vec[p :: ∙ ⊩ nat true]:

nil
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1. Allow indexing by closed patterns
= values of purely positive types

2. Syntax of (Σx:A.B) specified by pattern-matching:
gives type-level computation (large eliminations)

Positively dependent types
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Dependent pairs

A type            [] ⊩ A true        τ(p) type   

Σ A τ type

p
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Dependent pairs

∙ ⊩ A true        Δ ⊩ τ(p) true 

Δ  ⊩ Σ A τ  true
pair

A type            [] ⊩ A true        τ(p) type   

Σ A τ type

p

p
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Dependent pairs

A type            [] ⊩ A true        τ(p) type   

Σ A τ type

p

List:        Σ nat (p ↦ vec[p])

Pattern:  (pair 2 (cons true (cons false nil)))

∙ ⊩ A true        Δ ⊩ τ(p) true 

Δ  ⊩ Σ A τ  true
pair

p
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Dependent pairs

A type            [] ⊩ A true        τ(p) type   

Σ A τ type

p

Check:        Σ bool (true ↦ 1; false ↦ 0)

Only pattern:  pair true <>

∙ ⊩ A true        Δ ⊩ τ(p) true 

Δ  ⊩ Σ A τ  true
pair

p
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Dependent pairs

A type            [] ⊩ A true        τ(p) type   

Σ A τ type

p

Recursive Vec:   Σ nat (z ↦ 1; 
                                     s(z) ↦ bool; 
                                     s(s(z)) ↦ bool ⊗ bool;

                                     ...)

∙ ⊩ A true        Δ ⊩ τ(p) true 

Δ  ⊩ Σ A τ  true
pair

p
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Dependent pairs

A type            [] ⊩ A true        τ(p) type   

Σ A τ type

p

Logical relations: define predicate by recursion on 
representation of object-language type

∙ ⊩ A true        Δ ⊩ τ(p) true 

Δ  ⊩ Σ A τ  true
pair

p
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Well-defined?
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• Pattern-matching quantifies over them
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1. Simply-typed: Iterated inductive definition

• Patterns defined first

• Pattern-matching quantifies over them

2. Dependent: Mutual definition

• Patterns classified by types

• Σ A τ quantifies over patterns

Well-defined?

Why does this make sense?
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1. Inductively define the syntax of positive types

A+ ::= A+ ⊗ B+ | 1 | A+ ⊕ B+ | 0 | ¬ A+ 

            | nat | vec[p] | Σ A+ τ 

2. Simultaneously, recursively define patterns for A+

Δ ⊩ A ⊕ B   =def=  Either (Δ ⊩ A) (Δ ⊩ B)

Induction-Recursion
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Induction-Recursion

A type            [] ⊩ A true        τ(p) type   

Σ A τ type

p

1. Define the type A

2. Define the patterns for A

3. Define the types Σ A τ (quantifies over pats for A)

4. Define the patterns for Σ A τ
5. ...

τ quantifies over type A, which is smaller than Σ A τ
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Example
head :: (Σ nat (n ↦ vec[s n])) → bool
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Example

head ::   (κ : bool false)  ⊢ Σ nat (n ↦ vec[s n])  false

head :: (Σ nat (n ↦ vec[s n])) → bool

...contrapositive...
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Example

head ::   (κ : bool false)  ⊢ Σ nat (n ↦ vec[s n])  false

head :: (Σ nat (n ↦ vec[s n])) → bool

...contrapositive...

head ::   Δ ⊩ Σ nat (n ↦ vec[s n]) true  
          

         (κ : bool false), Δ  ⊢ #

...one premise...
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Example

head (pair _ (cons x _)) ↦ throw x to κ

(no case for head (pair n nil) !)

head ::   Δ ⊩ Σ nat (n ↦ vec[s n]) true  
          

         (κ : bool false), Δ  ⊢ #
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See Paper
Agda encoding

Examples coded using Agda representation

Discussion of type equality

Types are equal iff they have the same patterns:
induces an identity coercion

(Σ A τ) = (Σ A’ τ’)  : 
compare τ and τ’ extensionally
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Positively dependent types

1. Extend higher-order focusing with
a simple form of dependency 

2. Formalize the language in Agda

Contributions:
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Positively dependent types

1. Type and term levels share the same data

2. But different notions of computation

• Terms: Pattern-match results in E :: Γ ⊢ # 
(can add effects to this judgement)

• Types: Pattern-match τ results in types
(pure)



45

Future work

Integrate with LICS work on variable binding 

Implement positively dependent types
in GHC or ML

Negatively dependent types, too?



Thanks for listening!


