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Abstract

We present a type theory for higher-order modules that accounts for many central issues
in module system design, including translucency, applicativity, generativity, and modules as
first-class values. Our type system harmonizes design elements from previous work, resulting
in a simple, economical account of modular programming. The main unifying principle is the
treatment of abstraction mechanisms as computational effects. Our language is the first to
provide a complete and practical formalization of all of these critical issues in module system
design.

1 Introduction

The design of languages for modular programming is surprisingly delicate and complex. There is a
fundamental tension between the desire to separate program components into relatively independent
parts and the need to integrate these parts to form a coherent whole. To some extent the design
of modularity mechanisms is independent of the underlying language [17], but to a large extent
the two are inseparable. For example, languages with polymorphism, generics, or type abstraction
require far more complex module mechanisms than those without them.

Much work has been devoted to the design of modular programming languages. Early work on
CLU [19] and the Modula family of languages [34, 2] has been particularly influential. Much effort
has gone into the design of modular programming mechanisms for the ML family of languages,
notably Standard ML [23] and Objective Caml [27]. Numerous extensions and variations of these
designs have been considered in the literature [21, 18, 28, 31, 5].

Despite (or perhaps because of) these substantial efforts, the field has remained somewhat
fragmented, with no clear unifying theory of modularity having yet emerged. Several competing
designs have been proposed, often seemingly at odds with one another. These decisions are as often
motivated by pragmatic considerations, such as engineering a useful implementation, as by more
fundamental considerations, such as the semantics of type abstraction. The relationship between
these design decisions is not completely clear, nor is there a clear account of the trade-offs between
them, or whether they can be coherently combined into a single design.

The goal of this paper is to provide a simple, unified formalism for modular programming that
consolidates and elucidates much of the work mentioned above. Building on a substantial and
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growing body of work on type-theoretic accounts of language structure, we propose a type theory
for higher-order program modules that harmonizes and enriches these designs and that would be
suitable as a foundation for the next generation of modular languages.

1.1 Design Issues

Before describing the main technical features of our language, it is useful to review some of the
central issues in the design of module systems for ML. These issues extend to any language of
similar expressive power, though some of the trade-offs may be different for different languages.

Controlled Abstraction Modularity is achieved by using signatures (interfaces) to mediate
access between program components. The role of a signature is to allow the programmer to “hide”
type information selectively. The mechanism for controlling type propagation is translucency [11,
14], with transparency and opacity as limiting cases.

Phase Separation ML-like module systems enjoy a phase separation property [12] stating that
every module is separable into a static part, consisting of type information, and a dynamic part,
consisting of executable code. To obtain fully expressive higher-order modules and to support
abstraction, it is essential to build this phase separation principle into the definition of type equiv-
alence.

Generativity MacQueen coined the term generativity for the creation of “new” types corre-
sponding to run-time instances of an abstraction. For example, we may wish to define a functor
SymbolTable that, given some parameters, creates a new symbol table. It is natural for the sym-
bol table module to export an abstract type of symbols that are dynamically created by insertion
and used for subsequent retrieval. To preclude using the symbols from one symbol table to index
another, generativity is essential—each instance of the hash table must yield a “new” symbol type,
distinct from all others, even when applied twice to the same parameters.

Separate Compilation One goal of module system design is to support separate compila-
tion [14]. This is achieved by ensuring that all interactions among modules are mediated by
interfaces that capture all of the information known to the clients of separately-compiled mod-
ules.

Principal Signatures The principal, or most expressive, signature for a module captures all
that is known about that module during type checking. It may be used as a proxy for that module
for purposes of separate compilation. Many type checking algorithms, including the one given in
this paper, compute principal signatures for modules.

Modules as First-Class Values Modules in ML are “second-class” in the sense that they cannot
be computed as the results of ordinary run-time computation. It can be useful to treat a module
as a first-class value that can be stored into a data structure, or passed as an ordinary function
argument or result [11, 24].
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Hidden Types Introducing a local, or “hidden”, abstract type within a scope requires that the
types of the externally visible components avoid mention of the abstract type. This avoidance
problem is often a stumbling block for module system design, since in most expressive languages
there is no “best” way to avoid a type variable [9, 18].

1.2 A Type System for Modules

The type system proposed here takes into account all of these design issues. It consolidates and
harmonizes design elements that were previously seen as disparate into a single framework. For
example, rather than regard generativity of abstract types as an alternative to non-generative types,
we make both mechanisms available in the language. We support both generative and applicative
functors, admit translucent signatures, support separate compilation, and are able to accommodate
modules as first-class values [24, 29].

Generality is achieved not by a simple accumulation of features, but rather by isolating a few
key mechanisms that, when combined, yield a flexible, expressive, and implementable type system
for modules. Specifically, the following mechanisms are crucial.

Singletons Propagation of type sharing is handled by singleton signatures, a variant of Aspinall’s
and Stone and Harper’s singleton kinds [33, 32, 1]. Singletons provide a simple, orthogonal treat-
ment of sharing that captures the full equational theory of types in a higher-order module system
with subtyping. No previous module system has provided both abstraction and the full equational
theory supported by singletons,1 and consequently none has provided optimal propagation of type
information.

Static Module Equivalence The semantics of singleton signatures is dependent on a (compile-
time) notion of equivalence of modules. To ensure that the phase distinction is respected, we define
module equivalence to mean “equivalence of static components,” ignoring all run-time aspects.

Subtyping Signature subtyping is used to model “forgetting” type sharing, an essential part of
signature matching. The coercive aspects of signature matching (dropping of fields and special-
ization of polymorphic values) are omitted here, since the required coercions are definable in the
language.

Purity and Impurity Our type system classifies module expressions into pure (effect-free) and
impure (effectful) forms. To ensure proper enforcement of abstraction, impure modules are incompa-
rable (may not be compared for equality with any other module) and non-projectible (may not have
type components projected from them). It follows that impure modules are also non-substitutable
(may not be substituted for a module variable in a signature).

Abstraction and Sealing Modules that are sealed with a signature to impose type abstrac-
tion [11] are regarded as impure. In other words, sealing is regarded as a pro forma computational
effect. This is consistent with the informal idea that generativity involves the generation of new
types at run time. Moreover, this ensures that sealed modules are incomparable and non-projectible,
which is sufficient to ensure the proper semantics of type abstraction.

1Typically the omitted equations are not missed because restrictions to named form or valuability prevent pro-
grammers from writing code whose typeability would depend on those equations in the first place [4].
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Totality and Partiality Functors are λ-abstractions at the level of modules. A functor whose
body is pure is said to be total ; otherwise it is partial. It follows that the application of a pure, total
functor to a pure argument is pure, whereas the application of a pure, partial functor to a pure
argument is impure. Partial functors are naturally generative, meaning that the abstract types in
its result are “new” for each instance; total functors are applicative, meaning that equal arguments
yield equal types in the result. Generative functors are obtained without resort to “generative
stamps” [23, 21].

Weak and Strong Sealing Since sealing induces a computational effect, only partial functors
may contain sealed sub-structures; this significantly weakens the utility of total functors. To over-
come this limitation we distinguish two forms of effect, static and dynamic, and two forms of sealing,
weak and strong. Weak sealing induces a static effect, which we think of as occurring once dur-
ing type checking; strong sealing induces a dynamic effect, which we think of as occurring during
execution. Dynamic effects induce partiality, static effects preserve totality.

Existential Signatures In a manner similar to Shao [31], our type system is carefully crafted
to circumvent the avoidance problem, so that every module enjoys a principal signature. However,
this requires imposing restrictions on the programmer. To lift these restrictions, we propose the
use of existential signatures to provide principal signatures where none would otherwise exist. We
show that these existential signatures are type-theoretically ill-behaved in general, so, we restrict
their use to a well-behaved setting. In the style of Harper and Stone [13], we propose the use of an
elaboration algorithm from an external language that may incur the avoidance problem, into our
type system, which does not.

Packaged Modules Modules in our system are “second-class” in the sense that the language
of modules is separate from the language of terms. However, following Mitchell et al. [24] and
Russo [29], we provide a way of packaging a module as a first-class value. In prior work, such
packaged modules are typically given an existential type, whose closed-scope elimination construct
can make for awkward programming. Instead, our account of type generativity allows us to employ a
more natural, open-scope elimination construct, whereby unpackaging a packaged module engenders
a dynamic effect.

While these features combine naturally to form a very general language for modular program-
ming, they would be of little use in the absence of a practical implementation strategy. Some
previous attempts have encountered difficulties with undecidability [11] or incompleteness of type
checking [27]. In contrast, our formalism leads to a practical, implementable programming lan-
guage.

The rest of this paper is structured as follows: In Section 2 we present our core type system
for higher-order modules, including the intuition behind its design and a brief description of the
decidable typechecking algorithm. In Section 3 we discuss the programming importance of having
both weak and strong forms of sealing. In Section 4 we explain the avoidance problem and how it can
be circumvented using an elaboration algorithm. In Section 5 we present a very simple, orthogonal
extension of our core system to provide support for packaging modules as first-class values. Finally,
in Section 6 we compare our system with related work and in Section 7 we conclude.
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types τ ::= Typ M | Πs:σ.τ | τ1 × τ2

terms e ::= ValM | 〈e1, e2〉 | πie | eM |
fix f(s:σ):τ.e | let s = M in (e : τ)

signatures σ, ρ ::= 1 | [[T ]] | [[τ ]] | Πtots:σ1.σ2 | Πpars:σ1.σ2 |
Σs:σ1.σ2 |

�
(M)

modules M,N,F ::= s | 〈〉 | [τ ] | [e : τ ] | λs:σ.M | M1M2 |
〈s = M1,M2〉 | πiM |
let s = M1 in (M2 : σ) |
M :>σ | M ::σ

contexts Γ ::= • | Γ, s:σ

Figure 1: Syntax

2 Technical Development

We begin our technical development by presenting the syntax of our language in Figure 1. Our
language consists of four syntactic classes: terms, types, modules, and signatures (which serve as
the types of modules). The language does not explicitly include higher-order type constructors or
kinds (which ordinarily serve as constructors’ types); in our language the roles of constructors and
kinds are subsumed by modules and signatures. Contexts bind module variables (s) to signatures.

As usual, we consider alpha-equivalent expressions to be identical. We write the capture-
avoiding substitution of M for s in an expression E as E[M/s].

Types There are three basic types in our language. The product type (τ1 × τ2) is standard. The
function type, Πs:σ.τ , is the type of functions that accept a module argument s of signature σ and
return a value of type τ (possibly containing s). As usual, if s does not appear free in τ , we write
Πs:σ.τ as σ → τ . (This convention is used for the dependent products in the signature class as
well.) Finally, when M is a module containing exactly one type (which is to say that M has the
signature [[T ]]), that type is extracted by TypM . A full-featured language would support a variety
of additional types as well.

Terms The term language contains the natural introduction and elimination constructs for re-
cursive functions and products. In addition, when M is a module containing exactly one value
(which is to say that M has the signature [[τ ]], for some type τ), that value is extracted by ValM .
When f does not appear free in e, we write fix f(s:σ):τ.e as Λs:σ.e.

The conventional forms of functions and polymorphic function are built from module functions.
Ordinary functions are built using modules containing a single value:

τ1 → τ2
def

= [[τ1]] → τ2

λx:τ.e(x)
def

= Λs:[[τ ]].e(Val s)

e1e2
def

= e1[e2]
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and polymorphic functions are built using modules containing a single type:

∀α.τ(α)
def

= Πs:[[T ]].τ(Typ s)

Λα.e(α)
def

= Λs:[[T ]].e(Typ s)

e τ
def

= e[τ ]

Signatures There are seven basic signatures in our language. The atomic signature [[T ]] is the
type of an atomic module containing a single type, and the atomic signature [[τ ]] is the type of an
atomic module containing a single term. The atomic modules are written [τ ] and [e : τ ], respectively.
(We omit the type label “: τ” from atomic term modules when it is clear from context.) The trivial
atomic signature 1 is the type of the trivial atomic module 〈〉.

The functor signatures Πtots:σ1.σ2 and Πpars:σ1.σ2 express the type of functors that accept an
argument of signature σ1 and return a result of signature σ2 (possibly containing s). The reason
for two different Π signatures is to distinguish between total and partial functors, which we discuss
in detail below. For convenience, we will take Π (without a superscript) to be synonymous with
Πtot. When s does not appear free in σ2, we write Πs:σ1.σ2 as σ1 → σ2.

The structure signature Σs:σ1.σ2 is the type of a pair of modules where the left-hand component
has signature σ1 and the right-hand component has signature σ2, in which s refers to the left-hand
component. As usual, when s does not appear free in σ2, we write Σs:σ1.σ2 as σ1 × σ2.

The singleton signature
�
(M) is used to express type sharing information. It classifies modules

that have signature [[T ]] and are statically equivalent to M . Two modules are considered statically
equivalent if they are equal modulo term components; that is, type fields must agree but term
fields may differ. Singletons at signatures other than [[T ]] are not provided primitively because they
can be defined using the basic singleton, as described by Stone and Harper [33]. The definition of

�
σ(M) (the signature containing only modules equal to M at signature σ) is given in Figure 5.

Modules The module syntax contains module variables (s), the atomic modules, and the usual
introduction and elimination constructs for Π and Σ signatures, except that Σ modules are intro-
duced by 〈s = M1,M2〉, in which s stands for M1 and may appear free in M2. (When s does not
appear free in M2, the “s =” is omitted.) No introduction or elimination constructs are provided
for singleton signatures. Singletons are introduced and eliminated by rules in the static semantics;
if M is judged equivalent to M ′ in σ, then M belongs to

�
σ(M ′), and vice versa.

The remaining module constructs are strong sealing, written M :>σ, and weak sealing, written
M ::σ. When a module is sealed either strongly or weakly, the result is opaque. By opaque we
mean that no client of the module may depend on any details of the implementation of M other
than what is exposed by the signature σ. The distinction between strong and weak sealing is
discussed in detail below.

Although higher-order type constructors do not appear explicitly in our language, they are
faithfully represented in our language by unsealed modules containing only type components. For
example, the kind (T→T )→T is represented by the signature ([[T ]]→[[T ]])→[[T ]]; and the constructor
λα:(T → T ).(int× α int) is represented by the module λs:([[T ]] → [[T ]]).[int× Typ(s [int])].

Examples of how ML-style signatures and structures may be expressed in our language appear
in Figures 2 and 3.

Comparability and Projectibility Two closely related issues are crucial to the design of a
module system supporting type abstraction:
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signature SIG =

sig

type s

type t = s * int

structure S : sig

type u

val f : u -> s

end

val g : t -> S.u

end

. . . is compiled as . . .

Σs:[[T ]].
Σt:

�
([Typ s × int]).
ΣS:(Σu:[[T ]].Σf :[[Typ u → Typ s]].1).

Σg:[[Typ t → Typ(π1S)]].1

Figure 2: ML Signature Example

structure S1 =

struct

type s = bool

type t = bool * int

structure S = struct

type u = string

val f = (fn y:u => true)

end

val g = (fn y:t => "hello world")

end

. . . is compiled as . . .

〈s = [bool],
〈t = [bool× int],

〈S = 〈u = [string], 〈f = [λy:Typ u.true], 〈〉〉〉,
〈g = [λy:Typ t."hello world"], 〈〉〉〉〉〉

Figure 3: ML Structure Example
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1. When can a module be compared for equivalence with another module?

2. When can a type component be projected from a module and used as a type?

We say that a module is comparable iff it can be compared for equivalence with another module, and
that a module is projectible iff its type components may be projected and used as type expressions.
(In the literature most presentations emphasize projectibility [11, 14, 15].)

A simple analysis of the properties of comparability and projectibility suggests that they are
closely related. Suppose that M is a projectible module with signature [[T ]], so that TypM is a
type. Since type equality is an equivalence relation, this type may be compared with any other, in
particular, TypM ′ for another projectible module M ′ of the same signature. But since Typ M and
TypM ′ fully determine M , we are, in effect, comparing M with M ′ for equivalence. This suggests
that projectible modules be regarded as comparable for type checking purposes. Conversely, if M
is a comparable module, then by extensionality M should be equivalent to [Typ M ], which is only
sensible if M is also projectible.

Purity and Impurity The design of our module system rests on the semantic notions of purity
and impurity induced by computational effects. To motivate the design, first recall that in a first-
class module system such as Harper and Lillibridge’s [11] there can be “impure” module expressions
that yield distinct type components each time they are evaluated. For example, a module expression
M might consult the state of the world, yielding a different module for each outcome of the test.
The type components of such a module are not statically well-determined, and hence should not be
admitted as type expressions at all, much less compared for equivalence. On the other hand, even
in such a general framework, pure (effect-free) modules may be safely regarded as both comparable
and projectible.

In a second-class module system such examples are not, in fact, expressible, but we will never-
theless find it useful to classify modules according to their purity.2 This classification is semantic,
in the sense of being defined by judgments of the calculus, rather than syntactic, in the sense of
being determined solely by the form of expression. Such a semantic approach is important for a
correct account of type abstraction in a full-featured module language.

The axiomatization of purity and impurity in our system is based on a set of rules that takes
account of the types of expressions, as well as their syntactic forms. The type system is conservative
in that it “assumes the worst” of an impure module expression, ruling it incomparable and non-
projectible, even when its type components are in fact statically well-determined. As we will
see shortly, this is important for enforcing type abstraction, as well as ensuring soundness in the
presence of first-class modules. In addition, since it is sound to do so, we deem all pure module
expressions to be comparable and projectible. That is, to be as permissive as possible without
violating soundness or abstraction, we identify comparability and projectibility with purity. Finally,
note that a module is judged pure based on whether its type components are well-determined, which
is independent of whether any term components have computational effects.

In the literature different accounts of higher-order modules provide different classes of pure
modules. For example, in Harper and Lillibridge’s first-class module system [11], only syntactic
values are considered pure. In Leroy’s second-class module calculi [14, 15], purity is limited to the
syntactic category of paths. In Harper et al.’s early “phase-distinction” calculus [12] all modules
are deemed to be pure, but no means of abstraction is provided.

2Moreover, in Section 5 we will introduce the means to re-create these examples in our setting, making essential
use of the same classification system.
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Abstraction via Sealing The principal means for defining abstract types is sealing, written
M :>σ. Sealing M with σ prevents any client of M from depending on the identities of any type
components specified opaquely—with signature [[T ]] rather than

�
[[T ]](M)—inside σ. From the point

of view of module equivalence, this means that a sealed module should be considered incomparable.
To see this, suppose that M = ([int] :>[[T ]]) is regarded as comparable. Presumably, M could not
be deemed equivalent to M ′ = ([bool] :>[[T ]]) since their underlying type components are different.
However, since module equivalence is reflexive, if M is comparable, then M must be deemed
equivalent to itself. This would mean that the type system would distinguish two opaque modules
based on their underlying implementation, a violation of type abstraction.

A significant advantage of our judgmental approach to purity is that it affords a natural means
of ensuring that a sealed module is incomparable, namely to judge it impure. This amounts to
regarding sealing as a pro forma run-time effect, even though no actual effect occurs at execution
time. Not only does this ensure that abstraction violations such as the one just illustrated are ruled
out, but we will also show in Section 3 that doing so allows the type system to track the run-time
“generation” of “new” types.

Applicative and Generative Functors Functors in Standard ML are generative in the sense
that each abstract type in the result of the functor is “generated afresh” for each instance of the
functor, regardless of whether or not the arguments in each instance are equivalent. Functors in
Objective Caml, however, are applicative in the sense that they preserve equivalence: if applied to
equivalent arguments, they yield equivalent results. In particular, the abstract types in the result
of a functor are the same for any two applications to the same argument.

Continuing the analogy with computational effects, we will deem any functor whose body is
pure to be total, otherwise partial. The application of a pure, total functor to a pure argument
is pure, and hence comparable. Total functors are applicative in the sense that the application of
a pure total functor to two equivalent pure modules yields equivalent pure modules, because the
applications are pure, and hence comparable. Partial functors, on the other hand, always yield
impure modules when applied. Therefore they do not respect equivalence of arguments (because
the results, being impure, are not even comparable), ensuring that each instance yields a distinct
result.

We distinguish the signatures of total (applicative) and partial (generative) functors. Total
functors have Π signatures, whereas partial functors have Πpar signatures. The subtyping relation
is defined so that every total functor may be regarded (degenerately) as a partial functor.

Weak and Strong Sealing In our system we identify applicative functors with total ones, and
generative functors with partial ones. To make this work, however, we must refine the notion of
effect. For if sealing is regarded as inducing a run-time effect, then it is impossible to employ
abstraction within the body of a total functor, for to do so renders the body impure. (We may seal
the entire functor with a total functor signature to impose abstraction, but this only ensures that
the exported types of the functor are held abstract in any clients of that functor. It does not permit
a substructure in the body of the functor to be held abstract in both the clients of the functor and
in the remainder of the functor body.)

The solution is to distinguish two forms of sealing—strong, written M :>σ as before, and
weak, written M ::σ. Both impose abstraction in the sense of limiting type propagation to what
is explicitly specified in the ascribed signature by regarding both forms of sealing as inducing
impurity. However, to support a useful class of applicative functors, we further distinguish between

9



Γ `κ M : σ κ v κ′

Γ `κ′ M : σ
(1)

Γ `κ M : σ

Γ `W (M :>σ) : σ
(2)

Γ `κ M : σ

Γ `κt D (M ::σ) : σ
(3) Γ ` ok

Γ `P s : Γ(s)
(4)

Γ, s:σ1 `κ M : σ2 κ v D

Γ `κ λs:σ1.M : Πtots:σ1.σ2
(5)

Γ, s:σ1 `κ M : σ2

Γ `κu D λs:σ1.M : Πpars:σ1.σ2
(6)

Γ, s:σ1 ` σ2 sig

Γ ` Πtots:σ1.σ2 ≤ Πpars:σ1.σ2
(7)

Γ `κ M1 : Πtots:σ1.σ2 Γ `P M2 : σ1

Γ `κ M1M2 : σ2[M2/s]
(8)

Γ `κ M1 : Πpars:σ1.σ2 Γ `P M2 : σ1

Γ `κt S M1M2 : σ2[M2/s]
(9)

Γ `κ M : Σs:σ1.σ2

Γ `κ π1M : σ1
(10)

Γ `P M : Σs:σ1.σ2

Γ `P π2M : σ2[π1M/s]
(11)

Γ `κ M : σ Γ ` σ ≤ σ′

Γ `κ M : σ′
(12)

Figure 4: Key Typing Rules

static and dynamic effects. Weak sealing induces a static effect, whereas strong sealing induces
dynamic effect.

The significance of this distinction lies in the definition of total and partial functors. A functor
whose body involves a dynamic effect (i.e., is dynamically impure), is ruled partial, and hence
generative. Thus strong sealing within a functor body induces generativity of that functor. A
functor whose body is either pure, or involves only a static effect (i.e., is dynamically pure), is
ruled total, and hence applicative. This ensures that applicative functors may use abstraction
within their bodies without incurring generative behavior. The methodological importance of this
distinction is discussed in Section 3.

A dynamic effect may be thought of as one that occurs during execution, whereas a static effect
is one that occurs during type checking. Dynamic effects are suspended inside of a λ-abstraction,
so functor abstractions are dynamically pure. However, when applied, the dynamic effects inside
the functor are released, so that the application is dynamically impure. On the other hand, static
effects occur during type checking, and hence are not suspended by λ-abstraction, nor released by
application.

Formalization The typing judgment for our system is written Γ `κ M : σ, where κ indicates
M ’s purity. The classifier κ is drawn from the following four-point lattice:

W

/ \
D S

\ /
P

The point P indicates that M is pure (and hence comparable and projectible), D indicates dynamic
purity, S indicates static purity, and W indicates well-formedness only (no purity information).
Hence, Γ `P M : σ is our purity judgment. It will prove to be convenient in our typing rules
to exploit the ordering (written v), meets (u), and joins (t) of this lattice, where P is taken as
the bottom and W is taken as the top. We also sometimes find it convenient to use the notation
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Πδs:σ1.σ2 for a functor signature that is either total or partial depending on whether δ = tot or
δ = par, respectively.

Some key rules are summarized in Figure 4. Pure modules are dynamically pure and statically
pure, and each of those are at least well-formed (rule 1). Strongly sealed modules are neither stati-
cally nor dynamically pure (2); weakly sealed modules are not statically pure, but are dynamically
pure if their body is (3). Applicative functors must have dynamically pure bodies (5); generative
functors have no restriction (6). Applicative functors may be used as generative ones (7). Variables
are pure (4), and lambdas are dynamically pure (5 and 6). The application of an applicative functor
is as pure as the functor itself (8), but the application of a generative functor is at best statically
pure (9). Finally, the purity of a module is preserved by signature subsumption (12). The complete
set of typing rules is given in Appendix A.

The rules for functor application (rules 8 and 9) require that the functor argument be pure.
This is because the functor argument is substituted into the functor’s codomain to produce the
result signature, and the substitution of impure modules for variables (which are always pure)
can turn well-formed signatures into ill-formed ones (for example, [Typ s] becomes ill-formed if an
impure module is substituted for s). (An alternative rule proposed by Harper and Lillibridge [11]
resolves this issue, but induces the avoidance problem, as we discuss in Section 4.) Therefore, when
a functor is to be applied to an impure argument, that argument must first be bound to a variable,
which is pure. Similarly, projection of the second component of a pair is restricted to pure pairs
(rule 11), but no such restriction need be made for projection of the first component (rule 10), since
no substitution is involved.

Static Equivalence In the foregoing discussion we have frequently made reference to a notion
of module equivalence, without specifying what this means. A key design decision for a module
calculus is to define when two comparable modules are to be deemed equivalent. Different module
systems arise from different notions of equivalence.

If a pure module has signature [[T ]], it is possible to extract the type component from it. Type
checking depends essentially on the matter of which types are equal, so we must consider when
TypM is equal to TypM ′. The simplest answer would be to regard Typ M = TypM ′ exactly when
the modules M and M ′ are equal. But this is too naive because we cannot in general determine
when two modules are equal. Suppose F : [[int]]→ σ and e, e′ : int. Then F [e] = F [e′] if and only
if e = e′, but the latter equality is undecidable in general.

A characteristic feature of second class module systems is that they respect the phase distinc-
tion [12] between compile-time and run-time computation. This property of a module system states
that type equivalence must be decidable independently of term equivalence. This should be intu-
itively plausible, since a second-class module system provides no means by which a type component
of a module can depend on a term component. (This is not happenstance, but the result of careful
design. We will see in Section 5 that the matter is more subtle than it appears.)

Based on this principle, we define module equivalence to be “equivalence for type checking
purposes”, or static equivalence. Roughly speaking, two modules are deemed to be equivalent
whenever they agree on their corresponding type components.3

We write our module equivalence judgment as Γ ` M ∼= M ′ : σ. The rules for static equivalence
of atomic modules are the expected ones. Atomic type components must be equal, but atomic term

3The phase distinction calculus of Harper, et al. [12] includes “non-standard” equality rules for phase-splitting
modules M into structures 〈Mstat , Mdyn〉 consisting of a static component Mstat and a dynamic component Mdyn . Our
static equivalence M ∼= M ′ amounts to saying Mstat = M ′

stat in their system. However, we do not identify functors
with structures, as they do.
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components need not be:

Γ ` τ ≡ τ ′

Γ ` [τ ] ∼= [τ ′] : [[T ]]

Γ `P M : [[τ ]] Γ `P M ′ : [[τ ]]

Γ ` M ∼= M ′ : [[τ ]]

Since the generative production of new types in a generative functor is notionally a dynamic oper-
ation, generative functors have no static components to compare. Thus, pure generative functors
are always statically equivalent, just as atomic term modules are:

Γ `P M : Πpars:σ1.σ2 Γ `P M ′ : Πpars:σ1.σ2

Γ ` M ∼= M ′ : Πpars:σ1.σ2

As these rules indicate, static equivalence of atomic term modules and generative functors is trivial,
as is static equivalence of trivial modules (i.e., modules of signature 1). In the meta-theory, it is
therefore convenient to consider the class of signatures of the form 1, [[τ ]], and Πpars:σ1.σ2, which we
call unitary to suggest that they behave like unit (i.e., 1) with respect to static equivalence. (See
Appendices D and E for further details on the utility of the “unitary” distinction.) The complete
set of equivalence rules is given in Appendix A.

As an aside, this discussion of module equivalence refutes the misconception that first-class
modules are more general than second-class modules. In fact, the expressiveness of first- and
second-class modules is incomparable. First-class modules have the obvious advantage that they
are first-class. However, since the type components of a first-class module can depend on run-
time computations, it is impossible to get by with static module equivalence and one must use
dynamic equivalence instead (in other words, one cannot phase-split modules as in Harper et
al. [12]). Consequently, first-class modules cannot propagate as much type information as second-
class modules can.

Singleton Signatures Type sharing information is expressed in our language using singleton
signatures [33], a derivative of translucent sums [11, 14, 18]. (An illustration of the use of singleton
signatures to express type sharing appears in Figure 2.) The type system allows the deduction of
equivalences from membership in singleton signatures, and vice versa, and also allows the forgetting
of singleton information using the subsignature relation:

Γ `P M :
�

σ(M ′) Γ `P M ′ : σ

Γ ` M ∼= M ′ : σ

Γ ` M ∼= M ′ : σ

Γ `P M :
�

σ(M ′)

Γ `P M : σ

Γ `
�

σ(M) ≤ σ
Γ ` M ∼= M ′ : σ

Γ `
�

σ(M) ≤
�

σ(M ′)

When σ = [[T ]], these deductions follow using primitive rules of the type system (since
�

[[T ]](M) =
�
(M) is primitive). At other signatures, they follow from the definitions given in Figure 5.

Beyond expressing sharing, singletons are useful for “selfification” [11]. For instance, if s is a
variable bound with the signature [[T ]], s can be given the fully transparent signature

�
(s). This

fact is essential to the existence of principal signatures in our type checking algorithm. Note
that since singleton signatures express static equivalence information, the formation of singleton
signatures is restricted to pure modules. Thus, only pure modules can be selfified (as in Harper
and Lillibridge [11] and Leroy [14]).

Singleton signatures complicate equivalence checking, since equivalence can depend on context.
For example, λs:[[T ]].[int] and λs:[[T ]].s are obviously inequivalent at signature [[T ]]→ [[T ]]. However,
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using subsignatures, they can also be given the signature
�
([int])→ [[T ]] and at that signature they

are equivalent, since they return the same result when given the only permissible argument, [int].
As this example illustrates, the context sensitivity of equivalence provides more type equalities

than would hold if equivalence were strictly context insensitive, thereby allowing the propaga-
tion of additional type information. For example, if F : (

�
([int]) → [[T ]]) → [[T ]], then the types

Typ(F (λs:[[T ]].[int])) and Typ(F (λs:[[T ]].s)) are equal, which could not be the case under a context-
insensitive regime.

A subtle technical point arises in the use of the higher-order singletons defined in Figure 5.
Suppose F : [[T ]]→ [[T ]]. Then

�
[[T ]]→[[T ]](F ) = Πs:[[T ]].

�
(F s), which intuitively contains the modules

equivalent to F : those that take members of F ’s domain and return the same thing that F does.
Formally speaking, however, the canonical member of this signature is not F but its eta-expansion
λs:[[T ]].F s. In fact, it is not obvious that F belongs to

�
[[T ]]→[[T ]](F ).

To ensure that F belongs to its singleton signature, our type system (following Stone and
Harper [33]) includes the extensional typing rule:

Γ `P M : Πs:σ1.σ
′
2 Γ, s:σ1 `P M s : σ2

Γ `P M : Πs:σ1.σ2

Using this rule, F belongs to Πs:[[T ]].
�
(F s) because it is a function and because Fs belongs to

�
(F s). A similar extensional typing rule is provided for products. It is possible that the need for

these rules could be avoided by making higher-order singletons primitive, but we have not explored
the meta-theoretic implications of such a change.

Since a module with a (higher-order) singleton signature is fully transparent, it is obviously
projectible and comparable, and hence could be judged to be pure, even if it would otherwise be
classified as impure. This is an instance of the general problem of recognizing that “benign effects”
need not disturb purity. Since purity is a judgment in our framework, we could readily incorporate
extensions to capture such situations, but we do not pursue the matter here.

Lastly, it is worth noting that for all unitary signatures σ (as defined in Section 2),
�

σ(M) =
σ. This results from the fact that singletons express static equivalence, and all modules of a
unitary signature are statically equivalent at that signature. The distinction between the higher-
order singleton definitions for Πtot and Πpar exhibits another instance of equivalence depending on
context. In particular, while λs:[[T ]].[int] and λs:[[T ]].s are inequivalent at [[T ]] → [[T ]], they are

equivalent at [[T ]]
par
→ [[T ]] because they may both be assigned the latter signature, which is unitary,

by subsumption.

Type Checking Our type system enjoys a sound, complete, and effective type checking algo-
rithm. Our algorithm comes in three main parts: first, an algorithm for synthesizing the principal
(i.e., minimal) signature of a module; second, an algorithm for checking subsignature relationships;
and third, an algorithm for deciding equivalence of modules and of types.

Module typechecking then proceeds in the usual manner, by synthesizing the principal signature
of a module and then checking that it is a subsignature of the intended signature. The signature
synthesis algorithm is given in Appendix C, and its correctness theorems are stated below. The
main judgment of signature synthesis is Γ `κ M ⇒ σ, which states that M ’s principal signature is
σ and M ’s purity is inferred to be κ.

Subsignature checking is syntax-directed and easy to do, given an algorithm for checking module
equivalence; module equivalence arises when two singleton signatures are compared for the subsig-
nature relation. The equivalence algorithm is essentially Stone and Harper’s algorithm [33] for type
constructor equivalence in the presence of singleton kinds, extended to handle unitary signatures
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�
[[T ]](M)

def

=
�
(M)

�
[[τ ]](M)

def

= [[τ ]]
�

1(M)
def

= 1
�

Πtots:σ1.σ2
(M)

def

= Πtots:σ1.
�

σ2
(Ms)

�
Πpars:σ1.σ2

(M)
def

= Πpars:σ1.σ2
�

Σs:σ1.σ2
(M)

def

=
�

σ1
(π1M)×

�
σ2[π1M/s](π2M)

� �
(M ′)(M)

def

=
�
(M)

Figure 5: Singletons at Higher Signatures

and the interplay between module equivalence and type equivalence. The algorithm, along with
its proof of correctness and decidability, is detailed in Appendices D and E. The proof is mostly
identical to the Stone-Harper proof. In extending it, we have taken the opportunity to revise a few
minor errors and inelegancies; in particular, the lemmas leading up to the proof of soundness for
the equivalence algorithm have been considerably simplified (Appendix D).

Theorem 2.1 (Soundness)
If Γ `κ M ⇒ σ then Γ `κ M : σ.

Theorem 2.2 (Completeness)
If Γ `κ M : σ then Γ `κ′ M ⇒ σ′ and Γ ` σ′ ≤ σ and κ′ v κ.

Note that since the synthesis algorithm is deterministic, it follows from Theorem 2.2 that principal
signatures exist. Finally, since our synthesis algorithm, for convenience, is presented in terms of
inference rules, we require one more result stating that it really is an algorithm (see Appendix F
for proof details):

Theorem 2.3 (Effectiveness)
For any Γ and M , it is decidable whether there exist σ and κ such that Γ `κ M ⇒ σ.

3 Strong and Weak Sealing

Generativity is essential for providing the necessary degree of abstraction in the presence of effects.
When a module has side-effects, such as the allocation of storage, abstraction may demand that
types be generated in correspondence to storage allocation, in order to ensure that elements of
those types relate to the local store and not the store of another instance.

Consider, for example, the symbol table example given in Figure 6. A symbol table contains
an abstract type symbol, operations for interconverting symbols and strings, and an equality test
(presumably faster than that available for strings). The implementation creates an internal hash
table and defines symbols to be indices into that internal table.

The intention of this implementation is that the Fail exception never be raised. However,
this depends on the generativity of the symbol type. If another instance, SymbolTable2, is cre-
ated, and the types SymbolTable.symbol and SymbolTable2.symbol are considered equal, then
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signature SYMBOL TABLE =

sig

type symbol

val string to symbol : string -> symbol

val symbol to string : symbol -> string

val eq : symbol * symbol -> bool

end

functor SymbolTableFun () :> SYMBOL TABLE =

struct

type symbol = int

val table : string array =

(* allocate internal hash table *)

Array.array (initial size, NONE)

fun string to symbol x =

(* lookup (or insert) x *) ...

fun symbol to string n =

(case Array.sub (table, n) of

SOME x => x

| NONE => raise (Fail "bad symbol"))

fun eq (n1, n2) = (n1 = n2)

end

structure SymbolTable = SymbolTableFun ()

Figure 6: Strong Sealing Example

SymbolTable could be asked to interpret indices into SymbolTable2’s table, thereby causing failure.
Thus, it is essential that SymbolTable.symbol and SymbolTable2.symbol be considered unequal.

The symbol table example demonstrates the importance of strong sealing for encoding generative
abstract types in stateful modules. Generativity is not necessary, however, for purely functional
modules. Leroy [15] gives several examples of such modules as motivation for the adoption of
applicative functors. For instance, one may wish to implement persistent sets using ordered lists.
Figure 7 exhibits a purely functional SetFun functor, which is parameterized over an ordered
element type, and whose implementation of the abstract set type is sealed. When SetFun is
instantiated multiple times—e.g., in different client modules—with the same element type, it is
useful for the resulting abstract set types to be seen as interchangeable.

In our system, SetFun is made applicative, but still opaque, by weakly sealing its body. Specif-
ically, IntSet1.set and IntSet2.set are both equivalent to SetFun(IntOrd).set. This type is
well-formed because SetFun has an applicative functor signature, and SetFun and IntOrd, being
variables, are both pure. Recall that a functor containing weak sealing is impure and must be
bound to a variable before it can be used applicatively.
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signature ORD =

sig

type elem

val compare : elem * elem -> order

end

signature SET = (* persistent sets *)

sig

type elem

type set

val empty : set

val insert : elem * set -> set

...

end

functor SetFun (Elem : ORD)

:: SET where type elem = Elem.elem =

struct

type elem = Elem.elem

type set = elem list

...

end

structure IntOrd = struct

type elem = int

val compare = Int.compare

end

structure IntSet1 = SetFun(IntOrd)

structure IntSet2 = SetFun(IntOrd)

Figure 7: Weak Sealing Example

The astute reader may notice that weak sealing is not truly necessary in the SetFun example.
In fact, one can achieve the same effect as the code in Figure 7 by leaving the body of the functor
unsealed and (strongly) sealing the functor itself with an applicative functor signature before bind-
ing it to SetFun. This is the technique employed by Shao [31] for encoding applicative functors, as
his system lacks an analogue of weak sealing. A failing of this approach is that it only works if the
functor body is fully transparent—in the absence of weak sealing, any opaque substructures would
have to be strongly sealed, preventing the functor from being given an applicative signature.

The best examples of the need for opaque substructures in applicative functors are provided
by the interpretation of ML datatype’s as abstract types [13]. In both Standard ML and Caml,
datatype’s are opaque in the sense that their representation as recursive sum types is not exposed,
and thus distinct instances of the same datatype declaration create distinct types. Standard ML
and Caml differ, however, on whether datatype’s are generative. In the presence of applicative
functors (which are absent from Standard ML) there is excellent reason for datatype’s not to be
generative—namely, that a generative interpretation would prevent datatype’s from appearing in
the bodies of applicative functors. This would severely diminish the utility of applicative functors,
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particularly since in ML recursive types are provided only through the datatype mechanism. For
example, an implementation of SetFun with splay trees, using a datatype declaration to define the
tree type, would require the use of weak sealing.

For these reasons, strong sealing is no substitute for weak sealing. Neither is weak sealing a
substitute for strong. As Leroy [15] observed, in functor-free code, generativity can be simulated by
what we call weak sealing. (This can be seen in our framework by observing that dynamic purity
provides no extra privileges in the absence of functors.) With functors, however, strong sealing
is necessary to provide true generativity. Nevertheless, it is worth noting that strong sealing is
definable in terms of other constructs in our language, while weak sealing is not. In particular, we
can define strong sealing, using a combination of weak sealing and generative functor application,
as follows:

M :>σ
def

= ((λ :1.M) ::(Πpar :1.σ)) 〈〉

The existence of this encoding does not diminish the importance of strong sealing, which we have
made primitive in our language regardless.

4 The Avoidance Problem

The rules of our type system (particularly rules 8, 9, and 11 from Figure 4) are careful to ensure that
substituted modules are always pure, at the expense of requiring that functor and second-projection
arguments are pure. This is necessary because the result of substituting an impure module into
a well-formed signature can be ill-formed. Thus, to apply a functor to an impure argument, one
must let-bind the argument and apply the functor to the resulting (pure) variable.

A similar restriction is imposed by Shao [31], but Harper and Lillibridge [11] propose an alter-
native that softens the restriction. Harper and Lillibridge’s proposal (expressed in our terms) is to
include a non-dependent typing rule without a purity restriction:

Γ `κ M1 : σ1 → σ2 Γ `κ M2 : σ1

Γ `κ M1M2 : σ2

When M2 is pure, this rule carries the same force as our dependent rule, by exploiting singleton
signatures and the contravariance of functor signatures:

Πs:σ1.σ2 ≤ Πs:
�

σ1
(M2).σ2

≡ Πs:
�

σ1
(M2).σ2[M2/s]

=
�

σ1
(M2) → σ2[M2/s]

When M2 is impure, this rule is more expressive than our typing rule, because the application can
still occur. However, to exploit this rule, the type checker must find a non-dependent supersignature
that is suitable for application to M2.

The avoidance problem [9, 18] is that there is no “best” way to do so. For example, consider
the signature:

σ = ([[T ]] →
�
(s)) ×

�
(s)

To obtain a supersignature of σ avoiding the variable s, we must forget that the first component is
a constant function, and therefore we can only say that the second component is equal to the first
component’s result on some particular argument. Thus, for any type τ , we may promote σ to the
supersignature:

ΣF :([[T ]] → [[T ]]).
�
(F [τ ])
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This gives us an infinite array of choices. Any of these choices is superior to the obvious ([[T ]] →
[[T ]]) × [[T ]], but none of them is comparable to any other, since F is abstract. Thus, there is no
minimal supersignature of σ avoiding s. The absence of minimal signatures is a problem, because
it means that there is no obvious way to perform type checking.

In our type system, we circumvent the avoidance problem by requiring that the arguments
of functor application and second-projection be pure (thereby eliminating any need to find non-
dependent supersignatures), and provide a let construct so that such operations can still be applied
to impure modules. We have shown that, as a result, our type theory does enjoy principal signatures.

To achieve this, however, our let construct must be labeled with its result signature (not men-
tioning the variable being bound), for otherwise the avoidance problem re-arises. This essentially
requires that every functor application or projection involving an impure argument be labeled
with its result signature as well, leading to potentially unacceptable syntactic overhead in practice.
Fortunately, programs can be systematically rewritten to avoid this problem, as we describe next.

4.1 Elaboration and Existential Signatures

Consider the unannotated let expression let s = M1 in M2, where M1 : σ1 and M2 : σ2(s). If
M1 is pure, then the let expression can be given the minimal signature σ2(M1). Otherwise, we
are left with the variable s leaving scope, but no minimal supersignature of σ2(s) not mentioning
s. However, if we rewrite the let expression as the pair 〈s = M1,M2〉, then we may give it the
signature Σs:σ1.σ2(s) and no avoidance problem arises. Similarly, the functor application F (M)
with F : Πs:σ1.σ2 and impure M : σ1 can be rewritten as 〈s = M,F (s)〉 and given signature
Σs:σ1.σ2.

Following Harper and Stone [13], we propose the use of an elaboration algorithm to system-
atize these rewritings. This elaborator takes code written in an external language that supports
unannotated let’s, as well as impure functor application and second-projection, and produces code
written in our type system. Since the elaborator rewrites modules in a manner that changes their
signatures, it also must take responsibility for converting those modules back to their expected
signature wherever required. This means that the elaborator must track which pairs are “real” and
which have been invented by the elaborator to circumvent the avoidance problem.

The elaborator does so using the types. When the elaborator invents a pair to circumvent
the avoidance problem, it gives its signature using an existential ∃ rather than Σ. In the internal
language, ∃s:σ1.σ2 means the same thing as Σs:σ1.σ2, but the elaborator treats the two signatures
differently: When the elaborator expects (say) a functor and encounters a Σs:σ1.σ2, it generates a
type error. However, when it encounters an ∃s:σ1.σ2, it extracts the σ2 component (the elaborator’s
invariants ensure that it always can do so), looking for the expected functor.

4.1.1 Formalization

The elaborator is defined in terms of the five judgments given in Figure 8. The metavariables
M̂ , σ̂, etc., range over expressions in the external language (these are the same as the internal
language’s expressions, except that unannotated let is supported), and the metavariables ς and ∆
range over the elaborator’s signatures and contexts (the same as the internal language’s, except
that ∃ is supported, as given in Figure 8).

The main judgment is module elaboration, written ∆ `κ M̂ ; M : ς, which means that the
external module M̂ elaborates to the internal module M , which has the signature ς and purity
κ. The signature, type, and term elaboration judgments are similar (except that signatures and
types have no classifiers to generate). Two judgments are included for eliminating existentials:
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module elaboration ∆ `κ M̂ ; M : ς
signature coercion ∆ ` M : ς ≤ σ ; M ′

existential peeling M : ς
peel
=⇒ M ′ : ς ′

signature elaboration ∆ ` σ̂ ; σ
type elaboration ∆ ` τ̂ ; τ
term elaboration ∆ ` ê ; e : τ

elaborator signatures ς ::= 1 | [[T ]] | [[τ ]] |
�
(M) |

Πtots:σ.ς | Πpars:σ.ς |
Σs:ς1.ς2 | ∃s:ς1.ς2

elaborator contexts ∆ ::= • | ∆, s:ς

Figure 8: Elaborator Judgments

∆ `κF
F̂ ; F : ςF sF :

�
ςF (sF )

peel
=⇒ G : Πs:σ1.ς2

∆ `κM
M̂ ; M : ςM ∆, sF :ςF , sM :ςM ` sM : ςM ≤ σ1 ; N κM 6= P

∆ `κFtκM
F̂ M̂ ; 〈sF = F, 〈sM = M,GN〉〉 : ∃sF :ςF .∃sM :ςM .ς2[N/s]

(13)

∆ `κ1
M̂1 ; M1 : ς1 ∆, s:ς1 `κ2

M̂2 ; M2 : ς2 κ1 t κ2 6= P

∆ `κ1tκ2
let s = M̂1 in M̂2 ; 〈s = M1,M2〉 : ∃s:ς1.ς2

(14)

∆, s:σ′
1 ` s : σ′

1 ≤ σ1 ; M ∆, s:σ′
1, t:ς2[M/s] ` t : ς2[M/s] ≤ σ′

2 ; N (δ, δ′) 6= (par, tot)

∆ ` F : Πδs:σ1.ς2 ≤ Πδ′s:σ′
1.σ

′
2 ; λs:σ′

1. let t = FM in (N : σ′
2)

(15)

∆ ` π2M : ς2[π1M/s] ≤ σ ; N

∆ ` M : ∃s:ς1.ς2 ≤ σ ; N
(16)

π2M : ς2[π1M/s]
peel
=⇒ M ′ : ς

M : ∃s:ς1.ς2
peel
=⇒ M ′ : ς

(17)
ς not an existential

M : ς
peel
=⇒ M : ς

(18)

Figure 9: Illustrative Elaboration Rules

signature coercion is used when the desired result signature is known, peeling is used to peel off the
outermost existentials when the result is not known. The signature coercion judgment is written
∆ ` M : ς ≤ σ ; M ′, meaning that a (pure) module M with signature ς when coerced to signature

σ becomes the (pure) module M ′. The peeling judgment is written M : ς
peel
=⇒ M ′ : ς ′, meaning

that M : ς peels to M ′ : ς ′.
Some illustrative rules of the elaborator appear in Figure 9; the complete definition is given in

Appendix G. In these rules, the auxiliary operation · takes elaborator signatures and contexts to
internal ones by replacing all occurrences of ∃ with Σ. They also use an elaborator signature analog
of higher-order singletons, which are defined exactly as in Figure 5 with the additional case:

�
∃s:ς1.ς2(M)

def

= ∃ :
�

ς1(π1M).
�

ς2[π1M/s](π2M)

A disadvantage of employing an elaborator is that it is difficult to argue rigorously about
whether it is correct. Unlike the internal language, which is defined by a declarative type system
and proven decidable by a sound and complete typechecking algorithm, the external language has
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no declarative definition but is defined directly via the elaboration algorithm itself, so there is no
reference system against which to compare the elaborator. Nevertheless, we can still state and prove
some important invariants about elaboration, as enumerated in the theorem below. In particular,
the module and signature that are output by module elaboration are well-formed in the internal
language and, moreover, the signature is principal.

Theorem 4.1 (Elaborator Invariants)
Suppose ∆ ` ok. Then:

1. If ∆ `κ M̂ ; M : ς then ∆ `κ M ⇒ ς (and hence ∆ `κ M : ς).

2. If ∆ ` M : ς ≤ σ ; M ′ and ∆ `P M : ς and ∆ ` σ sig then ∆ `P M ′ : σ.

3. If M : ς
peel
=⇒ M ′ : ς ′ and Γ `P M ⇒ ς then Γ `P M ′ ⇒ ς ′.

4. If ∆ ` σ̂ ; σ then ∆ ` σ sig.

5. If ∆ ` τ̂ ; τ then ∆ ` τ type.

6. If ∆ ` ê ; e : τ then ∆ ` e ⇒ τ (and hence ∆ ` e : τ).

Proof: By straightforward induction on the elaboration algorithm. �

Rules 13 and 14 illustrate how the elaborator constructs existential signatures to account for
hidden, impure modules: In each of these rules, impure modules are let-bound, providing variables
that may be used to satisfy the purity requirements on existential peeling and signature coercion
(required by the invariants in Theorem 4.1) and on functor application (required by the type
system). These variables must leave scope, requiring the construction of a pair that the elaborator
tags with an existential signature. (Each of these rules carries a side condition that certain modules
involved are impure; when those conditions do not hold, less interesting rules are used to produce
more precise signatures.) Rule 15 illustrates the coercion of functors, and rules 16, 17, and 18
handle elimination of existentials.

Rule 15 is interesting because it demonstrates the importance of static purity. The elaborator
invariant requires that modules synthesized by signature coercion be pure (because they are often
fed back in as inputs), but in the case that δ = par, the synthesized lambda is pure only because
the type system can recognize that its body is statically pure and its dynamic impurity is captured
by the lambda.

Although our elaborator serves only to deal with the avoidance problem, a realistic elaborator
would also address other issues such as coercive signature matching (where a field is either dropped
or made less polymorphic), open, type inference, datatypes, and so forth [13]. We believe our
elaborator extends to cover all these issues without difficulty.

4.1.2 Primitive Existential Signatures

In a sense, the elaborator solves the avoidance problem by introducing existential signatures to serve
in place of the non-existent minimal supersignatures not mentioning a variable. In light of this, a
natural question is whether the need for an elaborator could be eliminated by making existential
signatures primitive to the type system.
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One natural way to govern primitive existentials is with the introduction and elimination rules:

Γ `P M : σ1 Γ ` σ ≤ σ2[M/s] Γ, s:σ1 ` σ2 sig

Γ ` σ ≤ ∃s:σ1.σ2

and
Γ, s:σ1 ` σ2 ≤ σ Γ ` σ1 sig Γ ` σ sig

Γ ` ∃s:σ1.σ2 ≤ σ

With these rules, the avoidance problem could be solved: The least supersignature of σ2(s) not
mentioning s:σ1 would be ∃s:σ1.σ2(s).

Unfortunately, these rules (particularly the first) make type checking undecidable. For example,
each of the queries

Πs:σ.[[τ ]]
?
≤ ∃s′:σ.Πs:

�
σ(s′).[[τ ′]]

and

(λs:σ.[τ ])
?
∼= (λs:σ.[τ ′]) : ∃s′:σ.Πs:

�
σ(s′).[[T ]]

holds if and only if there exists pure M : σ such that the types τ [M/s] and τ ′[M/s] are equal.
Thus, deciding subsignature or equivalence queries in the presence of existentials would be as hard
as higher-order unification, which is known to be undecidable [10].

We have explored a variety of alternative formalizations of primitive singletons as well, and
none has led to a type system we have been able to prove decidable.

4.2 Syntactic Principal Signatures

It has been argued for reasons related to separate compilation that principal signatures should
be expressible in the syntax available to the programmer. This provides the strongest support
for separate compilation, because a programmer can break a program at any point and write an
interface that expresses all the information the compiler could have determined at that point. Such
strong support does not appear to be vital in practice, since systems such as Objective Caml and
Standard ML of New Jersey’s higher-order modules have been used successfully for some time
without principal signatures at all, but it is nevertheless a desirable property.

Our type system (i.e., the internal language) does provide syntactic principal signatures, since
principal signatures exist, and all the syntax is available to the programmer. However, the elab-
orator’s external language does not provide syntax for the existential signatures that can appear
in elaborator signatures, which should be thought of as the principal signatures of external mod-
ules. Thus, we can say that our basic type system provides syntactic principal signatures, but our
external language does not.

In an external language where the programmer is permitted to write existential signatures,
elaborating code such as:

(λs′:(∃s:σ1.σ2) . . .)M

requires the elaborator to decide whether M can be coerced to belong to ∃s:σ1.σ2, which in turn
requires the elaborator to produce a M ′ : σ1 such that M : σ2[M

′/s]. Determining whether any
such M ′ exists requires the elaborator to solve an undecidable higher-order unification problem: if
σ2 =

�
([τ ]) →

�
([τ ′]) and M = λt:[[T ]].t, then M : σ2[M

′/s] if and only if τ [M ′/s] and τ ′[M ′/s] are
equal.

Thus, to allow programmer-specified existential signatures in the greatest possible generality
would make elaboration undecidable. Partial measures may be possible, but we will not discuss
any here.
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5 Packaging Modules as First-Class Values

It is desirable for modules to be usable as first-class values. This is useful to make it possible
to choose at run time the most efficient implementation of a signature for a particular data set
(for example, sparse or dense representations of arrays). However, fully general first-class modules
present difficulties for static typing [18].

One practical approach to modules as first-class values was suggested by Mitchell, et al. [24],
who propose that second-class modules automatically be wrapped as existential packages [25] to
obtain first-class values. A similar approach to modules as first-class values is described by Russo
and implemented in Moscow ML [29].

This existential-packaging approach to modules as first-class values is built into our language.
We write the type of a packaged module as 〈|σ|〉 and the packaging construct as pack M as 〈|σ|〉.
Elimination of packaged modules (as for existentials) is performed using a closed-scope unpacking
construct. These may be defined as follows:

〈|σ|〉
def

= ∀α.(σ → α) → α

pack M as 〈|σ|〉
def

= Λα.λf :(σ → α).f M

unpack e as s:σ in (e′ : τ)
def

= e τ (Λs:σ.e′)

(Compare the definition of 〈|σ|〉 with the standard encoding of the existential type ∃β.τ as ∀α.(∀β. τ→
α) → α.)

The main limitation of existentially-packaged modules is the closed-scope elimination construct.
It has been observed repeatedly in the literature [20, 3, 18] that this construct is too restrictive
to be very useful. For one, in “unpack e as s:σ in (e′ : τ)”, the result type τ may not mention s.
As a consequence, functions over packaged modules may not be dependent; that is, the result type
may not mention the argument. This deficiency is mitigated in our language by the ability to write
functions over unpackaged, second-class modules, which can be given the dependent type Πs:σ.τ(s)
instead of 〈|σ|〉 → τ .

Another problem with the closed-scope elimination construct is that a term of package type
cannot be unpacked into a stand-alone second-class module; it can only be unpacked inside an
enclosing term. As each unpacking of a packaged module creates an abstract type in a separate
scope, packages must be unpacked at a very early stage to ensure coherence among their clients,
leading to “scope inversions” that are awkward to manage in practice.

What we desire, therefore, is a new module construct of the form “unpack e as σ”, which coerces
a first-class package e of type 〈|σ|〉 back into a second-class module of signature σ. The following
example illustrates how adding such a construct carelessly can lead to unsoundness:

module F = λs:[[〈|σ|〉]].(unpack (Val s) as σ)
module X1 = F [pack M1 as 〈|σ|〉]
module X2 = F [pack M2 as 〈|σ|〉]

Note that the argument of the functor F is an atomic term module, so all arguments to F are
statically equivalent. If F is given an applicative signature, then X1 and X2 will be deemed
equivalent, even if the original modules M1 and M2 are not! Thus, F must be deemed generative,
which in turn requires that the unpack construct induce a dynamic effect.

Packaged modules that admit this improved unpacking construct are not definable in our core
language, but they constitute a simple, orthogonal extension to the type system that does not
complicate type checking. The syntax and typing rules for this extension are given in Figure 10.
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types τ ::= · · · | 〈|σ|〉
terms e ::= · · · | pack M as 〈|σ|〉
modules M ::= · · · | unpack e as σ

Γ ` σ1 ≡ σ2

Γ ` 〈|σ1|〉 ≡ 〈|σ2|〉

Γ `κ M : σ

Γ ` pack M as 〈|σ|〉 : 〈|σ|〉

Γ ` e : 〈|σ|〉

Γ `S unpack e as σ : σ

Figure 10: Packaged Module Extension

Note that the closed-scope unpacking construct is definable as

let s = (unpack e as σ) in (e′ : τ)

Intuitively, unpacking is generative because the module being unpacked can be an arbitrary
term, whose type components may depend on run-time conditions. In the core system we presented
in Section 2, the generativity induced by strong sealing was merely a pro forma effect—the language,
supporting only second-class modules, provided no way for the type components of a module to be
actually generated at run time. The type system, however, treats dynamic effects as if they are all
truly dynamic, and thus it scales easily to handle the real run-time type generation enabled by the
extension in Figure 10.

6 Related Work

Harper, Mitchell and Moggi [12] pioneered the theory of phase separation, which is fundamental
to achieving maximal type propagation in higher-order module systems. Their non-standard equa-
tional rules, which identify higher-order modules with primitive “phase-split” ones, are similar in
spirit to, though different in detail from, our notion of static module equivalence. One may view
their system as a subsystem of ours in which there is no sealing mechanism (and consequently all
modules are pure).

MacQueen and Tofte [21] proposed a higher-order module extension to the original Defini-
tion of Standard ML [22], which was implemented in the Standard ML of New Jersey compiler.
Their semantics involves a two-phase elaboration process, in which higher-order functors are re-
elaborated at each application to take advantage of additional information about their arguments.
This advantage is balanced by the disadvantage of inhibiting type propagation in the presence of
separate compilation since functors that are compiled separately from their applications cannot
be re-elaborated. A more thorough comparison is difficult because MacQueen and Tofte employ a
stamp-based semantics, which is difficult to transfer to a type-theoretic setting.

Focusing on controlled abstraction, but largely neglecting higher-order modules, Harper and
Lillibridge [11] and Leroy [14, 16] introduced the closely related concepts of translucent sums and
manifest types. These mechanisms served as the basis of the module system in the revised Definition
of Standard ML 1997 [23], and Harper and Stone [13] have formalized the elaboration of Standard
ML 1997 programs into a translucent sums calculus. To deal with the avoidance problem, Harper
and Stone rely on elaborator mechanisms similar to ours. The Harper and Stone language can
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# module type S = sig type t end

module F = functor (X : S) ->

struct type u = X.t type v = X.t end

module G = functor (X : S) ->

struct type u = X.t type v = u end

module AppF = F((struct type t = int end : S))

module AppG = G((struct type t = int end : S));;

(* Output of the Objective Caml 3.07+2 compiler *)

module type S = sig type t end

module F : functor (X : S) ->

sig type u = X.t and v = X.t end

module G : functor (X : S) ->

sig type u = X.t and v = u end

module AppF : sig type u and v end

module AppG : sig type u and v = u end

Figure 11: Encoding of the Avoidance Problem in O’Caml

be viewed as a subsystem of ours in which all functors are generative and only strong sealing is
supported.

Leroy introduced the notion of an applicative functor [15], which enables one to give fully
transparent signatures for many higher-order functors. Leroy’s formalism may be seen as defining
purity by a syntactic restriction that functor applications appearing in type paths must be in named
form. On one hand, this restriction provides a weak form of structure sharing in the sense that the
abstract type F(X).t can only be the result of applying F to the module named X. On the other
hand, the restriction prevents the system from capturing the full equational theory of higher-order
functors, since not all equations can be expressed in named form [4]. Together, manifest types and
applicative functors form the basis of the module system of Objective Caml [27].

The manifest type formalism, like the translucent sum formalism, does not address the avoid-
ance problem, and consequently it lacks principal signatures. This can lead Objective Caml to
anomalous behavior such as that illustrated in Figure 11, which implements an instance of the
avoidance problem. Two functors F and G are defined that have equivalent, fully transparent prin-
cipal signatures. However, when applied to the same impure module, the signatures of the results
AppF and AppG differ rather arbitrarily (seemingly based on some purely syntactic discrepancy
between F’s and G’s signatures).

More recently, Russo, in his thesis [28], formalized two separate module languages: one being
a close model of the SML module system, the other being a higher-order module system with
applicative functors along the lines of O’Caml, but abandoning the named form restriction as we
do. Russo’s two languages can be viewed as subsystems of ours, the first supporting only strong
sealing, the second supporting only weak sealing. We adopt his use of existential signatures to
address the avoidance problem, although Russo also used existentials to model generativity, which
we do not. Russo’s thesis also describes an extension to SML for packaging modules as first-
class values. This extension is very similar to the existential-packaging approach discussed in the
beginning of Section 5, and therefore suffers from the limitations of the closed-scope unpacking
construct.
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While Russo defined these two languages separately, he implemented the higher-order module
system as an experimental extension to the Moscow ML compiler [26]. Combining the two languages
without distinguishing between static and dynamic effects has an unfortunate consequence. The
Moscow ML higher-order module system places no restrictions on the body of an applicative functor;
in particular, one can defeat the generativity of a generative functor by eta-expanding it into an
applicative one. Exploiting this uncovers an unsoundness in the language [6], that, in retrospect,
is clear from our analysis: one cannot convert a partial into a total functor.

Shao [31] has proposed a single type system for modules supporting both applicative and gen-
erative functors. Roughly speaking, Shao’s system may be viewed as a subsystem of ours based
exclusively on strong sealing and dynamic effects, but supporting both Π and Πpar signatures. As
we observed in Section 3, this means that the bodies of applicative functors may not contain opaque
substructures (such as datatype’s). Shao’s system, like ours, circumvents the avoidance problem
(Section 4) by restricting functor application and projection to pure arguments (which must be
paths in his system), and by eliminating implicit subsumption, which amounts to requiring that let

expressions be annotated, as in our system. It seems likely that our elaboration techniques could as
well be applied to Shao’s system to lift these restrictions, but at the expense of syntactic principal
signatures. Shao also observes that fully transparent functors may be regarded as applicative; this
is an instance of the general problem of recognizing benign effects, as described in Section 2.

7 Conclusion

Type systems for first-order module systems are reasonably well understood. In contrast, previous
work on type-theoretic, higher-order modules has left that field in a fragmented state, with various
competing designs and no clear statement of the trade-offs (if any) between those designs. This
state of the field has made it difficult to choose one design over another, and has left the erroneous
impression of trade-offs that do not actually exist. For example, no previous design supports both
(sound) generative and applicative functors with opaque subcomponents.

Our language seeks to unify the field by providing a practical type system for higher-order
modules that simultaneously supports the key functionality of preceding module systems. In the
process we dispel some misconceptions, such as a trade-off between fully expressive generative and
applicative functors, thereby eliminating some dilemmas facing language designers.

Nevertheless, there are several important issues in modular programming that go beyond the
scope of our type theory. Chief among these are:

• Structure Sharing. The original version of Standard ML [22] included a notion of module
equivalence that was sensitive to the dynamic, as well as static, parts of the module. Although
such a notion would violate the phase distinction, it might be possible to formulate a variation
of our system that takes account of dynamic equivalence in some conservative fashion. It is
possible to simulate structure sharing by having the elaborator add an abstract type to each
structure to serve as the “compile-time name” of that structure. However, this would be
merely an elaboration convention, not an intrinsic account of structure sharing within type
theory.

• Recursive Modules. An important direction for future research that we are actively pursuing is
the integration of recursive modules [8, 5, 30] into the present framework. The chief difficulties
with respect to recursive modules involve accounting for their interaction with both core-level
computational effects such as I/O and state [7] and the module-level effects of type abstraction
that we have explored in the present work.
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A Type System

To reduce the number of freshness side-conditions, we adopt the convention that a context may not
bind the same variable more than once. The second premises of Rules 42 and 44 appear within curly
braces to denote that they are redundant once we have proven Validity in Appendix B. They are
built into the declarative system as a technical device to shorten some of the proofs (in particular,
for Theorems B.14 and E.7).

Well-formed contexts: Γ ` ok

• ` ok
(1)

Γ ` σ sig

Γ, s:σ ` ok
(2)

Well-formed types: Γ ` τ type

Γ `P M : [[T ]]

Γ ` TypM type
(3)

Γ, s:σ ` τ type

Γ ` Πs:σ.τ type
(4)

Γ ` τ ′ type Γ ` τ ′′ type

Γ ` τ ′ × τ ′′ type
(5)

Γ ` σ sig

Γ ` 〈|σ|〉 type
(6)

Type equivalence: Γ ` τ1 ≡ τ2

Γ ` [τ1] ∼= [τ2] : [[T ]]

Γ ` τ1 ≡ τ2
(7)

Γ ` σ1 ≡ σ2 Γ, s:σ1 ` τ1 ≡ τ2

Γ ` Πs:σ1.τ1 ≡ Πs:σ2.τ2
(8)

Γ ` τ ′
1 ≡ τ ′

2 Γ ` τ ′′
1 ≡ τ ′′

2

Γ ` τ ′
1 × τ ′′

1 ≡ τ ′
2 × τ ′′

2

(9)
Γ ` σ1 ≡ σ2

Γ ` 〈|σ1|〉 ≡ 〈|σ2|〉
(10)

Well-formed terms: Γ ` e : τ

Γ ` e : τ ′ Γ ` τ ′ ≡ τ
Γ ` e : τ

(11)
Γ `κ M : [[τ ]]

Γ ` ValM : τ
(12)

Γ `κ M : σ Γ, s:σ ` e : τ Γ ` τ type

Γ ` let s = M in (e : τ) : τ
(13)

Γ, f :[Πs:σ.τ ], s:σ ` e : τ

Γ ` fix f(s:σ):τ.e : Πs:σ.τ
(14)

Γ ` e : Πs:σ.τ Γ `P M : σ

Γ ` eM : τ [M/s]
(15) Γ ` e′ : τ ′ Γ ` e′′ : τ ′′

Γ ` 〈e′, e′′〉 : τ ′ × τ ′′
(16)

Γ ` e : τ ′ × τ ′′

Γ ` π1e : τ ′
(17)

Γ ` e : τ ′ × τ ′′

Γ ` π2e : τ ′′
(18)

Γ `κ M : σ

Γ ` pack M as 〈|σ|〉 : 〈|σ|〉
(19)

Well-formed signatures: Γ ` σ sig

Γ ` ok
Γ ` 1 sig

(20)
Γ ` ok

Γ ` [[T ]] sig
(21)

Γ ` τ type

Γ ` [[τ ]] sig
(22)

Γ `P M : [[T ]]

Γ `
�
(M) sig

(23)

Γ, s:σ′ ` σ′′ sig

Γ ` Πδs:σ′.σ′′ sig
(24)

Γ, s:σ′ ` σ′′ sig

Γ ` Σs:σ′.σ′′ sig
(25)

Signature equivalence: Γ ` σ1 ≡ σ2

Γ ` ok
Γ ` 1 ≡ 1

(26)
Γ ` ok

Γ ` [[T ]] ≡ [[T ]]
(27)

Γ ` τ1 ≡ τ2

Γ ` [[τ1]] ≡ [[τ2]]
(28)

Γ ` M1
∼= M2 : [[T ]]

Γ `
�
(M1) ≡

�
(M2)

(29)
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Γ ` σ′
2 ≡ σ′

1 Γ, s:σ′
2 ` σ′′

1 ≡ σ′′
2

Γ ` Πδs:σ′
1.σ

′′
1 ≡ Πδs:σ′

2.σ
′′
2

(30)
Γ ` σ′

1 ≡ σ′
2 Γ, s:σ′

1 ` σ′′
1 ≡ σ′′

2

Γ ` Σs:σ′
1.σ

′′
1 ≡ Σs:σ′

2.σ
′′
2

(31)

Signature subtyping: Γ ` σ1 ≤ σ2

Γ ` ok
Γ ` 1 ≤ 1

(32)
Γ ` ok

Γ ` [[T ]] ≤ [[T ]]
(33)

Γ ` τ1 ≡ τ2

Γ ` [[τ1]] ≤ [[τ2]]
(34)

Γ ` σ′
2 ≤ σ′

1 Γ, s:σ′
2 ` σ′′

1 ≤ σ′′
2 Γ, s:σ′

1 ` σ′′
1 sig (δ1, δ2) 6= (par, tot)

Γ ` Πδ1s:σ′
1.σ

′′
1 ≤ Πδ2s:σ′

2.σ
′′
2

(35)

Γ ` σ′
1 ≤ σ′

2 Γ, s:σ′
1 ` σ′′

1 ≤ σ′′
2 Γ, s:σ′

2 ` σ′′
2 sig

Γ ` Σs:σ′
1.σ

′′
1 ≤ Σs:σ′

2.σ
′′
2

(36)

Γ `P M : [[T ]]

Γ `
�
(M) ≤ [[T ]]

(37)
Γ ` M1

∼= M2 : [[T ]]

Γ `
�
(M1) ≤

�
(M2)

(38)

Well-formed modules: Γ `κ M : σ

Γ ` ok
Γ `P s : Γ(s)

(39) Γ ` ok
Γ `P 〈〉 : 1

(40)
Γ ` τ type

Γ `P [τ ] : [[T ]]
(41)

Γ ` e : τ {Γ ` τ type }

Γ `P [e : τ ] : [[τ ]]
(42)

Γ, s:σ′ `κ M : σ′′ κ v D

Γ `κ λs:σ′.M : Πs:σ′.σ′′
(43)

Γ, s:σ′ `κ M : σ′′ {Γ, s:σ′ ` σ′′ sig }

Γ `κu D λs:σ′.M : Πpars:σ′.σ′′
(44)

Γ `κ F : Πs:σ′.σ′′ Γ `P M : σ′

Γ `κ FM : σ′′[M/s]
(45)

Γ `κ F : Πpars:σ′.σ′′ Γ `P M : σ′

Γ `κt S FM : σ′′[M/s]
(46)

Γ `κ M ′ : σ′ Γ, s:σ′ `κ M ′′ : σ′′

Γ `κ 〈s = M ′,M ′′〉 : Σs:σ′.σ′′
(47)

Γ `κ M : Σs:σ′.σ′′

Γ `κ π1M : σ′
(48)

Γ `P M : Σs:σ′.σ′′

Γ `P π2M : σ′′[π1M/s]
(49)

Γ ` e : 〈|σ|〉

Γ `S unpack e as σ : σ
(50)

Γ `κ M : σ

Γ `κt D (M ::σ) : σ
(51)

Γ `κ M : σ

Γ `W (M :>σ) : σ
(52)

Γ `P M : [[T ]]

Γ `P M :
�
(M)

(53)
Γ, s:σ′ `P Ms : σ′′ Γ `P M : Πs:σ′.ρ

Γ `P M : Πs:σ′.σ′′
(54)

Γ `P π1M : σ′ Γ `P π2M : σ′′

Γ `P M : σ′ × σ′′
(55)

Γ `κ M ′ : σ′ Γ, s:σ′ `κ M ′′ : σ Γ ` σ sig

Γ `κ let s = M ′ in (M ′′ : σ) : σ
(56)

Γ `κ′ M : σ′ Γ ` σ′ ≤ σ κ′ v κ

Γ `κ M : σ
(57)

30



Module equivalence: Γ ` M1
∼= M2 : σ

Γ `P M : σ
Γ ` M ∼= M : σ

(58)
Γ ` M2

∼= M1 : σ
Γ ` M1

∼= M2 : σ
(59)

Γ ` M1
∼= M2 : σ Γ ` M2

∼= M3 : σ
Γ ` M1

∼= M3 : σ
(60)

Γ ` τ1 ≡ τ2

Γ ` [τ1] ∼= [τ2] : [[T ]]
(61)

Γ `P M : [[T ]]

Γ ` [Typ M ] ∼= M : [[T ]]
(62)

Γ `P M1 : σ Γ `P M2 : σ σ is unitary

Γ ` M1
∼= M2 : σ

(63)

Γ ` σ′
1 ≡ σ′

2 Γ, s:σ′
1 ` M1

∼= M2 : σ′′

Γ ` λs:σ′
1.M1

∼= λs:σ′
2.M2 : Πs:σ′

1.σ
′′

(64)
Γ ` F1

∼= F2 : Πs:σ′.σ′′ Γ ` M1
∼= M2 : σ′

Γ ` F1M1
∼= F2M2 : σ′′[M1/s]

(65)

Γ ` M ′
1
∼= M ′

2 : σ′ Γ, s:σ′ ` M ′′
1
∼= M ′′

2 : σ′′

Γ ` 〈s = M ′
1,M

′′
1 〉

∼= 〈s = M ′
2,M

′′
2 〉 : Σs:σ′.σ′′

(66)

Γ ` M1
∼= M2 : Σs:σ′.σ′′

Γ ` π1M1
∼= π1M2 : σ′

(67)
Γ ` M1

∼= M2 : Σs:σ′.σ′′

Γ ` π2M1
∼= π2M2 : σ′′[π1M1/s]

(68)

Γ, s:σ′ ` M1s ∼= M2s : σ′′ Γ `P M1 : Πs:σ′.ρ1 Γ `P M2 : Πs:σ′.ρ2

Γ ` M1
∼= M2 : Πs:σ′.σ′′

(69)

Γ ` π1M1
∼= π1M2 : σ′ Γ ` π2M1

∼= π2M2 : σ′′

Γ ` M1
∼= M2 : σ′ × σ′′

(70)

Γ `P M ′ : σ′ Γ, s:σ′ `P M ′′ : σ Γ ` σ sig

Γ ` let s = M ′ in (M ′′ : σ) ∼= M ′′[M ′/s] : σ
(71)

Γ `P M1 :
�
(M2)

Γ ` M1
∼= M2 :

�
(M2)

(72)
Γ ` M1

∼= M2 : σ′ Γ ` σ′ ≤ σ
Γ ` M1

∼= M2 : σ
(73)

B Declarative Properties

This section is devoted to proving the essential properties of the declarative type system given in
Appendix A. To minimize the amount of reproving, we have designed our type system so that the
pure fragment is as close as possible to the system of Stone and Harper [33], which we refer to
hereafter as SH. Most of the theorems and proofs in this section are exactly analogous with the
development in Appendix B of SH. Thus, the proofs here only give the (nontrivial) new cases, and
we refer the reader to SH for the majority of them.
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B.1 Preliminaries

Throughout we will write Γ ` J to denote any judgment with right hand side J (where J includes
the purity level κ in module typing judgments). In addition, we use the “=” sign to indicate
syntactic equality (modulo α-equivalence).

Proposition B.1 (Subderivations)
1. Every proof of Γ ` J contains a subderivation of Γ ` ok.

2. Every proof of Γ1, s:σ,Γ2 ` J contains a strict subderivation of Γ1 ` σ sig.

Proof: By induction on derivations. �

Proposition B.2 (Free Variable Containment)
If Γ ` J , then FV (J ) ⊆ dom(Γ).

Proof: By induction on derivations. �

Proposition B.3 (Reflexivity)
1. If Γ ` τ type, then Γ ` τ ≡ τ .

2. If Γ ` σ sig, then Γ ` σ ≡ σ and Γ ` σ ≤ σ.

3. If Γ `P M : σ, then Γ ` M ∼= M : σ.

Proof: By induction on derivations. �

Definition B.4 (Context/World Extension)
The context/world Γ2 is defined to extend the context Γ1 (written Γ2 ⊇ Γ1) if the contexts viewed
as partial functions give the same result for every module variable s in dom(Γ1). (Note that this is
a purely syntactic condition and does not imply that either context is well-formed.)

Proposition B.5 (Weakening)
1. If Γ1 ` J , Γ2 ⊇ Γ1, and Γ2 ` ok, then Γ2 ` J .

2. If Γ1, s:σ2,Γ2 ` J , Γ1 ` σ1 ≤ σ2 and Γ1 ` σ1 sig, then Γ1, s:σ1,Γ2 ` J .

Proof: By induction on the derivation of the first premise. �

Substitutions γ are defined as maps from variables to modules, which may be applied (in
the usual capture-avoiding manner) to arbitrary syntactic expressions. We denote the identity
substitution as id and substitution extension as γ[s 7→M ]. Figure 12 defines typing and equivalence
judgments for substitutions.

Proposition B.6 (Substitution)
1. If Γ ` J and ∆ ` γ : Γ, then ∆ ` γ(J ).

2. If Γ1, s:σ,Γ2 ` J and Γ1 `P M : σ, then Γ1,Γ2[M/s] ` J [M/s].

Proof:

32



• ∆ ` γ : Γ iff

1. ∆ ` ok

2. And, ∀s ∈ dom(Γ). ∆ `P γs : γ(Γ(s))

• ∆ ` γ1
∼= γ2 : Γ iff

1. ∆ ` ok

2. And, ∀s ∈ dom(Γ). ∆ ` γ1s ∼= γ2s : γ1(Γ(s))

Figure 12: Typing and Equivalence Judgments for Substitutions

1. By induction on the derivation of the first premise.

2. By induction on the derivation of the first premise. Let Γ = Γ1, s:σ,Γ2. If J = ok, then
the proof is straightforward by cases on Γ2. Otherwise, Γ ` ok is a strict subderivation. Let
∆ = Γ1,Γ2[M/s]. By induction, ∆ ` ok. Let γ = id[s 7→M ]. It is easy to see that ∆ ` γ : Γ.
The desired result then follows from Part 1.

�

Proposition B.7 (Properties of Type Equivalence)
1. If Γ ` τ1 ≡ τ2, then Γ ` τ2 ≡ τ1.

2. If Γ ` τ1 ≡ τ2 and Γ ` τ2 ≡ τ3, then Γ ` τ1 ≡ τ3.

3. If Γ ` M1
∼= M2 : [[T ]], then Γ ` Typ M1 ≡ Typ M2.

4. If Γ ` τ type, then Γ ` Typ[τ ] ≡ τ .

5. If Γ `P [τ ] : σ, where σ is either [[T ]] or
�
(M), then Γ ` τ type.

Proof:

1-2. By Rules 7 and 61, Γ ` τ1 ≡ τ2 if and only if Γ ` [τ1] ∼= [τ2] : [[T ]], and module equivalence is
symmetric and transitive.

3. By Rule 62, Γ ` [TypM1] ∼= M1 : [[T ]] and Γ ` [Typ M2] ∼= M2 : [[T ]]. By symmetry and
transitivity, Γ ` [TypM1] ∼= [Typ M2] : [[T ]]. The desired result follows by Rule 7.

4. By Rule 62, Γ ` [Typ[τ ]] ∼= [τ ] : [[T ]]. The desired result follows by Rule 7.

5. By induction on the derivation of the premise.

�

The following definition of the sizes of signatures has the property that it is invariant under
substitution, i.e., size(σ) = size(σ[M/s]).
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Definition B.8 (Sizes of Signatures)
Let the size of a signature σ (written size(σ)) be defined inductively as follows:

size(1)
def

= 1

size([[T ]])
def

= 1

size([[τ ]])
def

= 2

size(
�
(M))

def

= 2

size(Πδs:σ1.σ2)
def

= 2 + size(σ1) + size(σ2)

size(Σs:σ1.σ2)
def

= 2 + size(σ1) + size(σ2)

B.2 Validity and Functionality

We are now prepared to prove the critical and nontrivial properties of Validity and Functionality.
Validity states that every expression appearing within a provable judgment is well-formed. Func-
tionality states that applying equivalent substitutions to equivalent expressions yields equivalent
expressions. Given Validity, it is straightforward to prove Functionality directly. Unfortunately,
the unavoidable asymmetry in rules such as Rule 68 forces Validity to depend on Functionality as
well (see Section 3.2 of Stone’s thesis for a more detailed description of the problem).

To prove the two properties simultaneously, we define a strengthened equivalence relation in
Figure 13. For modules and types, the relation takes the form of a strengthened induction hypothesis
for Validity, ensuring that the modules or types in question are not only equivalent, but well-formed.
For signatures, we employ a Kripke-style logical relation that ensures the signatures are functional
in their free variables. The proof involves a fairly standard form of logical relations argument.

Lemma B.9 (Monotonicity)
Suppose ∆′ ` ok and ∆′ ⊇ ∆.

1. If τ1 is τ2 [∆], then τ1 is τ2 [∆′].

2. If M1 is M2 in σ [∆], then M1 is M2 in σ [∆′].

3. If σ1 is σ2 [∆], then σ1 is σ2 [∆′].

4. If γ1 is γ2 in Γ [∆], then γ1 is γ2 in Γ [∆′].

Proof:

1-2. By Weakening.

3. By induction on the sizes of σ1 and σ2, and by Parts 1 and 2.

4. By Parts 2 and 3.

�

Lemma B.10 (Properties of Related Signatures)
If σ1 is σ2 [∆], then ∆ ` σ1 sig, ∆ ` σ2 sig, ∆ ` σ1 ≡ σ2, ∆ ` σ1 ≤ σ2, and ∆ ` σ2 ≤ σ1.

Proof: See proof of SH Lemma B.6. All new cases are trivial, except for Πpar, for which the proof
is the same as in the Π case. �
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• σ1 is σ2 [∆] iff

1. ∆ ` ok

2. And,

– σ1 = 1 and σ2 = 1

– Or, σ1 = [[T ]] and σ2 = [[T ]]

– Or, σ1 = [[τ1]] and σ2 = [[τ2]] and τ1 is τ2 [∆]

– Or, σ1 =
�
(M1) and σ2 =

�
(M2) and M1 is M2 in [[T ]] [∆]

– Or, σ1 = Πδs:σ′
1.σ

′′
1 and σ2 = Πδs:σ′

2.σ
′′
2 and σ′

1 is σ′
2 [∆] and ∀∆′ ⊇ ∆ if

M1 is M2 in σ′
1 [∆′] then σ′′

1 [M1/s] is σ′′
2 [M2/s] [∆′]

– Or, σ1 = Σs:σ′
1.σ

′′
1 and σ2 = Σs:σ′

2.σ
′′
2 and σ′

1 is σ′
2 [∆] and ∀∆′ ⊇ ∆ if

M1 is M2 in σ′
1 [∆′] then σ′′

1 [M1/s] is σ′′
2 [M2/s] [∆′]

• τ1 is τ2 [∆] iff

1. ∆ ` τ1 ≡ τ2

2. And, ∆ ` τ1 type

3. And, ∆ ` τ2 type

• M1 is M2 in σ [∆] iff

1. ∆ ` M1
∼= M2 : σ

2. And, ∆ `P M1 : σ

3. And, ∆ `P M2 : σ

• γ1 is γ2 in Γ [∆] iff

1. ∆ ` ok

2. And, ∀s ∈ dom(Γ). γ1(Γ(s)) is γ2(Γ(s)) [∆]

3. And, ∀s ∈ dom(Γ). γ1s is γ2s in γ1(Γ(s)) [∆]

Figure 13: Logical Relations for Declarative Properties
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Corollary B.11 (Logical Subsumption)
If M1 is M2 in σ1 [∆] and σ1 is σ2 [∆], then M1 is M2 in σ2 [∆].

Corollary B.12 (Properties of Related Substitutions)
If γ1 is γ2 in Γ [∆], then ∆ ` γ1

∼= γ2 : Γ, ∆ ` γ1 : Γ and ∆ ` γ2 : Γ.

Lemma B.13 (Symmetry and Transitivity of Logical Relations)
1. If τ1 is τ2 [∆], then τ2 is τ1 [∆].

2. If τ1 is τ2 [∆] and τ2 is τ3 [∆], then τ1 is τ3 [∆].

3. If M1 is M2 in σ [∆], then M2 is M1 in σ [∆].

4. If M1 is M2 in σ [∆] and M2 is M3 in σ [∆], then M1 is M3 in σ [∆].

5. If σ1 is σ2 [∆], then σ2 is σ1 [∆].

6. If σ1 is σ2 [∆] and σ2 is σ3 [∆], then σ1 is σ3 [∆].

7. If γ1 is γ2 in Γ [∆], then γ2 is γ1 in Γ [∆].

8. If γ1 is γ2 in Γ [∆] and γ2 is γ3 in Γ [∆], then γ1 is γ3 in Γ [∆].

Proof:

1-2. By Parts 1 and 2 of Proposition B.7.

3-8. See proof of SH Lemma B.8. All new cases are trivial, except for Πpar, for which the proof is
the same as in the Π case.

�

It is worth noting that the existence of the redundant premises in Rules 42 and 44 allow the
following statement of the Fundamental Theorem of Logical Relations to avoid mentioning the
typing judgments for terms and impure modules.

Theorem B.14 (Fundamental Theorem of Logical Relations)
Suppose γ1 is γ2 in Γ [∆].

1. If Γ ` τ type, then γ1τ is γ2τ [∆].

2. If Γ ` τ1 ≡ τ2, then γ1τ1 is γ2τ2 [∆].

3. If Γ ` σ sig, then γ1σ is γ2σ [∆].

4. If Γ ` σ1 ≡ σ2, then γ1σ1 is γ2σ2 [∆].

5. If Γ ` σ1 ≤ σ2, then γ1σ1 is γ2σ1 [∆], γ1σ2 is γ2σ2 [∆], and ∆ ` γ1σ1 ≤ γ2σ2.

6. If Γ `P M : σ, then γ1M is γ2M in γ1σ [∆] and γ1σ is γ2σ [∆].

7. If Γ ` M1
∼= M2 : σ, then γ1M1 is γ2M2 in γ1σ [∆] and γ1σ is γ2σ [∆].

Proof: By induction on derivations. See proof of SH Theorem B.9. All new cases are straightfor-
ward, with the following exceptions:
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• Case: Rule 3.

1. By IH, γ1M is γ2M in [[T ]] [∆].

2. So ∆ `P γ1M : [[T ]], ∆ `P γ2M : [[T ]], and ∆ ` γ1M ∼= γ2M : [[T ]].

3. By Rule 3, ∆ ` Typ γ1M type and ∆ ` Typ γ2M type.

4. Then, by Part 3 of Proposition B.7, ∆ ` Typ γ1M ≡ Typ γ2M .

• Case: Rule 42.

1. By IH, γ1τ is γ2τ [∆], so [[γ1τ ]] is [[γ2τ ]] [∆].

2. By Corollary B.12, ∆ ` γ1 : Γ and ∆ ` γ2 : Γ.

3. So, by Substitution, ∆ `P γ1([e : τ ]) : [[γ1τ ]] and ∆ `P γ2([e : τ ]) : [[γ2τ ]],

4. By Lemma B.10 and subsumption, ∆ `P γ2([e : τ ]) : [[γ1τ ]]

5. Thus, by Rule 63, ∆ ` γ1([e : τ ]) ∼= γ2([e : τ ]) : [[γ1τ ]].

• Case: Rule 44. Similar to the proof for Rule 42.

• Case: Rule 7.

1. By IH, [γ1τ1] is [γ2τ2] in [[T ]] [∆].

2. So ∆ `P [γ1τ1] : [[T ]], ∆ `P [γ2τ2] : [[T ]], and ∆ ` [γ1τ1] ∼= [γ2τ2] : [[T ]].

3. By Rule 7, ∆ ` γ1τ1 ≡ γ2τ2.

4. Then, by Part 5 of Proposition B.7, ∆ ` γ1τ1 type and ∆ ` γ2τ2 type.

�

Lemma B.15 (Identity Substitution is Related to Itself)
If Γ ` ok, then id is id in Γ [Γ].

Proof: By induction on the derivation of Γ ` ok.

• Case: Rule 1. Trivial.

• Case: Rule 2.

1. Γ ` ok is a strict subderivation, so by IH, id is id in Γ [Γ].

2. By Monotonicity, id is id in Γ [Γ, s:σ].

3. By Theorem B.14, σ is σ [Γ, s:σ].

4. Since Γ, s:σ `P s : σ and Γ, s:σ ` s ∼= s : σ,

5. we have s is s in σ [Γ, s:σ].

6. Thus, id is id in Γ, s:σ [Γ, s:σ].

�

Corollary B.16 (Validity)
1. If Γ ` τ1 ≡ τ2, then Γ ` τ1 type and Γ ` τ2 type.

37



2. If Γ ` σ1 ≡ σ2, then Γ ` σ1 sig and Γ ` σ2 sig.

3. If Γ ` σ1 ≤ σ2, then Γ ` σ1 sig and Γ ` σ2 sig.

4. If Γ `P M : σ, then Γ ` σ sig.

5. If Γ ` M1
∼= M2 : σ, then Γ `P M1 : σ, Γ `P M2 : σ, and Γ ` σ sig.

Proof: By Theorem B.14, Lemma B.15, and Lemma B.10. �

Corollary B.17 (Symmetry and Transitivity of Signature Equivalence)
1. If Γ ` σ1 ≡ σ2, then Γ ` σ2 ≡ σ1.

2. If Γ ` σ1 ≡ σ2 and Γ ` σ2 ≡ σ3, then Γ ` σ1 ≡ σ3.

Corollary B.18 (Equivalence Implies Subtyping)
If Γ ` σ1 ≡ σ2, then Γ ` σ1 ≤ σ2 and Γ ` σ2 ≤ σ1.

Proposition B.19 (Transitivity of Signature Subtyping)
If Γ ` σ1 ≤ σ2 and Γ ` σ2 ≤ σ3, then Γ ` σ1 ≤ σ3.

Proof: By induction on the sizes of the signatures involved, and by Validity. �

Here we define equivalence and subtyping for contexts. Context equivalence is used in proving
soundness of the equivalence algorithm defined in Appendix D, which maintains two contexts.
The concept of context subtyping is useful in proving completeness of principal signature synthesis
(Appendix C).

Definition B.20 (Context Equivalence)
Define Γ1 to be equivalent to Γ2 (written Γ1 ≡ Γ2), inductively as follows:

• ≡ •
Γ1 ≡ Γ2 Γ1 ` σ1 ≡ σ2

Γ1, s:σ1 ≡ Γ2, s:σ2

Definition B.21 (Context Subtyping)
Define Γ1 to be a subcontext of Γ2 (written Γ1 ≤ Γ2)
iff Γ2 ` ok and ∀s ∈ dom(Γ1) ⊆ dom(Γ2). Γ2 ` Γ2(s) ≤ Γ1(s).

Proposition B.22 (Properties of Context Subtyping and Equivalence)
1. If Γ1 ≤ Γ2 and Γ1 ` J , then Γ2 ` J .

2. If Γ1 ≤ Γ2 and Γ2 ` σ sig, then Γ1 ≤ Γ2, s:σ.

3. If Γ1 ≤ Γ2 and Γ2 ` σ2 ≤ σ1, then Γ1, s:σ1 ≤ Γ2, s:σ2.

4. Context subtyping is reflexive and transitive.

5. Context equivalence is reflexive, symmetric and transitive, and implies context subtyping.

Proof: Straightforward. �
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Proposition B.23 (Validity for Other Judgments)
1. If Γ ` e : τ , then Γ ` τ type.

2. If Γ `κ M : σ, then Γ ` σ sig.

Proof: By induction on derivations, and by Validity. �

Lemma B.24 (Equivalent Substitutions are Related)
If Γ ` ok and ∆ ` γ1

∼= γ2 : Γ, then γ1 is γ2 in Γ [∆].

Proof: By induction on the derivation of Γ ` ok.

• Case: Rule 1. Trivial.

• Case: Rule 2.

1. Γ ` ok is a strict subderivation, so by IH, γ1 is γ2 in Γ [∆].

2. By Theorem B.14, γ1σ is γ2σ [∆].

3. By assumption, ∆ ` γ1s ∼= γ2s : γ1σ.

4. By Validity, γ1s is γ2s in γ1σ [∆].

5. Therefore, γ1 is γ2 in Γ, s:σ [∆].

�

Corollary B.25 (Functionality)
Suppose ∆ ` γ1

∼= γ2 : Γ.

1. If Γ ` τ type, then ∆ ` γ1τ ≡ γ2τ .

2. If Γ ` τ1 ≡ τ2, then ∆ ` γ1τ1 ≡ γ2τ2.

3. If Γ ` σ sig, then ∆ ` γ1σ ≡ γ2σ.

4. If Γ ` σ1 ≡ σ2, then ∆ ` γ1σ1 ≡ γ2σ2.

5. If Γ ` σ1 ≤ σ2, then ∆ ` γ1σ1 ≤ γ2σ2.

6. If Γ `P M : σ, then ∆ ` γ1M ∼= γ2M : γ1σ.

7. If Γ ` M1
∼= M2 : σ, then ∆ ` γ1M1

∼= γ2M2 : γ1σ.

Proof: By Theorem B.14, Lemma B.24, and Lemma B.10. �

39



B.3 Admissible Rules

Here we enumerate some important admissible rules, which fall into two categories. First, Proposi-
tion B.26 states that the rules of our type system involving singleton signatures extend to higher-
order singletons (as defined in Figure 5). Since the well-formedness of

�
σ(M) does not necessarily

imply that M has signature σ, the latter must be added as a premise to the higher-order variants
of some of the rules.

Second, Proposition B.27 states that β- and η-equivalence rules for functions and products are
admissible in our system, as well as giving an alternative formulation of the typing, equivalence and
extensionality rules for products. The presentation of these rules is taken directly from Section 2.2
of Stone’s thesis [32] and the proofs are nearly identical to those given in Section 3.2 of Stone’s
thesis. (The singleton system presented in Stone’s thesis is essentially the same as that of SH, with
only a few minor differences in presentation.)

Proposition B.26 (Higher-Order Singleton Rules)
1. γ(

�
σ(M)) =

�
γσ(γM ).

2. If Γ ` M1
∼= M2 : σ, then Γ ` M1

∼= M2 :
�

σ(M2).

3. If Γ `P M : σ, then Γ `
�

σ(M) sig and Γ `P M :
�

σ(M).

4. If Γ `P M1 :
�

σ(M2) and Γ `P M2 : σ, then Γ ` M1
∼= M2 :

�
σ(M2).

5. If Γ `P M : σ, then Γ `
�

σ(M) ≤ σ.

6. If Γ ` M1
∼= M2 : σ1 and Γ ` σ1 ≤ σ2, then Γ `

�
σ1

(M1) ≤
�

σ2
(M2).

Proof: By induction on the size of σ in Parts 1-5 and σ1 in Part 6. The proof is almost identical
to the proofs of Lemma 3.3.2 and Proposition 3.3.3 in Stone’s thesis. All new cases involve unitary
signatures, and most involve trivial applications of Validity and/or Reflexivity, since a unitary
signature σ =

�
σ(M). Here are the two cases which do not follow directly from Validity and

Reflexivity.

4. • Case: σ is unitary. Follows by Rule 63.

6. • Case: σ1 = Πs:σ′
1.σ

′′
1 and σ2 = Πpars:σ′

2.σ
′′
2 , so

�
σ2

(M2) = σ2.

(a) By Validity and Part 5, Γ `
�

σ1
(M1) ≤ σ1.

(b) Thus, by transitivity, Γ `
�

σ1
(M1) ≤ σ2.

�

Proposition B.27 (Admissibility of Beta, Eta, and Alternative Product Rules)
1. If Γ, s:σ′ `P M : σ′′ and Γ `P M ′ : σ′, then Γ ` (λs:σ′.M)M ′ ∼= M [M ′/s] : σ′′[M ′/s].

2. If Γ, s:σ′ ` M1
∼= M2 : σ′′ and Γ ` M ′

1
∼= M ′

2 : σ′, then Γ ` (λs:σ′.M1)M
′
1
∼= M2[M

′
2/s] :

σ′′[M ′
1/s].

3. If Γ `P M1 : σ1 and Γ, s:σ1 `P M2 : σ2, then Γ ` π1〈s = M1,M2〉 ∼= M1 : σ1

and Γ ` π2〈s = M1,M2〉 ∼= M2[M1/s] : σ2[M1/s].

4. If Γ ` M1
∼= M ′

1 : σ1 and Γ, s:σ1 ` M2
∼= M ′

2 : σ2, then Γ ` π1〈s = M1,M2〉 ∼= M ′
1 : σ1

and Γ ` π2〈s = M1,M2〉 ∼= M ′
2[M

′
1/s] : σ2[M

′
1/s].

40



5. If Γ `P M : Πs:σ′.σ′′, then Γ ` M ∼= λs:σ′.Ms : Πs:σ′.σ′′.

6. If Γ `P M : Σs:σ′.σ′′, then Γ ` M ∼= 〈π1M,π2M〉 : Σs:σ′.σ′′.

7. If Γ ` Σs:σ′.σ′′ sig, Γ `P M ′ : σ′, and Γ `P M ′′ : σ′′[M ′/s], then Γ `P 〈M
′,M ′′〉 : Σs:σ′.σ′′.

8. If Γ ` Σs:σ′.σ′′ sig, Γ ` M ′
1
∼= M ′

2 : σ′, and Γ ` M ′′
1
∼= M ′′

2 : σ′′[M ′
1/s],

then Γ ` 〈M ′
1,M

′′
1 〉

∼= 〈M ′
2,M

′′
2 〉 : Σs:σ′.σ′′.

9. If Γ ` Σs:σ′.σ′′ sig, Γ ` π1M1
∼= π1M2 : σ′, and Γ ` π2M1

∼= π2M2 : σ′′[π1M1/s],
then Γ ` M1

∼= M2 : Σs:σ′.σ′′.

Proof: See proof of Proposition 3.3.4 and Part 6 of Proposition 3.3.3 of Stone’s thesis. �

C Typechecking and Synthesis

In this section we give an algorithm for typechecking modules and prove it sound and complete with
respect to the declarative system. To decide whether a module has a given signature, the algorithm
synthesizes the principal signature of a module and then checks whether the principal signature is a
subtype of the given signature. The module typechecking judgment is written Γ `κ M ⇐ σ, where
κ is the minimal purity of M but σ is any signature assignable to M in context Γ. The principal
signature synthesis judgment is written Γ `κ M ⇒ σ, where κ is the minimal purity of M and σ is
the principal signature of M in context Γ.

The synthesis algorithm itself is very straightforward. The astute reader will notice, however,
that the synthesis rules for atomic term modules and unpacked modules rely on an undefined
judgment for term typechecking of the form Γ ` e ⇐ τ . Eventually we will give a term typechecking
algorithm to implement this as well (Figure 18), but for technical reasons it turns out that we cannot
do so yet. The problem is that the algorithm for term typechecking relies on the ability to reduce
types to a normal form, which is a consequence of the proof of decidability for type and module
equivalence. For the moment, then, we will take Γ ` e ⇐ τ to be synonymous with Γ ` e : τ . Once
we have proven decidability of type and module equivalence, we will be able to fully define module
typechecking and prove it decidable (Appendix F).

Theorem C.1 (Soundness of Module Typechecking/Synthesis)
If Γ `κ M ⇐ σ or Γ `κ M ⇒ σ, then Γ `κ M : σ.

Proof: By straightforward induction on the typechecking/synthesis algorithm. The only non-
trivial case is that of pure products, which follows easily from selfification (Rule 55) and Function-
ality. �

It turns out to be important that the principal signatures of pure modules are fully transparent,
which essentially means that they do not contain any “abstract” [[T ]] signatures except inside
functor argument signatures. Higher-order singleton signatures are always fully transparent, but
full transparency can be formalized in a slightly more general way via the following inductive
definition:

Definition C.2 (Fully Transparent Signatures)
Call a signature σ fully transparent if:
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Module typechecking: Γ `κ M ⇐ σ

Γ `κ M ⇒ σ′ Γ ` σ′ ≤ σ
Γ `κ M ⇐ σ

Principal signature synthesis: Γ `κ M ⇒ σ

Γ ` ok
Γ `P s ⇒

�
Γ(s)(s)

Γ ` ok
Γ `P 〈〉 ⇒ 1

Γ ` τ type

Γ `P [τ ] ⇒
�
([τ ])

Γ ` e ⇐ τ
Γ `P [e : τ ] ⇒ [[τ ]]

Γ, s:σ′ `κ M ⇒ σ′′ κ v D

Γ `κ λs:σ′.M ⇒ Πs:σ′.σ′′

Γ, s:σ′ `κ M ⇒ σ′′ S v κ

Γ `κu D λs:σ′.M ⇒ Πpars:σ′.σ′′

Γ `κ F ⇒ Πs:σ′.σ′′ Γ `P M ⇐ σ′

Γ `κ FM ⇒ σ′′[M/s]

Γ `κ F ⇒ Πpars:σ′.σ′′ Γ `P M ⇐ σ′

Γ `κt S FM ⇒ σ′′[M/s]

Γ `κ′ M ′ ⇒ σ′ Γ, s:σ′ `κ′′ M ′′ ⇒ σ′′

Γ `κ′ tκ′′ 〈s = M ′,M ′′〉 ⇒ Σs:σ′.σ′′

Γ `κ M ⇒ Σs:σ′.σ′′

Γ `κ π1M ⇒ σ′

Γ `P M ⇒ Σs:σ′.σ′′

Γ `P π2M ⇒ σ′′[π1M/s]

Γ `κ M ⇐ σ
Γ `κt D M ::σ ⇒ σ

Γ `κ M ⇐ σ
Γ `W M :>σ ⇒ σ

Γ ` e ⇐ 〈|σ|〉

Γ `S unpack e as σ ⇒ σ

Γ `P M ′ ⇒ σ′ Γ, s:σ′ `P M ′′ ⇐ σ Γ ` σ sig

Γ `P let s = M ′ in (M ′′ : σ) ⇒
�

σ(let s = M ′ in (M ′′ : σ))

Γ `κ′ M ′ ⇒ σ′ Γ, s:σ′ `κ′′ M ′′ ⇐ σ Γ ` σ sig κ′ t κ′′ 6= P

Γ `κ′ tκ′′ let s = M ′ in (M ′′ : σ) ⇒ σ

Figure 14: Module Typechecking and Principal Signature Synthesis

42



• σ is unitary or
�
(M),

• Or, σ = Πs:σ1.σ2, where σ2 is fully transparent,

• Or, σ = Σs:σ1.σ2, where σ1 and σ2 are fully transparent.

Proposition C.3 (Properties of Principal Signature Synthesis)
1. Synthesis is deterministic, i.e. if Γ `κ1

M ⇒ σ1 and Γ `κ2
M ⇒ σ2, then σ1 = σ2 and

κ1 = κ2.

2. If Γ `P M ⇒ σ, then σ is fully transparent.

Proof: By straightforward induction on the typechecking/synthesis algorithm. �

Fully transparent signatures behave like unitary signatures in the sense that any two modules
with the same fully transparent signature are equivalent at that signature. This property, which
we now prove, is critical in the cases of Rules 47 and 55 in the proof of the completeness theorem
(Theorem C.6) below.

Proposition C.4 (Equivalence at Fully Transparent Signatures)
If Γ `P M1 : σ and Γ `P M2 : σ, where σ is fully transparent, then Γ ` M1

∼= M2 : σ.

Proof: By induction on size(σ).

• Case: σ is unitary or
�
(M). Trivial.

• Case: σ = Πs:σ′.σ′′, where σ′′ is fully transparent.

1. By Rule 45, Γ, s:σ′ `P M1s : σ′′ and Γ, s:σ′ `P M2s : σ′′.

2. By IH, Γ, s:σ′ ` M1s ∼= M2s : σ′′.

3. Thus, by Rule 69, Γ ` M1
∼= M2 : Πs:σ′.σ′′.

• Case: σ = Σs:σ′.σ′′, where σ′ and σ′′ are fully transparent.

1. By Rule 48, Γ `P π1M1 : σ′ and Γ `P π1M2 : σ′.

2. By IH, Γ ` π1M1
∼= π1M2 : σ′.

3. By Rule 49, Γ `P π2M1 : σ′′[π1M1/s] and Γ `P π2M2 : σ′′[π1M2/s].

4. By Functionality, Γ ` σ′′[π1M2/s] ≤ σ′′[π1M1/s].

5. Thus, Γ `P π2M2 : σ′′[π1M1/s], and by IH, Γ ` π2M1
∼= π2M2 : σ′′[π1M1/s].

6. By Part 9 of Proposition B.27, Γ ` M1
∼= M2 : Σs:σ′.σ′′.

�

Lemma C.5 (Weakening for Module Typechecking/Synthesis Algorithm)
1. If Γ1 `κ M ⇒ σ, Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 `κ M ⇒ σ.

2. If Γ1 `κ M ⇐ σ, Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 `κ M ⇐ σ.
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Proof: By straightforward induction on the typechecking/synthesis derivation. �

The statement of completeness involves a strengthened induction hypothesis that makes use of
context subtyping (Definition B.21). The ability to strengthen the context (thus weakening the
resulting judgment) is required to prove completeness for Rules 47 and 56.

Theorem C.6 (Completeness of Module Typechecking/Synthesis)
If Γ `κ M : σ and Γ ≤ Γ′, then Γ′ `κ′ M ⇐ σ, where κ′ v κ. Moreover, if κ = P, then
Γ′ `P M ⇐

�
σ(M).

Proof: By induction on derivations.

• Case: Rule 39.

1. We have Γ′ `P s ⇒
�

Γ′(s)(s).

2. By definition of context subtyping, Γ′ ` Γ′(s) ≤ Γ(s).

3. By Proposition B.26, Γ′ `
�

Γ′(s)(s) ≤
�

Γ(s)(s).

• Case: Rules 40, 41, and 42. Trivial.

• Case: Rule 43.

1. By IH, Γ′, s:σ′ `κ′ M ⇒ ρ, where Γ′, s:σ′ ` ρ ≤ σ′′ and κ′ v κ v D.

2. Thus, Γ′ `κ′ λs:σ′.M ⇒ Πs:σ′.ρ and Γ′ ` Πs:σ′.ρ ≤ Πs:σ′.σ′′.

3. If κ = P, then by IH, Γ′, s:σ′ ` ρ ≤
�

σ′′(M).

4. By Proposition B.27, Γ′, s:σ′ ` (λs:σ′.M)s ∼= M : σ′′.

5. So, by Proposition B.26, Γ′, s:σ′ `
�

σ′′(M) ≤
�

σ′′((λs:σ′.M)s),

6. and Γ′ ` Πs:σ′.ρ ≤
�

Πs:σ′.σ′′(λs:σ′.M).

• Case: Rule 44.

1. By IH, Γ′, s:σ′ `κ′ M ⇒ ρ, where Γ′, s:σ′ ` ρ ≤ σ′′, and κ′ v κ.

2. If κ′ v D, then Γ′ `κ′ λs:σ′.M ⇒ Πs:σ′.ρ and Γ′ ` Πs:σ′.ρ ≤ Πpars:σ′.σ′′.

3. Otherwise, Γ′ `κ′ u D λs:σ′.M ⇒ Πpars:σ′.ρ′, Γ′ ` Πpars:σ′.ρ ≤ Πpars:σ′.σ′′, and κ′ u D v
κ u D.

4. Since
�

Πpars:σ′.σ′′(λs:σ′.M) = Πpars:σ′.σ′′, we are done.

• Case: Rule 45.

1. By IH and inversion on subtyping, Γ′ `κ′ F ⇒ Πs:ρ′.ρ′′,

2. where Γ′ ` Πs:ρ.ρ′′ ≤ Πs:σ′.σ′′ and κ′ v κ.

3. So, Γ′ ` σ′ ≤ ρ′ and Γ′, s:σ′ ` ρ′′ ≤ σ′′.

4. By IH, Γ′ `P M ⇐ σ′, and so Γ′ `P M ⇐ ρ′.

5. Thus, Γ′ `κ′ FM ⇒ ρ′′[M/s], and by Substitution, Γ′ ` ρ′′[M/s] ≤ σ′′[M/s].

6. If κ = P, then by IH, Γ′, s:σ′ ` ρ′′ ≤
�

σ′′(Fs).

7. By Substitution and Proposition B.26, Γ′ ` ρ′′[M/s] ≤
�

σ′′ [M/s](FM).
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• Case: Rule 46.

1. By IH and inversion on subtyping, Γ′ `κ′ F ⇒ Πδs:ρ′.ρ′′,

2. where Γ′ ` Πδs:ρ′.ρ′′ ≤ Πpars:σ′.σ′′ and κ′ v κ.

3. So, Γ′ ` σ′ ≤ ρ′ and Γ′, s:σ′ ` ρ′′ ≤ σ′′.

4. By IH, Γ′ `P M ⇐ σ′, and so Γ′ `P M ⇐ ρ′.

5. By Substitution, Γ′ ` ρ′′[M/s] ≤ σ′′[M/s].

6. If δ 6= par, then Γ′ `κ′ FM ⇒ ρ′′[M/s].

7. If δ = par, then Γ′ `κ′ t S FM ⇒ ρ′′[M/s].

8. In any case, κ′ v κ′ t S v κ t S, so we are done.

• Case: Rule 47.

1. Let M = 〈s = M ′,M ′′〉.

2. By IH, Γ′ `κ′ M ′ ⇒ ρ′, where Γ′ ` ρ′ ≤ σ′ and κ′ v κ.

3. Since Γ, s:σ′ ≤ Γ′, s:ρ′,

4. by IH, Γ′, s:ρ′ `κ′′ M ′′ ⇒ ρ′′, where Γ′, s:ρ′ ` ρ′′ ≤ σ′′ and κ′′ v κ.

5. Thus, Γ′ `κ′tκ′′ M ⇒ Σs:ρ′.ρ′′, Γ′ ` Σs:ρ′.ρ′′ ≤ Σs:σ′.σ′′, and κ′ t κ′′ v κ.

6. If κ = P, then by IH, Γ′ ` ρ′ ≤
�

σ′(M ′) and Γ′, s:ρ′ ` ρ′′ ≤
�

σ′′(M ′′).

7. By Soundness, Γ′ `P M ′ : ρ′ and Γ′, s:ρ′ `P M ′′ : ρ′′.

8. By Proposition B.27, Γ′ ` π1M ∼= M ′ : ρ′ and Γ′ ` π2M ∼= M ′′[M ′/s] : ρ′′[M ′/s].

9. By Proposition B.26, Γ′ ` ρ′ ≤
�

σ′(π1M).

10. By Proposition C.3, ρ′ is fully transparent, and by Proposition C.4, Γ′, s:ρ′ ` s ∼= M ′ : ρ′.

11. Then, by Functionality, Γ′, s:ρ′ ` ρ′′ ≤
�

σ′′[M ′/s](M
′′[M ′/s]),

12. and by Functionality and Proposition B.26, Γ′, s:ρ′ ` ρ′′ ≤
�

σ′′[π1M/s](π2M).

13. Thus, Γ′ ` Σs:ρ′.ρ′′ ≤
�

Σs:σ′.σ′′(M).

• Case: Rule 48.

1. By IH and inversion on subtyping, Γ′ `κ′ M ⇒ Σs:ρ.ρ′′,

2. where Γ′ ` Σs:ρ′.ρ′′ ≤ Σs:σ′.σ′′ and κ′ v κ.

3. Thus, Γ′ `κ′ π1M ⇒ ρ and Γ′ ` ρ′ ≤ σ′.

4. If κ = P, then by IH, Γ′ ` Σs:ρ′.ρ′′ ≤
�

Σs:σ′.σ′′(M),

5. so Γ′ ` ρ′ ≤
�

σ′(π1M).

• Case: Rule 49.

1. By IH, Γ′ `P M ⇒ Σs:ρ′.ρ′′, where Γ′ ` Σs:ρ′.ρ′′ ≤
�

Σs:σ′.σ′′(M).

2. Thus, Γ′ `P π1M ⇒ ρ′ and Γ′ `P π2M ⇒ ρ′′[π1M/s].

3. By inversion, Γ′, s:ρ′ ` ρ′′ ≤
�

σ′′[π1M/s](π2M).

4. By Soundness, Γ′ `P π1M : ρ′, so by Substitution, Γ′ ` ρ′′[π1M/s] ≤
�

σ′′[π1M/s](π2M).

• Case: Rules 50, 51, 52, and 53. Trivial, by IH.
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• Case: Rule 54.

1. By IH and inversion on subtyping, Γ′ `P M ⇒ Πs:ρ′.ρ′′, where Γ′ ` σ′ ≤ ρ′.

2. By Lemma C.5, Γ′, s:σ′ `P M ⇒ Πs:ρ′.ρ′′.

3. Since Γ′, s:σ′ `P s ⇐ ρ′, we have Γ′, s:σ′ `P Ms ⇒ ρ′′.

4. By IH and Proposition C.3, Γ′, s:σ′ ` ρ′′ ≤
�

σ′′(Ms).

5. Thus, Γ′ ` Πs:ρ′.ρ′′ ≤
�

Πs:σ′.σ′′(M).

• Case: Rule 55.

1. By IH, Γ′ `P π1M ⇒ ρ′, where Γ′ ` ρ′ ≤
�

σ′(π1M).

2. By inversion on synthesis, Γ′ `P M ⇒ Σs:ρ′.ρ′′, and so Γ′ `P π2M ⇒ ρ′′[π1M/s].

3. By IH and Proposition C.3, Γ′ ` ρ′′[π1M/s] ≤
�

σ′′(π2M).

4. By Soundness, Γ′ `P π1M : ρ′.

5. By Proposition C.3, ρ′ is fully transparent, and by Proposition C.4, Γ′, s:ρ′ ` s ∼= π1M :
ρ′.

6. Then, by Functionality, Γ′, s:ρ′ ` ρ′′ ≤ ρ′′[π1M/s].

7. Thus, Γ′ ` Σs:ρ′.ρ′′ ≤
�

σ′×σ′′(M).

• Case: Rule 56.

1. Let M = let s = M ′ in (M ′′ : σ).

2. By IH, Γ′ `κ′ M ′ ⇒ ρ′, where Γ′ ` ρ′ ≤ σ′ and κ′ v κ.

3. Since Γ, s:σ′ ≤ Γ′, s:ρ′,

4. by IH, Γ′, s:ρ′ `κ′′ M ′′ ⇒ ρ′′, where Γ′, s:ρ′ ` ρ′′ ≤ σ and κ′′ v κ.

5. If κ′ t κ′′ 6= P, then Γ′ `κ′tκ′′ M ⇒ σ and κ′ t κ′′ v κ 6= P.

6. Otherwise, Γ′ `P M ⇒
�

σ(M).

7. By Soundness, Γ′ `P M : σ, so Γ′ `P M ⇐ σ as well.

• Case: Rule 57.

1. By IH, Γ′ `κ′′ M ⇐ σ′, where κ′′ v κ′ v κ.

2. Since Γ′ ` σ′ ≤ σ, Γ′ `κ′′ M ⇐ σ.

3. If κ = P, then by IH, Γ′ `P M ⇐
�

σ′(M).

4. By Soundness and Proposition B.26, Γ′ `P M ⇐
�

σ(M).

�
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D An Algorithm for Deciding Equivalence

In this section we define an algorithm for deciding type, signature, and module equivalence, and
prove it sound with respect to declarative equivalence. The algorithm, given in Figures 15 and 16,
is nearly identical to the SH algorithm, with a few simple extensions. It makes use of two contexts
and two signatures (which will always be equivalent when the algorithm is invoked) in order to
ensure symmetry and transitivity of the algorithm. We refer to the reader to SH for discussion of
how the algorithm works.

The interesting extensions consist of two new weak head reduction rules and two new kinds of
paths. The reduction rule for let s = M ′ in (M ′′ : σ) is the same as the one for π2〈s = M ′,M ′′〉,
which corresponds to the intuition that the former is encodable as the latter when M ′ and M ′′ are
pure. There is also a weak head reduction rule for modules that merely contain a type projected
from another module.

Module paths P are extended to include modules that consist solely of a product, function or
package type. (The system in Stone’s thesis achieves a similar effect by baking in × and → as type
constructor constants of kind T →T →T , thus making τ1 × τ2 and τ1 → τ2 paths.) Formally, paths
are defined as follows:

P ::= s | PM | π1P | π2P | [Πs:σ.τ ] | [τ ′ × τ ′′] | [〈|σ|〉]

Also note that any two modules of unitary signature are deemed equivalent by the algorithm
automatically, as are any two modules of singleton signature.

The structure of our soundness proof is based closely on the SH soundness proof (SH Section 3).
We simplify the proofs of the lemmas considerably, however, by performing induction on synthesis
derivations instead of declarative derivations. We believe the same technique may be used to
simplify the SH proof as well.

Lemma D.1 (Correspondence Between Natural and Principal Signatures)
If Γ `P P ⇒ σ, then Γ ` P ↑ σ′, where Γ `P P : σ′ and σ =

�
σ′(P ).

Proof: By induction on the principal signature synthesis algorithm.

• Case: Γ `P [τ ] ⇒
�
([τ ]), where Γ ` τ type. Trivial, since Γ ` [τ ] ↑ [[T ]] and Γ `P [τ ] : [[T ]].

• Case: Γ `P s ⇒
�

Γ(s)(s), where Γ ` ok. Trivial, since Γ ` s ↑ Γ(s) and Γ `P s : Γ(s).

• Case: Γ `P PM ⇒ σ′′[M/s], where Γ `P P ⇒ Πs:σ′.σ′′ and Γ `P M ⇐ σ′.

1. By IH, Γ ` P ↑ Πs:σ′.σ, where Γ `P P : Πs:σ′.σ and σ′′ =
�

σ(Ps).

2. Thus, Γ ` PM ↑ σ[M/s] and Γ `P PM : σ[M/s].

3. By Proposition B.26, σ′′[M/s] =
�

σ(Ps)[M/s] =
�

σ[M/s](PM).

• Case: Γ `P π1P ⇒ σ′, where Γ `P P ⇒ Σs:σ′.σ′′.

1. By IH, Γ ` P ↑ Σs:σ1.σ2, where Γ `P P : Σs:σ1.σ2 and σ′ =
�

σ1
(π1P ).

2. Thus, Γ ` π1P ↑ σ1 and Γ `P π1P : σ1.

• Case: Γ `P π2P ⇒ σ′′[π1P/s], where Γ `P P ⇒ Σs:σ′.σ′′.

1. By IH, Γ ` P ↑ Σs:σ1.σ2, where Γ `P P : Σs:σ1.σ2 and σ′′ =
�

σ2[π1P/s](π2P ) =
σ′′[π1P/s].
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Natural signature extraction: Γ ` P ↑ σ

Γ ` [τ ] ↑ [[T ]]
Γ ` s ↑ Γ(s)
Γ ` PM ↑ σ′′[M/s] if Γ ` P ↑ Πs:σ′.σ′′

Γ ` π1P ↑ σ′ if Γ ` P ↑ Σs:σ′.σ′′

Γ ` π2P ↑ σ′′[π1P/s] if Γ ` P ↑ Σs:σ′.σ′′

Weak head reduction: Γ ` M1
wh
−→ M2

Γ ` (λs:σ′.M)M ′ wh
−→ M [M ′/s]

Γ ` π1〈s = M ′,M ′′〉
wh
−→ M ′

Γ ` π2〈s = M ′,M ′′〉
wh
−→ M ′′[M ′/s]

Γ ` let s = M ′ in (M ′′ : σ)
wh
−→ M ′′[M ′/s]

Γ ` [Typ M ]
wh
−→ M

Γ ` P
wh
−→ M if Γ ` P ↑

�
(M)

Γ ` F1M
wh
−→ F2M if Γ ` F1

wh
−→ F2

Γ ` π1M1
wh
−→ π1M2 if Γ ` M1

wh
−→ M2

Γ ` π2M1
wh
−→ π2M2 if Γ ` M1

wh
−→ M2

Weak head normalization: Γ ` M
wh
=⇒ N

Γ ` M
wh
=⇒ N if Γ ` M

wh
−→ M ′ and Γ ` M ′ wh

=⇒ N

Γ ` M
wh
=⇒ M otherwise

Figure 15: Auxiliary Judgments for Equivalence Algorithm
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Algorithmic type equivalence: Γ1 ` τ1 ⇔ Γ2 ` τ2

Γ1 ` τ1 ⇔ Γ2 ` τ2 if Γ1 ` [τ1] : [[T ]] ⇔ Γ2 ` [τ2] : [[T ]]

Algorithmic signature equivalence: Γ1 ` σ1 ⇔ Γ2 ` σ2

Γ1 ` 1 ⇔ Γ2 ` 1
Γ1 ` [[T ]] ⇔ Γ2 ` [[T ]]
Γ1 ` [[τ1]] ⇔ Γ2 ` [[τ2]] if Γ1 ` τ1 ⇔ Γ2 ` τ2

Γ1 `
�
(M1) ⇔ Γ2 `

�
(M2) if Γ1 ` M1 : [[T ]] ⇔ Γ2 ` M2 : [[T ]]

Γ1 ` Πδs:σ′
1.σ

′′
1 ⇔ Γ2 ` Πδs:σ′

2.σ
′′
2 if Γ1 ` σ′

1 ⇔ Γ2 ` σ′
2

and Γ1, s:σ
′
1 ` σ′′

1 ⇔ Γ2, s:σ
′
2 ` σ′′

2

Γ1 ` Σs:σ′
1.σ

′′
1 ⇔ Γ2 ` Σs:σ′

2.σ
′′
2 if Γ1 ` σ′

1 ⇔ Γ2 ` σ′
2

and Γ1, s:σ
′
1 ` σ′′

1 ⇔ Γ2, s:σ
′
2 ` σ′′

2

Algorithmic module equivalence: Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2

Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2 if σ1 and σ2 are each unitary or singleton

Γ1 ` M1 : [[T ]] ⇔ Γ2 ` M2 : [[T ]] if Γ1 ` M1
wh
=⇒ P1, Γ2 ` M2

wh
=⇒ P2,

and Γ1 ` P1 ↑ [[T ]] ↔ Γ2 ` P2 ↑ [[T ]]
Γ1 ` M1 : Πs:σ′

1.σ
′′
1 ⇔ Γ2 ` M2 : Πs:σ′

2.σ
′′
2 if Γ1, s:σ

′
1 ` M1s : σ′′

1 ⇔ Γ2, s:σ
′
2 ` M2s : σ′′

2

Γ1 ` M1 : Σs:σ′
1.σ

′′
1 ⇔ Γ2 ` M2 : Σs:σ′

2.σ
′′
2 if Γ1 ` π1M1 : σ′

1 ⇔ Γ2 ` π1M2 : σ′
2

and Γ1 ` π2M1 : σ′′
1 [π1M1/s] ⇔ Γ2 ` π2M2 :

σ′′
2 [π1M2/s]

Algorithmic path equivalence: Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2

Γ1 ` s ↑ Γ1(s) ↔ Γ2 ` s ↑ Γ2(s)
Γ1 ` P1M1 ↑ σ′′

1 [M1/s] ↔ Γ2 ` P2M2 ↑ σ′′
2 [M2/s] if Γ1 ` P1 ↑ Πs:σ′

1.σ
′′
1 ↔ Γ2 ` P2 ↑ Πs:σ′

2.σ
′′
2

and Γ1 ` M1 : σ′
1 ⇔ Γ2 ` M2 : σ′

2

Γ1 ` π1P1 ↑ σ′
1 ↔ Γ2 ` π1P2 ↑ σ′

2 if Γ1 ` P1 ↑ Σs:σ′
1.σ

′′
1 ↔ Γ2 ` P2 ↑ Σs:σ′

2.σ
′′
2

Γ1 ` π2P1 ↑ σ′′
1 [π1P1/s] ↔ Γ2 ` π2P2 ↑ σ′′

2 [π1P2/s] if Γ1 ` P1 ↑ Σs:σ′
1.σ

′′
1 ↔ Γ2 ` P2 ↑ Σs:σ′

2.σ
′′
2

Γ1 ` [Πs:σ1.τ1] ↑ [[T ]] ↔ Γ2 ` [Πs:σ2.τ2] ↑ [[T ]] if Γ1 ` σ1 ⇔ Γ2 ` σ2

and Γ1, s:σ1 ` τ1 ⇔ Γ2, s:σ2 ` τ2

Γ1 ` [τ ′
1 × τ ′′

1 ] ↑ [[T ]] ↔ Γ2 ` [τ ′
2 × τ ′′

2 ] ↑ [[T ]] if Γ1 ` τ ′
1 ⇔ Γ2 ` τ ′

2 and Γ1 ` τ ′′
1 ⇔ Γ2 ` τ ′′

2

Γ1 ` [〈|σ1|〉] ↑ [[T ]] ↔ Γ2 ` [〈|σ2|〉] ↑ [[T ]] if Γ1 ` σ1 ⇔ Γ2 ` σ2

Figure 16: Equivalence Algorithm for Modules and Signatures
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2. Thus, Γ ` π2P ↑ σ2[π1P/s] and Γ `P π2P : σ2[π1P/s].

�

Lemma D.2 (Properties of Natural Signature Extraction)
1. If Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2, then Γ1 ` P1 ↑ σ1 and Γ2 ` P2 ↑ σ2.

2. Natural signature extraction is deterministic, i.e. if Γ ` P ↑ σ1 and Γ ` P ↑ σ2, then σ1 = σ2.

Proof: By straightforward induction on path equivalence and natural signature extraction. �

Lemma D.3 (Determinacy of Weak Head Reduction and Normalization)
1. Weak head reduction is deterministic, i.e. if Γ ` M

wh
−→ M1 and Γ ` M

wh
−→ M2, then

M1 = M2.

2. Weak head normalization is deterministic, i.e. if Γ ` M
wh
=⇒ N1 and Γ ` M

wh
=⇒ N2, then

N1 = N2.

Proof:

1. By induction on weak head reduction.

2. By Part 1.

�

Lemma D.4 (Weak Head Reduction Implies Equivalence At Principal Signature)
If Γ `P M1 ⇒ σ and Γ ` M1

wh
−→ M2, then Γ ` M1

∼= M2 : σ.

Proof: By induction on the derivation of the second premise.

• Case: Γ ` (λs:σ′.M)M ′ wh
−→ M [M ′/s].

1. By inversion on synthesis, Γ `P (λs:σ′.M)M ′ ⇒ σ′′[M ′/s],

2. where Γ, s:σ′ `P M ⇒ σ′′ and Γ `P M ′ ⇐ σ′.

3. By Theorem C.1 and Proposition B.27, Γ ` (λs:σ ′.M)M ′ ∼= M [M ′/s] : σ′′[M ′/s].

• Case: Γ ` π1〈s = M ′,M ′′〉
wh
−→ M ′.

1. By inversion on synthesis, Γ `P π1〈s = M ′,M ′′〉 ⇒ σ′,

2. where Γ `P M ′ ⇒ σ′ and Γ, s:σ′ `P M ′′ ⇒ σ′′.

3. By Theorem C.1 and Proposition B.27, Γ ` π1〈s = M ′,M ′′〉 ∼= M ′ : σ′.

• Case: Γ ` π2〈s = M ′,M ′′〉
wh
−→ M ′′[M ′/s].

1. By inversion on synthesis, Γ `P π2〈s = M ′,M ′′〉 ⇒ σ′′[M ′/s],

2. where Γ `P M ′ ⇒ σ′ and Γ, s:σ′ `P M ′′ ⇒ σ′′.

3. By Theorem C.1 and Proposition B.27, Γ ` π2〈s = M ′,M ′′〉 ∼= M ′′[M ′/s] : σ′′[M ′/s].
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• Case: Γ ` let s = M ′ in (M ′′ : σ)
wh
−→ M ′′[M ′/s].

1. By inversion on synthesis, Γ `P let s = M ′ in (M ′′ : σ) ⇒
�

σ(let s = M ′ in (M ′′ : σ)),

2. where Γ `P M ′ ⇒ σ′, Γ, s:σ′ `P M ′′ ⇐ σ, and Γ ` σ sig.

3. By Theorem C.1 and Rule 71, Γ ` let s = M ′ in (M ′′ : σ) ∼= M ′′[M ′/s] : σ.

4. By Proposition B.26, Γ ` let s = M ′ in (M ′′ : σ) ∼= M ′′[M ′/s] :
�

σ(let s = M ′ in (M ′′ : σ)).

• Case: Γ ` [Typ M ]
wh
−→ M .

1. By inversion on synthesis, Γ `P [Typ M ] ⇒
�
([Typ M ]), where Γ `P M : [[T ]].

2. By Rule 62, Γ ` [TypM ] ∼= M : [[T ]].

3. By Proposition B.26, Γ ` [Typ M ] ∼= M :
�
([Typ M ]).

• Case: Γ ` P
wh
−→ M , where Γ ` P ↑

�
(M).

1. By Lemma D.1, Γ `P P :
�
(M) and Γ `P P ⇒

�
(P ).

2. Thus, Γ ` P ∼= M :
�
(P ).

• Case: Γ ` F1M
wh
−→ F2M , where Γ ` F1

wh
−→ F2.

1. By inversion on synthesis, Γ `P F1M ⇒ σ′′[M/s],

2. where Γ `P F1 ⇒ Πs:σ′.σ′′ and Γ `P M ⇐ σ′.

3. By IH, Γ ` F1
∼= F2 : Πs:σ′.σ′′.

4. By Theorem C.1 and reflexivity, Γ ` M ∼= M : σ′.

5. By Rule 65, Γ ` F1M ∼= F2M : σ′′[M/s].

• Case: Γ ` π1M1
wh
−→ π1M2, where Γ ` M1

wh
−→ M2.

1. By inversion on synthesis, Γ `P π1M1 ⇒ σ′, where Γ `P M1 ⇒ Σs:σ′.σ′′.

2. By IH, Γ ` M1
∼= M2 : Σs:σ′.σ′′.

3. By Rule 67, Γ ` π1M1
∼= π1M2 : σ′.

• Case: Γ ` π2M1
wh
−→ π2M2, where Γ ` M1

wh
−→ M2.

1. By inversion on synthesis, Γ `P π2M1 ⇒ σ′′[π1M1/s], where Γ `P M1 ⇒ Σs:σ′.σ′′.

2. By IH, Γ ` M1
∼= M2 : Σs:σ′.σ′′.

3. By Rule 68, Γ ` π2M1
∼= π2M2 : σ′′[π1M1/s].

�

Corollary D.5 (A Module Is Equivalent To Its Weak Head Normal Form)
1. If Γ `P M1 : σ and Γ ` M1

wh
−→ M2, then Γ ` M1

∼= M2 : σ.

2. If Γ `P M : σ and Γ ` M
wh
=⇒ N , then Γ ` M ∼= N : σ.

Proof:
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1. By Theorem C.6, Γ `P M1 ⇒ σ′, where Γ ` σ′ ≤ σ. By Lemma D.4, Γ ` M1
∼= M2 : σ′, so by

Rule 73, Γ ` M1
∼= M2 : σ.

2. By Part 1, reflexivity and transitivity.

�

Theorem D.6 (Soundness of Equivalence Algorithm)
1. If Γ1 ≡ Γ2, Γ1 ` τ1 type, Γ2 ` τ2 type, and Γ1 ` τ1 ⇔ Γ2 ` τ2, then Γ1 ` τ1 ≡ τ2.

2. If Γ1 ≡ Γ2, Γ1 ` σ1 sig, Γ2 ` σ2 sig, and Γ1 ` σ1 ⇔ Γ2 ` σ2, then Γ1 ` σ1 ≡ σ2.

3. If Γ1 ≡ Γ2, Γ1 ` σ1 ≡ σ2, Γ1 `P M1 : σ1, Γ2 `P M2 : σ2, and Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2,
then Γ1 ` M1

∼= M2 : σ1.

4. If Γ1 ≡ Γ2, Γ1 `P P1 : ρ1, Γ2 `P P2 : ρ2, and Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2, then Γ1 ` σ1 ≡ σ2

and Γ1 ` P1
∼= P2 : σ1.

Proof: By induction on the algorithmic judgments.

1. (a) By Rule 41, Γ1 `P [τ1] : [[T ]] and Γ2 `P [τ2] : [[T ]].

(b) By IH, Γ1 ` [τ1] ∼= [τ2] : [[T ]].

(c) By Rule 7, Γ1 ` τ1 ≡ τ2.

2. All cases are straightforward by inversion on the signature formation rules and induction.

3. • Case: Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2, where σ1 and σ2 are unitary.
Since Γ1 `P M1 : σ1 and Γ1 `P M2 : σ1, by Rule 63, Γ1 ` M1

∼= M2 : σ1.

• The remaining cases are proved exactly as in Part 1 of SH Theorem 3.7, with the excep-
tion that the last step of the Σ case involves an application of Part 9 of Proposition B.27.

4. • Case: Γ1 ` s ↑ Γ1(s) ↔ Γ2 ` s ↑ Γ2(s). Trivial.

• Case: Γ1 ` P1M1 ↑ σ′′
1 [M1/s] ↔ Γ2 ` P2M2 ↑ σ′′

2 [M2/s],
where Γ1 ` P1 ↑ Πs:σ′

1.σ
′′
1 ↔ Γ2 ` P2 ↑ Πs:σ′

2.σ
′′
2 and Γ1 ` M1 : σ′

1 ⇔ Γ2 ` M2 : σ′
2.

(a) For i ∈ {1, 2}, by Theorem C.6, Γi `P PiMi ⇒ ρ′′i [Mi/s],

(b) where Γi `P Pi ⇒ Πs:ρ′i.ρ
′′
i and Γi `P Mi ⇐ ρ′i.

(c) By Lemma D.1 and Lemma D.2, Γi ` Pi ↑ Πs:σ′

i.σ
′′

i , Γi `P Pi : Πs:σ′

i.σ
′′

i , and ρ′i = σ′

i.

(d) By IH, Γ1 ` Πs:σ′
1.σ

′′
1 ≡ Πs:σ′

2.σ
′′
2 and Γ1 ` P1

∼= P2 : Πs:σ′
1.σ

′′
1 .

(e) By inversion, Γ1 ` σ′
1 ≡ σ′

2 and Γ1, s:σ
′
1 ` σ′′

1 ≡ σ′′
2 .

(f) By Theorem C.1, Γi `P Mi : σ′
i, so by IH, Γ1 ` M1

∼= M2 : σ′
1.

(g) By Functionality, Γ1 ` σ′′
1 [M1/s] ≡ σ′′

2 [M2/s].

(h) By Rule 65, Γ1 ` P1M1
∼= P2M2 : σ′′

1 [M1/s].

• Case: Γ1 ` π1P1 ↑ σ′
1 ↔ Γ2 ` π1P2 ↑ σ′

2, where Γ1 ` P1 ↑ Σs:σ′
1.σ

′′
1 ↔ Γ2 ` P2 ↑

Σs:σ′
2.σ

′′
2 .

(a) For i ∈ {1, 2}, by Theorem C.6, Γi `P π1Pi ⇒ ρ′i, where Γi `P Pi ⇒ Σs:ρ′i.ρ
′′
i .

(b) By Theorem C.1, Γi `P Pi : Σs:ρ′i.ρ
′′

i .

(c) By IH, Γ1 ` Σs:σ′
1.σ

′′
1 ≡ Σs:σ′

2.σ
′′
2 and Γ1 ` P1

∼= P2 : Σs:σ′
1.σ

′′
1 .
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(d) By inversion, Γ1 ` σ′
1 ≡ σ′

2, and by Rule 67, Γ1 ` π1P1
∼= π1P2 : σ′

1.

• Case: Γ1 ` π2P1 ↑ σ′′
1 [π1P1/s] ↔ Γ2 ` π2P2 ↑ σ′′

2 [π1P2/s],
where Γ1 ` P1 ↑ Σs:σ′

1.σ
′′
1 ↔ Γ2 ` P2 ↑ Σs:σ′

2.σ
′′
2 .

(a) For i ∈ {1, 2}, by Theorem C.6, Γi `P π2Pi ⇒ ρ′′i [π1Pi/s], where Γi `P Pi ⇒ Σs:ρ′i.ρ
′′

i .

(b) By Theorem C.1, Γi `P Pi : Σs:ρ′i.ρ
′′
i .

(c) By IH, Γ1 ` Σs:σ′
1.σ

′′
1 ≡ Σs:σ′

2.σ
′′
2 and Γ1 ` P1

∼= P2 : Σs:σ′
1.σ

′′
1 .

(d) By inversion, Γ1, s:σ
′
1 ` σ′′

1 ≡ σ′′
2 , and by Rule 67, Γ1 ` π1P1

∼= π1P2 : σ′
1.

(e) By Functionality, Γ1 ` σ′′
1 [π1P1/s] ≡ σ′′

2 [π1P2/s].

(f) By Rule 68, Γ1 ` π2P1
∼= π2P2 : σ′′

1 [π1P1/s].

• Case: Γ1 ` [Πs:σ1.τ1] ↑ [[T ]] ↔ Γ2 ` [Πs:σ2.τ2] ↑ [[T ]],
where Γ1 ` σ1 ⇔ Γ2 ` σ2 and Γ1, s:σ1 ` τ1 ⇔ Γ2, s:σ2 ` τ2.

(a) By Theorem C.6 and inversion on principal signature synthesis,
Γ1 ` Πs:σ1.τ1 type and Γ2 ` Πs:σ2.τ2 type.

(b) So, Γ1 ` σ1 sig and Γ2 ` σ2 sig, and by IH, Γ1 ` σ1 ≡ σ2.

(c) In addition, Γ1, s:σ1 ` τ1 type and Γ2, s:σ2 ` τ2 type.

(d) So by IH, Γ1, s:σ1 ` τ1 ≡ τ2.

(e) Thus, Γ1 ` Πs:σ1.τ1 ≡ Πs:σ2.τ2, and Γ1 ` [Πsσ1.τ1] ∼= [Πs:σ2.τ2] : [[T ]].

• Case: Γ1 ` [τ ′
1 × τ ′′

1 ] ↑ [[T ]] ↔ Γ2 ` [τ ′
2 × τ ′′

2 ] ↑ [[T ]], where Γ1 ` τ ′
1 ⇔ Γ2 ` τ ′

2 and
Γ1 ` τ ′′

1 ⇔ Γ2 ` τ ′′
2 . The proof is similar to and simpler than the previous case.

• Case: Γ1 ` [〈|σ1|〉] ↑ [[T ]] ↔ Γ2 ` [〈|σ2|〉] ↑ [[T ]], where Γ1 ` σ1 ⇔ Γ2 ` σ2.
The proof is similar to the previous two cases.

�

Lemma D.7 (Symmetry and Transitivity of Equivalence Algorithm)
1. If Γ1 ` τ1 ⇔ Γ2 ` τ2, then Γ2 ` τ2 ⇔ Γ1 ` τ1.

2. If Γ1 ` τ1 ⇔ Γ2 ` τ2, and Γ2 ` τ2 ⇔ Γ3 ` τ3, then Γ1 ` τ1 ⇔ Γ3 ` τ3.

3. If Γ1 ` σ1 ⇔ Γ2 ` σ2, then Γ2 ` σ2 ⇔ Γ1 ` σ1.

4. If Γ1 ` σ1 ⇔ Γ2 ` σ2, and Γ2 ` σ2 ⇔ Γ3 ` σ3, then Γ1 ` σ1 ⇔ Γ3 ` σ3.

5. If Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2, then Γ2 ` M2 : σ2 ⇔ Γ1 ` M1 : σ1.

6. If Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2, and Γ2 ` M2 : σ2 ⇔ Γ3 ` M3 : σ3,
then Γ1 ` M1 : σ1 ⇔ Γ3 ` M3 : σ3.

7. If Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2, then Γ2 ` P2 ↑ σ2 ↔ Γ1 ` P1 ↑ σ1.

8. If Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2, and Γ2 ` P2 ↑ σ2 ↔ Γ3 ` P3 ↑ σ3,
then Γ1 ` P1 ↑ σ1 ↔ Γ3 ` P3 ↑ σ3.

Proof: By straightforward induction on algorithmic judgments. The proof of Part 8 makes use
of Lemma D.2. �
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Lemma D.8 (Weakening for Equivalence Algorithm)
Suppose Γ ⊆ Γ′, Γ1 ⊆ Γ′

1, and Γ2 ⊆ Γ′
2.

1. If Γ ` P ↑ σ, then Γ′ ` P ↑ σ.

2. If Γ ` M1
wh
−→ M2, then Γ′ ` M1

wh
−→ M2.

3. If Γ ` M
wh
=⇒ N , then Γ′ ` M

wh
=⇒ N .

4. If Γ1 ` τ1 ⇔ Γ2 ` τ2, then Γ′
1 ` τ1 ⇔ Γ′

2 ` τ2.

5. If Γ1 ` σ1 ⇔ Γ2 ` σ2, then Γ′
1 ` σ1 ⇔ Γ′

2 ` σ2

6. If Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2, then Γ′
1 ` M1 : σ1 ⇔ Γ′

2 ` M2 : σ2.

7. If Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2, then Γ′
1 ` P1 ↑ σ1 ↔ Γ′

2 ` P2 ↑ σ2.

Proof: By straightforward induction on algorithmic judgments. �

E Completeness of the Equivalence Algorithm

The completeness proof for the equivalence algorithm, which is the main contribution of Stone and
Harper, extends easily to our system. As in SH, we employ a six-place Kripke-style logical relation,
given in Figure 17, that involves two worlds and two signatures. All the extensions to the logical
relation are straightforward. For modules of unitary signature the logical relation is trivial and
only requires that the two signatures are related. We do not bother to define a logical relation for
types because the algorithm treats them as modules of base signature [[T ]], and logical equivalence
at signature [[T ]] coincides with algorithmic equivalence.

In adapting the SH proof, we have taken the opportunity to restructure the definition of the
logical relation so as to eliminate the need for the logical “validity” predicate that SH defines. As
shown in Figure 17, logical validity is definable as logical equivalence of a module or signature with
itself, and using symmetry and transitivity of the equivalence algorithm it is easy to show that our
relation is equivalent to SH’s. The advantage of our formulation is that it obviates SH Lemma 4.4
(Reflexivity), which states precisely that our definition of logical validity is admissible.

Lemma E.1 (Monotonicity)
Suppose ∆′

1 ⊇ ∆1 and ∆′
2 ⊇ ∆2.

1. If (∆1;σ1) is (∆2;σ2), then (∆′
1;σ1) is (∆′

2;σ2).

2. If (∆1;M1;σ1) is (∆2;M2;σ2), then (∆′
1;M1;σ1) is (∆′

2;M2;σ2).

3. If (∆1; γ1; Γ1) is (∆2; γ2; Γ2), then (∆′
1; γ1; Γ1) is (∆′

2; γ2; Γ2).

Proof: By induction on the size of the signatures involved. �

Lemma E.2 (Logical Equivalence Implies Logical Subsumption)
If (∆1;σ1) is (∆1; ρ1), (∆2;σ2) is (∆2; ρ2), and (∆1; ρ1) is (∆2; ρ2),
then (∆1;σ1 ≤ ρ1) is (∆2;σ2 ≤ ρ2).
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• (∆1;σ1) is (∆2;σ2) iff

1. (∆1;σ1) ≈ (∆2;σ2), (∆1;σ1) ≈ (∆1;σ1), and (∆2;σ2) ≈ (∆2;σ2)

• (∆1;σ1) ≈ (∆2;σ2) iff

1. σ1 = σ2 = 1

2. Or, σ1 = σ2 = [[T ]]

3. Or, σ1 = [[τ1]] and σ2 = [[τ2]] and ∆1 ` τ1 ⇔ ∆2 ` τ2

4. Or, σ1 =
�
(M1) and σ2 =

�
(M2) and ∆1 ` M1 : [[T ]] ⇔ ∆2 ` M2 : [[T ]]

5. Or, σ1 = Πδs:σ′
1.σ

′′
1 and σ2 = Πδs:σ′

2.σ
′′
2 and (∆1;σ

′
1) is (∆2;σ

′
2) and ∀∆′

1 ⊇ ∆1,∆
′
2 ⊇

∆2 if (∆′
1;M1;σ

′
1) is (∆′

2;M2;σ
′
2) then (∆′

1;σ
′′
1 [M1/s]) is (∆′

2;σ
′′
2 [M2/s])

6. Or, σ1 = Σs:σ′
1.σ

′′
1 and σ2 = Σs:σ′

2.σ
′′
2 and (∆1;σ

′
1) is (∆2;σ

′
2) and ∀∆′

1 ⊇ ∆1,∆
′
2 ⊇ ∆2

if (∆′
1;M1;σ

′
1) is (∆′

2;M2;σ
′
2) then (∆′

1;σ
′′
1 [M1/s]) is (∆′

2;σ
′′
2 [M2/s])

• (∆1;σ1 ≤ ρ1) is (∆2;σ2 ≤ ρ2) iff

1. ∀∆′
1 ⊇ ∆1,∆

′
2 ⊇ ∆2 if (∆′

1;M1;σ1) is (∆′
2;M2;σ2) then (∆′

1;M1; ρ1) is (∆′
2;M2; ρ2).

• (∆1;M1;σ1) is (∆2;M2;σ2) iff

1. (∆1;σ1) is (∆2;σ2)

2. And, (∆1;M1;σ1) ≈ (∆2;M2;σ2), (∆1;M1;σ1) ≈ (∆1;M1;σ1), and (∆2;M2;σ2) ≈
(∆2;M2;σ2)

• (∆1;M1;σ1) ≈ (∆2;M2;σ2) iff

1. σ1 and σ2 are unitary

2. Or, σ1 = σ2 = T and ∆1 ` M1 : [[T ]] ⇔ ∆2 ` M2 : [[T ]]

3. Or, σ1 =
�
(N1) and σ2 =

�
(N2)

and ∆1 ` M1 : [[T ]] ⇔ ∆1 ` N1 : [[T ]] and ∆2 ` M2 : [[T ]] ⇔ ∆2 ` N2 : [[T ]]

4. Or, σ1 = Πs:σ′
1.σ

′′
1 and σ2 = Πs:σ′

2.σ
′′
2 and ∀∆′

1 ⊇ ∆1,∆
′
2 ⊇ ∆2 if (∆′

1;N1;σ
′
1) is

(∆′
2;N2;σ

′
2) then (∆′

1;M1N1;σ
′′
1 [N1/s]) is (∆′

2;M2N2;σ
′′
2 [N2/s])

5. Or, σ1 = Σs:σ′
1.σ

′′
1 and σ2 = Σs:σ′

2.σ
′′
2 and (∆1;π1M1;σ

′
1) is (∆2;π1M2;σ

′
2) and

(∆1;π2M1;σ
′′
1 [π1M1/s]) is (∆2;π2M2;σ

′′
2 [π1M2/s])

• (∆1; γ1; Γ1) is (∆2; γ2; Γ2) iff

1. ∀s ∈ dom(Γ1) = dom(Γ2). (∆1; γ1s; γ1(Γ1(s))) is (∆2; γ2s; γ2(Γ2(s)))

• (∆;σ)valid iff (∆;σ) is (∆;σ)

• (∆;M ;σ)valid iff (∆;M ;σ) is (∆;M ;σ)

• (∆; γ; Γ)valid iff (∆; γ; Γ) is (∆; γ; Γ)

Figure 17: Logical Relations for Proving Completeness of Equivalence Algorithm
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Proof: See proof of SH Lemma 4.3. All the new cases involve unitary signatures and are trivial.
�

Lemma E.3 (Symmetry of Logical Relations)
1. If (∆1;σ1) is (∆2;σ2), then (∆2;σ2) is (∆1;σ1).

2. If (∆1;M1;σ1) is (∆2;M2;σ2), then (∆2;M2;σ2) is (∆1;M1;σ1).

3. If (∆1; γ1; Γ1) is (∆2; γ2; Γ2), then (∆2; γ2; Γ2) is (∆1; γ1; Γ1).

Proof: See proof of SH Lemma 4.5. All the new cases involve unitary signatures and are trivial,
with the exception that the proof of Part 1 in the case that σ1 and σ2 are Πpar is the same as for
the Π and Σ cases. �

Lemma E.4 (Transitivity of Logical Relations)
1. If (∆1;σ1) is (∆1; ρ) and (∆1; ρ) is (∆2;σ2), then (∆1;σ1) is (∆2;σ2).

2. If (∆1;M1;σ1) is (∆1;N ; ρ) and (∆1;N ; ρ) is (∆2;M2;σ2), then (∆1;M1;σ1) is (∆2;M2;σ2).

Proof: See proof of SH Lemma 4.6. All the new cases involve unitary signatures and are trivial,
with the exception that the proof of Part 1 in the case that σ1 and σ2 are Πpar is the same as for
the Π and Σ cases. �

Define
wh
−→∗ to be the reflexive, transitive closure of

wh
−→.

Lemma E.5 (Closure of Logical Relations Under Weak Head Expansion)
If (∆1;M1;σ1) is (∆2;M2;σ2), ∆1 ` M ′

1
wh
−→∗ M1, and ∆2 ` M ′

2
wh
−→∗ M2,

then (∆1;M
′
1;σ1) is (∆2;M

′
2;σ2).

Proof: See proof of SH Lemma 4.7. All the new cases involve unitary signatures and are trivial.
�

Lemma E.6 (Logical Relations Imply Algorithmic Equivalence)
1. If (∆1;σ1) is (∆2;σ2), then ∆1 ` σ1 ⇔ ∆2 ` σ2.

2. If (∆1;M1;σ1) is (∆2;M2;σ2), then ∆1 ` M1 : σ1 ⇔ ∆2 ` M2 : σ2.

3. If (∆1;σ1) is (∆2;σ2) and ∆1 ` P1 ↑ σ1 ↔ ∆2 ` P2 ↑ σ2, then (∆1;P1;σ1) is (∆2;P2;σ2).

Proof: See proof of SH Lemma 4.8. All the new cases involve unitary signatures and are trivial,
with the exception that the proof of Part 1 in the case that σ1 and σ2 are Πpar is the same as for
the Π and Σ cases. �

Theorem E.7 (Fundamental Theorem of Logical Relations)
Suppose (∆1; γ1; Γ) is (∆2; γ2; Γ).

1. If Γ ` τ type, then ∆1 ` γ1τ ⇔ ∆2 ` γ2τ .

2. If Γ ` τ1 ≡ τ2, then ∆1 ` γ1τ1 ⇔ ∆2 ` γ2τ2, ∆1 ` γ1τ1 ⇔ ∆2 ` γ2τ1, and ∆1 ` γ1τ2 ⇔ ∆2 `
γ2τ2.
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3. If Γ ` σ sig, then (∆1; γ1σ) is (∆2; γ2σ).

4. If Γ ` σ1 ≡ σ2, then (∆1; γ1σ1) is (∆2; γ2σ2), (∆1; γ1σ1) is (∆2; γ2σ1), and (∆1; γ1σ2) is
(∆2; γ2σ2).

5. If Γ ` σ1 ≤ σ2, then (∆1; γ1σ1 ≤ γ1σ2) is (∆2; γ2σ1 ≤ γ2σ2),
(∆1; γ1σ1) is (∆2; γ2σ1), and (∆1; γ1σ2) is (∆2; γ2σ2).

6. If Γ `P M : σ, then (∆1; γ1M ; γ1σ) is (∆2; γ2M ; γ2σ).

7. If Γ ` M1
∼= M2 : σ, then (∆1; γ1M1; γ1σ) is (∆2; γ2M2; γ2σ), (∆1; γ1M1; γ1σ) is (∆2; γ2M1; γ2σ),

and (∆1; γ1M2; γ1σ) is (∆2; γ2M2; γ2σ).

Proof: By induction on derivations. In all cases, (∆1; γ1; Γ) is (∆1; γ1; Γ) and (∆2; γ2; Γ) is
(∆2; γ2; Γ). For most of the cases, see proof of SH Theorem 4.9. Here we give the new cases:

Well-formed types: Γ ` τ type.

• Case: Rule 3.

1. By IH, (∆1; γ1M ; [[T ]]) is (∆2; γ2M ; [[T ]]).

2. By Lemma E.5, (∆1; [Typ γ1M ]; [[T ]]) is (∆2; [Typ γ2M ]; [[T ]]).

3. So, ∆1 ` [Typ γ1M ] : [[T ]] ⇔ ∆2 ` [Typ γ2M ] : [[T ]].

4. Thus, ∆1 ` γ1(TypM) ⇔ ∆2 ` γ2(Typ M).

• Case: Rule 4. The proof is a reflexive instance of the proof for Rule 8.

• Case: Rule 5. The proof is a reflexive instance of the proof for Rule 9.

• Case: Rule 6. The proof is a reflexive instance of the proof for Rule 10.

Type equivalence: Γ ` τ1 ≡ τ2.
It suffices to prove that if Γ ` τ1 ≡ τ2 and (∆1; γ1; Γ) is (∆2; γ2; Γ) then ∆1 ` γ1τ1 ⇔ ∆2 ` γ2τ2,
because we can apply this to get ∆2 ` γ2τ1 ⇔ ∆2 ` γ2τ2, so ∆1 ` γ1τ1 ⇔ ∆2 ` γ2τ1 by Symmetry
and Transitivity of the algorithm. A similar argument yields ∆1 ` γ1τ2 ⇔ ∆2 ` γ2τ2.

• Case: Rule 7.

1. By IH, (∆1; [γ1τ1]; [[T ]]) is (∆2; [γ2τ2]; [[T ]]).

2. So, ∆1 ` [γ1τ1] : [[T ]] ⇔ ∆2 ` [γ2τ2] : [[T ]].

3. Thus, ∆1 ` γ1τ1 ⇔ ∆2 ` γ2τ2.

• Case: Rule 8.

1. By IH, (∆1; γ1σ1) is (∆2; γ2σ2).

2. By Lemma E.6, ∆1 ` γ1σ1 ⇔ ∆2 ` γ2σ2.

3. Now, ∆1, s:γ1σ1 ` s ↑ γ1σ1 ↔ ∆2, s:γ2σ2 ` s ↑ γ2σ2.

4. So by Monotonicity and Lemma E.6, (∆1, s:γ1σ1; s; γ1σ1) is (∆2, s:γ2σ2; s; γ2σ2).

5. By IH and Symmetry, (∆1; γ1σ1) is (∆2; γ2σ1) and (∆2; γ2σ2) is (∆2; γ2σ1).

6. By Lemma E.2, (∆1; γ1σ1 ≤ γ1σ1) is (∆2; γ2σ2 ≤ γ2σ1).
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7. So, (∆1, s:γ1σ1; s; γ1σ1) is (∆2, s:γ2σ2; s; γ2σ1).

8. Thus, by Monotonicity, (∆1, s:γ1σ1; γ1; Γ, s:σ1) is (∆2, s:γ2σ2; γ2; Γ, s:σ1).

9. Then, by IH, ∆1, s:γ1σ1 ` γ1τ1 ⇔ ∆2, s:γ2σ2 ` γ2τ2.

10. Therefore, ∆1 ` [Πs:γ1σ1.γ1τ1] ↑ [[T ]] ↔ ∆2 ` [Πs:γ2σ2.γ2τ2] ↑ [[T ]],

11. and so ∆1 ` [Πs:γ1σ1.γ1τ1] : [[T ]] ⇔ ∆2 ` [Πs:γ2σ2.γ2τ2] : [[T ]],

12. and finally ∆1 ` γ1(Πs:σ1.τ1) ⇔ ∆2 ` γ2(Πs:σ2.τ2).

• Case: Rule 9.

1. By IH, ∆1 ` γ1τ
′
1 ⇔ ∆2 ` γ2τ

′
2 and ∆1 ` γ1τ

′′
1 ⇔ ∆2 ` γ2τ

′′
2 .

2. Therefore, ∆1 ` [γ1τ
′
1 × γ1τ

′′
1 ] ↑ [[T ]] ↔ ∆2 ` [γ2τ

′
2 × γ2τ

′′
2 ] ↑ [[T ]],

3. and so ∆1 ` [γ1τ
′
1 × γ1τ

′′
1 ] : [[T ]] ⇔ ∆2 ` [γ2τ

′
2 × γ2τ

′′
2 ] : [[T ]],

4. and finally ∆1 ` γ1(τ
′
1 × τ ′′

1 ) ⇔ ∆2 ` γ2(τ
′
2 × τ ′′

2 ).

• Case: Rule 10.

1. By IH, ∆1 ` γ1σ1 ⇔ ∆2 ` γ2σ2.

2. Therefore, ∆1 ` [〈|γ1σ1|〉] ↑ [[T ]] ↔ ∆2 ` [〈|γ2σ2|〉] ↑ [[T ]],

3. and so ∆1 ` [〈|γ1σ1|〉] : [[T ]] ⇔ ∆2 ` [〈|γ2σ2|〉] : [[T ]],

4. and finally ∆1 ` γ1〈|σ1|〉 ⇔ ∆2 ` γ2〈|σ2|〉.

Well-formed signatures: Γ ` σ sig.
All the new cases involve unitary signatures and are trivial, with the exception of the Πpar case, for
which the proof is the same as for the Π and Σ cases.

Signature equivalence: Γ ` σ1 ≡ σ2.
All the new cases involve unitary signatures and are trivial, with the exception of the Πpar case, for
which the proof is the same as for the Π and Σ cases.

Signature subtyping: Γ ` σ1 ≤ σ2.
In all the new cases, σ2 is a unitary signature. By definition of the logical relation, this means that
in order to show logical subsumption it suffices to show (∆1; γ1σ2) is (∆2; γ2σ2). Showing this is as
well as (∆1; γ1σ1) is (∆2; γ2σ1) is trivial for the 1 and [τ ] cases. For the (Π,Πpar) and (Πpar,Πpar)
cases, the proof is the same as the one for the (Π,Π) case.

Well-formed modules: Γ `P M : σ.

• Case: Rule 40. Trivial.

• Case: Rule 42. By the same reasoning as for Rule 22, applied to the second (redundant)
premise.

• Case: Rule 44. By the same reasoning as for Rule 24, applied to the second (redundant)
premise.

• Case: Rule 47. The proof is a reflexive instance of the proof for Rule 66.

• Case: Rule 55. The proof is a reflexive instance of the proof for Rule 70.

58



• Case: Rule 56.

1. By IH, (∆1; γ1M
′; γ1σ

′) is (∆2; γ2M
′; γ2σ

′).

2. So, (∆1; γ1[s 7→ γ1M
′]; Γ, s:σ′) is (∆2; γ2[s 7→ γ2M

′]; Γ, s:σ′).

3. By Proposition B.2, s 6∈ FV (σ).

4. Then by IH, (∆1; (γ1M
′′)[γ1M

′/s]; γ1σ) is (∆2; (γ2M
′′)[γ2M

′/s]; γ2σ).

5. By Lemma E.5, (∆1; γ1(let s = M ′ in (M ′′ : σ)); γ1σ) is (∆2; γ2(let s = M ′ in (M ′′ :
σ)); γ2σ).

Module equivalence: Γ ` M1
∼= M2 : σ.

It suffices to prove that if Γ ` M1
∼= M2 : σ and (∆1; γ1; Γ) is (∆2; γ2; Γ)

then (∆1; γ1M1; γ1σ) is (∆2; γ2M2; γ2σ), because we can apply this to get (∆2; γ2M1; γ2σ) is
(∆2; γ2M2; γ2σ), so (∆1; γ1M1; γ1σ) is (∆2; γ2M1; γ2σ) by Symmetry and Transitivity of the algo-
rithm. A similar argument yields (∆1; γ1M2; γ1σ) is (∆2; γ2M2; γ2σ).

• Case: Rule 61. Trivial, by IH.

• Case: Rule 62.

1. By IH, (∆1; γ1M ; [[T ]]) is (∆2; γ2M ; [[T ]]).

2. By Lemma E.5, (∆1; γ1[Typ M ]; [[T ]]) is (∆2; γ2M ; [[T ]]).

• Case: Rule 63. Trivial, by IH.

• Case: Rule 66.

1. By the same reasoning as in the proof for Rule 25, (∆1; γ1(Σs:σ′.σ′′)) is (∆2; γ2(Σs:σ′.σ′′)).

2. By IH, (∆1; γ1M
′
1; γ1σ

′) is (∆2; γ2M
′
2; γ2σ

′).

3. So, (∆1; γ1[s 7→ γ1M
′
1]; Γ, s:σ′) is (∆2; γ2[s 7→ γ2M

′
2]; Γ, s:σ′).

4. Then by IH, (∆1; (γ1M
′′
1 )[γ1M

′
1/s]; γ1σ

′′[γ1M
′
1/s]) is (∆2; (γ2M

′′
2 )[γ2M

′
2/s]; γ2σ

′′[γ2M
′
2/s]).

5. By Lemma E.5, (∆1;π1〈s = γ1M
′
1, γ1M

′′
1 〉; γ1σ

′) is (∆2;π1〈s = γ2M
′
2, γ2M

′′
2 〉; γ2σ

′)

6. and (∆1;π2〈s = γ1M
′
1, γ1M

′′
1 〉; γ1σ

′′[γ1M
′
1/s]) is (∆2;π2〈s = γ2M

′
2, γ2M

′′
2 〉; γ2σ

′′[γ2M
′
2/s]).

7. Also by Lemma E.5, (∆1; γ1M
′
1; γ1σ

′) is (∆1;π1〈s = γ1M
′
1, γ1M

′′
1 〉; γ1σ

′)

8. and (∆2; γ2M
′
2; γ2σ

′) is (∆2;π1〈s = γ2M
′
2, γ2M

′′
2 〉; γ2σ

′).

9. So, (∆1; γ1σ
′′[π1〈s = γ1M

′
1, γ1M

′′
1 〉/s]) is (∆2; γ2σ

′′[π1〈s = γ2M
′
2, γ2M

′′
2 〉/s]),

10. (∆1; γ1σ
′′[γ1M

′
1/s]) is (∆1; γ1σ

′′[π1〈s = γ1M
′
1, γ1M

′′
1 〉/s]),

11. and (∆2; γ2σ
′′[γ2M

′
2/s]) is (∆2; γ2σ

′′[π1〈s = γ2M
′
2, γ2M

′′
2 〉/s]).

12. By Lemma E.2, (∆1;π2〈s = γ1M
′
1, γ1M

′′
1 〉; γ1σ

′′[π1〈s = γ1M
′
1, γ1M

′′
1 〉/s])

is (∆2;π2〈s = γ2M
′
2, γ2M

′′
2 〉; γ2σ

′′[π1〈s = γ2M
′
2, γ2M

′′
2 〉/s]).

13. Therefore, (∆1; γ1〈s = M ′
1,M

′′
1 〉; γ1(Σs:σ′.σ′′)) is (∆2; γ2〈s = M ′

2,M
′′
2 〉; γ2(Σs:σ′.σ′′)).

• Case: Rule 70. Trivial, by IH.

• Case: Rule 71.

1. By IH, (∆1; γ1M
′; γ1σ

′) is (∆2; γ2M
′; γ2σ

′).
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2. So, (∆1; γ1[s 7→ γ1M
′]; Γ, s:σ′) is (∆2; γ2[s 7→ γ2M

′]; Γ, s:σ′).

3. By Proposition B.2, s 6∈ FV (σ).

4. Then by IH, (∆1; (γ1M
′′)[γ1M

′/s]; γ1σ) is (∆2; (γ2M
′′)[γ2M

′/s]; γ2σ).

5. By Lemma E.5, (∆1; γ1(let s = M ′ in (M ′′ : σ)); γ1σ) is (∆2; γ2(M
′′[M ′/s]); γ2σ).

�

Lemma E.8 (Identity Substitution Is Related To Itself)
If Γ ` ok, then (Γ; id; Γ) is (Γ; id; Γ).

Proof: See proof of SH Lemma 4.10. �

Corollary E.9 (Completeness of Equivalence Algorithm)
1. If Γ ` τ1 ≡ τ2, then Γ ` τ1 ⇔ Γ ` τ2.

2. If Γ ` σ1 ≡ σ2, then Γ ` σ1 ⇔ Γ ` σ2.

3. If Γ ` M1
∼= M2 : σ, then Γ ` M1 : σ ⇔ Γ ` M2 : σ.

Proof: By Lemma E.6, Theorem E.7, and Lemma E.8. �

Lemma E.10
1. If Γ1 ` τ1 ⇔ Γ1 ` τ1 and Γ2 ` τ2 ⇔ Γ2 ` τ2, then Γ1 ` τ1 ⇔ Γ2 ` τ2 is decidable.

2. If Γ1 ` σ1 ⇔ Γ1 ` σ1 and Γ2 ` σ2 ⇔ Γ2 ` σ2, then Γ1 ` σ1 ⇔ Γ2 ` σ2 is decidable.

3. If Γ1 ` M1 : σ1 ⇔ Γ1 ` M1 : σ1 and Γ2 ` M2 : σ2 ⇔ Γ2 ` M2 : σ2,
then Γ1 ` M1 : σ1 ⇔ Γ2 ` M2 : σ2 is decidable.

4. If Γ1 ` P1 ↑ σ1 ↔ Γ1 ` P1 ↑ σ1 and Γ2 ` P2 ↑ σ2 ↔ Γ2 ` P2 ↑ σ2,
then Γ1 ` P1 ↑ σ1 ↔ Γ2 ` P2 ↑ σ2 is decidable.

Proof: See proof of SH Lemma 4.12. �

Corollary E.11 (Decidability of Equivalence Algorithm on Well-Formed Things)
1. If Γ ` τ1 type and Γ ` τ2 type, then Γ ` τ1 ⇔ Γ ` τ2 is decidable.

2. If Γ ` σ1 sig and Γ ` σ2 sig, then Γ ` σ1 ⇔ Γ ` σ2 is decidable.

3. If Γ `P M1 : σ and Γ `P M2 : σ, then Γ ` M1 : σ ⇔ Γ ` M2 : σ is decidable.

Proof: By Corollary E.9, comparison of each well-formed type, signature or module with itself is
decidable. The desired result then follows from Lemma E.10. �
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Term typechecking: Γ ` e ⇐ τ

Γ ` e ⇒ τ ′ Γ ` τ ′ ≡ τ
Γ ` e ⇐ τ

Type synthesis for terms: Γ ` e ⇒ τ

Γ `κ M ⇒ [[τ ]]

Γ ` ValM ⇒ τ

Γ `κ M ⇒ σ Γ, s:σ ` e ⇐ τ Γ ` τ type

Γ ` let s = M in (e : τ) ⇒ τ

Γ `κ M ⇐ σ

Γ ` pack M as 〈|σ|〉 ⇒ 〈|σ|〉

Γ, f :[Πs:σ.τ ], s:σ ` e ⇐ τ

Γ ` fix f(s:σ):τ.e ⇒ Πs:σ.τ

Γ ` e ⇒ τe Γ ` [τe]
wh
=⇒ [Πs:σ.τ ] Γ `P M ⇐ σ

Γ ` eM ⇒ τ [M/s]

Γ ` e1 ⇒ τ1 Γ ` e2 ⇒ τ2

Γ ` 〈e1, e2〉 ⇒ τ1 × τ2

Γ ` e ⇒ τe Γ ` [τe]
wh
=⇒ [τ1 × τ2]

Γ ` πie ⇒ τi
(i ∈ {1, 2})

Figure 18: Term Typechecking and Unique Type Synthesis

F Decidability

With a decidable equivalence algorithm in hand, we may now define a term typechecking algorithm.
Given a term and a type, the algorithm synthesizes the (unique) type of a term and checking that
the synthesized type is equivalent to the given type. In the cases of function application (eM)
or projection from pairs (πie), the synthesized type of e is not necessarily in the correct form and
must be weak-head-reduced to a type of the form Πs:σ.τ or τ ′ × τ ′′, respectively.

Now that we have filled in the definition of term typechecking, we proceed to prove soundness
and completeness of term and module typechecking, reusing the proofs for module typecheck-
ing from Appendix C. Once we have shown this, decidability of the entire type system follows
straightforwardly from the fact that the typechecking algorithm and subsignature checking are
syntax-directed and module and type equivalence are decidable.

Theorem F.1 (Soundness of Full Typechecking/Synthesis)
1. If Γ ` e ⇐ τ or Γ ` e ⇒ τ , then Γ ` e : τ .

2. If Γ `κ M ⇐ σ or Γ `κ M ⇒ σ, then Γ `κ M : σ.

Proof: By straightforward induction on the typechecking/synthesis algorithm, as before. In the
term application and projection cases (eM and πie), the proof requires a straightforward applica-
tion of Corollary D.5 to show that [τe] is equivalent to its weak head normal form. �

Proposition F.2 (Properties of Typechecking/Synthesis)
1. Type synthesis is deterministic, i.e. if Γ ` e ⇒ τ1 and Γ ` e ⇒ τ2, then τ1 = τ2.

2. Signature synthesis is deterministic, i.e. if Γ `κ1
M ⇒ σ1 and Γ `κ2

M ⇒ σ2, then σ1 = σ2

and κ1 = κ2.

3. If Γ `P M ⇒ σ, then σ is fully transparent.
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Proof: By straightforward induction on the typechecking/synthesis algorithm, with applications
of Lemma D.3 in the term application and projection cases. �

Lemma F.3 (Weakening for Full Typechecking/Synthesis)
1. If Γ1 ` e ⇒ τ , Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 ` e ⇒ τ .

2. If Γ1 ` e ⇐ τ , Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 ` e ⇐ τ .

3. If Γ1 `κ M ⇒ σ, Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 `κ M ⇒ σ.

4. If Γ1 `κ M ⇐ σ, Γ1 ⊆ Γ2, and Γ2 ` ok, then Γ2 `κ M ⇐ σ.

Proof: By straightforward induction on the typechecking/synthesis algorithm, with applications
of Lemma D.8 in the term application and projection cases. �

Theorem F.4 (Completeness of Full Typechecking/Synthesis)
1. If Γ ` e : τ and Γ ≤ Γ′, then Γ′ ` e ⇐ τ .

2. If Γ `κ M : σ and Γ ≤ Γ′, then Γ′ `κ′ M ⇐ σ, where κ′ v κ.
Moreover, if κ = P, then Γ′ `P M ⇐

�
σ(M).

Proof: The proof of Part 2 is the same as for Theorem C.6. Here is the proof of Part 1:

• Case: Rules 11 and 12. Trivial, by IH.

• Case: Rule 13.

1. By IH, Γ′ `κ′ M ⇒ σ′, where Γ′ ` σ′ ≤ σ.

2. Since Γ, s:σ ≤ Γ′, s:σ′, by IH, Γ′, s:σ′ ` e ⇐ τ .

3. Since Γ′ ` τ type, we have Γ′ ` let s = M in (e : τ) ⇒ τ .

• Case: Rule 14. Trivial, by IH.

• Case: Rule 15.

1. By IH, Γ′ ` e ⇒ τe, where Γ′ ` τe ≡ Πs:σ.τ .

2. By Corollary E.9, Γ′ ` τe ⇔ Γ′ ` Πs:σ.τ .

3. By inspection of the equivalence algorithm, Γ′ ` [τe]
wh
=⇒ [Πs:σ′.τ ′],

4. where Γ′ ` σ′ ⇔ Γ′ ` σ and Γ′, s:σ′ ` τ ′ ⇔ Γ′, s:σ ` τ .

5. By Corollary D.5, Γ′ `P [Πs:σ′.τ ′] : [[T ]].

6. So, Γ′ ` σ′ sig, Γ′ ` σ sig, Γ′, s:σ′ ` τ ′ type and Γ′, s:σ ` τ type.

7. Thus by Theorem D.6, Γ′ ` σ′ ≡ σ.

8. Then since Γ′, s:σ′ ≡ Γ′, s:σ, by Theorem D.6, Γ′, s:σ′ ` τ ′ ≡ τ .

9. By IH, Γ′ `P M ⇐ σ, so Γ′ `P M ⇐ σ′.

10. Thus, Γ′ ` eM ⇒ τ ′[M/s], and by Substitution, Γ′ ` τ ′[M/s] ≡ τ [M/s].

• Case: Rule 16. Trivial, by IH.
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• Case: Rules 17 and 18. Similar to the proof for Rule 15.

• Case: Rule 19. Trivial, by IH.

�

Theorem F.5 (Decidability of Judgments with Well-Formed Contexts)
Suppose Γ ` ok.

1. If Γ ` σ1 sig and Γ ` σ2 sig, then Γ ` σ1 ≤ σ2 is decidable.

2. Γ ` τ type is decidable.

3. It is decidable whether there exists τ such that Γ ` e ⇒ τ .

4. Γ ` e : τ (or equivalently, Γ ` e ⇐ τ) is decidable.

5. Γ ` σ sig is decidable.

6. It is decidable whether there exist σ and κ such that Γ `κ M ⇒ σ.

7. Γ `κ M : σ (or equivalently, Γ `κ′ M ⇐ σ for κ′ v κ) is decidable.

Proof: Part 1 is by straightforward induction on the structure of σ1 and σ2 and by Corollary E.11.
Parts 2, 3, 5 and 6 are by straightforward induction on the structure of τ , e, σ and M , respectively.
Part 4 follows from Parts 2 and 3 and Corollary E.11. Part 7 follows from Parts 1, 5 and 6.

It is worth noting that as Γ ` ok is an assumption of the theorem, it must be preserved upon
invocations of the IH, which means that all signatures must be checked for well-formedness before
being added to the context. This well-formedness check is always either decidable by induction or
else unnecessary because the signature is the result of synthesis (and thus well-formed by Theo-
rem F.1).

Also worth noting is that in the application and projection cases of term synthesis, if Γ ` e ⇒ τe,
then Γ ` τe ≡ τe and Γ ` τe ⇔ Γ ` τe by Corollary E.9. Thus, by inspection of the algorithm, weak
head normalization of [τe] terminates. �

Lemma F.6 (Decidability of Context Well-formedness)
Γ ` ok is decidable.

Proof: By straightforward induction on Γ and by Theorem F.5. �

Corollary F.7 (Decidability)
The type system is decidable.

G Elaboration Rules

We implicitly assume a freshness side condition on all variables added to the context as part of
elaboration.
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Existential peeling: M : ς
peel
=⇒ M ′ : ς ′

π2M : ς2[π1M/s]
peel
=⇒ N : ς

M : ∃s:ς1.ς2
peel
=⇒ N : ς

ς not an existential

M : ς
peel
=⇒ M : ς

Type elaboration: ∆ ` τ̂ ; τ

∆ `P M̂ ; M : ς ∆ ` M : ς ≤ [[T ]] ; N

∆ ` Typ M̂ ; Typ N

∆ ` σ̂ ; σ ∆, s:σ ` τ̂ ; τ

∆ ` Πs:σ̂.τ̂ ; Πs:σ.τ

∆ ` τ̂1 ; τ1 ∆ ` τ̂2 ; τ2

∆ ` τ̂1 × τ̂2 ; τ1 × τ2

∆ ` σ̂ ; σ
∆ ` 〈|σ̂|〉 ; 〈|σ|〉

Term elaboration: ∆ ` ê ; e : τ

∆ `P M̂ ; M : ς M : ς
peel
=⇒ N : [[τ ]]

∆ ` Val M̂ ; ValN : τ

∆ `κ M̂ ; M : ς ∆ ` τ̂ ; τ ∆, s:ς ` ê ; e : τ ′ ∆, s:ς ` τ ′ ≡ τ

∆ ` let s = M̂ in (ê : τ̂) ; let s = M in (e : τ) : τ

∆ ` Πs:σ̂.τ̂ ; Πs:σ.τ ∆, f :[Πs:σ.τ ], s:σ ` ê ; e : τ ′ ∆, f :[Πs:σ.τ ], s:σ ` τ ′ ≡ τ

∆ ` fix f(s:σ̂):τ̂ .ê ; fix f(s:σ):τ.e : Πs:σ.τ

∆ ` ê ; e : τe ∆ ` [τe]
wh
=⇒ [Πs:σ.τ ] ∆ `P M̂ ; M : ς ∆ ` M : ς ≤ σ ; N

∆ ` ê M̂ ; eN : τ [N/s]

∆ ` ê1 ; e1 : τ1 ∆ ` ê2 ; e2 : τ2

∆ ` 〈ê1, ê2〉 ; 〈e1, e2〉 : τ1 × τ2

∆ ` ê ; e : τe ∆ ` [τe]
wh
=⇒ [τ1 × τ2]

∆ ` πiê ; πie : τi
(i ∈ {1, 2})

∆ `κ M̂ ; M : ςM ∆ ` σ̂ ; σ ∆, s:ςM ` s : ςM ≤ σ ; N

∆ ` pack M̂ as 〈|σ̂|〉 ; pack (let s = M in (N : σ)) as 〈|σ|〉 : 〈|σ|〉

Signature elaboration: ∆ ` σ̂ ; σ

∆ ` 1 ; 1 ∆ ` [[T ]] ; [[T ]]
∆ ` τ̂ ; τ

∆ ` [[τ̂ ]] ; [[τ ]]

∆ `P M̂ ; M : σ ∆ ` M : σ ≤ [[T ]] ; N

∆ `
�
(M̂ ) ;

�
(N)

∆ ` σ̂1 ; σ1 ∆, s:σ1 ` σ̂2 ; σ2

∆ ` Πδs:σ̂1.σ̂2 ; Πδs:σ1.σ2

∆ ` σ̂1 ; σ1 ∆, s:σ1 ` σ̂2 ; σ2

∆ ` Σs:σ̂1.σ̂2 ; Σs:σ1.σ2

Signature coercion: ∆ ` M : ς ≤ σ ; N

∆ ` M : 1 ≤ 1 ; M ∆ ` M : [[T ]] ≤ [[T ]] ; M

∆ ` τ1 ≡ τ2

∆ ` M : [[τ1]] ≤ [[τ2]] ; M

∆ ` M :
�
(N) ≤ [[T ]] ; M

∆ ` N1
∼= N2 : [[T ]]

∆ ` M :
�
(N1) ≤

�
(N2) ; M

∆ ` π2M : ς2[π1M/s] ≤ σ ; N

∆ ` M : ∃s:ς1.ς2 ≤ σ ; N
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∆, s:σ′
1 ` s : σ′

1 ≤ σ1 ; M ∆, s:σ′
1, t:ς2[M/s] ` t : ς2[M/s] ≤ σ′

2 ; N (δ, δ′) 6= (par, tot)

∆ ` F : Πδs:σ1.ς2 ≤ Πδ′s:σ′
1.σ

′
2 ; λs:σ′

1. let t = FM in (N : σ′
2)

∆ ` π1M : ς1 ≤ σ1 ; N1 ∆ ` π2M : ς2[π1M/s] ≤ σ2[N1/s] ; N2

∆ ` M : Σs:ς1.ς2 ≤ Σs:σ1.σ2 ; 〈N1, N2〉

Module elaboration: ∆ `κ M̂ ; M : ς

∆ `P s ; s :
�

∆(s)(s) ∆ `P 〈〉 ; 〈〉 : 1
∆ ` τ̂ ; τ

∆ `P [τ̂ ] ; [τ ] :
�
([τ ])

∆ ` ê ; e : τ
∆ `P [ê] ; [e : τ ] : [[τ ]]

∆ ` σ̂1 ; σ1 ∆, s:σ1 `κ M ; N : ς2 κ v D

∆ `κ λs:σ̂1.M̂ ; λs:σ1.N : Πs:σ1.ς2

∆ ` σ̂1 ; σ1 ∆, s:σ1 `κ M ; N : ς2 S v κ

∆ `κu D λs:σ̂1.M̂ ; λs:σ1.N : Πpars:σ1.ς2

∆ `κF
F̂ ; F : ςF sF :

�
ςF (sF )

peel
=⇒ G : Πs:σ1.ς2

∆ `κM
M̂ ; M : ςM ∆, sF :ςF , sM :ςM ` sM : ςM ≤ σ1 ; N

∆ `κFtκM
F̂ M̂ ; 〈sF = F, 〈sM = M,GN〉〉 : ∃sF :ςF .∃sM :ςM .ς2[N/s]

∆ `κF
F̂ ; F : ςF sF :

�
ςF (sF )

peel
=⇒ G : Πpars:σ1.ς2

∆ `κM
M̂ ; M : ςM ∆, sF :ςF , sM :ςM ` sM : ςM ≤ σ1 ; N

∆ `κFtκM t S F̂ M̂ ; 〈sF = F, 〈sM = M,GN〉〉 : ∃sF :ςF .∃sM :ςM .ς2[N/s]

∆ `κ1
M̂1 ; M1 : ς1 ∆, s:ς1 `κ2

M̂2 ; M2 : ς2

∆ `κ1tκ2
〈s = M̂1, M̂2〉 ; 〈s = M1,M2〉 : Σs:ς1.ς2

∆ `κ M̂ ; M : ς s :
�

ς(s)
peel
=⇒ N : ς1 × ς2

∆ `κ π1M̂ ; 〈s = M,π1N〉 : ∃s:ς.ς1

∆ `κ M̂ ; M : ς s :
�

ς(s)
peel
=⇒ N : ς1 × ς2

∆ `κ π2M̂ ; 〈s = M,π2N〉 : ∃s:ς.ς2

∆ `κ M̂ ; M : ςM ∆ ` σ̂ ; σ ∆, s:ςM ` s : ςM ≤ σ ; N

∆ `κt D M̂ :: σ̂ ; (let s = M in (N : σ)) ::σ : σ

∆ `κ M̂ ; M : ςM ∆ ` σ̂ ; σ ∆, s:ςM ` s : ςM ≤ σ ; N

∆ `W M̂ :> σ̂ ; (let s = M in (N : σ)) :> σ : σ

∆ `κ1
M̂1 ; M1 : ς1 ∆, s:ς1 `κ2

M̂2 ; M2 : ς2

∆ `κ1tκ2
let s = M̂1 in M̂2 ; 〈s = M1,M2〉 : ∃s:ς1.ς2

∆ ` ê ; e : τ ∆ ` σ̂ ; σ ∆ ` τ ≡ 〈|σ|〉

∆ `S unpack ê as σ̂ ; unpack e as σ : σ
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