Multidimensional Mining of Large-Scale Search Logs: A

Topic-Concept Cube Approach

'Korea Advanced Institute of Science and Technology
3Simon Fraser University
Email: *{dykang,hojinc}@kaist.ac.kr

Dongyeop Kang' Daxin Jiang? Jian Pei* Zhen Liao* Xiaohui Sun? Ho-Jin Choit

2Microsoft Research Asia

“Nankai University

3jpei@cs.sfu.ca

ABSTRACT

In addition to search queries and the corresponding click-
through information, search engine logs record multidimen-
sional information about user search activities, such as
search time, location, vertical, and search device. Multi-
dimensional mining of search logs can provide novel insights
and useful knowledge for both search engine users and de-
velopers. In this paper, we describe our topic-concept cube
project, which addresses the business need of supporting
multidimensional mining of search logs effectively and ef-
ficiently. We answer several challenges. First of all, search
queries and click-through data are well recognized sparse,
and thus have to be aggregated properly for effective anal-
ysis. At the same time, there is often a gap between the
topic hierarchies in multidimensional aggregate analysis and
queries in search logs. To address those two challenges, we
develop a novel topic-concept model which learns a hierar-
chy of concepts and topics automatically from search logs.
Enabled by the topic-concept model, we construct a topic-
concept cube which supports online multidimensional min-
ing of search log data. A distinct feature of our approach
is that, in addition to the standard dimensions such as time
and location, our topic-concept cube has a dimension of top-
ics and concepts, which substantially facilitates the analysis
of log data. To handle a huge amount of log data, we de-
velop distributed algorithms for learning model parameters
efficiently. We also devise approaches for computing a topic-
concept cube. We report an empirical study verifying the
effectiveness and efficiency of our approach on a real data
set of 1.96 billion queries and 2.73 billion clicks.

1. INTRODUCTION

Search logs in search engines record rich information about
user search activities. In addition to search queries and the
corresponding click-through information, the related infor-
mation is also recorded on multiple attributes, such as search
time, location, vertical, and search device. Multidimensional
mining of such rich search logs can provide novel insights and
useful knowledge for both search engine users and develop-
ers. As a concrete motivation example, let us consider the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

2{djiang, xiaos}@microsoft.com

4liaozhen@mail.nankai.edu.cn

following two multidimensional analysis tasks.

A multidimensional lookup (lookup for short) spec-
ifies a subset of user queries and clicks using multidimen-
sional constraints such as time, location and general topics,
and requests for the aggregation of the user search activities.
For example, by looking up “the top-5 electronics that were
most popularly searched by the users in the US in Decem-
ber, 2009”, a business analyst can know the common inter-
ests of search engine users on topic “Electronics”. Moreover,
search engine developers can use the results from the lookup
to improve query suggestion, document ranking, and spon-
sored search. Multidimensional lookups can be extended in
many ways to achieve advanced business intelligence analy-
sis. For example, using multiple lookups with different mul-
tidimensional constraints, one may compare the major in-
terests about electronics from users in different regions such
as the US, Asia, and Europe.

A multidimensional reverse lookup (reverse lookup
for short) is concerned about the multidimensional group-
bys where one specific object is intensively queried. For
example, using reverse lookup “What are the group-bys in
time and region where Apple iPad was popularly searched
for?” an iPad accessory manufacturer can find the regions
where the accessories may have a good market. Using the
results from the reverse lookup, a search engine can improve
its service by, for example, locality-sensitive search. Again,
reverse lookups can be used to compose advanced business
intelligence analysis. For example, by organizing the results
from the reverse lookup about iPad, one may keep track of
how iPad becomes popular in time and in region, and also
compare the trend of iPad with those of iPod and iPhone.
This is interesting to both business parties and users.

As search engines have accumulated rich log data, it
becomes more and more important to develop a service
which supports multidimensional mining of search logs ef-
fectively and efficiently. To answer multidimensional an-
alytical queries online, a data warehousing approach is a
natural choice, which pre-computes all multidimensional ag-
gregates offline. However, traditional data warehouse ap-
proaches only explore a series of statistical aggregates such
as MIN, MAX, and AVG; they cannot summarize the semantic
information of user queries and clicks. In particular, multi-
dimensional analysis on search log data presents two special
challenges.

Challenge 1: sparseness of queries in log data.
Queries in search engine logs are usually very sparse, since
users may formulate different queries for the same informa-
tion need [9]. For example, to search for Apple iPad, users
may issue queries such as “ipad”, “apple ipad”, “ipad 32g”
“ pad apple”, and so on. Aggregating only on individual

1 ipad 1 ipad

2 apple ipad 2 kindle
3 ipad 32g 3 | iphone
4 kindle 4 | xbox 360
5 | amazon kindle 5 wii

(a) (b)

Table 1: Answers to “the top-5 electronics that were
most popularly searched by the users in the US in
December, 2009” by (a) individual queries and (b)
concepts.

queries cannot summarize user information needs recorded
in logs comprehensively. For example, when a business an-
alyst asks for “the top-5 electronics that were most popu-
larly searched by the users in the US in December, 2009, a
naive method may simply count the frequency of the queries
in the topic of “Electronics” and return the top-5 most fre-
quently asked queries. Due to the sparseness of queries in the
logs, the analyst may get an answer with many redundant
queries, such as the one shown in Table 1(a). Instead, if we
can summarize the various query formulations of the same
information need and provide non-duplicate answers (e.g.,
Table 1(b)), the user experience can be improved greatly.
Similarly, in reverse lookup, when an iPad accessary manu-
facturer asks the question “What are the group-bys in time
and region where Apple iPad was popularly searched for?”,
the system should consider not only aggregates of the query
“Apple iPad” but also its various formulations. To address
the sparseness of log data, we have to aggregate queries and
click-through data in logs.

Challenge 2: mismatching between topic hierar-
chies used in analytics and learned from log data.
More often than not, people use different topic hierarchies
in searching detailed information and summarizing analytic
information. For example, when users search electronics on
the web, often the queries are about specific products, brand
names, or features. A query topic hierarchy automatically
learned from log data in a data-driven way depends on the
distribution and occurrences of such queries. “Apple prod-
ucts” may be a popular topic. When an analyst explores
a huge amount of log data, she may bear in her mind a
product taxonomy (e.g., a well adopted ontology), such as
TV & video, audio, mobile phones, cameras & camcorders,
computers, and so on being the first level categories. The an-
alytic topic hierarchy may be very different from the query
topic hierarchy learned from log data. For example, the
“Apple products” in the query topic hierarchy corresponds
to multiple topics in the analytic topic hierarchy. This mis-
matching in topic hierarchies is partly due to the different
information needs in web search and web log data analysis.
Web searches often opt for detailed information, while web
log analysis usually tries to summarize and characterize pop-
ular user behavior patterns. To bridge the gap, we need to
map the aggregates from logs to an analytic topic hierarchy.

In this paper, we describe our topic-concept cube project
which builds a multidimensional service on search log data.
In this project, we answer a few challenges such as the two
just mentioned, and make the following contributions.

First, we tackle the sparseness of queries in logs and the
gap between concept taxonomy in analytics and queries in
logs by a novel concept-topic model. Figure 1 illustrates our
ideas. We first mine click-through information in search logs
and group similar queries into concepts. Intuitively, users
with the same information need tend to click on the same

Topic
Taxonomy

Clicks

Figure 1: The hierarchy of topics, concepts, queries,
and clicks.

URLs. Therefore, various query formulations, for example,
of Apple ipad, such as “ipad”, “apple ipad”, “ipad 329”, and “G
pad apple” can be grouped into the same concept since all of
them lead to clicks on the web page www.apple.com/ipad.
More interestingly, some misspelled queries, such as “apple
ipda” and “apple ipade”, can also be clustered into this con-
cept, since they also lead to clicks on the ipad page. Once we
summarize queries and clicks into concepts, we will answer
lookups and reverse lookups by concepts instead of individ-
ual queries. For each concept, we use the most frequently
asked query as the representative of the concept. In this
way, we can effectively avoid redundant queries in lookup
answers. At the same time, we can effectively cover all rel-
evant queries in reverse lookup answers.

Our concept-topic model further maps concepts to topics
in a given taxonomy, which is essentially a query classifi-
cation problem. For example, suppose a concept consists
of queries “apple ipad”, “ipad 3297, etc, we want to classify
them into the topic “Electronics”. Compared with classify-
ing individual queries to topics, mapping concepts has sev-
eral advantages. For example, for a misspelled query “apple
ipda”, the classification problem becomes much easier once
we know this query belongs to a concept which also contains
other queries such as “apple ipad”. Moreover, through the
content of the web pages that are commonly clicked as an-
swers to the queries in the concept, we may further enrich
the features to classify “apple ipda’.

Our concept-topic model provides the “semantic” aggre-
gates for search log data. Those concepts and topics not
only provide us a meaningful way to answer lookups and re-
verse lookups, but also serve as an important dimension for
multidimensional analysis and exploration.

Second, to handle large volumes of search log data, which
may contain billions of queries and clicks, we develop dis-
tributed algorithms to learn the topic-concept models effi-
ciently. In particular, we develop a strategy to initialize the
model parameters such that each machine only needs to hold
a subset of parameters much smaller than the whole set.

Third, to serve online multidimensional mining of search
log data, we build a topic-concept cube. In addition to
the standard dimensions such as time and location, a topic-
concept cube has a dimension of topics and concepts. We
devise effective approaches for computing a topic-concept
cube. In particular, queries are assigned to a hierarchy of
concepts and topics in the materialization of the cube.

Finally, we conduct extensive experiments on a real log
data set containing 1.96 billion queries and 2.73 billion clicks.
We examine the effectiveness of the topic-concept model as
well as the efficiency and scalability of our training algo-
rithms. We also demonstrate several concrete examples of
lookups and reverse lookups answered by our topic-concept
cube system. The experimental results clearly show that our
approach is effective and efficient.

The rest of the paper is organized as follows. We review
the related work in Section 2, and present the framework
of our system in Section 3. We describe the topic-concept
model in Section 4, and develop the distributed algorithms
for learning the topic-concept model from large-scale log
data in Section 5. Section 6 discusses our approaches to com-
puting the topic-concept cube. We report the experimental
results in Section 7, and conclude the paper in section 8.

2. RELATED WORK

Supporting multidimensional analysis of large-scale search
log data online is a new problem. To the best of our knowl-
edge, the most related work to our project is a query traffic
analysis service provided by a major commercial search en-
gine'. The service allows users to look up and compare the
hottest queries in specified time ranges, regions, verticals,
and topics. However, the service organizes the user interests
at only two levels: the lower individual query level contain-
ing individual queries, and the higher topic level consisting
of 27 topics such as “Health” and “Entertainment”.

As will be illustrated in our experiment results, using only
27 topics seems insufficient to summarize user interests from
time to time. Instead, a richer hierarchical structure of top-
ics learned from search logs, as implemented in our project,
is more effective in multidimensional analysis. For example,
after browsing the hottest queries in topic “Entertainment”,
a user may want to drill down to a subtopic “Entertain-
ment/Film”. The current two layer structure in the existing
project can only provide limited analysis power.

Moreover, using individual queries to represent user inter-
ests seems ineffective. It is well recognized that users may
formulate various queries for the same information need.
Therefore, the search log data at the individual query level
may be sparse. For example, the system returns queries
“games”, “game”, “games online”, and “free games” as the
1st, 2nd, 7th, and 8th hottest queries, respectively, on topic
“Game” in the US. Clearly, those queries carry similar in-
formation needs. To make the analysis more effective, as
achieved by the topic-concept model in our project, we need
to summarize similar queries into concepts and represent
user interests by concepts instead of individual queries.

To a broader extent, our project is related to the previ-
ous studies on search query traffic patterns, user interest
summarization, and data cube computation.

Several previous studies explored the patterns of query
traffic with respect to various aspects, such as time, loca-
tions, and search devices. For example, Beitzel et al. [§]
investigated how the web query traffic varied hourly. Back-
strom et al. [5] reported a correlation between the locations
referred in queries and the geographic focus of the users
who issued those queries. Kamvar et al. [17] presented
a log-based comparison on the distribution and variabil-
ity of search tasks that users performed from three plat-
forms, namely computers, iPhones, and conventional mobile
phones. However, those studies mainly focused on the gen-
eral trends of user query traffic without mining user interests
from the log data.

Previous approaches to summarizing user search queries
can be divided into two categories: the clustering approaches
and the categorization approaches. A clustering approach
groups similar queries and URLs in an unsupervised way.
For example, Zhao et al. [21] identified events in a time-
series of click-through bipartites derived from search logs.

'Due to our company policy, we do not reveal the name of
the search engine mentioned here.

Uid Time Stamp Location Type Value
Ul 100605110843 Seattle, WA, US Query “wsdm 20117
U2 100605110843 Vancouver, BC, CA Query “you tube”

Ul 100605110846 Seattle, WA, US Click wsdm2011.org

Table 2: A search log as a stream of query and click
events with multidimensional information.

Each event consists of a set of queries and clicked URLs
which evolve synchronously along the time-series. In [6, 7,
9, 19], the authors clustered the click-through bipartites and
grouped similar queries into concepts. A categorization ap-
proach classifies queries into a set of pre-defined topics in a
supervised way. For example, Shen et al. [18] leveraged the
search results returned by a search engine and converted
the query categorization problem into a text categorization
problem. Both the clustering and categorization approaches
are effective to summarize user interests into events, con-
cepts, or topics. However, they do not consider how the
interests vary with respect to various dimensions such as
time and locations. Consequently, those methods cannot be
directly used to support lookups and reverse lookups as well
as advanced online multidimensional exploration.

Grey et al. [13] developed data cubes as the core of data
warehouses and OLAP systems. A data cube contains aggre-
gated numeric measures with respect to group-bys of dimen-
sions. Zhang et al. [20] proposed a topic cube which extends
the traditional data cube with an extra hierarchy of topics.
Each cell in the cube stores the parameters learned from a
topic modeling process. Users can apply the OLAP oper-
ations such as roll-up and drill-down along both standard
dimensions and the topic dimension. The system was built
on a single machine. There are several critical differences
between our topic-concept cube and the topic cube. First
of all, the topic model pLSA [14] applied in [20] targets at
modeling documents, which involves only two types of vari-
ables, namely the terms as observed variables and the topics
as hidden variables. However, to summarize the common in-
terests in search log data, we have to consider more variables,
especially, queries and clicked URLs as observed variables,
and concepts and topics as hidden variables. Therefore, the
traditional pLSA model cannot be applied in our project.
Consequently, the methods to materialize our topic-concept
cubes are very different from those to materialize the topic
cubes. Finally, we reported an empirical study on a much
larger set of real data, containing billions of queries and
clicks, and processed in a distributed environment.

3. OUR FRAMEWORK

When a user raises a query to a search engine, a set of
URLs are returned by the search engine as the search results.
The user may browse the snippets of the top search results
and selectively click on some of them. A search log can be
regarded as a sequence of query-and-click events by users.
For each event, a search engine may record the type and
content of the event as well as some other information such
as the time stamp, location, and the device associated with
the event. Table 2 shows a small segment of a search log.

Some dimensions of the search events have a hierarchical
structure. For example, the location dimension can be or-
ganized into levels of country — state — city, and the time
dimension can be represented at levels of year — month —
day — hour. Therefore, the multi-dimensional, hierarchi-

Queries URLs

Up | Uy | Ug| Uy

g, | 23| 0 [1300 O

(o} 0 |70 O 0

gz | © 0 | 10 |1050

g, 0 0| 0|5%0

(b)

Figure 2: An example of (a) click-through bipartite
and (b) QU-matrix.

cal log data can naturally be organized into a raw log data
cube [13], where each cell is a group-by using the dimen-
sions. For example, a cell may contain all query and click
events of time “February, 2010” and location “Washington
State”.

We can aggregate the query and click events in a cell and
derive a click-through bipartite, where each query node corre-
sponds to a unique query in the cell and each URL node cor-
responds to a unique URL, as demonstrated in Figure 2(a).
An edge e;; is created between query node ¢; and URL node
u; if u; is a clicked URL of ¢;. The weight w;; of edge e;;
is the total number of times when u; is a clicked result of ¢;
among all events in the cell.

A click-through bipartite can be represented as a query-
URL matrix (QU-matriz for short), where each row corre-
sponds to a query node ¢; and each column corresponds to
a URL node u;. The value of entry n;; is simply the weight
wj; between ¢; and uj, as shown in Figure 2(b).

The QU-matrix at a cell is often sparse. Moreover, QU-
matrix represents information at the level of individual
queries and URLs. As discussed before, we need to summa-
rize and aggregate the information in a QU-matrix to facili-
tate online multidimensional analysis. This will be achieved
by the topic-concept model to be developed in Section 4.

Figure 3 shows the framework of our system. In the of-
fline stage, we first form a raw log data cube by partitioning
the search log data along various dimensions and at different
levels. For each cell of the raw log data cube, we construct
a click-through bipartite and derive the QU-matrix. Then,
we materialize the cube by learning topic-concept models
which summarize the distributions of topics and concepts
on the QU-matrix for each cell. The resulting data cube is
called the topic-concept cube. In the online stage, we use
the learned model parameters to support multidimensional
lookups, reverse lookups, as well as advanced analytical ex-
plorations.

4. TOPIC-CONCEPT MODEL

We propose a novel topic-concept model (TC-model for
short), a graphical model as shown in Figure 4, to describe
the generation process of a QU-matrix. Essentially, we as-
sume that a user bears some search intent in mind when
interacting with a search engine. The search intent belongs
to certain topics and focuses on several specific concepts.
Based on the search intent, the user formulates queries and
selectively clicks on search results.

From the search log data, we can observe user queries ¢
and clicks u. Following the convention of graphical mod-
els, these two observable variables are represented by black
circles in Figure 4. Since user search intents cannot be ob-

Online €. e Compan
P i r - Comparison
8‘& i - Reverse look-up
Process il }3 - Tracing
. U Y L.//
Offline I
Process m m < 4. Cube materialization d
Location
Topic-Concept Cube
: For each cell
&
Search logs Raw LDLQ"CS;’{‘a Cube CIiclf-Thr_ough Topic-Concept
Bipartite Model

Figure 3: The framework of our system.

Figure 4: A graphical representation of TC-model.

served, the topics ¢t and concepts c are latent variables, which
are represented by white circles.

Let @ and U be the sets of unique queries and unique
URLs in a QU-matrix, respectively. Let C and T be the sets
of concepts and topics to model user interests. The training
process of the topic-concept model is to learn four groups
of model parameters © = (®,A,Tq,Yv). Here, the prior
topic distribution ® = {P(ty)}, where t;, € T and P(ty) is
the prior probability that a user’s search intent involves topic
tx. The concept generation distribution A = {P(cltk)},
where ¢, € C, ¢, € T, and P(¢|tx) is the probability that
topic t; generates concept ¢;. The query generation distribu-
tion Yo = {P(¢:|c1)}, where ¢; € Q, ¢; € C, and P(qi|c;) is
the probability that concept ¢; generates query ¢;. The URL
generation distribution Ty = {P(uj|c;)}, where u; € U,
¢ € C, and P(uj|¢) is the probability that concept ¢; gen-
erates a click on URL u;.

Given that a user bears a search intent on specific con-
cepts ¢, we assume that (1) the formulation of queries is
conditionally independent of the clicks on search results,
ie., P(q,ulc) = P(q|c) - P(ulc); and (2) both the formu-
lation of queries and the clicks on search results are condi-
tionally independent of the topics ¢ of the search intent, i.e.,
P(q,ult,c) = P(q,ulc). Then, the likelihood for each entry
(gi,u;) in the QU-matrix can be factorized as follows.

L(qi,u;;0) = (ZtkeT e eo Plaiug, e tes @))
= (ZtkeT e ec Pte)Plaltr) Pgile) Py, \Cl))n”

where n;; is the value of entry (g;,u;) in the QU-matrix.
The likelihood for the whole QU-matrix D is L(D;0) =
I, 0, P(@i,us;0).

Since the data likelihood is hard to be maximized analyt-
ically, we apply the Expectation Maximization (EM) algo-
rithm [12]. The EM algorithm iterates between the E-step
and the M-step. The E-step computes the expectation of
the log data likelihood with respect to the distribution of
the latent variables derived from the current estimation of
the model parameters. In the M-step, the model parame-

(1)

ters are estimated to maximize the expected log likelihood
found in the E-step. We have the following equations for the
E-step in the r-th iteration.

P’ (c]qs,uj) o Z (Prfl(tk) . Prfl(cl\tk)

P Naqile) - PT N ugler)) (2)
P"(tklgs,uy) o< Y (P™H(tx) - ™ (cutn)

P Nailer) - P (ugler)) (3)

In the M-step of the r-th iteration, the model parameters
are updated by the following equations.

Pr(t) - Z‘h‘yuj TLijPT(tk|qi,’U4j) (4)
' ka' Zqz',uj i P (e |gi, us)

2w, mis P (el gis ug)

Pailer) = (5)
Zqi/,uj ny s Pr(cil gy, ujy)
r 2o i P (cilgi, ug)
P"(uj|cr) = 5 P (cilgnupr) (6)
Qi Ut Tigr Ci|qi, Uy’
v D aivuy Mis P (el iy wg) P (g, ug)
P(altr) = :

e, Lgn, Mis P lai w) Pr(telgs, ug)

5. LEARNING LARGE TC-MODELS

Although the EM algorithm can effectively learn the pa-
rameters in TC-models, there are still several challenges to
apply it on huge search log data. In Section 5.1, we will
develop distributed algorithms for learning TC-models from
a huge amount of data. In Section 5.2, we will discuss the
model initialization steps. Last, in Section 5.3 we will de-
velop effective heuristics to reduce the number of parameters
to learn in each machine.

5.1 Distributed Learning of Parameters

Search logs typically contain billions of query-and-click
events involving tens of millions of unique queries and URLs.
It is impractical to learn a TC-model from a huge amount of
data using a single machine. To address this challenge, we
develop distributed algorithms for the E-step and M-step.

In our learning process, a QU-matrix is represented by a
set of (¢, u;,n;;) tuples. Since a query usually has a small
number of clicked URLs, a QU-matrix is very sparse. We
only need to record the tuples where n;; > 0. We first
partition the QU-matrix into subsets and distribute each
subset to a machine (called a process node). Then we carry
out the E-step and the M-step.

In the E-step of the r-th iteration (Algorithm 1), each
process node loads the current estimation of the model pa-
rameters and scans the assigned subset of training data
once. For each tuple (gi,uj,n;;), the process node enu-
merates all the concepts ¢; such that P“l(qi|cl) > 0
and P"!(ujle;) > 0. For each enumerated concept
ci, the process node further enumerates each topic tx
such that P""'(ci|ty) > 0 and evaluates the value v =
Pt)P™ Y (e|te)P" " (gilc) P" " (uj|e). The values of
v are summed up to estimate P"(c|gs, u;) and P7 (tx|qgs, uj)
according to Equations 2 and 3, respectively. Finally, we
output the probabilities for the hidden variables. Those re-
sults will serve as the input of the M-step.

In the M-step, we estimate the model parameters based
on the probabilities of the hidden variables. According to

Algorithm 1 The r-th round E-step for each process node.

Input: the subset of training data S; the model parameters ©" 1
of the last round

1: Load model parameters ©"1;

2: for each tuple (g;,uj,n45) in S do

3 055 =05

4 for each topic t, € T do Uzt'jk =0;

5. let C;; = {c;|P" 1 (qiler) > 0 && P (uj|e;) > 0}
6: for each concept ¢; € Cj; do

7. ‘Ticjl =0;

8 for each topic t;, € T such that P"~1(¢|tg) > 0 do
9 v =P (te) P (alte) PTH (aile) P (uglen);

10: O'Z-C]-l-i-:’u; Uf].k—i—:v; oij+ = v;
11: for each concept ¢; € C;; do
12: for each topic t; € T such that P"~1(¢|tg) > 0 do
13: output(qi,Uj,cl,tk,nij,of‘ﬂ/aij,Jf‘jk/a,‘j);
[Key [Value [Key [Value |
(tk> Ngj 'Jgjk/oij <qi,cl) Nij 'O—fjl/o—ij

{ewsti) | mig - ofy - 0ij/o nij il Ti

Table 3: The key/value pairs at the map stage of
the r-th round of M-step.

Equations 4-6, the estimation for each parameter involves a
sum over all the queries and/or URLs. Since the matrix is
distributed on multiple machines, the summation involves
aggregating the intermediate results across machines, which
is particularly suitable for a Map-Reduce system [11].

In the map stage of the M-step, each process node receives
a subset of tuples (qi,u;,ci, tk, nij, 0551/ 0i5,0%;./0i5). For
each tuple, the process node emits four key-value pairs as
shown in Table 3. In the reduce stage, the process nodes
simply sum up all the values with the same key and update
the model parameters using Equations 4-6.

5.2 Model Initialization

The Topic-Concept model consists of four sets of param-
eters, ®, A, Tg and Yy. We first initialize the query-and-
click generation probabilities T ¢ and Yy by mining the con-
cepts from the click-through bipartite. We then initialize the
prior topic probabilities ® and the concept generation prob-
abilities A by assigning concepts to topics.

To mine concepts from a click-through bipartite, we first
apply an existing clustering algorithm [9] and derive a col-
lection of query clusters. The clustering algorithm regards
queries sharing many clicked URLs similar to each other,
and thus groups them to the same cluster. However, the
clustering method assigns each query to only one cluster,
which may not be suitable for ambiguous queries that in-
volve multiple concepts. To address this challenge, we fol-
low the method in [10] and conduct two steps of propagation
along the edges in the click-through bipartite. That is, for
each query cluster @, we find the set of URLs U; such that
each URL u € U, is connected with at least one query in Q.
In the first step of propagation, Q; is expanded to Q] such
that each query ¢’ € Q] is connected with at least one URL
u € U;. In the second step of propagation, U; is expanded
to U] such that each URL v’ € Uj is connected with at least
one query ¢’ € Q. Finally, we represent each concept ¢; by
the pair of query and URL sets (Q;,U]), and initialize the

query and URL generation probabilities by

CIz |Cl Z e u] |Cl Z Nij,

uj €U} 4 €Q]

where n;; is the value of entry (g;,u;) in the QU-matrix.

After deriving the set of concepts C, we consider the set
of topics T. Although we may automatically mine topics
by clustering concepts, in practice, there are several well-
accepted topic taxonomies, such as Yahoo! Directory [4],
Wikipedia [3], and ODP [2]. We use the ODP topic taxon-
omy in this paper, though others can be adopted as well.

The ODP taxonomy is a hierarchical structure where each
parent topic subsumes several sub topics, and each leaf topic
is manually associated with a list of URLs by the ODP edi-
tors. Given a set of topics at some level in the taxonomy, we
can initialize the concept generation probabilities P(c;|tx)
as follows.

According to Bayes Theorem, P(c|ty) o< P(c)P(tk|c).
The prior probability P(c¢;) indicates the popularity of con-
cept ¢; and the probability P(tx|c;) indicates how likely ¢
involves topic tr. Suppose ¢; is represented by the query-
and-URL sets (Q7,U;). The popularity of ¢; can be esti-
mated by P(c;) o Zqing,uje
of entry (gi,u;) in the QU-matrix. To tell how likely ¢
involves topic tx, we merge the text content of the URLs
u € U] into a pseudo-document d;. Then, the problem of
estimating P(tx|c;) is converted into a text categorization
problem, and P(tx|c;) can be estimated by applying any
text categorization techniques (e.g., [15, 16]) on the pseudo-
document d;. Based on the estimated P(c;) and P(t|c),
we initialize the parameters by

Z P cz tk|cz)

Why do we still need the EM iterations given that we
can estimate all the model parameters in the initialization
stage? The EM iterations can improve the quality of con-
cepts and topics by a mutual reinforcement process. In
the TC-model, the probabilities {P(q|c)} and {P(u|c)} as-
sign queries and URLs to concepts, while the probabilities
{P(c|t)} assign concepts to topics. In the initialization stage,
those two types of probabilities are estimated independently.
If two queries/URLSs belong to the same concept, it is more
likely that they belong to the same topic, and vice versa.
Therefore, if we jointly consider those two types of proba-
bilities, we may derive more accurate assignments of con-
cepts and topics. In the EM iterations, the relationship be-
tween the concepts and topics is embedded in the latent
variables {P(c|q,u)} and {P(t|q,u)}, which contributes to
the increase of the data likelihood. In our experiments on a
real data set, the data likelihood increased by 11% after the
EM iterations.

vy Migs where n;; is the value

PO(ciltr) o< P(c1)P(trcr);

5.3 Reducing Re-estimated Parameters

As described in Section 5.1, in the E-step, each pro-
cess node estimates the latent variables P(ci|gi,u;) and
P(tr|qi,u;) on the basis of the last round estimation of pa-
rameters &, A, Tq, and Y. Let Ni, N¢, Ng, Ny, be the num-
bers of topics, concepts, unique queries, and unique URLs,
respectively. The sizes of the parameter sets are |®| = Ny,
Al = N¢ - N, |Tg| = Ng - N¢, and |Ty| = Ny - Ne. In
practice, we usually have tens of millions of unique queries
and URLs in the search log data, which may form millions
of concepts. For example, in the real data set in our ex-

periments, we have 11.76 million unique queries, 9.5 million
unique URLs, 4.71 million concepts, and several hundred
topics. The total size of the parameter space reaches 10'%.
Consequently, it is infeasible to hold the full parameter space
into the main memory of a process node.

To reduce the number of parameters to be re-estimated,
we analyze the cases when the model parameters remain zero
during the EM iterations. Suppose a process node receives
a subset S of training data in the E-step, we give a tight
superset ©(S) of the nonzero model parameters which need
to be accessed by the process node in the E-step. In our
experiments, |©(S)| for each process node is several orders
of magnitudes smaller than the size of full parameters space.
Each process node only needs to process a subset of ©(S).

LEMMA 1. The query generation probability at the r-th
iteration P"(qi|c;) = 0 if P°(qi|c;) = 0.

PrOOF. Let U be the whole set of unique URLs. From
Equation 2, if P""'(gilc;) = 0, then P"(c1|gs,u;) = 0 holds
for every u; € U. According to Equation 5, if P"(¢i|q;, u;) =
0 holds for every u; € U, then P"(g|c;) = 0. Therefore,
we have P""!(gi|c;) = 0 = P"(gi|c;) = 0. Using simple
induction, we can prove P°(g:|c;) = 0= P°(qi|c;) =0. O

Similarly, we can prove the following lemma.

LEMMA 2. The URL generation probability at the r-th it-
eration P (uj|c;) = 0 if P°(ujle;) = 0.

Let us consider the concept generation probabilities
P(ci|tr). We call a pair (g, u;) belongs to concept ¢, de-
noted by (gi,u;) € ¢, if ng; > 0, Po(qi\cl) > 0, and
P%ujlc;) > 0. Two concepts ¢; and ¢y are associated if
there exists a pair (g;, u;) belonging to both concepts. Triv-
ially, a concept is associated with itself. Let A(c;) be the
set of concepts associated with ¢;, and QU(¢;) be the set of
pairs (g, u;) which belong to at least one concept associated
with ¢, i.e., QU(ct) = {(qi,u;)|Fer € Alar), (g5, u;) € v}
We have the following.

LEMMA 3. The concept generation probability at the r-th
iteration P"(ci|ty) = 0 if Yoy € A(er), P™ ey |ty) = 0.

PROOF. According to the definitions, for any (g;, u;) & ci,
one of the following three predicates holds (1) n;; = 0;
(2) P°%qilc) = 0; or (3) P°(ujle) = 0. If ny; = 0,
from Equation 7, (gi,u;) does not contribute to P"(c;|tx).
Otherwise, if P°(g;|c;) = 0 or P°(uj|c;)) = 0, according
to Lemmas 1 and 2, we have either P""'(g;|c;) = 0 or
P"!(uj|c; = 0). From Equation 2, if either P""*(g;|c;) = 0
or P""'(uj|e;) = 0, then P"(c;|gi, uj) = 0. Therefore, Equa-
tion 7 can be re-written as

P'(altr)oc > ni P (algi ug) P (tklai, ug). (8)

(qi uj)€cy

Now we only need to focus on P"(tx|gi,u;) for pairs
(¢isu;) € . According to the definition of A(c), for
any pair (gi,u;) € ¢ and concept ¢v ¢ A(c), either
P%gi|cir) = 0 or P°(uj|er) = 0 holds. Using Lemmas 1
and 2, we can rewrite Equation 3 for every pair (¢;, u;) € ¢
as

Pr(tklgi,ug) oo > PTTH(tk) - P (e ftr)
cpr €A(cy)

PN giler) - T ugler). (9)

According to Equation 9, if Ve € A(cr), P™ ey |tr) = 0,
then P"(tx|qi,u;) = 0 holds for every (g:,u;) € ¢;. Further
according to Equation 8, if P (tx|g:,u;) = 0 holds for every
(gi,uj) € ci, then P"(¢i|ty) = 0. Therefore, if Ve € A(c),
PT_I(CZ/|tk) =0, then PT(Cl|tk) =0. O

Lemma 3 suggests that at each round of iteration, a con-
cept ¢; propagates its nonzero topics ty, (i.e., topics such that
P(ci|tr) > 0) one step further to all its associated concepts.

To further explore the conditions for P"(¢ltx) = 0, we
build a concept association graph G(V, E), where each ver-
tex v € V corresponds to a concept ¢, and two concepts cq
and ¢, are directly connected by an edge e.» € F if they are
associated. In the association graph, two concepts ¢, and
cp are connected if there exists a path between c, and cp.
The connected component N*(cq) of concept ¢, consists of
all concepts ¢, which are connected with ¢,. The distance
between two concepts ¢, and ¢, is the length of the short-
est path between ¢, and ¢, in the graph. If ¢, and ¢, are
not connected, the distance is set to co. The set of m-step
neighbors N™(cq) (1 < m < 00) of concept ¢, consists of the
concepts whose distance from ¢, is smaller than or equal to
m. We can easily prove the following lemma by recursively
applying Lemma 3.

LEMMA 4. The concept generation probability at the r-
th iteration P"(¢i|tg) = 0 if Ve € N™(¢r) 1 < m < 1),
P™"™(cp|tr) = 0. Moreover, P"(ci|ty) =0 if Vep € N*(ar),
PO(CZ/‘tk) =0.

Using Lemmas 1-4, we can give a tight superset of the
parameters needed in the E-step for any subset S of training
data. Let (gi, uj,n:;) be a training tuple in S. In the E-step,
we enumerate the concepts ¢; such that PTﬁl(qi|cl) > 0 and
P '(uj|c;) > 0. According to Lemmas 1 and 2, to process
(¢i,uj,mi;), we can safely enumerate only those concepts
Ct, = {arl(ai, ug) € ek

We consider the nonzero parameters for each concept c¢;.
Using Lemmas 1 and 2, the nonzero query and URL genera-
tion probabilities are simply Tg (c1) = {P(gile)|P°(giler) >
0} and Y3 (c) = {P(uj|c)|P°(ujlcr) > 0}, respectively.
Furthermore, let T(¢;) = {P(clty)|P°(cilty) > 0} and
T (1) = Ucl/eN*(cl) T(c;). Using Lemma 4, the nonzero

concept generation probabilities are A1 (¢;) = {P(ci|tr)|tx €
T (a)}.

Let C§ be the set of concepts that are enumerated for the
training tuples in S, i.e., C§ = Usi,»es Ci;. We summarize
the above discussion as follows. '

THEOREM 1. Let S be a subset of training data, the set
of nonzero parameters need to be accessed in the E-step for

S is a subset of O(S), where

o) = | {Pt)}, J Tole), U T, | A%

c€Cy c€Cy c€Cy

In practice, a concept association graph can be highly
connected. That is, for any two concepts ¢, and cp, there
likely exists a path cq,cit,...,Cim,cp. In some cases, al-
though each pair of adjacent concepts on the path are re-
lated to each other, the two end concepts ¢, and ¢, of the
path may be about dramatically different topics. As dis-
cussed before, in the EM iterations, each concept propa-
gates its nonzero topics to its neighbors. Consequently, af-
ter several rounds of iterations, two totally irrelevant con-
cepts ¢, and ¢, may exchange their nonzero topics through

Parent cell C4

D1;81

Child cells 021, sz, . C2M
(a) On standard dimension

dn-wopog
Top-down

M

dn-wojpog

(b) On TC-dimension

Figure 5: The cube construction approaches on (a)
standard dimension and (b) TC-dimension.

the path cq,ci1,...,cim,c. To avoid over propagation of
the nonzero topics, we may constrain the propagation up
to ¢ steps. Specifically, for each concept ¢, let T'(¢;) =
{P(ci|t)|P°(ci|tr) > 0} and TS (1) = Ucl,eN<(cl) T(cyr), we
constrain the concept generation probability P(c¢|tx) = 0 if
tr & T°(c;). In our experiments, we find that the nonzero
topics propagated from the neighbors of more than one step
away are often noisy. Therefore, we set ¢ to 1.

Theorem 1 greatly reduces the number of parameters to
be re-estimated in process nodes in practice. For example,
when we use 50 process nodes in our experiments, each pro-
cess node only needs to re-estimate 62 million parameters,
which is about 1077 of the size of the total parameter space.
In practice, 62 million parameters may still be expensive for
a machine with small memory, e.g., less than 2G. In this case,
the process node can recursively split the assigned training
data S,, into smaller blocks S,, C S, until the necessary
nonzero parameters ©(Sy,;) for each block can be loaded
into the main memory. Then, the process node can carry
out the E-step block by block. We report the details of the
experiment in Section 7.1.

6. CUBE CONSTRUCTION AND RE-
QUEST ANSWERING

Similar to a traditional data cube, a topic-concept cube
(TC-cube for short) contains some standard dimensions such
as time and locations. However, a TC-cube differs from a
traditional data cube in several critical aspects. First, for
each cell in a TC-cube, we learn the TC-models from the
training data in the cell and use the model parameters as the
measures of the cell. Those parameters allow us to answer
lookups and reverse lookups introduced in Section 1. Sec-
ond, a TC-cube contains a special topic-concept dimension
(T'C-dimension for short) as shown in Figure 1. Therefore,
to materialize a TC-cube, we need to address three ques-
tions. First, how to materialize the standard dimensions?
Second, how to materialize the TC-dimension? Finally, how
to materialize a TC-cube which consists of both standard
dimensions and the TC-dimension? In the following, we
will briefly address these three questions. The full technical
details can be found in the extended version [1].

As illustrated in Figure 5(a), in a standard dimension, the
training data in a upper level cell C; is split into its child
cells Ca1,...,Con. For example, C; may contain the set of
training tuples D; from the US, while each child cell Can,
(1 £ m < M) may contain the set of training tuples Day,
from one state of the US. In general, Da1,... D2y form a
partition of D1. A naive method to materialize the standard
dimension is to follow the initialization steps in Section 5.2
for each cell and learn the TC-models from scratch. How-

ever, since the training data Das,, in a child cell is a subset
of D1, the topics and concepts may not differ dramatically
between a child cell and a parent cell. Hence, we may de-
velop two approaches. In the top-down approach, we may
inherit the trained parameters ©; for the parent cell Cy to
initialize the parameters for a child cell Cs,,. Alternatively,
in the bottom-up approach, we may aggregate the trained
parameters O21,...,02p of the child cells to initialize the
parameters for the parent cell Cj.

Next, we materialize the TC-dimension. Recall that the
topic-concept model assigns the concepts to a set of top-
ics. Given a taxonomy of topics, such as ODP [2], the TC-
dimension organizes the queries and clicks into a hierarchy
of topics and concepts (see Figure 1). To materialize the
TC-dimension, we need to learn the model parameters with
respect to each level of topics in the hierarchy.

Different from the standard dimensions, the TC-
dimension has the same set of training data at different levels
(Figure 5(b)). Without loss of generality, let 71 = {t1x} be
the set of topics at some level of a given topic taxonomy, and
T5 = {torn} be the set of topics one level lower than Ti. In
particular, tog, is a sub topic of t1, where 1 < n < Nj; and
Ny is the number of sub topics of ¢1;. Again, we have three
alternative options to materialize the TC-dimension. First,
a naive method materializes different levels of topics sepa-
rately. Second, the top-down approach inherits the model
parameters ©; with respect to Ti for the materialization of
parameters ©2 with respect to the sub topics T5. Finally,
the bottom-up approach initializes the model parameters for
a higher level topic t1x, by aggregating those of its sub topics
tok1, ..., t2kNy -

We have two alternative approaches to materialize the
whole TC-cube which consists of both standard dimensions
and the TC-dimension. The standard-dimension-first ap-
proach materializes a raw log data cube using the standard
dimensions, and then materializes along the TC-dimension
for each cell in the raw log data cube. The TC-dimension-
first approach processes the topic hierarchy level by level.
For each level, it materializes the cells formed by the stan-
dard dimensions.

After materializing the whole TC-cube, we answer the
lookups and reverse lookups using the model parameters in
the T'C-cube. Since the number of model parameters can be
large, we store the parameters distributively on a cluster of
process nodes, where each node contains the parameters for
a set of cells. When the system receives a lookup request, for
example, “(time=Dec., 2009; location=US; topic=Games)”,
it will delegate the query to the process node where the
model parameters of the corresponding cell are stored. Then
the process node will select the top k concepts ¢ with the
largest concept generation probabilities P(c[t = Games).
For each top concept, the process node will use the query ¢
with the largest P(g|c) as the representative query. Finally,
the system returns a list of representative queries of the top
concepts as the answer to the lookup request.

To answer the reverse lookups, we build inverted lists
which map key words to concepts. The inverted list can
be stored distributively on a cluster of process nodes, where
each node takes charge of a range of key words. Suppose a
user requests a reverse lookup about “hurricane Bill”. The
system will delegate the key words to the corresponding node
which stores the inverted list for “hurricane Bill”. The node
retrieves from the inverted list the concepts C' = {¢} which
consist of “hurricane Bill”. The system then broadcasts the
concepts C' to all the nodes which store the model param-
eters. Each node checks the measures of all its cells and

reports (Dwal, Count) for each cell, where Dval consists of
the corresponding values of the standard dimensions of the
cell, and C'ount is the frequency of the concepts C' in the cell,
ie., Count = 3 .. Zqi,u]_@ nij, where n;; is the value of

entry (gi,u;) in the QU-matrix of the cell. If the user has
specified the levels of the standard dimensions, for example,
timeQday; location@country, the system returns the Dvals
of the top k cells which match the specified levels of the
standard dimension. If the user does not specify the levels,
the system will answer the request at the default levels. The
user can further drill-down or roll-up to different levels.

7. EXPERIMENTS

In this section, we report the results from a systematic
empirical study using a large search log from a major com-
mercial search engine. The extracted log data set spans for
four months and contains 1.96 billion queries and 2.73 bil-
lion clicks from five markets, i.e., the United States, Canada,
United Kingdom, Malaysia, and New Zealand. In the follow-
ing, we first examine the efficiency and scalability of our dis-
tributed training algorithms for the TC-model. We briefly
report our findings about the alternative approaches for the
materialization of the TC-cube. Finally, we demonstrate
the effectiveness of our approach by several examples of the
lookup and reverse lookup requests.

7.1 Training TC-models

The TC-model was initialized as described in Section 5.2.
We derived 4.71 million concepts, which involve 11.76 million
unique queries and 9.5 million unique URLs. On average,
a concept consists of 4.68 unique queries and 6.77 unique
URLs. We further chose the second level of the ODP [2]
taxonomy and applied the text classifier in [15] to categorize
the concepts into the 483 topics. For each concept, we kept
the top five topics returned by the classifier.

From the raw log data, we derived 23 million training
tuples where each training tuple is in the form (g;,uj, n:;)
and n;; is the number of times URL u; was clicked on as
answers to query g;.

Figures 6(a) and (b) show the data likelihood and the av-
erage percentage of parameter changes with respect to the
number of EM iterations. The iteration process converges
fast; the data likelihood and parameters do not change much
(less than 0.1%) after five iterations. The results suggest
that our initialization methods are effective to set the ini-
tial parameters close to a local maximum. Moreover, the
data likelihood increases by 11% after ten iterations. As ex-
plained in Section 5.2, this indicates that the EM algorithm
is effective to improve the quality of the TC-model by jointly
mining the assignments of concepts and topics in a mutual
reinforcement process.

Figures 7(a) and (b) show the runtime of the E-step and
the M-step with respect to the percentage of the full data
set with 50, 100, and 200 process nodes, respectively. Each
process node has a four-core 2.67GHz CPU and 4G main
memory. We observe the following in Figure 7(a). First,
the more process nodes used, the shorter runtime for the
E-step. The runtime needed for the E-step on the full data
by 50, 100, and 200 process nodes is approximately in ra-
tio 4:2:1. This suggests that our algorithm scales well with
respect to the number of process nodes. Second, the more
process nodes are used, the more scalable is the E-step. For
example, when 50 process nodes were used, the runtime in-
creases dramatically when 40%, 70%, and 100% of the data
was loaded. As explained in Section 5.3, if the training data

X 1010 %

=25
1.55 me\o/ 9
~ -16 o8 2

> £2
o-165 g T 15

= 50
g SE

— D =
-1.75 3: gO.S

-

(o]

OO

10 2 8 10

4 6
Iteration
(b) Parameter changes

2 4 .6
Iteration
(a) Data likelihood

Figure 6: The data likelihood and the average per-
centage of parameter changes during EM iterations.

N
S

50 nodes 50 nodes A
215994100 nodes ss00] 2100 nodles|
‘» 1400(-6-200 nodes| -©-200 nodes|

1200

w
]
3
3

1000|

Runtime(s) of M-step
b
g
S

Runtime(s) of E-
@
8

N
S
3
3

I

20%0 40 50 60 70 80 90 100
Percentage of full data(%)

(a) E-step

0 40 50 60 70 80 90 100
Percentage of full data(%)

(b) M-step

Figure 7: The scalability of the E-step and the M-
step.

for a process node involves too many parameters to be held
in the main memory, the algorithm recursively splits the
training data into blocks until the parameters needed by a
block can be held in the main memory. Therefore, the run-
time of the E-step mainly depends on the number of disk
scans of the parameter file, i.e., the number of blocks to be
processed. When we used 50 process nodes, each node split
the assigned training data into 2, 3, and 4 blocks when 40%,
70%, and 100% of the full data set was used for training,
respectively. This explains why the runtime increases dra-
matically at those points. When we used 200 nodes, each
node can process the assigned data without splitting even
for the full data set. Consequently, the runtime increases
linearly and mildly from 30% to 100% of the data.

In Figure 7(b), the runtime of M-step increases almost
linearly with respect to the data set size, indicating the good
scalability of our algorithm. Interestingly, the runtime of the
M-step does not change much with respect to the number
process nodes. This is because the major cost of the map-
reduce process of the M-step is the merging of parameters,
which is done on a single machine. This bottleneck costs the
M-step much longer time than that of the E-step.

Table 4 evaluates the effectiveness of Theorem 1. We ex-
ecuted the E-step on the full data set with 50, 100, and 200
process nodes, respectively. For each setting, e.g., using 50
nodes, we recorded the average number of training tuples

nonezero .
[9(9)] parameters Ratio # B

56,682,113 | 5.7 7 | 4
30,370,194 | 3.0 7 | 2
15,821,818 | 1.6 o7 | 1

pn [S]

50 | 460,062 | 62,325,884
100 | 230,031 | 35,368,823
200 | 115,015 | 18,656,725

Table 4: The effectiveness of Theorem 1.

S assigned to each process, the average number of the esti-
mated nonzero parameters ©(S) by Theorem 1, the average
number of nonzero parameters after ten iterations, the ratio
of the average size of ©(S) over the size of the whole pa-
rameter space, and the number of blocks processed by each
process node. Table 4 suggests the following. First, the aver-
age size of ©(.S) over the size of the whole parameter space is
very small, in the order of 1077, This means Theorem 1 can
greatly reduce the number of parameters to be held by each
process node. Moreover, the size of the estimated nonzero
parameters is close to that of nonzero parameters during
the iterations. This indicates that the superset of nonzero
parameters given by Theorem 1 is tight.

7.2 TC-Cube Materialization

We conducted an empirical study on the alternative
methods to materialize the standard dimensions, the TC-
dimension, and the whole TC-cube, and obtained the fol-
lowing observations. First, in standard dimensions, both
the bottom-up and top-down approaches achieved higher
initial likelihoods than that by the naive method after ini-
tialization. However, all the three methods needed about
five iterations to converge, and thus took similar runtime.
Moreover, all of them converged to comparable likelihoods.
Therefore, we may choose any of them to materialize the
standard dimensions. Second, in the TC-dimension, the top-
down method was much slower than the other two methods.
The reason is that when we inherit the model parameters
from the upper level topics, most of the concept generation
probabilities P(c|t) for the lower level topics are nonzero.
In this case, the superset of nonzero parameters estimated
by Theorem 1 can still be very large. Consequently, each
process node needs to partition the assigned training tuples
into many blocks and scan the large parameter file many
times. Therefore, in the TC-dimension, we may consider ei-
ther the bottom-up method or the naive method. Finally, it
does not make much difference to materialize the standard
dimensions first or the TC-dimension first. The detailed ex-
periment report can be found in the extended version [1].

7.3 Examples of lookups and reverse lookups

In this subsection, we show some real examples for the
lookups and reverse lookups answered by our system. We
use the query traffic analysis service by a major commercial
search engine as the baseline. Please refer to Section 2 for a
more detailed description of the baseline.

Table 5 compares the results for the lookup request “(time
= ALL; location = US; topic = Games)” returned by our
system and the baseline. Since the baseline does not group
similar queries into concepts, the top 10 results are quite
redundant. For example, the 1st, 2nd, 7th, and 8th queries
are similar. Our system summarizes similar queries into con-
cepts and selects only one query as the representative for
each concept. Consequently, the top 10 queries returned by
our system are more informative. We further request the top
results for four sub topics of “Games”, namely “card games”,
“gambling”, “party games”, and “puzzles”. The queries re-
turned by our system are informative (Table 6). However,
the baseline only organizes the user queries by a flat set of
27 topics; it does not support drilling down to sub topics.

As an example for reverse lookup, we asked for the group-
bys where the search for Hurricane Bill was popular by
a request “(time@day, location@state, keyword=‘hurrican
bill’)”. Purposely we misspelled the keyword “hurricane” to
“hurrican” to test the summarization capability of our TC-
model. Our system can infer that the keyword “hurrican

No. [[baseline TC cube P(clt)
1 games games 0.020
2 game pogo 0.013
3 cheats maxgames 0.012
4 WOow aol games 0.011
5 lottery wow heroes 0.010
6 xbox killing games 0.009
7 games online || addicted games 0.008
8 free games age of war 0.008
9 wii powder game 0.008
10 runescape monopoly online | 0.008

——Florida
—&—Georgia
—&— New Jersey

* Massachusetts
—e— Virginia

w
S
S

N
a
=]

N
=1
S

=
a
=]

.
o
=]

a
=]

Number of search times

5 10 15 20 - 25 y 30
August, 2009 (date)

Table 5: The top ten queries returned by our TC-
cube and the baseline for lookup “(time=ALL; loca-
tion=US; topic=Games)”.

Figure 8: The top five states of US where Hurricane
Bill was most intensively search in Aug., 2009.

- B
»
kota 8'/ 29 /\ New
Minnesota ~ Brunswick = Prince
Y { Zi Nova_ TEdward
uth St Paulo, Wiscnnsin ! Scotia. Island
kot Michigan

A x New ank \serrzngm
ibraska o, 10" en,,s/,gﬂ,a w Hampshire
L 84\%2.;,,(,20 &(ZU 5 ‘ lssachusetts.

iana
Rhode Island

o’ t
P‘a"_‘“: Missouri®

dE %"“::;ty

Ien nessee

card_games P(c]t) gambling P(clt)
pogo 0.020 sun bingo 0.004
gogirlsgames 0.004 wink bingo 0.004
solitaire 0.004 tombola 0.003
aol games 0.003 skybet 0.003
scrabble blast 0.003 ladbrokes 0.002
msn spades 0.002 ny lotto 0.002
party_games P(c]t) puzzles P(clt)
tombola 0.003 pogo 0.006
oyunlar 0.003 sudoku 0.004
fashion games 0.003 meriam webster 0.003
drinking games | 0.002 thesaurus com 0.003
evite 0.002 mathgames 0.002
beer pong 0.002 online crossword puzzles | 0.002

Table 6: The top queries returned by TC-cube for
four sub topics of “Games” in the US.

bill” belongs to the concept which consists of queries “hurri-
cane bill”, “hurrican bill”, “huricane bill”, “projected path of
hurricane bill”, “hurricane bill 2009” and some other vari-
ants. Therefore, the system sums up the frequencies of all
the queries in the concept and answers the top five states
during the days in August, 2009 (Figure 8). Figure 9 vi-
sualizes the trend of the popularity of the whole concept
according to the output of the reverse lookup. The dates
in the figure indicate when the concept was most intensively
searched in different states in the US. Interestingly, the trend
shown in Figure 9 reflects well the trajectory and the influ-
ence of the hurricane geographically and temporally, which
indicates that the real world events can be reflected by the
popular queries issued to search engines. However, when we
sent the same request to the baseline, it answered that the
search volume was not enough to show trend. The reason is
that the baseline may only consider the query that exactly
matches the misspelled keyword “hurrican bill”, which may
not be searched often.

8. CONCLUSION

In this paper, we described our topic-concept cube project
which supports online multidimensional mining of search
logs. We proposed a novel topic-concept model to summa-
rize user interests and developed distributed algorithms to
automatically learn the topics and concepts from large-scale
log data. We also explored various approaches for efficient
materialization of TC-cubes. Finally, we conducted an em-
pirical study on a large log data set and demonstrated the
effectiveness and efficiency of our approach. A prototype
system which can provide public online services is under de-
velopment.

Oklahoma a .o o c ,o“,,, II)anuwam
arylan
e Mississi .(190 c . |smc| of

$419° :P ama au mz Columbia

as” - ./ r

°0 o. Louisiana. Qlacksonville
ks Atlantic
Yy - Fibrida 2oy
o ol Gulflof o . :
L v Hurricane Bill

Mexico

Figure 9: The trajectory of Hurricane Bill.

91] REFERENCES

http://research.microsoft.com/en-us/people/djiang/ext.pdf.

[2] ODP: http://www.dmoz.org.

[3] Wikipedia: http://en.wikipedia.org.

[4] Yahoo! Directory: http://dir.yahoo.com.

[5] Backstrom, L., et al. Spatial variation in search engine queries.

In WWW?’08, 2008.
[6] Baeza-Yates, R.A., et al. Query recommendation using query
logs in search engines. In EDBT’04 Workshop, 2004.

[7] Beeferman, D. and Berger, A. Agglomerative clustering of a

search engine query log. In KDD’00, 2000.

Beitzel, S.M., et al. Hourly analysis of a very large topically

categorized web query log. In SIGIR’04, 2004.

[9] Cao, H., et al. Context-aware query suggestion by mining
click-through and session data. In KDD’08, 2008.

[10] Cao, H., et al. Towards context-aware search by learning a very
large variable length hidden markov model from search logs. In
WWWwW’09, 2009.

[11] Dean, J., et al. MapReduce: simplified data processing on large
clusters. In OSDI’04, 2004.

[12] Dempster, A.P., et al. Maximal likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society,
Ser B(39):1-38, 1977.

[13] Grey, J., et al. Data cube: a relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. Data Mining
and Knowledge Discovery, 1:29-53, 2007.

[14] Hofmann, T. Probabilistic Latent Semantic Analysis. In
UAI’99, 1999.

[15] Joachims, T. Text categorization with support vector machines:
learning with many relevant features. In ECML’98, 1999.

[16] Joachims, T. Transductive inference for text classification using
support vector machines. In ICML’99, 1999.

[17] Kamvar, M. et al. Computers and iphones and mobile phones,
oh my!: a logs-based comparison of search users on different
devices. In WWW?’09, 2009.

[18] Shen, D. et al. Q?c@ust: our winning solution to query
classification in kddcup 2005. KDD Ezploration, 7(2), 2005.

[19] Wen, J., et al. Clustering user queries of a search engine. In
WWW’01, 2001.

[20] Zhang, D., et al. Topic cube: Topic modeling for olap on
multidimensional text databases. In SDM’09, 2009.

[21] Zhao, Q., et al. Event detection from evolution of click-through
data. In KDD’06, 2006.

8

