
Scalable, High Performance Ethernet Forwarding with
CUCKOOSWITCH

Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky†, David G. Andersen
Carnegie Mellon University, †Intel Labs

{dongz,binfan,hl,dga}@cs.cmu.edu, michael.e.kaminsky@intel.com

ABSTRACT
Several emerging network trends and new architectural ideas are
placing increasing demand on forwarding table sizes. From massive-
scale datacenter networks running millions of virtual machines to
flow-based software-defined networking, many intriguing design
options require FIBs that can scale well beyond the thousands or
tens of thousands possible using today’s commodity switching chips.

This paper presents CUCKOOSWITCH, a software-based Ethernet
switch design built around a memory-efficient, high-performance,
and highly-concurrent hash table for compact and fast FIB lookup.
We show that CUCKOOSWITCH can process 92.22 million minimum-
sized packets per second on a commodity server equipped with eight
10 Gbps Ethernet interfaces while maintaining a forwarding table
of one billion forwarding entries. This rate is the maximum packets
per second achievable across the underlying hardware’s PCI buses.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network communica-
tions; C.2.6 [Internetworking]: Routers; E.1 [Data]: Data Struc-
tures; E.2 [Data]: Data Storage Representations

General Terms
Algorithm, Design, Measurement, Performance

Keywords
Software Switch; Cuckoo Hashing; Scalability

1. INTRODUCTION

This paper explores a question that has important ramifications for
how we architect networks: Is it possible to, and how can we, build a
high-performance software-based switch that can handle extremely

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
CoNEXT’13, Dec 09–12 2013, Santa Barbara, CA, USA.
ACM 978-1-4503-2101-3/13/12.
http://dx.doi.org/10.1145/2535372.2535379

large forwarding tables, on the order of millions to billions of entries.
Our hope is that by doing so, this paper contributes not just a set of
concrete techniques for architecting the forwarding table (or FIB)
of such a device, but also shows that, indeed, network designs that
require huge FIBs could be implemented in a practical manner.

Our work is motivated by several trends in network architecture:
First, enterprise networks [22] and datacenter networks [16, 25, 7]
have been rapidly growing in scale, both because of the adoption of
high-bisection topologies and with the emergence of low-cost, high-
data-rate switches from new vendors such as Arista and Mellanox.
This growth means that it is not inconceivable to have hundreds of
thousands of devices interconnected in a single, extremely large,
building. The addition of virtualization, where machines may have
multiple addresses for hosted VMs, further increases this scale.

Second, new network designs such as software-defined network-
ing (SDN) and content-centric networking (CCN) may require or
benefit from extremely large, fast forwarding tables. For example,
source+destination address flow-based routing in a software defined
network can experience quadratic growth in the number of entries
in the FIB; incorporating other attributes increases table sizes even
more. Many CCN-based approaches desire lookup tables that con-
tain an entry for every cache-able chunk of content. While these
latter motivations are still undergoing research, we hope that by
showing that huge FIBs can be practically implemented, the design-
ers will have more freedom to choose the best overall approach.

In all of these contexts, line speeds continue to increase, with 10
Gbps and 40 Gbps links now becoming both common and affordable.
The consequence is that we are now asking network switches to
handle not just more lookups per second, but more lookups per
second into increasingly larger tables. Existing solutions have been
unable to achieve all of these goals.

Perhaps the most common approach to building fast Ethernet
switches is to use a custom ASIC coupled with specialized, high-
speed memory (e.g., TCAM) to store the forwarding table. These
memories, unfortunately, are expensive, power hungry, and very lim-
ited in size. For example, the midrange Mellanox SX1016 64-Port
10GbE switch [2] supports only 48K Layer-2 forwarding entries.

Software-based switches on commodity hardware, in contrast, can
affordably store larger tables in SRAM (CPU cache) or DRAM, and
we take this approach in this paper. Conventional hash-table based
lookup tables, however, are typically memory-inefficient, which
becomes important when attempting to achieve large scale or fit
lookup tables into fast, expensive SRAM. There are two general
reasons for this inefficiency: First, extra space is required to avoid
collisions in the hash tables, often increasing their size by 2× or
more. Second, for high performance, to avoid locking overhead
while allowing multiple threads to read from the forwarding table,

Kernel Space

User Space

App App

Environment Abstract Layer

Hardware

NICsPo
rts

NIC Driver Memory Pool
Manager

Buffer
Manager

Queue
Manger

Ring
Manager

Flow
Classification

Intel DPDK
Libraries

PCIe

Figure 1: Architecture of Intel DPDK.

pointer-swapping approaches such as Read-Copy Update (RCU) [5]
are often used to update the FIB, which require storing two full
copies of the table instead of one.

This paper therefore proposes the high-performance CUCK-
OOSWITCH FIB, which provides the basis for building scalable
and resource-efficient software-based Ethernet switches. CUCK-
OOSWITCH combines a new hash table design together with Intel’s
just-released high-performance packet processing architecture (the
Intel Data Plane Development Kit [20], or DPDK for short) to create
a best-of-breed software switch. The forwarding table design is
based upon memory-efficient, high-performance concurrent cuckoo
hashing [14], with a new set of architectural optimizations to craft a
high-performance switch FIB. The FIB supports many concurrent
reader threads and allows dynamic, in-place updates in realtime,
allowing the switch to both respond instantly to FIB updates and to
avoid the need for multiple copies to be stored.

Our evaluation (Section 4) shows that CUCKOOSWITCH can
achieve the full 64-byte packet forwarding throughput of our eight-
port 10GbE switch with one billion FIB entries.

2. BUILDING BLOCKS

In this section, we provide the salient details about two important
components that our system builds upon: First, the Intel Data Plane
Development Kit, which we use unmodified for high-throughput
packet I/O in user-space; and second, optimistic concurrent cuckoo
hashing, which we extend and optimize as described in Section 3 to
create a high-throughput forwarding table for switching applications.

2.1 Intel Data Plane Development Kit

Intel’s Data Plane Development Kit, or DPDK, is a set of libraries
and optimized NIC drivers designed for high-speed packet process-
ing on x86 platforms. It places device drivers in user-space to allow
zero-copy packet processing without needing kernel modifications.
For efficiency, it hands batches of packets to processing threads to be
processed together. These techniques combine to provide developers

4-way cuckoo hash table

key value

bucket version
counters

key x

hash1(x)

hash2(x)

Figure 2: A 2,4 cuckoo hash table.

with a straightforward programming environment for constructing
extremely high-performance packet processing applications. Fig-
ure 1 shows the high level architecture of Intel DPDK. Our system
uses the DPDK for all of its packet I/O. Readers familiar with prior
work such as RouteBricks [12] and the PacketShader IO-engine [18]
will likely recognize the DPDK as a high-performance, industrially-
engineered successor to these approaches.

Three aspects of the DPDK are particularly relevant to the design
and performance of our system:

First, the DPDK’s Memory Manager provides NUMA (Non-
Uniform Memory Access)-aware pools of objects in memory. Each
pool is created using processor “huge page table” support in order
to reduce TLB misses. The memory manager also ensures that all
objects are aligned properly so that access to them is spread across
all memory channels. We use the DPDK’s memory manager for all
data structures described in this paper, and as a consequence, they
benefit from this NUMA awareness, alignment, and huge page table
support.

Second, the DPDK’s user-space drivers operate in polling mode,
eliminating interrupt overhead. This speeds up processing, but also
consumes CPU. Our results are therefore most relevant to dedi-
cated switching and packet processing scenarios where the continual
CPU overhead of polling does not interfere with other tasks on the
machine.

Third, as in prior work such as the PacketShader’s I/O engine,
RouteBricks and Netmap [18, 12, 28], the DPDK delivers packets
in large batches for efficiency. As a result, many of our techniques
(Section 3) also emphasize batching for efficiency in a way that is
aligned with the DPDK’s batching.

2.2 Optimistic Concurrent Cuckoo Hashing

Our second building block is our recent multiple-reader, single writer
“optimistic concurrent cuckoo hashing” [14]. As described in Sec-
tion 3, we improve this basic mechanism by optimizing it for high-
throughput packet forwarding by leveraging the strong x86 mem-
ory ordering properties and by performing lookups in batches with
prefetching to substantially improve memory throughput.

At its heart, optimistic cuckoo hashing is itself an extension of
cuckoo hashing [26], an open addressing hashing scheme. It achieves
high memory efficiency, and ensures expected O(1) retrieval time
and insertion time. As shown in Figure 2, cuckoo hashing maps each

item to multiple candidate locations by hashing1 and stores this item
in one of its locations; inserting a new item may relocate existing
items to their alternate candidate locations. Basic cuckoo hashing
ensures 50% table space utilization, and a 4-way set-associative hash
table improves the utilization to over 95% [13].

Optimistic concurrent cuckoo hashing [14] is a scheme to coor-
dinate a single writer with multiple readers when multiple threads
access a cuckoo hash table concurrently. This scheme is optimized
for read-heavy workloads, as looking up an entry in the table (the
common case operation) does not acquire any mutexes. To ensure
that readers see consistent data with respect to the concurrent writer,
each bucket is associated with a version counter by which readers
can detect any change made while they were using a bucket. The
writer increments the version counter whenever it modifies a bucket,
either for inserting a new item to an empty entry, or for displacing
an existing item; each reader snapshots and compares the version
numbers before and after reading the corresponding buckets.2 In
this way, readers detect read-write conflicts from the version change.
To save space, each counter is shared by multiple buckets by strip-
ing. Empirical results show that using a few thousand counters in
total allows good parallelism while remaining small enough to fit
comfortably in cache.

Before the changes we make in this paper, “2,4 optimistic con-
current cuckoo hashing” (each item is mapped to two candidate
locations, each location is 4-way associative) achieved high memory
efficiency (wasting only about 5% table space) and high lookup per-
formance (each lookup requires only two parallel cacheline-sized
reads). Moreover, it allowed multiple readers and a single writer to
concurrently access the hash table, which substantially improves the
performance of read-intensive workloads without sacrificing perfor-
mance for write-intensive workloads. For these reasons, we believed
it is a particularly appropriate starting point for a read-heavy network
switch forwarding table.

3. DESIGN AND IMPLEMENTATION

Our goals for CUCKOOSWITCH are twofold: First, achieve ex-
tremely high packet forwarding rates; as close to the limit of the
hardware as possible. And second, store the switching FIB in as little
space as possible in order to minimize the physical size, cost, and
power consumption of a software-based switch using this design.

CUCKOOSWITCH achieves high throughput and memory effi-
ciency through architectural and application-specific improvements
to its lookup data structure – optimistic concurrent cuckoo hash-
ing. This section first presents the overall view of packet processing
and how CUCKOOSWITCH uses the DPDK to perform packet I/O
between user-level threads and the underlying hardware. It then
discusses the architectural and algorithmic improvements we make
to the FIB structure to achieve fast lookups and high-performance
packet switching.

One of the biggest challenges in this design is to effectively mask
the high latency to memory, which is roughly 100 nanoseconds. The
maximum packet forwarding rate of our hardware is roughly 92
million packets per second, as shown in Section 4. At this rate, a
software switch has on average only 10.8 nanoseconds to process
each packet. As a result, it is obviously necessary to both exploit

1We use terms “location” and “bucket” interchangeably in the paper.
2This description of the optimistic scheme differs from that in the cited paper.

In the process of optimizing the scheme for x86 memory ordering, we discovered a
potential stale-read bug in the original version. We corrected this bug by moving to the
bucket-locking scheme we describe here.

parallelism and to have a deeper pipeline of packets being forwarded.
Our techniques therefore aggressively take advantage of multicore,
packet batching, and memory prefetching.

3.1 Packet Processing Overview

CUCKOOSWITCH’s packet processing pipeline has three stages. In
the first stage, NICs receive packets from the network and push them
into RX queues using Direct Memory Access (DMA). To spread
the load of packet processing evenly across all CPU cores, the NICs
use Receive Side Scaling (RSS). RSS is a hardware feature that
directs packets to different RX queues based on a hash of selected
fields in the packet headers; this ensures that all packets within a
flow are handled by the same queue to prevent reordering. After
incoming packets are placed into the corresponding RX queues,
a set of user-space worker threads (each usually bound to a CPU
core) reads the packets from their assigned RX queues (typically in
a round-robin manner), and extracts the destination MAC address
(DMAC) from each packet. Next, DMACs are looked up in the
concurrent multi-reader cuckoo hash table, which returns the output
port for each DMAC. Worker threads then distribute packets into
the TX queues associated with the corresponding output port. In
the final stage, NICs transmit the packets in TX queues. To avoid
contention and the overhead of synchronization, as well as to use
the inter-NUMA domain bandwidth efficiently, for each CPU core
(corresponding to one worker thread), we create one RX queue for
this core on each NIC in the same NUMA domain with this core.
This NUMA-aware all-to-all traffic distribution pattern allows both
high performance packet processing and eliminates skew.

Figure 3 illustrates a simplified configuration with two single-port
NICs and two worker threads. In this setting, each port splits its
incoming packets into two RX queues, one for each thread. Two
worker threads grab packets from the two RX queues associated
with it and perform a DMAC lookup. Then, packets are pushed by
worker threads into TX queues based on the output port returned
from the DMAC lookup.

For efficiency, the DPDK manages the packet queues to ensure
that packets need not be copied (after the initial DMA) on the receive
path. Using this setup, the only packet copy that must occur happens
when copying the packet from an RX queue to an outbound TX
queue.

3.2 x86 Optimized Hash Table

Our first contribution is an algorithmic optimization in the imple-
mentation of optimistic concurrent cuckoo hashing that eliminates
the need for memory barriers on the DMAC lookup path. As we
show in the evaluation, this optimization increases hash table lookup
throughput by over a factor of two compared to the prior work upon
which we build.

The x86 architecture has a surprisingly strong coherence model
for multi-core and multi-processor access to memory. Most relevant
to our work is that a sequence of memory writes at one core are
guaranteed to appear in the same order at all remote CPUs. For
example, if three writes are executed in order W1, W2, and W3,
if a remote CPU node issues two reads R1 and R2, and the first
read R1 observes the effect of W3, then R2 must observe the effects
of W1, W2, and W3. This behavior is obtained without using
memory barriers or locks, but does require the compiler to issue the
writes in the same order that the programmer wants using compiler
reordering barriers. Further details about the x86 memory model

NIC 1

NIC 2

pkt

pkt

RX queues

Thread 1

External Port Memory Read Memory Write

TX queues

Port 1, Queue 1

Port 1, Queue 2

Port 2, Queue 1

Port 2, Queue 2

Port 1

Port 2

NIC 1

NIC 2

pkt

pkt

PCIe Physical Medium

Thread 2

Figure 3: Packet processing pipeline of CUCKOOSWITCH.

can be found in Section 8.2.2 of the Intel 64 and IA-32 Architectures
Software Developer’s Manual Volume 3A [21]. Here, we describe
how we take advantage of this stronger memory model in order to
substantially speed up optimistic concurrent cuckoo hashing.

The original optimistic concurrent cuckoo hashing work proposed
an optimistic locking scheme to implement lightweight atomic dis-
placement and support a single writer. Displacing keys from one
to the other candidate bucket is required when we insert new keys
using cuckoo hashing. In that optimistic scheme, each bucket is
associated with a version counter (with lock striping [19] for higher
space efficiency, so each counter is shared among multiple buckets
by hashing). Before displacing a key between two different buckets,
the single writer uses two atomic increase instructions to increase
two associated counters by 1 respectively, indicating to other readers
an on-going update of these two buckets. After the key is moved
to the new location, these two counters are again increased by 1 us-
ing atomic increase instructions to indicate the completion. On the
reader side, before reading the two buckets for a given key, a reader
snapshots the version counters of these two buckets using atomic
read instructions. If either of them is odd, there must be a concurrent
writer touching the same bucket (or other buckets sharing the same
counter), so it should wait and retry. Otherwise, it continues reading
the two buckets. After finishing reading, it again snapshots the two
counters using atomic read instructions. If either counter has a new
version, the writer may have modified the corresponding bucket, and
the reader should retry. Algorithm 1 shows the pseudo-code for the
process.

The original implementation of concurrent multi-reader
cuckoo hashing [1] implemented atomic read/increase using the
__sync_add_and_fetch GCC builtin. On x86, this builtin com-
piles to an expensive (approximately 100 cycles) atomic instruction.
This instruction acts as both a compiler reordering barrier and a
hardware memory barrier, and ensures that any subsequent atomic
read at any other core will observe the update [21].

These expensive guarantees are, in fact, stronger than needed
for implementing an Ethernet switch FIB. On a general platform,
but not x86, these atomic instructions are necessary for correctness.
On a processor allowing stores to be reordered with stores, when a
reader first snapshots a version counter, it could see the new version
of the counter, but then read the old version of the data (because the
stores were reordered). It would then read the version counter again,

Algorithm 1: Original lookup and key displacement.

OriginalLookup(key)
// lookup key in the hash table, return value
begin

b1, b2 ← key’s candidate buckets
while true do

v1, v2 ← b1, b2’s version (by atomic read)
full CPU memory barrier (runtime)
if v1 or v2 is odd then continue

if key found in b1 or b2 then
read value of key from b1 or b2

else
set value to NotFound

full CPU memory barrier (runtime)
v′1, v′2 ← b1, b2’s version (by atomic read)
if v1! = v′1 or v2! = v′2 then continue

return value

OriginalDisplace(key, b1, b2)
// move key from bucket b1 to bucket b2
// displace operations are serialized (in the single writer)
begin

incr b1 and b2’s version (by atomic incr)
full CPU memory barrier (runtime)
remove key from b1
write key to b2
full CPU memory barrier (runtime)
incr b1 and b2’s version (by atomic incr)

again seeing the new version, and incorrectly concluding that it must
have seen a consistent version of the data.

The stronger, causally consistent x86 memory model does not
allow reordering of stores relative to each other, nor does it allow
reads to be reordered relative to other reads. Therefore, when a
reader thread reads the version counters, the data, and the version
counters again, if it observes the same version number in both reads,

Algorithm 2: Optimized lookup and key displacement. Requires
total store order memory model.

OptimizedLookup(key)
// lookup key in the hash table, return values
begin

b1, b2 ← key’s candidate buckets
while true do

v1, v2 ← b1, b2’s version (by normal read)
compiler reordering barrier
if v1 or v2 is odd then continue

if key found in b1 or b2 then
read value of key from b1 or b2

else
set value to NotFound

compiler reordering barrier
v′1, v′2 ← b1, b2’s version (by normal read)
if v1! = v′1 or v2! = v′2 then continue

return value

OptimizedDisplace(key, b1, b2)
// move key from bucket b1 to bucket b2
// displace operations are serialized (in the single writer)
begin

incr b1 and b2’s version (by normal add)
compiler reordering barrier
remove key from b1
write key to b2
compiler reordering barrier
incr b1 and b2’s version (by normal add)

then there could not have been a write to the data. At the level
we have discussed it, a remote reader may not observe the most
recent update to the FIB, but will be guaranteed to observe some
correct value from the past. In order to achieve this, it is simply
necessary to ensure that the compiler does not reorder the store and
read instructions using a compiler reordering barrier3 between the
version counter reads, data read, and subsequent version counter
reads.4 Algorithm 2 shows the optimized pseudo-code for lookup
and key displacement.

Finally, while the causal ordering does not guarantee freshness
at remote nodes, a full hardware memory barrier after inserting an
updated value into the FIB will do so. This is accomplished in our
system by having the writer thread obtain a pthread mutex surround-
ing the entire insertion process (not shown), which automatically
inserts a full CPU memory barrier that force any writes to become
visible at other cores and nodes in the system via the cache coherence
protocol.

3.3 Batched Hash Table Lookups

In the original concurrent multi-reader cuckoo hashing, each reader
thread issued only one lookup at a time. This single-lookup design

3In GCC, this can be accomplished using __asm__ __volatile__("" :::
"memory")

4It is also necessary to mark access to these fields volatile so that the compiler
will not optimize them into local registers. Doing so does not harm performance much,
because the second reads will still be satisfied out of L1 cache.

suffers from low memory bandwidth utilization, because each lookup
only requires two memory fetches while a modern CPU can have
multiple memory loads in flight at a time (and, indeed, requires such
in order to use its full memory bandwidth). In consequence, the
lookup performance of the cuckoo hash table is severely restricted
by the memory access latency. As we will show in Section 4, when
the size of the hash table cannot fit in the fast CPU cache (SRAM),
the performance drops dramatically.

However, this design is unnecessarily general in the context of
a high-performance packet switch: The packet I/O engine we used
already must take a batch-centric approach to amortize the cost of
function calls to send/receive packets, to avoid unnecessary oper-
ations such as RX/TX queue index management, and to limit the
number of bus transactions and memory copies. As a result, by the
time a worker thread begins running, it already has a buffer contain-
ing between 1 and 16 packets to operate upon. Based on this fact,
we therefore combine all the packets in the buffer as a single batch,
and perform the hash table lookup for all of them at the same time.
We will discuss the reason why we pick this aggressive batching
strategy in Section 4.

Because of the synergy between batching and prefetching, we
describe the resulting algorithm with both optimizations after ex-
plaining hash table prefetching next.

3.4 Hash Table Prefetching

Modern CPUs have special hardware to prefetch memory locations.
Programmers and compilers can insert prefetch instructions into
their programs to tell the CPU to prefetch a memory location into
a given level of cache. In traditional chaining-based hash tables,
prefetching is difficult (or impossible) because traversing a chain
requires sequential dependent memory dereferences. The original
concurrent multi-reader cuckoo hash table also saw little benefit
from prefetching because each lookup query reads only two memory
locations back to back; prefetching the second location when reading
the first allows limited “look ahead.”

With batching, however, prefetching plays an important role. Each
batch of lookup requests touches multiple memory locations—two
cacheline-sized buckets for each packet in the batch—so intelligently
prefetching these memory locations provides substantial benefit.
Algorithm 3 illustrates how we apply prefetching along with batched
hash table lookups.

For each lookup query, we prefetch one of its two candidate
buckets as soon as we finish hash computation; the other bucket is
prefetched only if the corresponding key is not found in the first
bucket. We refer to this strategy as “two-round prefetching.” This
strategy exploits several features and tradeoffs in the CPU execution
pipeline. First, because modern CPUs have different execution
units for arithmetic operations and memory loads/stores, carefully
interleaving the hash computation with memory prefetching uses all
of the execution units in the CPU. Second, the alternative bucket of
each key is not prefetched at the very beginning to save CPU’s load
buffer5. Because the chance that reading the second bucket is useful
is only 50%, our strategy better use the load buffer and allow the
CPU to do more useful work compared to prefetching both buckets
immediately after the hash computation.

To summarize, our lookup algorithm ensures that there are several
memory loads in flight before blocking to wait on the results. It

5 The interaction with the L1 Dcache load buffers for load operations. When the
load buffer is full, the micro-operations flow from the front-end of CPU will be blocked
until there is enough space [4].

Algorithm 3: Batched hash table lookups with prefetching.

BatchedLookup(keys[1..n])
// lookup a batch of n keys in the hash table, return their values
begin

for i← 1 to n do
b1[i], b2[i]← keys[i]’s candidate buckets
prefetch b1[i]

while true do
// snapshot versions for all buckets
for i← 1 to n do

v1[i], v2[i]← b1[i], b2[i]’s version

compiler reordering barrier
if ∃i, v1[i] or v2[i] is odd then continue

for i← 1 to n do
if keys[i] found in b1[i] then

read values[i] of keys[i] from b1[i]

else
prefetch b2[i]

for i← 1 to n do
if keys[i] not found b1[i] then

if keys[i] found in b2[i] then
read values[i] of keys[i] from b2[i]

else
set values[i] to NotFound

compiler reordering barrier
for i← 1 to n do

v′1[i], v′2[i]← b1[i], b2[i]’s version

if ∃i, v1[i]! = v′1[i] or v2[i]! = v′2[i] then continue

return values[1..n]

also ensures that all of the lookups will be processed with only two
rounds of memory reads, capping the maximum processing latency
that the batch will experience.

The algorithm also explains the synergy between batching and
prefetching: Large batch sizes make it beneficial to prefetch many
locations at once. Without batching, only the alternate hash location
can be prefetched. Thus, one packet is processed per memory-access
latency, at a cost of two cache-lines retrieved. With batching, using
our two-round prefetching strategy to reduce the overall memory
bandwidth use, we can process n packets, when n is appropriately
large, in two memory-access latencies with only 1.5 cache-line
retrievals per packet on average.

Our evaluation in Section 4 shows that the combination of batch-
ing and prefetching provides a further 2× increase in local hash table
lookup throughput, and a roughly 30% increase in the end-to-end
packet forwarding throughput. The performance benefit increases
when the table is large.

3.5 Reducing TLB Misses with Huge Pages

The standard unit of page allocation provided by CPUs is 4 KiB.
For programs that allocate a large amount of memory, this relatively
small size means a large number of page table entries. These page
table entries, which translate from virtual to physical addresses, are

cached in the CPU’s Translation Lookaside Buffer (TLB) to improve
performance. The size of the TLB is limited, however, and TLB
misses noticeably slow the memory access time. Modern CPUs
offer a solution called Huge Page Table support, where the program-
mer can allocate much larger pages (e.g., 2 MiB), so that the same
amount of allocated memory takes far fewer pages and thus fewer
TLB entries. The CPUs in our experimental platform have 64 DLTB
(Data Translation Lookaside Buffer) entries for 4 KiB pages with 32
DLTB entries for 2 MiB pages [4]. The factor of 256× in the amount
of memory that can be translated by TLB greatly reduces the TLB
misses and improves the switch performance. As demonstrated in the
next section, using huge pages improves packet forwarding through-
put by roughly 1 million more packets/second forwarded without
batching, and about 3 million more packets/second forwarded when
used in conjunction with batching.

4. EVALUATION

The evaluation proceeds in three parts. First, we evaluate the “raw”
packet forwarding throughput of our experimental platform, with no
switching or FIB lookups involved. These results give us a baseline
for the forwarding capacity of our hardware platform when using
the DPDK.

Second, we examine how the proposed optimizations contribute
to the performance of both the hash table alone (local) and of the
full system forwarding packets over the network.

Third, we compare CUCKOOSWITCH with other popular hash
table implementations, for both hash table micro-benchmarks and
full system evaluation.

The optimized cuckoo hash table can serve over 400 million small
key/value (key+value fits in 64 bits) lookups per second with 16
threads if the hash table fits in L3 cache. When the hash table is too
large for cache, the optimizations we applied successfully mitigate
the high DRAM access latency, maintaining the throughput at over
300 million lookups per second, even with one billion entries in
the table, while remaining completely thread-safe. The end-to-end
system evaluation shows that CUCKOOSWITCH achieves maximum
64-byte packet throughput (it is bottlenecked by the PCIe interface
to the network cards) even with one billion forwarding entries.

Throughout the evaluation, we use SI prefixes (e.g., K, M, G) and
IEC/NIST prefixes (e.g., Ki, Mi, Gi) to differentiate between powers
of 10 and powers of 2.

4.1 Evaluation Setup

Platform Specification Figure 4 shows the hardware topology of
our evaluation platform. CUCKOOSWITCH runs on a server with
two Intel Xeon E5-2680 CPUs connected by two Intel Quickpath
Interconnect (QPI) links running at 8 GT/s. Each CPU has 8 cores
and an integrated PCIe I/O subsystem that provides PCIe communi-
cation directly between the CPU and devices. The server has four
dual-port 10GbE cards, for a total bandwidth of 80 Gbps (10 Gbps×
2 × 4). Table 1 lists the model and the quantity of each component
in our platform. The server runs 64-bit Ubuntu 12.04 LTS.

Traffic Generator We configured two servers to generate traffic
in our test environment. Each server has two 6-core Xeon L5640
CPUs and two dual-port 10GbE NICs. These two machines connect
directly to our evaluation platform (not through a switch). The
traffic generators can saturate all eight ports (the full 80 Gbps) with
14.88 million packets per second (Mpps) each port, using minimum-

CPU 1

Integrated
PCIe Controller

Core 1 Core 2

Core 3 Core 4

Core 5 Core 6

Core 7 Core 8

NIC 1

CPU 2

Integrated
PCIe Controller

Core 1 Core 2

Core 3 Core 4

Core 5 Core 6

Core 7 Core 8

QPI

NIC 2

NIC 3

NIC 4
PCIe

Gen2 x8

RAM
RAM

RAM
RAM

RAM
RAM

RAM
RAM

Port 1
Port 2

Port 3
Port 4

Port 5
Port 6

Port 7
Port 8

PCIe
Gen2 x8

10GbE port

10GbE port

Figure 4: Topology of the evaluation platform.

CPU 2 × Intel Xeon E5-2680 @ 2.7 GHz
cores 2 × 8 (Hyper-Threading disabled)
Cache 2 × 20 MiB L3-cache
DRAM 2 × 32 GiB DDR3 SDRAM
NIC 4 × Intel 82599-based dual-port 10GbE

Table 1: Components of the platform.

sized 64 byte packets. This is the peak packet rate achievable on
10GbE [28].

Other Hash Tables Used for Comparison As one component of
our evaluation, we compare both the hash table and packet forward-
ing throughput of optimized optimistic concurrent cuckoo hashing
with several popular hash tables.

One of optimistic cuckoo’s major benefits is that it can be read
concurrently by many threads while being simultaneously updated.
Few existing concurrent hash tables have good performance under
these circumstances. We evaluate the Intel TBB (Threading Building
Blocks) [6]’s concurrent hash map as one thread-safe example. Its
performance is poor in our scenario, because it is poorly-matched
to the read-intensive nature of a switch FIB. We therefore also
compare to three non-thread-safe hash tables: the STL’s hash map
and Google’s sparse hash map and dense hash map.

It is worth noting that sparse hash map, dense hash map and
STL’s hash map use the identity function to compute the hash for
integer keys, whereas ours uses the stronger CRC32c hash. We
believe this difference accounts for part of the higher throughput
achieved by dense hash map when the FIB is sufficiently small to
fit in L3 cache.

These non-thread-safe tables do not support concurrent reads and
writes. In our evaluation, they are given the benefit of the doubt
and used as an immutable store that multiple threads read from at
a time. Such a design is not uncommon in switches, and is often
handled using “pointer swapping”: In order to update a read-only
hash table, all updates are directed to a writable copy of the table,
and the readable and writable copies of the tables are periodically
exchanged. This technique is similar to RCU (read-copy-update)
synchronization that is popular in the Linux kernel. It provides a
way to achieve the throughput of these fast read-only hash tables,
but requires doubling their memory use to have two copies of the
table at a time. Because DRAM is an expensive and power-hungry

Packet Size Throughput Throughput Bottleneck(Bytes) (Mpps) (Gbps)

64 92.22 61.97 PCIe bandwidth
128 66.24 78.43 PCIe bandwidth
192 47.17 80.00 Network bandwidth
256 36.23 80.00 Network bandwidth

Table 2: Raw packet I/O throughput.

component, designs that support in-place updates have a substantial
advantage, if they can provide comparably high throughput.

4.2 Raw Packet I/O Throughput

We first examine the raw packet I/O achieved by our evaluation
platform when handling packets of different sizes. Here, raw packet
I/O is defined by forwarding a packet back out its incoming port
without performing any processing. Because this experiment re-
quires no forwarding table lookup, its throughput provides the upper
bound/maximum throughput that CUCKOOSWITCH can possibly
achieve.

Table 2 shows the results. When doing raw packet I/O with 64-
byte Ethernet packets, our evaluation system can only process 61.97
Gbps (or 92.22 Mpps) in total, which is 20% lower than the theoreti-
cal maximum throughput (80 Gbps). When the packets are larger
than 128 bytes, the 8 ports can be saturated and achieve 80 Gbps
throughput. To identify the bottleneck, we measured the throughput
of each individual port with 64-byte packets. Our hardware can sat-
urate each individual port, but can only achieve 23.06 Mpps through
two ports of the same NIC. All four NICs behave the same, and
throughput scales linearly when going from one to four NICs.

We believe the NICs themselves are limited by their PCIe Gen2
x8 connections when the overhead of sending small packets over
PCI is taken into account. These x8 links provide 32 Gbps in each
direction (more than the 20 needed). However, once PCIe transaction
level packets and the PCIe ACK/NACK packets are considered, we
believe it is insufficient. Intel’s own DPDK results are very similar
to our throughput [3], achieving 93 Mpps with 4 dual-port NICs,
and they note that their system is PCI-limited.

The good news for the scaling of our software-based switch is that
the inter-processor QPI is not a bottleneck. We perform a similar ex-
periment in which packets are forwarded to a predetermined remote
outgoing port based upon its incoming port ID, i.e., the outgoing
port is always on the other CPU socket. Our throughput results are
identical in this cross-CPU case, confirming that QPI bandwidth is
plentiful.

A second important result of this experiment is that it shows
that the system achieves full hardware throughput when forwarding
a single high-bandwidth flow per input port. In this experiment,
packets arriving at a single port were sent to a single RX queue
processed by a single thread, as would happen with one flow under
RSS. Thus, in the rest of our evaluation, we focus on experiments
with addresses drawn uniformly at random from the entire FIB.
This is the worst-case workload for the hash table, as caching is
ineffective.

Summary: With minimum-sized packets, the upper bound of
CUCKOOSWITCH’s throughput on our testbed is 61.97 Gbps (92.22
Mpps), and this throughput is limited by PCIe bandwidth from

500K 1M 2M 4M 8M 16M
of FIB Entries

0

50

100

150

200

250

300

350

400

T
h
ro

u
g
h
p
u
t

(M
o
p
s)

concurrent cuckoo

+hugepage

+memorder

+batching

+prefetch

Figure 5: Contribution of optimizations to the hash table per-
formance. Optimizations are cumulative.

NICs to CPUs. With larger packets, the system can achieve the full
network bandwidth.

4.3 Hash Table Micro-benchmark

We next evaluate the stand-alone performance of the hash table
itself. These experiments do not involve packet forwarding, just
synthetically generated, uniform random successful lookups in the
hash table. We begin by examining (1) how each optimization
described in Section 3 improves the hash table performance; and
(2) how the optimized table compares with other popular hash table
implementations.

Factor Analysis of Lookup Performance We first measure the
incremental performance improvement from each individual opti-
mization on top of basic concurrent cuckoo hashing.

• baseline: concurrent cuckoo is the basic concurrent multi-
reader cuckoo hash table, serving as the baseline.

• +hugepage enables 2 MiB x86 huge page support in Linux to
reduce TLB misses.

• +memorder replaces the previous atomic
__sync_add_and_fetch instruction with x86-specific
memory operations.

• +batching groups hash table lookups into small batches and
issues memory fetches from all the lookups at the same time
in order to better use memory bandwidth. Here, we assume
a batch size of 14 (a value picked empirically based upon the
performance results).

• +prefetch is used along with batching to prefetch memory
locations needed by the lookup queries in the same batch.

Figure 5 shows the result of using 16 threads. The x-axis rep-
resents the number of entries in the hash table, while the y-axis
represents the total lookup throughput, measured in Million Opera-
tions Per Second (Mops). In general, combining all optimizations
improves performance by approximately 5.6× over the original con-
current cuckoo hashing. “hugepage” improves performance only
slightly, while “x86 memory ordering” boosts the performance by
more than 2×. By reducing serialized memory accesses, the opti-
mized cuckoo hash table better uses the available memory bandwidth.
Without prefetching, “batched lookup” improves the performance
by less than 20% when the table is large, and has even worse per-
formance when the table is small enough to fit in the L3 cache of

500K 1M 2M 4M 8M 16M
of FIB Entries

0

100

200

300

400

500

T
h
ro

u
g
h
p
u
t

(M
o
p
s)

w/o batching
2
4
14
16

Figure 6: Lookup throughput of hash table vs. batch size.

CPU. However, when combined with our “two-round prefetching”,
performance increases substantially, especially when the table is
large. We explain this phenomenon in the next paragraph.

Batch Size As we discussed in Section 3, the batch size affects the
performance of the optimized cuckoo hash table. Because the size of
the largest batch we receive from the packet I/O engine is 16 packets,
we therefore evaluate the throughput achieved by our optimized
cuckoo hash table with no batching (batches of one lookup) up
through batches of 16 lookups. Our motivation is to gain insight on
how to perform forwarding table lookups for batches with different
sizes.

Figure 6 shows five representative batch sizes. As illustrated in
the figure, up to batches of 4 lookups, there is a significant per-
formance improvement for both small and large tables. When the
batch size grows to 5 or more, the lookup performance of our op-
timized cuckoo hash table slightly drops if the table is small, and
the performance increases greatly for tables that is too large to fit
in CPU’s SRAM-based L3 cache. That is to say, larger batches
become more important as the table size grows. This makes intuitive
sense: Small tables fit entirely in the CPU’s SRAM-based L3 cache,
and so fewer concurrent requests are needed to mask the latency of
hash table lookups. When the number of entries increases from 2
million (8 MiB of hash table) to 4 million (16 MiB), performance
of small batch sizes decreases significantly because the hash table
starts to exceed the size of cache. Past 4 million entries, doubling the
number of hash table entries causes a small, roughly linear decrease
in throughput as the cache hit rate continues to decrease and the
probability of TLB misses begins to increase, even with huge pages
enabled.

On the other hand, larger batches of lookups ensure relatively
stable performance as the number of FIB entries increases. In other
words, batching and prefetching successfully masks the effect of
high DRAM access latency. This is exactly what CUCKOOSWITCH

desires, because when the number of FIB entries is small, the lookup
performance of the hash table is already more than enough to serve
the network traffic; however, when the number of FIB entries is large,
improved lookup performance increases forwarding throughput.

The figure also shows that the overall best batch size is 14, which
is why we pick this batch size in the previous experiment. Moreover,
even though having a batch size of 14 gives us the highest perfor-
mance, other batch sizes are not far below. For example, batching

500K 1M 2M 4M 8M 16M
of FIB Entries

0

100

200

300

400

500

600

700
T
h
ro

u
g
h
p
u
t

(M
o
p
s)

optimized cuckoo
dense_hash_map

STL hash_map

sparse_hash_map

concurrent_hash_map

Figure 7: Lookup throughput comparison between optimized
cuckoo hashing and other hash table implementations.

16 lookups is only 6% slower than batching 14. Based on this fact,
we adopt a batching strategy, which we called dynamic batching, to
perform hash table lookups.

To be more specific, whenever a worker thread receives packets
from the I/O engine, it will get between 1 and 16 packets. Instead
of having a fixed batch size and grouping the received packets with
this size, we instead combine all of the packets as a single batch
and perform the hash table lookups at once. Two factors let us
discard fixed batch sizes. First, as explained above, larger batches
usually perform better when the number of entries in the table is
large. Second, having a fixed batch size will have to deal with extra
packets if the number of received packets is not a multiple of the
batch size, and these packets cannot benefit from batching.

Comparing with Other Hash Tables Figure 7 shows that our opti-
mized concurrent cuckoo hashing outperforms the other hash tables
except Google’s dense hash map with small tables, which uses
more than 4× the memory of ours. Importantly, as noted earlier,
dense hash map uses the identity function has its default hash func-
tion for 64-bit unsigned integers (all the MAC addresses are encoded
using this type), while ours uses CRC32c hash, which is more ex-
pensive in computation but ensures better hashing results for general
workloads. Moreover, dense hash map is not thread-safe, and so in
practice, making use of it would likely require doubling its memory
use to store a writable copy of the table.

In contrast, optimized cuckoo hashing supports in-place, con-
current updates that eliminate the necessity of such techniques. It
achieves nearly 350 Mops even if the table does not fit in cache,
roughly 5.6× faster than the original optimistic cuckoo hashing
scheme.

Summary: Our optimized concurrent cuckoo hashing provides
nearly 350 million small key/value lookups per second without
sacrificing thread-safety. When used as the forwarding table in a
software switch, dynamic batching should be used in hash table
lookup.

4.4 Full System Forwarding Evaluation

These experiments evaluate: (1) how each optimization improves
the full system packet forwarding throughput; (2) how CUCK-
OOSWITCH compares with software switches using other hash tables
to store their FIBs; and (3) how CUCKOOSWITCH performs with

500K 1M 2M 4M 8M 16M
of FIB Entries

0

20

40

60

80

100

T
h
ro

u
g
h
p
u
t

(M
p
p
s)

concurrent cuckoo

+hugepage

+memorder

+batching

+prefetch

Figure 8: Full system packet forwarding throughput factor
analysis. Packet size = 64B.

different rates of FIB updates. In these experiments, we measure
the throughput using worst-case 64 byte packets (minimum sized
Ethernet packets) unless otherwise noted.

Factor Analysis of Full System Throughput These experiments
mirror those in the hash table micro-benchmark: starting from basic
concurrent multi-reader cuckoo hashing and adding the same set of
optimizations cumulatively. As discussed in the previous subsection,
we use dynamic batching. Figure 8 shows the results across different
FIB sizes. In total, the hash table optimizations boost throughput by
roughly 2×. CUCKOOSWITCH achieves maximum 64 byte packet
throughput with even one billion FIB entries.

Comparing with Other Hash Tables As before, we now compare
the packet forwarding throughput of CUCKOOSWITCH with one
variant implemented using immutable dense hash map as its for-
warding table. The reason why we only compare CUCKOOSWITCH

with dense hash map is that among all the other hash tables,
dense hash map offers the best lookup performance in the hash
table micro-benchmarks, at the cost of using 4× more space and
being non-thread-safe. Figure 9 shows that CUCKOOSWITCH al-
ways achieves higher throughput than the dense hash map-based
variant. This is perhaps surprising, given that in the pure hash table
benchmarks, dense hash map outperforms optimized cuckoo hash
table. The difference arises because stock dense hash map does not
do any batching, which becomes more significant when performing
substantial amounts of work (sending packets) between lookups to
the hash table.6

To be more fair in our comparison, we implemented dynamic
batched immutable dense hash map using the same batching pol-
icy as optimized cuckoo hashing. As we expected, the dynamic
batched version outperforms the original and achieves nearly max-
imum throughput with up to 16 million forwarding entries. When
the forwarding entries become more than 16 million, due to the
increase of cache misses and TLB misses, we observe roughly a
linear decrease in throughput.

Table 3 shows the memory consumption of CUCKOOSWITCH and
batched dense hash map at FIB sizes up to one billion entries. Two
details stand out: 1) immutable dynamic batched dense hash map
requires about 4× more memory than CUCKOOSWITCH; and 2)

6An out-of-order CPU such as those used in experiments can only look a limited
number of instructions ahead to find additional memory references to issue.

FIB Entries 32M 64M 125M 250M 500M 1B

optimized cuckoo hashing
Size (GiB) 0.25 0.50 1.00 2.00 4.00 8.00

immutable dynamic batched dense hash map
Size (GiB) 1.18 2.17 4.21 8.38 16.32 N/A

Table 3: Full system memory consumption w/ large FIBs.

500K 1M 2M 4M 8M 16M 32M 64M 125M 250M 500M 1B
of FIB Entries

0

20

40

60

80

100

T
h
ro

u
g
h
p
u
t

(M
p
p
s)

optimized cuckoo

dense_hash_map

dynamic batched dense_hash_map

Figure 9: Full system packet forwarding throughput w/ differ-
ent lookup tables. Packet size = 64B

it cannot support 1 billion entries (it runs out of memory on our
evaluation machine).

Larger Packets As shown in Table 2, our evaluation platform can
saturate the full 80 Gbps of bandwidth for 192 byte or larger packets.
CUCKOOSWITCH can achieve the same throughput for these larger
packet workloads while performing FIB lookups, even with one
billion entries in the FIB.

FIB Updates We have emphasized that one of the benefits of CUCK-
OOSWITCH is that it supports in-place updates, which eliminates the
need for pointer-swapping techniques such as Read-Copy-Update
(RCU) to update the FIB. Thus, CUCKOOSWITCH can respond
instantly to FIB updates and can avoid the need to store multiple
copies of the forwarding table. In this experiment we evaluate how
high rates of FIB updates affect packet forwarding throughput.

Figure 10 shows the decrease in packet forwarding throughput
using 2 million FIB entries with increasingly fast update rates. Note
that the second point on the graph is 64,000 updates per second, a
rate that corresponds to completely filling the FIB of a conventional
ASIC-based switch in a single second. Higher rates of FIB updates
do, however, reduce forwarding performance modestly. In the opti-
mized scheme, each update must acquire and release the global lock,
and increment at least two version counters (the exact number of
increments depends on the length of cuckoo path). These updates in-
crease inter-processor cache coherence traffic, and contend for CPU
time with threads that are forwarding packets. On the whole, we
believe that these results are quite positive: CUCKOOSWITCH sup-
ports tens of thousands of updates per second with little slowdown,
and can support extremely high update rates (over half a million
per second) with only a 25% slowdown in minimum-size packet
forwarding rates.

Summary By using our optimized concurrent cuckoo hashing
and dynamic batching policy, CUCKOOSWITCH can saturate the

0 64 128 192 256 320 384 448 512
Thousands of Updates Per Second

0

20

40

60

80

100

T
h
ro

u
g
h
p
u
t

(M
p
p
s)

Figure 10: Full system packet forwarding throughput vs. up-
date rate. # FIB entries = 2M, packet size = 64B.

maximum number of packets achievable by the underlying hard-
ware, even with one billion FIB entries in the forwarding table,
which cannot be achieved by other forwarding table designs. At the
same time, by reducing space consumption to only one fourth of
batched dense hash map, CUCKOOSWITCH significantly improves
the energy/cost efficiency.

5. DISCUSSION

Going beyond Software Switches. While we have explored our
FIB design primarily in the context of a software switch, we believe
it is likely to have lessons for hardware as well. For example, the
overall lookup throughput results for the hash table itself shows
that with one billion entries, the table achieves about 350 million
lookups/second. This lookup rate far exceeds what our PCIe-based
platform can achieve. Integrating an SRAM lookup version of this
with a hardware switching platform is an intriguing (if potentially
difficult and expensive) avenue of future work. Similarly, we believe
it is worth exploring if a lookup architecture such as ours could
augment an OpenFlow-style switch to act as a large, fast local cache
of FIB entries. With sufficient fine-grained locality in packets, by
avoiding the need to go off-switch to a controller for many packet
destinations, an OpenFlow switch may be able to handle a larger
number of flows without needing a larger TCAM.

Better Update Support Although the half-million updates per sec-
ond that our table supports exceeds the needs of conventional Ether-
net, we believe it should be possible to apply similar batching and

prefetching optimizations to the write path as well for applications
that require higher update rates.

Beyond simply processing updates, the huge table sizes enabled
by CUCKOOSWITCH immediately raise the question of how to han-
dle inter-node route/switch updates in an efficient manner, a question
we leave for future exploration.

6. RELATED WORK

Memory Efficient Forwarding Prior work has explored alternative
memory-efficient data structures for packet forwarding. Dharma-
purikar et al. [11] proposed longest prefix matching for IP addresses
using Bloom filters [9] to avoid using expensive and power-hungry
TCAMs. Their approach uses Bloom filters to decide which con-
ventional hash table to use for the final lookup, so this latter portion
of their scheme could benefit by using CUCKOOSWITCH. BUF-
FALO [30] takes an alternative approach to FIB lookup by testing
each packet against one Bloom filter for each output port. The
Bloom filters occasionally generate false positives; therefore, a cer-
tain number of packets are forwarded to incorrect ports, increasing
the path stretch experienced by packets, and thus their end-to-end
latency. Because standard Bloom filters do not support updates
without an expensive rebuilding operation, they handle FIB updates
using counting Bloom filters [15], which take significantly more
memory. Although BUFFALO uses substantially less memory than
conventional techniques, it is only slightly more memory efficient
than CUCKOOSWITCH, using roughly 7.5 bytes per FIB entry vs.
8.5 bytes for CUCKOOSWITCH, and must use 4× additional off-
lookup-path memory for the counting Bloom filters.

Flat Addresses Flat addresses help enterprise and datacenter net-
work operators deploy simpler topologies (e.g., SEATTLE [22])
and facilitate host mobility in wide-area networks by making a
host’s address independent of its location (e.g., ROFL [10], AIP [8]).
XIA [17] discusses scalability issues in using flat addresses in wide-
area networking; it shows that the increase in the forwarding table
size from 10K to 10M FIB entries decreases forwarding performance
only by 8.3–30.9% using a software router; XIA does not show how
to scale to billions of FIB entries. CUCKOOSWITCH’s flat address
forwarding design is not specific to Ethernet MAC addresses, and is
applicable to these scenarios.

Software Routers RouteBricks [12] was one of the first software
routers achieving 35 Gbps Layer-3 packet forwarding. As in CUCK-
OOSWITCH, RouteBricks uses the multiple queue support in modern
NICs to parallelize packet processing within a server. The authors
further discuss a switch cluster to scale out beyond single-node per-
formance; we believe that the same approach can be used to build a
cluster of CUCKOOSWITCH to for even higher scalability. Packet-
Shader [18] extends software-based routing performance by using
GPUs, which have high amounts of parallelism and large memory
bandwidth compared to CPUs, allowing them to bring IPv6 forward-
ing speed close to that of IPv4. While these software routers can
perform prefix routing, CUCKOOSWITCH provides higher through-
put and supports much larger FIBs.

VALE [29] and Hyper-Switch [27] are two software virtual
switches that target high speed communication among virtual ma-
chines collocated on the same physical server and with the outside.
There are two noticeable differences between CUCKOOSWITCH and
them. First, the emphasis of these virtual switch architectures is not
on the scalability and performance of the forwarding table. Instead,
they both assume that forwarding table lookup is cheap and that the

FIB will be small. As we demonstrated, one of the contributions
of CUCKOOSWITCH is a high performance, memory efficient for-
warding table design. This new data structure allows us to scale
the forwarding table to billions of entries, which has never been
achieved before. Hyper-Switch addresses a different aspect of scala-
bility: scaling the aggregate throughput of inter-VM communication
with the number of VM pairs. Like CUCKOOSWITCH, both of these
virtual switch architectures applied multi-staging packet process-
ing, batching, and prefetching strategies to optimize the packet I/O
throughput. However, CUCKOOSWITCH further extends these ideas
to forwarding table lookup, which significantly mitigates the high
DRAM access latency.

FPGA-based Routers Gorilla [23] generates FPGA-based network
processors from a C-like language. For 1 M entries, it demonstrates
up to 200 Mpps of IPv4 or MPLS lookups using an extremely
high-end FPGA. Though the systems are not directly comparable,
CUCKOOSWITCH can handle about 350 Mops of lookups (Figure 5),
which suggests that our techniques may (and we emphasize that this
is only a possibility) have lessons to contribute for future FPGA-
based designs.

Cuckoo Hashing Cuckoo hashing [26] is a recent technique for
building hash tables with high space utilization while guaranteeing
O(1) expected insertion and retrieval time. SILT [24] uses partial-
key cuckoo hashing to provide fast, memory-efficient buffer storage
for newly inserted key-value items. MemC3 [14] proposes optimistic
concurrent cuckoo hashing, which eliminates the limitation of the
maximum table size of partial-key cuckoo hashing and improves per-
formance by allowing concurrent access to the hash table by multiple
readers and a single writer. CUCKOOSWITCH further improves upon
optimistic concurrent cuckoo hashing by adding the optimizations
described in Section 3.

7. CONCLUSION

This paper describes CUCKOOSWITCH, a new FIB design for
software-based Ethernet switches. Using a highly-optimized I/O
engine (Intel DPDK) plus a high performance, memory efficient
lookup table based on cuckoo hashing, CUCKOOSWITCH can sat-
urate 80 Gbps for packet sizes of 192 bytes or larger—even for
FIB sizes as large as one billion entries. For minimum-size packets,
CUCKOOSWITCH can achieve the full 64-byte packet forwarding
throughput of our experiment platform with one billion FIB entries;
furthermore, CUCKOOSWITCH allows in-place updates with modest
performance impact. We believe that the large table sizes and fast
forwarding provided by CUCKOOSWITCH both raise the bar for
the performance of software-based switches and contribute to our
understanding of the feasibility of network architectures that require
or benefit from large flat forwarding tables.

8. ACKNOWLEDGMENTS

We gratefully acknowledge the CoNEXT reviewers and our shep-
herd, Ken Calvert, for their feedback and suggestions; and Google,
Intel via the Intel Science and Technology Center for Cloud Comput-
ing (ISTC-CC), and the National Science Foundation under awards
CCF-0964474 and CNS-1040801 for their financial support of this
research.

9. REFERENCES

[1] libcuckoo. https://github.com/efficient/libcuckoo.
[2] Mellanox sx1016 64-port 10gbe switch system. http://www.

mellanox.com/page/products_dyn?product_family=125.
[3] Intel Data Plane Development Kit (Intel DPDK) Overview, .
[4] Intel 64 and IA-32 Architectures Optimization Reference Manual,

. http://www.intel.com/content/dam/doc/manual/64-ia-32-
architectures-optimization-manual.pdf.

[5] Read-Copy Update, . http://en.wikipedia.org/wiki/Read-copy-
update.

[6] Intel Threading Building Blocks. http://
threadingbuildingblocks.org/, 2011.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity, data
center network architecture. In Proc. ACM SIGCOMM, Aug. 2008.

[8] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker. Accountable Internet Protocol (AIP). In Proc. ACM
SIGCOMM, Aug. 2008.

[9] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[10] M. Caesar, T. Condie, J. Kannan, K. Lakshimarayanan, I. Stoica, and
S. Shenker. ROFL: Routing on Flat Labels. In Proc. ACM SIGCOMM,
Aug. 2006.

[11] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor. Longest prefix
matching using bloom filters. In Proc. ACM SIGCOMM, Aug. 2003.

[12] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy. RouteBricks: Exploiting
parallelism to scale software routers. In Proc. 22nd ACM Symposium
on Operating Systems Principles (SOSP), Oct. 2009.

[13] U. Erlingsson, M. Manasse, and F. Mcsherry. A cool and practical alter-
native to traditional hash tables. In Seventh Whorkshop on Distributed
Data and Structures (WDAS’2006), pages 1–6, 2006.

[14] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Compact and
concurrent memcache with dumber caching and smarter hashing. In
Proc. 10th USENIX NSDI, Apr. 2013.

[15] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scal-
able wide-area Web cache sharing protocol. In Proc. ACM SIGCOMM,
pages 254–265, Sept. 1998.

[16] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel,
and S. Sengupta. VL2: A scalable and flexible data center network. In
Proc. ACM SIGCOMM, Aug. 2009.

[17] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukun-
dan, W. Wu, A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and
P. Steenkiste. XIA: Efficient support for evolvable internetworking. In
Proc. 9th USENIX NSDI, Apr. 2012.

[18] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a GPU-
accelerated software router. In Proc. ACM SIGCOMM, Aug. 2010.

[19] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.
ISBN 0123705916, 9780123705914.

[20] Intel Data Plane Development Kit (Intel DPDK). http://www.
intel.com/content/www/us/en/intelligent-systems/intel-
technology/packet-processing-is-enhanced-with-software-
from-intel-dpdk.html, 2013.

[21] Intel 64 and IA-32 architectures developer’s manual: Vol.
3a. http://www.intel.com/content/www/us/en/architecture-
and-technology/, 2011.

[22] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: A scalable
ethernet architecture for large enterprises. In Proc. ACM SIGCOMM,
Aug. 2008.

[23] M. Lavasani, L. Dennison, and D. Chiou. Compiling high throughput
network processors. In Proceedings of the ACM/SIGDA international
symposium on Field Programmable Gate Arrays, FPGA ’12, 2012.

[24] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A memory-
efficient, high-performance key-value store. In Proc. 23rd ACM Sym-
posium on Operating Systems Principles (SOSP), Oct. 2011.

[25] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat. Portland: A scalable

fault-tolerant layer2 data center network fabric. In Proc. ACM SIG-
COMM, Aug. 2009.

[26] R. Pagh and F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):
122–144, May 2004.

[27] K. K. Ram, A. L. Cox, M. Chadha, and S. Rixner. Hyper-Switch: A
Scalable Software Virtual Switching Architecture. In Proc. USENIX
ATC 2013, June 2013.

[28] L. Rizzo. netmap: a novel framework for fast packet I/O. In Proceed-
ings of the 2012 USENIX conference on Annual Technical Conference,
June 2012.

[29] L. Rizzo and G. Lettieri. Vale, a switched ethernet for virtual machines.
In Proc. CONEXT ’12, 2012.

[30] M. Yu, A. Fabrikant, and J. Rexford. BUFFALO: Bloom filter for-
warding architecture for large organizations. In Proc. CoNEXT, Dec.
2009.

https://github.com/efficient/libcuckoo
http://www.mellanox.com/page/products_dyn?product_family=125
http://www.mellanox.com/page/products_dyn?product_family=125
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://en.wikipedia.org/wiki/Read-copy-update
http://en.wikipedia.org/wiki/Read-copy-update
http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/packet-processing-is-enhanced-with-software-from-intel-dpdk.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/packet-processing-is-enhanced-with-software-from-intel-dpdk.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/packet-processing-is-enhanced-with-software-from-intel-dpdk.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-technology/packet-processing-is-enhanced-with-software-from-intel-dpdk.html
http://www.intel.com/content/www/us/en/architecture-and-technology/
http://www.intel.com/content/www/us/en/architecture-and-technology/

	Introduction
	Building Blocks
	Intel Data Plane Development Kit
	Optimistic Concurrent Cuckoo Hashing

	Design and Implementation
	Packet Processing Overview
	x86 Optimized Hash Table
	Batched Hash Table Lookups
	Hash Table Prefetching
	Reducing TLB Misses with Huge Pages

	Evaluation
	Evaluation Setup
	Raw Packet I/O Throughput
	Hash Table Micro-benchmark
	Full System Forwarding Evaluation

	Discussion
	Related Work
	Conclusion
	Acknowledgments
	REFERENCES

