
Using Cutwidth to Improve Symbolic Simulation and Boolean Satisfiability �

Dong Wang Edmund Clarke
Carnegie Mellon University

Pittsburgh, PA 15213
femc,dongwg@cs.cmu.edu

Yunshan Zhu James Kukula
Synopsys Inc.

MountainView, CA 94043
fyunshan,kukulag@synopsys.com

Abstract

In this paper, we propose cutwidth based heuristics to
improve the efficiency of symbolic simulation and SAT al-
gorithms. These algorithms are the underlying engines of
many formal verification techniques. We present a new
approach for computing variable orderings that reduce
CNF/circuit cutwidth. We show that the circuit cutwidth
and the peak number of live BDDs during symbolic simu-
lation are equal. Thus using an ordering that reduces the
cutwidth in scheduling the gates during symbolic simula-
tion can significantly improve both the runtime and mem-
ory requirements. It has been shown that the time complex-
ity of SAT problems can be bounded exponentially by the
formula cutwidth and many practical circuits has cutwidth
logarithmic of the size of the formulas. We have developed
cutwidth based heuristics which in practice can speed up
existing SAT algorithms, especially for SAT instances with
small cutwidth. We demonstrate the power of our approach
on a number of standard benchmarks.

1 Introduction

Symbolic simulation [3] encodes the possible behaviors
of a circuit as Binary Decision Diagrams; thus, in one run
of symbolic simulation, it is possible to cover many runs
of a traditional simulator. Symbolic simulation involves
constructing BDDs for the internal signals of a circuit in
a bottom-up manner. The BDD for an internal signal can-
not be deleted until the BDDs for all signals in the imme-
diate fanout of the signal have been computed. It is often
observed that the final BDDs are quite small compared to
the intermediate BDDs during the computation. Therefore,
it is important to reduce the size of intermediate BDDs as
much as possible. The order in which circuit signals are
traversed can greatly affect the efficiency of symbolic sim-
ulation. Compared to simple breadth-first-search (BFS) or

�This research is sponsored by the Gigascale Research Center (GSRC),
the National Science Foundation (NSF) under Grant No. CCR-9505472.

depth-first-search (DFS), an ordering with smaller cutwidth
can significantly reduce the number of internal BDDs and
improve the overall performance of symbolic simulation.

Recently, a number of efficient SAT algorithms have
been proposed [10, 13].These algorithms can handle prac-
tical problems with thousands of variables. On the other
hand , these algorithms may exhibit poor performance on
small examples involving only tens of variables. This phe-
nomenon suggests that the length of an input formula or the
number of variables in the formula may not be an accurate
measure of the “hardness” of a SAT problem. Exactly the
same arguments can be applied to other problems in formal
verification such as model checking and reachability analy-
sis. Previous work [2, 8, 12] suggests that cutwidth is often
a good measure of difficulty in formal circuit verification.

Prasad, Chong and Keutzer [12] observed that ATPG is
an NP-complete problem and yet is often efficiently solv-
able in practice. Their paper contains a theoretical analysis
of ATPG techniques based on SAT, and shows that ATPG
complexity is bounded exponentially by the cutwidth of
the circuit. The paper also contains a set of experiments
which shows that many practical circuits have logarithmic
cutwidth with respect to circuit size.

Berman [2] established a bound on the size of the BDD
for a circuit. If the BDD variable ordering is consistent with
a topological ordering of the circuit, then the BDD size is
bounded by n�2w, wheren is the number of primary inputs
to the circuit and w is the cutwidth of the given topological
ordering. McMillan [8] generalized Berman’s result. He
showed that for a given ordering of circuit nodes with for-
ward cutwidthwf and backward cutwidthwr, the BDD size
is bounded by n� 2wf2

wr

.
Since cutwidth is a good measure of circuit complexity, it

is natural to use cutwidth in heuristics for guiding searches
in formal verification engines. In this paper, we present
techniques for efficiently computing the variable orderings
that reduce the cutwidth of a circuit or a boolean formula.
We also show that cutwidth based heuristics can be used to
improve the performance of symbolic simulation and SAT.

In [6], a dynamic programming algorithm is given for

propositional satisfiability. This algorithm has polynomial
complexity for SAT problems with logarithmic cutwidth. A
decision procedure for quantified boolean formula (QBF)
is given in [11]. As a special case, the algorithm can be
used for propositional satisfiability. The algorithm is effi-
cient for solving “long and thin” circuits, i.e., circuits with
small cutwidth. Rather than proposing new SAT algorithms,
our approach computes a variable ordering that reduces the
cutwidth and uses this ordering to guide variable splitting in
existing state of the art SAT engines, like GRASP [13]. In
[9], the metric active life time is defined and used to order
the partitioned transition relations for image computation.
Since active life time is closely related to the concept of
cutwidth, this suggests that cutwidth based heuristics may
be used to order conjunctive partitions of transition rela-
tions. Recently, [1] uses an existing layout tool to generate
SAT decision orderings and BDD variable orderings.

The rest of this paper is structured as follows. In sec-
tion 2, we introduce the concept of cutwidth for a CNF for-
mula and for a circuit. In section 3, we present algorithms
for computing variable orderings that reduce cutwidth. In
section 4, we show how to exploit these variable orderings
to speedup symbolic simulation and SAT procedures. We
present some experimental results in section 5 and conclude
with some directions for future research.

2 Terminology

An undirected hypergraphG(V;E) is an extension of an
undirected graph, where V is the set of vertices and E �
P(V). Each hyperedge e 2 E contains a set of vertices
v 2 V . Given an undirected hypergraphG(V;E), # : V !

f1; 2; : : : ; kV kg will be a bijection that linearly orders the
vertices. A vertex v is said to have position i under # if
and only if #(v) = i. The range of a hyperedge e under
is [le; he), where le is the minimum vertex position and
he is the maximal vertex position. The cut set cset i(G; #)
at position i, where 1 � i � kV k is the set of hyperedges
whose range include i.

cset i(G; #) = fe 2 E j le � i < heg

The cutwidth ci(G; #) at position i is the cardinality of the
cut set at position i, i.e., ci(G; #) = kcset i(G; #)k. The cut
set csetv(G; #) at node v 2 V is the cut set at position #(v).
The cutwidth cv(G; #) at node v 2 V is defined similarly.

Definition 2.1 Hypergraph Cutwidth
Given an undirected hypergraph G(V;E) and a bijection
: V ! f1; 2; : : : ; kV kg, the cutwidth c(G; #) =

maxv2V cv(G; #), i.e., the maximal cut width among all
vertices.

A propositional formula is represented in clause form.
Each clause contains a set of literals. Each literal can be

a variable or its negation. The function unsigned(C) of
a clause C contains the set of variables of C, but with-
out their signs. For example, if C = f:a; b; :dg, then
unsigned(C) = fa; b; dg.

Definition 2.2 CNF Formula Cutwidth
Each CNF formula (V;E) will have a correspond-
ing undirected hypergraph G(V;E 0), where E

0 =

funsigned(c) j c 2 Eg. The cutwidth of the formula
is defined as the cutwidth of the undirected hypergraphG.

In symbolic simulation, the traversal of gates must sat-
isfy the constraints imposed by the structure of a circuit. In
particular, the BDDs of the node in the fanin of a gate must
be computed before the BDDs of the nodes in its fanout. To
model the structural constraints, we introduce the concept
of a directed hypergraph.

A directed hypergraph G(V;E;<V) is similar to an
undirected hypergraph, with the addition of <V which is
a partial order on the set of vertices. A topological ordering
forG is a bijection # : V ! f1; 2; : : : ; kV kg that preserves
the partial order constraints. Namely, 8v1; v2, if v1 <V v2,
then #(v1) < #(v2). Definitions involving cutwidth for di-
rected hypergraphs are the same as those for the undirected
hypergraphs.

A combinational circuit C(N;P) is represented as a set
of nets/signals N and a set of gates P . Each gate g 2 P

is represented as a set of ordered pairs of signals hni; noi,
where ni; no 2 N and ni is in the fanin of g and no is in the
fanout of g. A combinational circuit C(N;P) without feed-
back loops determines a directed hypergraphG(V;E;<V),
where V is identical to the set N ; each e 2 E corresponds
to a set that consists of a signal v and all immediate fanouts
VO of v, i.e. VO are the output signals of gates having v as
an input;<V is a partial order of signals where vi <V vo iff
hvi; voi 2 P . We call # a topological ordering of a circuit
C(N;P) if # is a topological ordering for the correspond-
ing direct hypergraph. The set of hyperedgesE for a circuit
can be formally defined as

E = ffvig[VO j vi 2 V ^8 v 2 V (v 2 VO $ hvi; vi 2 P)g

Definition 2.3 Combinational Circuit Cutwidth
Given a combinational circuit C(N;P) and a topological
ordering #, the cutwidth of the circuit C under #, c(C; #),
is the cutwidth of the corresponding directed hypergraph.

A sequential circuit is represented as S(N;P; L), where
N is a set of nets/signals, P is a set of gates, andL is a set of
latches. Each gate or latch is represented as a set of ordered
pairs of signals. For a sequential circuit S(N;P; L), we
represent a single time frame expansion of S as CS(N;P).
In the single time frame expansion, the set of latches is

removed, the input signals of the latches become pseudo-
primary outputs, and the output signals of the latches be-
come pseudo-primary inputs. We assume that there are no
combinational feedback loops in a sequential circuit.

Definition 2.4 Sequential Circuit Cutwidth
Given a sequential circuit S(N;P; L), let CS(N;L) be a
single time frame expansion of S. An ordering function # is
valid for S, if it is a valid topological ordering for CS and
all the pseudo-primary inputs are ordered first and all the
pseudo-primary outputs are ordered last in #. The cutwidth
of the circuit S under a valid ordering # is the cutwidth of
CS under #.

Typically symbolic simulation traverses a sequential cir-
cuit time frame by time frame. As a consequence, once
generated, BDDs of the input signals of latches are live un-
til one time frame is completely finished, and all BDDs of
output signals of latches are live at the beginning of a new
time frame. We will show that cutwidth of a circuit cor-
responds to the number of peak live BDDs in a symbolic
traversal. We restrict the ordering for pseudo-primary in-
puts and pseudo-primary outputs to accurately model the
actual circuit traversal in symbolic simulation.

3 Ordering Algorithms

In this section, we give algorithms to generate orderings
that reduce cutwidth for both undirected and directed hy-
pergraphs.

3.1 Undirected Hypergraph

It is well known that the following decision problem,
called minimum cut linear arrangement, is NP-complete:
For a given graph G and an integer k, does there exists an
ordering function #, so that the cutwidth c(G; #), as defined
in Section 2, is less than k? In this paper, we have designed
an approximation algorithm which in practice could find or-
derings that reduce cutwidth for a given undirected hyper-
graph. Our algorithm is based on the divide-and-conquer
paradigm. For each recursive bipartition, we have used an
existing hypergraph partitioning package hMetis [7]. We
have also implemented a simple version of the terminal
propagation technique [5], which estimates the positions of
connections between a subgraph and the remainder of the
hypergraph, so that a partition with smaller crossing edges
can be generated.

3.2 Directed Hypergraph

For directed hypergraphs, we have designed a similar
divide-and-conquer algorithm based on hMetis to generate

topological orderings that reduce cutwidth. Two subgraphs
are called directed partitions of a hypergraph, if they are bi-
partitions of the hypergraph, and it is never the case that a
vertex is in partition 1, but one of its fanout vertices is in
partition 0. We take advantage of the fact that for sequen-
tial circuits, the pseudo-primary inputs are ordered first, and
pseudo-primary outputs are ordered last. These are given to
hMetis as constraints to help generate directed partitions.
After a hypergraph is partitioned by hMetis, the produced
bipartitions are generally not directed partitions. We refine
the two partitions as follows: for each edge e 0 and each pair
of vertices u and v in e0, if u is in partition 1 and v is in
partition 0 and u <V v, then u is moved to partition 0. This
process is repeated, until no violation of partial order con-
straints of vertices exists.

4 Cutwidth Based Heuristics

4.1 Symbolic Simulation

In symbolic simulation, BDDs for latches are computed
in terms of primary inputs. We say a gate is ready when
the BDDs for all its input gates have already been built. We
say a gate is dead if the BDDs for all its output gates have
already been built. To reduce the memory requirement, the
BDD of a gate is deallocated once it becomes dead. There-
fore, a topological order is used to schedule gates for build-
ing BDDs. For each gate, this ordering determines the life-
time of its BDD. For the whole circuit, it determines the
maximal number of simultaneous live BDDs during simu-
lation. We have the following key observation:

Observation 4.1 Given a sequential circuit, the number of
peak live BDDs during symbolic simulation is the same as
the cutwidth of the circuit.

The standard way of scheduling gates in symbolic simu-
lation is to use either a queue, which corresponds to a BFS
ordering, or a stack, which corresponds to a DFS order-
ing. We call this BFS/DFS-based symbolic simulation. The
main drawback of using BFS/DFS ordering is that it is pos-
sible to accumulate many live BDDs before they become
dead and are deleted. This will result in more intermediate
BDD nodes and hence require more memory. In this paper,
we use the algorithm described in Section 3.2 to generate a
topological ordering of the circuit, which reduces cutwidth
and consequently the number of peak live BDDs. In order to
directly reduce the peak number of live BDD nodes, we use
weighted directed hypergraph to represent a circuit, where
the weight of a hyperedge approximates the BDD size of
its corresponding source signal(recall that a hyperedge con-
tains a source signal and its fanouts). In time frame based
symbolic simulation, we use the BDD size of a signal in pre-
vious time frames as an estimate for the current time frame.

We call this algorithm cutwidth-based symbolic simulation
(CUT sim).

4.2 SAT Procedure

In this section, we combine cutwidth based heuristics
with Davis-Putman-Logemann-Loveland (DPLL) style sat-
isfiability algorithms. Several existing SAT solvers are
based on extensions of DPLL algorithms. Examples include
GRASP, SATO and CHAFF. GRASP [13] extends the basic
DPLL algorithm by using conflict clauses to do caching and
shows that caching significantly improves efficiency. In this
paper, we have modified a version of GRASP to incorpo-
rate cutwidth based heuristics. Propositional formulas are
represented in clause form (conjunctive normal form). The
algorithms outlined in the Section 3.1 are used to generate
orderings that reduce cutwidth for CNF formulas. We show
that such orderings can be used for the variable splitting de-
cision and improve caching of the SAT algorithms.

Figure 1 contains the modified algorithm that uses
cutwidth based heuristics. For the ease of illustration, we
describe a non-deterministic algorithm. In practice, non-
deterministism is typically implemented using backtrack-
ing.

// V is the set of unassigned variables
// C is the set of clauses
// # is the min cutwidth variable ordering
1.Algorithm Search()
2. if V == ; return SATISFIABLE
3. v PickElement(#,V)
4. v true=false

5. if UnitPropogation() == CONFLICT
6. c ConflictClauseCrossCut(v)
7. C c [C

8. else
9. Search()

Figure 1. Cutwidth-based DPLL.

In Line 3, PickElement(#,V) returns the first unassigned
variable in the ordering #. In Line 4, variable v is non-
deterministicly assigned a value of true or false. In practice,
it can be implemented by backtracking. If an assignment to
variable v leads to a contradiction, it will be detected in Line
5. In Line 6, ConflictClauseCrossCut(v) returns a conflict
clause that contains only variables in the cutset(v), which is
implemented by a backward traversal of the conflict graph.
We have proven that such a conflict clause always exists.
However, we omit the proof in this paper. This strategy is
essential to establish the single exponential complexity with
respect to cutwidth in our algorithm.

Theorem 4.1 Given a set of clauses S and a variable or-
dering #, assume that each clause in S contains at most
a constant number of variables, the time complexity of
cutwidth-based DPLL is O(n:2w), where n is jSj and w
is the cutwidth of S with respect to #.

5 Experimental Results

For all the results reported here, we use a 360M Hz Sun
6500 Enterprise server. We use the geometric mean to com-
pute the average improvements in the algorithms discussed
in Section 4. The improvement for our symbolic simulation
algorithm is much bigger than the improvement for our SAT
algorithm.

5.1 Results for SAT

The cutwidth-based DPLL algorithm in Section 4.2
is implemented on top of fgrasp [13]. Our new algo-
rithm is referred to as CUT SAT. Since the performance
of a SAT solver can be influenced by the options used,
we adopt the options from the SAT Ex site [14], which
are ‘‘+B2147483647 +C2147483647 +S2147483647 +g20
+rt4 +V0”. We compare our algorithm with the dynamic
decision heuristic DLIS, which selects the decision vari-
able, so that it satisfies the maximum number of clauses.
The default timelimit is 10,000 seconds for both versions
of the algorithm. Table 1 summarizes the our results for
the DIMCAS benchmarks and the “dlx” Superscalar Suite
1.0a benchmarks [15]. In the table, FP represents fgrasp
and CS represents CUT SAT. The first column is the name
of the benchmark class, the second column is the number
of instances within that class. The third and fourth columns
are the number of instances within each class that are fin-
ished by fgrasp and CUT SAT within the timelimit. The
fifth, sixth and seventh columns are the time used by fgrasp,
CUT SAT and the time CUT SAT uses to derive an order-
ing. Note that only those benchmarks that are completed
within the timelimit are counted. The last column is the
average cutwidth for each benchmark class.

The benchmarks in Table 1 are organized into three cat-
egories: trivial, difficult, and hard.

� For the trivial benchmarks, both CUT SAT and fgrasp
run pretty fast, and there is no advantage using
CUT SAT.

� CUT SAT is able to finish more benchmark instances
than fgrasp within the timelimit for most of the diffi-
cult benchmarks. Our algorithm uses much less time to
finish all the instances for the “h” and “par16” classes
of examples from DIMACS. But for “ii32”, fgrasp is
able to finish one more benchmark. Another interest-
ing observation is that the performance of CUT SAT

class #M #Finished Time(sec) Cutwidth
FP CS FP CS Order

aim-100 24 24 24 0.8 0.7 8.8 115
aim-200 24 24 24 8.9 4.9 20.3 230
aim-50 24 24 24 0.4 0.4 3.6 63
bf 4 4 4 2.1 2.6 64.8 200
dubois 12 12 12 2.7 0.2 17.5 13
ii8 14 14 14 5.4 1.6 73 398
jnh 50 50 50 6.7 41.5 49.2 648
pret 8 8 8 4.5 0.7 2.2 28
ssa 8 8 8 3.7 86.5 538 254

h 7 4 7 1828.7 377.7 209.8 94
ii16 10 9 10 140.7 672.9 466.9 1424
ii32 17 17 16 5.3 32.7 121.8 1144
par16 10 8 10 7329.9 1153.7 86.6 146
par32 10 0 0 0 0 0 311
f 3 0 0 0 0 0 2686
g 4 0 0 0 0 0 4720
dlx 9 2 4 1916.0 1461.2 4302.7 5311

Table 1. Comparison for fgrasp (FP) and
CUT SAT (CS)

can be predicted by the cutwidth of the CNF formula.
For example, the average cutwidth for “h” and “par16”
is approximately a hundred, but the single CNF for-
mula within “ii32” that CUT SAT fails to finish has a
cutwidth of 2354. This is at least twice as big as the
cutwidth for the rest of the instances within “ii32”.

� Neither CUT SAT nor fgrasp does very well on the
hard class of benchmarks, but for the “dlx” from Su-
perscalar Suite 1.0a, CUT SAT could finish two more
benchmarks, although this class of benchmarks has a
very big average cutwidth.

Based on this table, our cutwidth-based DPLL algorithm
gives significant improvements over the dynamic decision
heuristic for SAT instances with cutwidth below several
hundred. This suggests a conservative way to use the
cutwidth-based algorithm. First, generate an ordering us-
ing the algorithm in Section 3, then use the cutwidth-based
heuristics if the cutwidth of the ordering is small. As
demonstrated by the “dlx” examples, for practical SAT in-
stances in verification, the cutwidth-based algorithm could
give better results even if the SAT instances have large
cutwidth. Thus, it is possible to incorporate this algorithm
for solving benchmarks with large cutwidth by alternating
between different decision making heuristics.

5.2 Results for Symbolic Simulation

We have implemented the BFS, DFS and cutwidth-based
(CUT sim) symbolic simulation algorithms using CUDD
2.3.0. Our experiments are based on the 31 nontrivial cir-
cuits in the ISCAS93 benchmark set. As far as the cutwidth
between different orderings are concerned, on average DFS
is 1.6 times smaller than BFS, and CUT sim is 3.2 times
smaller than DFS. The ordering time used by CUT sim is

usually small. The longest is 793 seconds for “s38417”
which has about 24K gates.

We then carry out symbolic simulation experiments us-
ing these three ordering algorithms to verify the claim that
an ordering with smaller cutwidth usually exhibits better
performance with symbolic simulation. We have performed
two sets of experiments. The first set of experiments de-
scribed in Table 5.2 uses dynamic BDD variable reordering
but does not use any pre-generated initial BDD variable or-
dering. The second set of experiments (which is omitted
here because the results are similar to the first set of ex-
periments) does not use BDD variable reordering, instead it
uses the three BDD variable ordering files saved in the first
set of experiments. We have omitted the results for BFS,
which is slightly worse than DFS. Also in both sets of ex-
periments, we start with all latches having value 0 in the first
time frame. We symbolicly simulate each circuit up to 100
time frames or up to 20,000 seconds. In Tables 5.2, the first
column is the name of the benchmark. The second and third
columns are the numbers of symbolic simulation steps fin-
ished by DFS and CUT sim. The fourth and fifth columns
are the time (including cutwidth ordering time) used. The
last two columns are the peak number of live BDD nodes in
millions during simulation. Based on the second and third
columns, CUT sim finishes more simulation steps for 22
out of 31 circuits. In order to accurately compare the per-
formance of the two algorithms, the time and BDD node-
counts reported are collected when both DFS and CUT sim
complete the same common maximal number of simulation
steps. The results are arranged into four categories accord-
ing to runtime. In the the first category, DFS performs bet-
ter than CUT sim, but the differences are usually small. In
the second category, CUT sim is slightly better than DFS.
In the third category, CUT sim improves the run time by a
factor between 2 and 9. In the last category, CUT sim is
more than an order of magnitude faster than DFS.

Finally, we summarize the results for BFS, DFS and
CUT sim. In terms of number of simulation steps finished
and the time used, CUT sim wins 27 cases, DFS wins 2
cases and BFS wins 2 cases. The average reduction of
CUT sim over BFS is 4.5 in time and 2.6 in space. The
average reduction of CUT sim over DFS is 3.9 in time and
2.4 in space.

6 Conclusion

This paper gives algorithms for computing variable or-
derings that reduce cutwidth. These algorithms work on
both CNFs and on circuits. We show that the ordering for
a circuit can be used to guide circuit traversal in symbolic
simulation. The new traversal order reduces the number of
live BDDs nodes better than either BFS or DFS order. We
also show how a DPLL based SAT algorithm can be modi-

circuit Finished steps Time (minutes) BDD nodes (M)
DFS CUT DFS CUT DFS CUT

s35932 12 12 83.2 105.7 2.9 3.0
s526 71 70 230.9 143.8 5.3 4.3

s1269 4 4 3.7 2.2 0.4 0.4
s13207 87 88 312.2 290.1 3.1 2.9
s15850 48 49 296.1 279.3 8.5 7.1
s298 69 73 311.9 186.9 3.8 2.7
s382 68 68 153.2 152.5 5.2 5.0
s4863 5 5 24.4 12.5 0.9 0.6
s510 64 64 51.2 32.9 0.2 0.1
s713 16 18 281.7 225.3 3.8 3.5
s820 15 17 41.1 37.1 0.4 0.7
s832 16 17 168.5 126.8 0.7 1.0

s13207.1 36 37 266.6 129.2 5.7 3.3
s1423 11 13 37.8 18.7 1.8 0.7
s1494 15 17 41.9 10.3 0.5 0.4
s3271 15 24 128.3 36.1 3.6 1.1
s3330 6 6 108.6 52.5 2.5 1.9
s38417 17 19 215.7 67.7 3.7 1.4
s38584.1 12 13 162.6 59.6 3.3 2.0
s38584 19 19 151.6 67.7 6.0 6.2
s444 63 69 165.2 46.4 4.6 1.5
s641 16 17 304.2 149.1 4.2 3.1
s6669 3 3 81.0 22.2 2.7 1.1
s1512 14 16 248.7 26.0 5.2 0.7
s526n 64 70 169.3 31.9 4.0 0.9
s5378 17 20 228.8 30.4 4.3 0.5
s1488 16 100 103.5 0.07 1.1 5e-6
s386 17 19 149.4 1.0 6e-5 4e-5
s9234.1 13 14 73.5 7.3 1.9 0.3
s9234 23 42 174.3 1.2 7.5 8e-5
s953 12 13 98.7 3.7 2.1 0.3

Table 2. Comparison for DFS and CUT sim

fied to use this ordering for variable splitting and conflict
caching. The modified algorithm has single exponential
complexity with respect to the cutwidth of the input clauses.
Our experimental results demonstrate the effectiveness of
cutwidth based heuristics for both symbolic simulation and
SAT.

In the future we would like to explore methods to com-
bine cutwidth based heuristics with the dynamic decision
making in SAT algorithms. We would like to apply our
cutwidth based algorithm to image computation with con-
junctive partitioning [4]. Finally we would also like to try
our cutwidth-based heuristics on other efficient SAT pro-
cedures and further improve the efficiency of the ordering
algorithms.

References

[1] F. Aloul, I. Markov, and K. Sakallah. Faster SAT and
Smaller BDDs via Common Function Structure. In
Proc. of the International Conference on Computer
Aided Design (ICCAD), 2001.

[2] C.Leonard Berman. Circuit Width, Register Alloca-
tion, and Ordered Binary Decision Diagrams. IEEE
Transactions on Computer-Aided Design 4(1), pages
1059–1066, August 1991.

[3] R. E. Bryant. Symbolic Simulation–Techniques and
Applications. In 27th Design Automation Conference,
pages 517–521, June 1990.

[4] Edmund M. Clarke, Orna Grumberg, and Doron
Peled. Model Checking. MIT Press, 1999.

[5] A.E. Dunlop and B.W. Kernighan. A Procedure for
Placment of Standard Cell VLSI Circuits. IEEE
Transactions on Computer-Aided Design 4(1), pages
92–98, 1985.

[6] David FERNANDEZ-BACA. Nonserial Dynamic
Programming Formulations of Satisfiability. Informa-
tion Processing Letters 27, pages 323–326, May 1988.

[7] George Karypis, Rajat Aggarwal, Vipin Kumar, and
Shashi Shekhar. Multilevel Hypergraph Partitioning:
Applications in VLSI Domain. In 34th ACM/IEEE
Design Automation Conference, 1997.

[8] K. L. McMillan. Symbolic Model Checking: An Ap-
proach to the State Explosion Problem. PhD thesis,
Carnegie Mellon University, Computer Science De-
partment, 1992.

[9] In-Ho Moon and Fabio Somenzi. Border-Block Trian-
gular Form and Conjunction Schedule in Image Com-
putation. In Proceedings of the Formal Methods in
Computer Aided Design (FMCAD), November 2000.

[10] Matthew Moskewicz, Conor Madigan, Ying Zhao,
Lintao Zhang, and Sharad Malik. Chaff: Engineering
an Efficient SAT Solver. In 38th ACM/IEEE Design
Automation Conference(DAC), June 2001.

[11] David A. Plaisted, Armin Biere, and Yunshan Zhu. A
Satisfiability Tester for Quantified Boolean Formulae.
Submitted.

[12] Mukul Prasad, Philip Chong, and Kurt Keutzer. Why
is ATPG easy? In 36th ACM/IEEE Design Automation
Conference(DAC), pages 22–28, October 1999.

[13] J.P. Marques Silva and Karem A. Sakallah. GRASP -
A New Search Algorithm for Satisfiability. In Pro-
ceedings of the IEEE international Conference on
Computer Aided Design (ICCAD), pages 220–227,
1996.

[14] Laurent Simon. The SAT Ex Site.
http://www.lri.fr/ simon/satex/satex.php3.

[15] M.N. Velev. Superscalar Suite 1.0a. Available from:
http://www.ece.cmu.edu/ mvelev.

