
SAT based Abstraction Refinement

for Hardware Verification

Dong Wang
May 2003

Electrical and Computer Engineering Department

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy.

Thesis Committee:

Edmund Clarke, Chair

Randal Bryant

Don Thomas

Orna Grumberg

Copyright c© 2003 by Dong Wang

This research is sponsored by the Gigascale Silicon Research Center (GSRC),
the National Science Foundation (NSF) under Grant No. CCR-9803774. Any
opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of GSRC, NSF,
or the United States Government.

Abstract

Model checking is a widely used automatic formal verification technique.
Despite the recent advances in model checking technology, its application is
still limited by the state explosion problem. For model checking large real
world systems, abstraction is essential. This thesis investigates abstraction
techniques for the efficient verification of hardware designs with thousands
of registers.

A technique, called SAT conflict dependency analysis, is developed and
used to derive several efficient abstraction algorithms. If a CNF formula is
unsatisfiable, this technique can extract a proof of unsatisfiability by analyz-
ing conflict clauses and conflict graphs generated by the SAT procedure.

In this thesis, we propose two new algorithms to improve the efficiency
of traditional localization reduction based methods. The first algorithm
combines multiple verification engines including BDD, ATPG, SAT, and 3-
valued simulation for generating abstract counterexamples and for refine-
ment. When the SAT solver determines that there are no concrete coun-
terexamples corresponding to the abstract counterexample, we generate an
unsatisfiability proof using the SAT conflict dependency analysis. The second
algorithm identifies a set of registers for refinement based on the extracted
proof.

Existing predicate abstraction techniques are designed for verifying infinite
state systems. They become inefficient when applied to the verification of
large scale hardware designs. We improve the existing predicate abstraction
techniques in several directions. First, computing an abstract model involves
many validity checks. A pruning technique is introduced, to avoid the validity
checks that are guaranteed to fail. Second, the abstract model is refined
by adding compact predicates and general transition constraints identified
by unsatisfiability proofs. Third, existing refinement algorithms can add
unnecessary predicates, called redundant predicates. We propose algorithms
to identify and remove the redundant predicates. Fourth, to exploit high
level information from Verilog designs, a method is developed to extract
relevant branch conditions that can be used as predicates during refinement.
Finally, to improve predicate abstraction further, we combine techniques from
localization reduction into the abstraction process.

The abstraction refinement algorithms presented in this thesis have been
successfully applied to the verification of industrial hardware designs with up
to six thousand registers and 250 thousand gates.

Acknowledgements

I am very fortunate to have Ed Clarke as my adviser during my gradu-

ate study. Ed has devoted much effort to teach me how to do research and

how to present results effectively. Without his encouragement and invaluable

guidance, this thesis would not have been possible. Thanks to all my com-

mittee members for their advice and careful reading of my thesis. Randy has

given suggestions to extend this work. Don’s insight on hardware description

languages expands my horizon on verification. Orna has been working with

me extensively during her visits to CMU. She has helped me to formalize my

ideas and extends them in various directions.

Many thanks to members in our research group. Sergey has always been

helpful. I benefit a lot from inspiring discussions with Yuan. His encourage-

ment helps me to get started with research. Helmut, Pankaj and Murali are

my research collaborators. Ofer has provided benchmarks used in this thesis.

Finally, it has been a great pleasure to work with all the other group mem-

bers: Will Marrero, Marius Minea, Armin Biere, Yunshan Zhu, Sagar Chaki,

Flavio Lerda, Anubhav Gupta, Alex Groce, Nishant Sinha, Daniel Kroening,

Joel Ouakinine, Michael Theobald, Karen Yorav and everyone else.

I spent summer 2000 in Synopsys woking with Pei-Hsin Ho, Jiang Long,

James Kukula etc. The experience was incredible. The work there becomes

an important part of my thesis.

I thank people in ECE and CS facilities for providing an efficient working

environment. I would like to acknowledge the financial support of GSRC and

NSF. Their support has made this work possible.

I am very grateful to my parents, my brother and my sister. They are

always there to support me. And Finally, most of my gratitude goes to my

dear wife, Zhuo, for her patience, encouragement and faith in what I am

doing.

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Background . 2

1.2 Scope of This Thesis . 5

1.3 Related Work . 9

1.3.1 SAT Unsatisfiability Proofs 9

1.3.2 Localization Reduction and Counterexample Guided

Refinement . 10

1.3.3 Predicate Abstraction 12

1.3.4 Other Abstraction Techniques 15

2 Existential Abstraction 17

2.1 Notation . 17

2.2 Existential Abstraction . 19

2.3 Predicate Abstraction . 22

2.3.1 A Software Example 29

iv

Contents v

2.3.2 A Hardware Example 31

2.4 Localization Reduction . 39

2.5 Abstraction Refinement . 40

3 SAT and Unsatisfiability Proofs 42

3.1 Conflict based Learning in SAT Solvers 42

3.2 SAT Conflict Dependency Analysis 48

3.2.1 Dependencies between Conflict Graphs and Clauses . . 48

3.2.2 Incremental SAT . 54

4 Localization Reduction 55

4.1 Overapproximate the Abstract Models 56

4.2 Checking the Validity of an Abstract Counterexamples 59

4.3 Invisible Variables In Abstract Counterexamples 60

4.3.1 Guided SAT/ATPG 60

4.3.2 Efficient Abstract Model Checking 62

4.3.3 Check Counterexample 65

4.3.4 Refinement Algorithms 66

4.3.5 Experimental Results 70

4.4 Invisible Variables in Unsatisfiability Proofs 75

4.4.1 Identifying Important Variables 76

4.4.2 Refinement Minimization 78

4.4.3 Experimental Results 79

4.4.4 Performance Improvements 82

5 SAT based Predicate Abstraction 87

Contents vi

5.1 SAT based Abstraction . 91

5.1.1 Reducing the number of testpoints 92

5.2 SAT based Refinement . 94

5.2.1 Refinement to Exclude Spurious Transitions 97

5.2.2 Refinement by adding a New Predicate 101

5.3 Exploit RTL Information . 108

5.3.1 Extracting Branch Conditions 108

5.3.2 Counterexample-based Lazy Refinement 111

5.4 Experimental Results . 118

6 Combine Localization Reduction with Predicate Abstraction121

6.1 Identifying Control Variables 122

6.2 Combining with Localization Reduction 123

6.3 Correlations between Control Variables and Predicates 125

6.4 Correlations Between Formula Predicates 127

6.5 Experimental Results . 128

7 Removing Redundant Predicates 131

7.1 The Replacement Function . 134

7.2 Removing Redundant Predicates 137

7.3 Redundant Predicates for Safety Properties 139

7.4 Redundant Predicates for Bisimulation Equivalence 144

7.5 Difference in the Bisimulation and AG p conditions 146

7.5.1 A transition relation that satisfies the Bisimulation

condition . 147

7.5.2 A transition relation that satisfies the AG p condition . 148

Contents vii

8 Conclusion and Future Work 150

List of Figures

2.1 Fetch each 8x8 pixel block . 32

2.2 General Abstraction Refinement framework 41

3.1 Basic DPLL backtracking search 47

3.2 Two dependent conflict graphs 49

3.3 The conflict dependency graph and the proof graph (within

dotted lines) . 50

4.1 no-cut and min-cut abstract models (from [40]) 57

4.2 Guided-SAT Algorithm . 61

4.3 Refinement Minimization Algorithm 70

4.4 A spurious prefix and the associated deadend/bad states. . . . 77

5.1 Greedy Minimization Based on Incremental SAT. 105

5.2 Replace branch conditions using unique signals 110

5.3 A refinement example . 113

5.4 Algorithm to compute ece0 . 115

5.5 Algorithm to compute ecei+1 116

5.6 Algorithm to compute invalidating predicates 117

viii

List of Figures ix

7.1 Relationship between the concretization of Bi, FU(Bi), and

¬FU(¬Bi) . 135

List of Tables

2.1 Predicate abstraction for a C program 31

4.1 3-value simulation of an abstract counterexample 68

4.2 Property Verification Results 72

4.3 Unreachable-coverage-state analysis results 74

4.4 Comparison between Cadence SMV (CSMV), heuristic score

based refinement and proof based refinement for larger cir-

cuits. 81

4.5 Comparison between [22], heuristic score based refinement and

proof based refinement for smaller circuits. 82

5.1 Comparison between localization reduction and predicate ab-

straction. 120

6.1 Compare the pure predicate abstraction (PRED) with the

combined algorithm (COMB) 130

x

Chapter 1

Introduction

Model checking is an automatic exhaustive search method for the formal ver-

ification of finite state systems. As hardware designs are becoming more and

more complex, traditional simulation based methodology has been proven

insufficient to find subtle design errors. For many hardware designs, the

application of model checking is absolutely essential. For example, bugs in

high volume electronic products, such as microprocessors, could cause recall

of the chips and incur crippling costs to the manufacturers. Furthermore,

design errors in mission critical or safety critical systems may cause catas-

trophic consequences. One major obstacle for the adoption of model checking

into the mainstream design flow is the state explosion problem. This thesis

investigates abstraction techniques to alleviate this problem, thus enabling

the successful application of model checking to verify large scale hardware

designs.

1

1.1. Background 2

1.1 Background

Model checking [25] as introduced by Clarke and Emerson has three basic

elements:

• A Kripke structure to model the finite state system under verification,

• A formula in computation tree logic (CTL), which belongs to the tem-

poral logic [63] introduced by Pnueli, to specify the property, and

• An efficient model checking algorithm that for each state determines

the truth value of subformulas of the given CTL formula.

Since the system states are explicitly manipulated in the original model

checking algorithm, only relatively small designs can be verified. Over the

past several years, considerable research has been done to improve the basic

model checking algorithm of [25]. Symbolic model checking, bounded model

checking (BMC), compositional reasoning and abstraction are some of the

major techniques to enable model checking of large systems.

Symbolic model checking based on BDDs was introduced by McMil-

lan [50] as a viable solution to alleviate the state explosion problem. In

this approach, sets of states and relations are all encoded using ordered bi-

nary decision diagrams (OBDD) [14]. Much larger systems [16] have been

verified using this method compared to explicit state model checkers. As part

of his Ph.D. thesis, McMillan created a symbolic model checker, the SMV

system. In SMV, the system under verification is described using an SMV

program and the property is described using a CTL formula. SMV encodes

the system and performs the fixpoint based model checking algorithms only

1.1. Background 3

using OBDDs. If the formula does not hold on the model, SMV usually

produces a counterexample which is a witness for the failure1.

A symbolic bounded model checking (BMC) algorithm based on Boolean

satisfiability (SAT) solvers was introduced by Biere, Cimatti, Clarke and Zhu

in [10]. In BMC, given a linear time temporal logic (LTL) formula, coun-

terexamples of increasing lengths are searched via a reduction to Boolean

satisfiability problems. If one of the SAT instances is satisfiable, a coun-

terexample has been found. Recent advances in SAT technology [56, 68, 76]

has greatly increased the size of the systems that can be handled by BMC,

compared to BDD based model checkers. The effectiveness of BMC has been

demonstrated in many verification problems in industry [11,13,26]. However,

in order to show the correctness of the LTL formula, a large bound may be

necessary. A number of approaches [2,12,37,53,67,73] have been investigated

to use SAT solvers for unbounded model checking.

Compositional reasoning [1,4,36,39,51,52,62] is used to reduce the veri-

fication of a large system to a number of smaller verification problems. The

correctness of the overall system is then established by composing the proofs

of correctness of various parts. In this approach, properties of each part are

verified by making assumptions on the behavior of other parts. For a part,

other parts act as an environment. These assumptions must be proved later

when the correctness of other parts is proved. In practice, a complex hard-

ware system is broken into smaller blocks based on the design modularity.

1Counterexamples are produced only for universal CTL formulas which have either
a path or a loop counterexample. Other counterexamples are not produced, only their
falsehood is indicated.

1.1. Background 4

For the verification of each block, the assumptions about the environment

are specified as input constraints. Over-constraining the inputs will result in

false confidence in the correctness of the design. On the other hand, under-

constraining the inputs leads to false errors. The difficulty in generating the

exact input constraints is a major obstacle to the application of compositional

reasoning in industry.

Abstraction is an effective method to alleviate the state explosion prob-

lem. There are many abstraction techniques, including the localization reduc-

tion [9,18,22,33,43,72], the homomorphic abstraction [21,23,64], the abstrac-

tion without explicit abstraction function [60], abstract interpretation [46],

the free and constrained abstractions [27], predicate abstraction [6, 65, 66],

etc. All abstraction techniques compute abstract models of the given con-

crete system by leaving out “irrelevant” details, thus model checking the

abstract models is considerably simpler than directly applying model check-

ing to the concrete system. For an abstraction technique to be effective, it

is important to come up with the right kind of abstract models to preserve

the relevant behavior for the property. Usually, the initial abstraction is too

coarse. It needs to be successively refined to gradually add more behavior to

determine the result of the verification. It is desirable to keep the abstract

model as small as possible, while still being sufficient for the verification.

The existing abstraction techniques do not consider refinement at all, or the

refinement process is computationally expensive or ineffective. Therefore,

the major challenge is to automate the refinement process to find the small

and sufficient abstract models efficiently.

1.2. Scope of This Thesis 5

1.2 Scope of This Thesis

This thesis investigates new abstraction techniques for the efficient verifica-

tion of large scale hardware designs. Two abstraction methods, the localiza-

tion reduction and the predicate abstraction, have been enhanced to solve

the following problems:

1. In localization reduction, abstract models are constructed by retaining

certain parts of the concrete model. Thus the size of the abstract mod-

els can be large, which could make model checking even the abstract

models computationally expensive.

2. In localization reduction, for hardware designs with thousands of reg-

isters, identifying a small set of registers to build the abstract model

required for the verification of the given property is difficult. Also, ex-

isting techniques invalidate one abstract counterexample at a time for

refinement.

3. Existing predicate abstraction techniques are suitable for the verifica-

tion of infinite state systems. However, they are inefficient when applied

to the verification of large scale hardware systems. In particular, the

algorithm to build the abstract model, the algorithm to refine the ab-

stract transition relation and the algorithm to compute new predicates

are not effective for hardware verification.

4. Predicate abstraction may perform badly for control intensive systems,

because simulating the control structure may require a large number

of predicates.

1.2. Scope of This Thesis 6

5. Although a typical design flow starts at register transfer level (RTL),

existing model checking engines and verification tools use the gate level

representation of the design under verification. High level RTL designs

are synthesized to lower gate level designs before a verification tool can

read and encode them. High level design information, e.g. predicates

in Verilog descriptions, can be crucial for the success of the verification.

6. Counterexample guided abstraction refinement may add redundant pred-

icates that are not necessary for the verification of the given property.

This unnecessarily increases the size of the abstract model. There is

no automatic way to identify and remove those redundant predicates.

The goal of this thesis is to address these problems. The principal con-

tributions of this work are detailed below:

SAT conflict dependency analysis. Our abstraction refinement algo-

rithms are based on SAT procedures. These algorithms rely on the identi-

fication of unsatisfiability proofs of SAT formulas. A technique, called SAT

conflict dependency analysis, is developed to extract a small unsatisfiability

proof of the given SAT formula. Using the unsatisfiability proof, a subfor-

mula of an unsatisfiable SAT formula can be shown to be unsatisfiable. Based

on SAT conflict dependency analysis, an incremental SAT solver is built on

top of the modern SAT solver zChaff [56], which can considerably speed up

solving a set of related SAT problems whether they are satisfiable or not.

Localization reduction based on multiple verification engines. Lo-

calization reduction overapproximates the given concrete model by keeping

1.2. Scope of This Thesis 7

a set of important registers (visible registers) and hiding the rest (invisible

registers). We enhance traditional localization reduction for the verifica-

tion of hardware designs with thousands of registers. A hybrid BDD/ATPG

algorithm is developed to compute efficiently abstract counterexamples for

abstract models with large number of inputs. A 3-valued simulator and a

SAT solver are used to identify a minimal set of registers that cause the given

abstract counterexample to fail on the concrete model.

Localization reduction based on unsatisfiability proofs. A new lo-

calization reduction algorithm is developed, where the refinement only adds

those invisible registers that appear in the unsatisfiability proof generated

when the abstract counterexample is proved to be unsatisfiable on the con-

crete model. Furthermore, we propose two new algorithms to generalize

counterexamples based localization reduction. The first algorithm generates

better initial abstractions by the use of BMC and the unsatisfiability proofs of

the corresponding SAT formulas. The second algorithm is used to invalidate

multiple abstract counterexamples at once.

SAT based predicate abstraction for RTL Verilog design verifica-

tion. The construction of an abstract model using predicate abstraction

involves potentially exponential number of validity checks. Each of these

checks requires one call to the SAT solver. We developed a pruning tech-

nique to reduce the number of calls to the SAT solver. To eliminate a spuri-

ous abstract counterexample, two efficient SAT based refinement algorithms

are developed. The first algorithm requires only one call to the SAT solver,

1.2. Scope of This Thesis 8

while the number of calls in the existing algorithm [28] is twice the number of

predicates. Our second refinement algorithm computes new predicates that

are compact, while the existing algorithm [65] does not consider the size of

the new predicates. Furthermore, we developed a practical method to ex-

ploit high level information in predicate abstraction. This method extracts

relevant branch conditions in RTL Verilog designs before verification starts.

To use these branch conditions in predicate abstraction, a lazy refinement

algorithm is developed. This algorithm identifies a subset of the branch con-

ditions that can invalidate a spurious counterexample without constructing

the full refined abstract model.

Combine localization reduction with predicate abstraction. For

control variables that determine the behavior of the concrete system, the

number of predicates required to simulate their behavior may be much larger

than the number of control variables. We develope a clustering based heuris-

tic to identify when such a blow up of the abstract model is likely to occur

for predicate abstraction. Then a modified localization reduction algorithm

is used to include these variables into the abstract model. Furthermore, it

is usually the case that different predicates are not independent. Efficient

algorithms are designed to compute constraints between predicates. The

computed constraints are added as invariants to the abstract model to make

it more accurate.

Removing redundant predicates. Existing predicate abstraction algo-

rithms use counterexamples to guide the computation of new predicates. For

1.3. Related Work 9

the verification of the given property, it is possible for the refinement algo-

rithm to include unnecessary predicates, called redundant predicates. We

have developed two criteria to identify when a predicate is redundant based

on the concept of replacement functions. We also show how to remove the

redundant predicates efficiently, once they are identified.

I believe that the novel ideas presented significantly advance the state of

the art in hardware verification. We performed a large number of experiments

on industrial benchmarks with thousands of registers and greatly improved

upon the results of the existing verification techniques.

1.3 Related Work

In this section, we briefly review some of the related work.

1.3.1 SAT Unsatisfiability Proofs

Extracting unsatisfiability proofs is also studied by Zhang and Malik in [75]

and by McMillan and Amla in [55]. Their approaches to extract unsatis-

fiability proofs are similar to the one presented in this thesis, except that

they use resolution rather than the boolean constraint propagation method

to represent the reasoning in a conflict graph.

In [75], experimental study is performed to measure the quality of the ex-

tracted proofs. For their examples, only 19% to 90% of the generated conflict

clauses during SAT search are actually needed in the proofs. For an unsatisfi-

able CNF formula, they also show through experiments that the set of clauses

in the unsatisfiability proof is not the minimal unsatisfiable subformula, con-

1.3. Related Work 10

firming the claim in this thesis. Compared with our work, the extracted

unsatisfiability proofs are used for different purposes. We use unsatisfiabil-

ity proofs to perform counterexample guided abstraction refinement; while

in [75], the unsatisfiability proofs are verified to check the correctness of the

SAT solver. McMillan and Amla use unsatisfiability proofs to perform local-

ization reduction without counterexamples. We will discuss their algorithm

in the following subsection.

Incremental SAT is independently studied by Kim, Whittemore and Sakallah

in [42]. They show how an incremental SAT solver can be used to solve a set

of related SAT problems, where constraints are added in last-in-first-out or-

der. Similar to our dependency analysis, their algorithm to enable the reuse

of conflict clauses maintains the relationship between a conflict clause and

the clauses that are responsible for it.

1.3.2 Localization Reduction and Counterexample Guided

Refinement

In [43,64], Kurshan proposed the high-level strategy called localization reduc-

tion for the language containment problem between a system of L-processes

and a specification of the system in terms of L-automata. The abstract mod-

els are subsets of the L-processes. Refinement is based on adding L-processes

to invalidate the abstract counterexamples, which is guided by the depen-

dency graph among L-processes. However, the description of the algorithm

does not provide enough details to implement a practical tool.

Balarin et al. [5] reported a similar iterative algorithm for checking lan-

1.3. Related Work 11

guage emptiness of networks of communicating automata. The abstract

models are subsets of the communicating automata. Refinement is based

on adding some extra communicating automata to the abstract model. The

choice is based on the degree of common support between the current ab-

stract model and the automata that have not been included in the abstract

model. The verification result of a collection of dining philosophers using

BDD-based image computation is reported.

Lu [48] developed a counterexample guided abstraction refinement frame-

work. Lu was the first to propose refinement based on separation of deadend

and bad states. Our refinement algorithm is also based on this concept. How-

ever, there are several differences. The biggest bottleneck in his method is

the use of BDD based image computations on concrete systems for validating

counterexamples. We use symbolic simulation based on SAT to accomplish

this task. His method to separate deadend and bad states is based on split-

ting the variable domains, while our methods either hide irrelevant parts of

the design or introduce new predicates.

In [22], Clarke et al. proposed localization reduction algorithms based on

separation of deadend and bad states using integer linear programming (ILP)

and machine learning techniques. They sample the deadend and bad states

and produce optimal separating variables for the samples. This process is

repeated till the separating variables are sufficient to separate deadend and

bad states.

Subsequently, Chauhan et al. proposed a SAT conflict analysis based

heuristic score algorithm for refinement in [18]. This algorithm analyzes

the structure of SAT search to identify important registers. The algorithm

1.3. Related Work 12

is computationally inexpensive and does not need multiple SAT checks for

refinement. We also introduced SAT conflict dependency analysis to extract

unsatisfiability proofs in [18]. The set of registers identified by heuristic

score method for refinement is usually larger than that identified by SAT

unsatisfiability proof based methods.

In [55], McMillan and Amla proposes a new localization reduction al-

gorithm that does not use abstract counterexamples to perform refinement.

Instead, in each iteration of the abstraction refinement procedure, SAT based

bounded model checking with increasing bounds is performed on the concrete

model. If there is no concrete counterexample of a given length, the regis-

ters in the extracted unsatisfiability proofs are used to construct an abstract

model. Then, BDD based model checking is used to verify the property on

the abstract model. If the property is false on the abstract model, the above

procedure is repeated. Their algorithm is similar to the proof based method

to extract a set of important registers from bounded model checking pre-

sented in Section 4.4.4. However, there are important differences. We use

the method based on BMC only to generate initial abstraction. Moreover, we

are not required to use all the registers in the unsatisfiability proofs, since the

proofs are not minimal and there could be too many registers in the proofs.

1.3.3 Predicate Abstraction

Predicate abstraction was introduced by Graf and Saidi in [65]. They used

PVS theorem prover to perform on the fly Overapproximate reachability

analysis of infinite state systems. In their approach, the abstract state space

1.3. Related Work 13

is represented as monomials over predicates. No abstract model is explic-

itly built. In [66], Saidi and Shankar introduced an algorithm to compute

abstractions for infinite state systems that preserve all µ−calculus formu-

las. Their algorithm does not introduce any approximations in the abstract

model, however, it requires an exponential number of validity checks. They

present a simplistic refinement process to remove the nondeterministic be-

haviors introduced by predicate abstraction.

An algorithm to make the abstract model more accurate given a fixed set

of predicates is presented in [28]. To speed up the abstraction process, they

introduce approximations in the abstract model. This results in spurious

transitions in the abstract model. To remove a spurious transition, their

algorithm requires 2m number of calls to a theorem prover, where m is the

number of predicates. Our algorithm is more efficient in that no additional

calls to a SAT solver are required. Note that, in general, their algorithm

can come up with a more general constraint than ours. However, we can

get the same constraints, probably using much less time, by combining both

algorithms together. Furthermore, the work in [28] does not consider the

problem of introducing new predicates to refine the abstract model.

Exploiting high level hardware description language features for abstrac-

tion has been investigated in [23]. They extract conditions of case statements

in the SMV language in order to build the initial abstraction. The extraction

method in [23] requires modifying the source code of an existing translator

of SMV language. We transform the given Verilog design to an equivalent

design where the predicates are uniquely named. The modified design can

be processed by commercial synthesis tools to generate verification models

1.3. Related Work 14

where the predicates are preserved. In [23], the extracted conditions are used

only for the initial abstraction; while we use the predicates for both initial

abstraction and refinement.

Lazy abstraction for the verification of C programs has been investigated

in [38]. The goals of their algorithm and ours are different. In [38], the con-

struction of the abstract model and abstract model checking are performed

only from the state where the spurious abstract counterexample fails on the

concrete system. While our lazy refinement algorithm builds the refined

abstract model only to the point where the counterexample is invalidated.

Some researchers have considered combining unabstracted control vari-

ables (visible variables) with predicate abstraction [57], but their methods

are not automatic. Using the correlations between all predicates to constrain

the abstract model has been investigated in [6]. The correlations are com-

puted using a general theorem prover. We first partition the set of predicates

into clusters based on the sharing of support sets, then correlations are com-

puted for each cluster separately. Although our result is more approximate,

the complexity of our algorithm is much less sensitive to the total number of

predicates. We also give a BDD-based algorithm to compute the correlations

between predicates. We also given an algorithm to compute the correlations

between unabstracted control variables and predicates. As far as we know,

no one else has considered these kind of correlations before.

Similar to our algorithms for removing redundant predicates, in [6] a

technique called strengthening is proposed. To build the abstract model, the

weakest precondition is converted to an expression over the set of predicates

in the abstraction. Thus, strengthening is somewhat similar to the concept

1.3. Related Work 15

of replacement functions in this thesis. However, in [6], the result of the

strengthening is over all the predicates, while the replacement functions used

here are defined over a subset of the predicates. Finally, the two transforma-

tions have different purposes. Strengthening is only used to build an abstract

model; while our transformation is used to remove redundant predicates and

thus reduce the complexity of the abstract model.

1.3.4 Other Abstraction Techniques

Rather than building abstract models explicitly and relying on counterexam-

ples to guide the refinement, Pardo and Hachtel [60] used BDD subsetting

to perform on-the-fly abstraction and refinement. Based on the polarity of

a CTL subformula, under or over approximation is used. In our experience,

subsetting-based abstraction methods are very unpredictable and too drastic

to prove properties. The scalability problem of BDD-based methods also

makes finding real counterexamples on original designs with thousands of

registers almost impossible.

In [35], Govindaraju and Dill proposed an abstraction refinement algo-

rithm for verifying safety properties. The abstract models are collections

of state machines that form an overlapping partition of the original design.

Post-image and pre-image computation methods are used to prove the prop-

erty or generate an abstract counterexample on the partitioned design. Re-

finement is based on enlarging individual state machines in the overlapping

partition of the original design, guided by heuristics based on the Hamming

distance. An experiment on the verification of a PCI chip with 429 latches is

1.3. Related Work 16

reported. We believe that this method also suffers from the scalability issue

of BDD-based methods, and it will have difficulties in handling big designs

even when they are partitioned.

Chapter 2

Existential Abstraction

In this chapter we review the relevant theory of existential abstraction intro-

duced by Clarke, Grumberg and Long in [21] and Loiseaux et al. in [46].

Using this theory we describe the predicate abstraction framework of Saidi

and Shankar [66] and the localization reduction [43]. To handle spurious ab-

stract counterexamples, the abstraction refinement framework is introduced.

2.1 Notation

Let V = {v1, v2, . . . , vn} be a set of variables, where each variable vi has

a domain Dvi
. Let c be a function which maps each variable vi ∈ V to a

value in its domain Dvi
. If V1 ⊆ V , the projection of c over V1, denoted by

proj [V1](c), is a function defined over V1 that is consistent with c over V1.

Let S1 and S2 be sets of states, and let f be a function mapping the

powerset of S1 to the powerset of S2, i.e., f : 2S1 → 2S2 . The dual of the

function f is defined to be

17

2.1. Notation 18

f̃(X) = f(X),

where the overbar indicates complementation in the appropriate set of states.

Let ρ be a relation from S1 to S2, and let A be a subset of S2, then the

function pre[ρ](A) gives the preimage of A under the relation ρ. Formally,

pre[ρ](A) = {s1 ∈ S1 | ∃s2 ∈ A. ρ(s1, s2)}.

Similarly, let B be a subset of S1, then the function post [ρ](B) gives the

postimage of B under the relation ρ. More formally,

post [ρ](B) = {s2 ∈ S2 | ∃s1 ∈ B. ρ(s1, s2)}

Lemma 2.1.1 [46] If relation ρ is a total function on S1, then p̃re[ρ] is the

same as pre[ρ]

Proof: We prove it by showing that ∀S ∈ 2S2 pre[ρ](S) = p̃re[ρ](S) =

pre[ρ](S). First, if x ∈ pre[ρ](S), then there exists s ∈ S such that ρ(x, s)

holds. Hence there does not exists y ∈ S such that ρ(x, y) holds (since ρ is

a function). Thus ¬(x ∈ pre[ρ](S)). So x ∈ pre[ρ](S).

Next, suppose x ∈ pre[ρ](S), then ¬(x ∈ pre[ρ](S)). Now ρ is total so

ρ(x, s) holds for some s. Since ¬(x ∈ pre[ρ](S), it follows that ¬(s ∈ S).

Thus s ∈ S and x ∈ pre[ρ](S).

We will be reasoning about a concrete state machine and an abstraction

of that machine. To establ a relationship between the set of concrete states

S1 and the set of abstract states S2 we will use the concept of a Galois

connection.

2.2. Existential Abstraction 19

Definition 2.1.1 Let IdS denotes the identity function on the powerset of

S. A Galois connection between 2S1 and 2S2 is a pair of monotonic functions

(α, γ), where α : 2S1 → 2S2 and γ : 2S2 → 2S1, such that IdS1 ⊆ γ ◦ α and

α ◦ γ ⊆ IdS2.

The following duality property of Galois connections is well known [46].

Proposition 2.1.1 For any Galois connection (α, γ) from 2S1 to 2S2, we

have,

• γ(Y) =
⋃{X ∈ 2S1 | α(X) ⊆ Y },

• α(X) =
⋂{Y ∈ 2S2 | X ⊆ γ(Y)}.

Note that, given either one of α or γ, the other is uniquely determined.

Typically, α and γ are used to define the relationship between the abstract

and concrete models. The functions α and γ are often called the abstraction

function and the concretization function, respectively. The Galois connection

that we will be using in this paper is described in the following proposition.

Proposition 2.1.2 [46] Given a relation ρ ⊆ S1×S2, the pair (post [ρ], p̃re[ρ])

is a Galois connection between 2S1 and 2S2 .

We denote this Galois connection by (αρ, γρ). Sometimes, we write (α, γ)

when the relation ρ is clear from the context.

2.2 Existential Abstraction

We model circuits and programs as transition systems. Given a set of atomic

propositions, A, let M = (S, S0, R, L) be a transition system, where S is the

2.2. Existential Abstraction 20

set of states, S0 ⊆ S is a set of initial states, R ⊆ S×S is a transition relation

and L : S → 2A is the labeling function from the set S to the powerset of

A. Often a state of a system will be described as an assignment of values to

the set of state variables V = {v1, v2, .., vm}. In this case, R will be given as

a formula over two copies of the state variables, one representing the current

state and the other the next state. If the set of current state variables is V =

{v1, v2, .., vm} then the set of next state variables is V ′ = {v′1, v′2, .., v′m}. Note
that functions that are applicable to unprimed variables will be applicable to

the corresponding primed versions too, the only difference is that the result

will also be in terms of primed variables.

Definition 2.2.1 Given two transition systems M = (S, S0, R, L) and M̂ =

(Ŝ, Ŝ0, R̂, L̂), with atomic propositions A and Â respectively, a relation ρ ⊆
S× Ŝ, which is total on S, is a simulation relation between M and M̂ if and

only if for all (s, ŝ) ∈ ρ the following conditions hold:

• L(s)
⋂

Â = L̂(ŝ)
⋂

A

• For each state s1 such that (s, s1) ∈ R, there exists a state ŝ1 ∈ Ŝ with

the property that (ŝ, ŝ1) ∈ R̂ and (s1, ŝ1) ∈ ρ.

We say that M̂ simulates M through the simulation relation ρ, denoted by

M �ρ M̂ , if for every initial state s0 in M there is an initial state ŝ0 in

M̂ such that (s0, ŝ0) ∈ ρ. We say that ρ is a bisimulation relation between

M and M̂ if M �ρ M̂ and M̂ �ρ−1 M . If there is a bisimulation relation

between M and M̂ then we say that M and M̂ are bisimilar, and we denote

this by M ≡bis M̂ .

2.2. Existential Abstraction 21

Given a transition system M and a CTL∗ formula f on the atomic propo-

sitions A associated with M, the satisfaction relation |= is defined in the stan-

dard fashion (see [24]). The following is a well-known theorem relating the

formulas satisfied by two transitions systems where one simulates the other

(see [21, 24]).

Theorem 2.2.1 (Preservation of ACTL* [24])

Let M = (S, S0, R, L) and M̂ = (Ŝ, Ŝ0, R̂, L̂) be two transition systems, with

A and Â as the respective sets of atomic propositions and let ρ ⊆ S × Ŝ be

a relation such that M �ρ M̂ . Then, for any ACTL* formula Φ with atomic

propositions in A ∩ Â

M̂ |= Φ implies M |= Φ.

Theorem 2.2.2 (Preservation of CTL* [24])

Let M = (S, S0, R, L) and M̂ = (Ŝ, Ŝ0, R̂, L̂) be two transition systems, with

A and Â as the respective sets of atomic propositions and let ρ ⊆ S × Ŝ be

a bisimulation relation between M and M̂ . Then, for any CTL* formula Φ

with atomic propositions in A ∩ Â

M̂ |= Φ ⇔ M |= Φ.

The reader is referred to [46] and [21] for details of the proof. The former

paper uses a different notation.

Let M = (S, S0, R, L) be a concrete transition system over a set of atomic

propositions A. Let Ŝ be a set of abstract states and ρ ⊆ S × Ŝ be a total

function on S. Further, let ρ and L be such that for any ŝ ∈ Ŝ, all states

2.3. Predicate Abstraction 22

in pre[ρ](ŝ) have the same labeling over a subset Â of A. Then an abstract

transition system M̂ = (Ŝ, Ŝ0, R̂, L̂) over Â which simulates M can be con-

structed as follows:

Ŝ0 = post [ρ](S0) = ∃s. S0(s) ∧ ρ(s, ŝ) (2.1)

R̂(ŝ, ŝ′) = ∃s s′. ρ(s, ŝ) ∧ ρ(s′, ŝ′) ∧ R(s, s′) (2.2)

for each ŝ ∈ Ŝ, L̂(ŝ) =
⋂

s∈pre [ρ](ŝ)

(L(s) ∩ Â) (2.3)

Proposition 2.2.1 For M and M̂ in the above construction M �ρ M̂

In the above construction R̂ is defined in terms of the abstract current

state ŝ and the abstract next state ŝ′. This construction is from [21], and

it is also implicit in the paper by Loiseaux et al. [46]. The idea behind the

transition system is as follows: two abstract states are related if there exist

two concrete states that they are related to each other under the concrete

relation and map to the abstract states under ρ. This kind of abstraction is

called existential abstraction. The set of initial states in the abstract system

are those states of Ŝ that are related to the initial states of M . Note that for

any two states s and ŝ related under ρ the property L(s) ∩ Â = L̂(ŝ) holds.

2.3 Predicate Abstraction

Predicate abstraction [6, 7, 28, 29, 38, 57, 65, 66], can be viewed as a special

case of existential abstraction. In predicate abstraction a set of predicates

{P1, . . . , Pk}, including those in the property to be verified, are identified

from the concrete program. These predicates are defined on the variables of

2.3. Predicate Abstraction 23

the concrete system. They also serve as the atomic propositions that label

the states in the concrete and abstract transition systems. That is, the set

of atomic propositions is A = {P1, P2, .., Pk}. A state in the concrete system

will be labeled with all the predicates it satisfies. The abstract state space has

a boolean variable Bj corresponding to each predicate Pj. So each abstract

state is a valuation of these k boolean variables. An abstract state will be

labeled with predicate Pj if the corresponding bit Bj is 1 in that state. The

predicates are also used to define a total function ρ between the concrete and

abstract state spaces. A concrete state s will be related to an abstract state

ŝ through ρ if and only if the truth value of each predicate on s equals the

value of the corresponding boolean variable in the abstract state ŝ. Formally,

ρ(s, ŝ) =
∧

1≤j≤k
Pj(s)⇔ Bj(ŝ) (2.4)

Note that ρ is a total function because each Pj can have one and only one

value on a given concrete state and so the abstract state corresponding to

the concrete state is unique. Based on Section 2.1, the pair of functions

post [ρ] and p̃re[ρ] generated from relation ρ forms a Galois connection. We

will denote this Galois connection by (α, γ). Note that since ρ is a total

function, p̃re[ρ] = pre[ρ]. The following lemma establishes that the set of

concrete states corresponding to a set of abstract states can be computed by

simply substituting predicates for the bits in the formula representing the

abstract states. In the following, Ŷ [Bi ← Pi] denotes the formula obtained

by substituting each boolean variable Bi by the corresponding predicate Pi.

Lemma 2.3.1 Let ρ be an abstraction function. For a set of abstract states

2.3. Predicate Abstraction 24

Ŷ , γρ(Ŷ) = Ŷ [Bi ← Pi]

Proof:

γρ(Ŷ)

= pre[ρ](Ŷ) since p̃re[ρ] = pre[ρ]

= ∃ŝ. Ŷ (ŝ) ∧ ρ(s, ŝ) definition of pre[ρ]

= ∃ŝ. Ŷ (ŝ) ∧∧
1≤i≤k Pi(s)⇔ Bi(ŝ) definition of ρ

= Ŷ [Bi ← Pi] definition of substitution

Using this ρ and the construction given in Section 2.2, we can build an

abstract model which simulates the concrete model. Since (αρ, γρ) is a Galois

connection, for any concrete state X, αρ(X) =
∧{f̂ | X → γρ(f̂)}, where f̂

is an arbitrary formula over the abstract state variables. According to [66], it

is enough to only consider all disjunctions over the abstract state variables in

calculating abstractions. Thus the set of abstract initial states for predicate

abstraction is:

Ŝ0 =
∧
{Ŷ1 | ∀V.(S0 ⇒ γ(Ŷ1))} (2.5)

In equation (2.5), Ŷ1 is an arbitrary disjunction of the literals of the current

state variables {B1, B2, . . . , Bk}. In [66] the abstract transition relation R̂ is

defined as

∧
{Ŷ → Ŷ ′ | ∀V, V ′.(R(V, V ′)⇒ γ(Ŷ → Ŷ ′))} (2.6)

2.3. Predicate Abstraction 25

In equation (2.6), Ŷ is an arbitrary conjunction of the literals of the current

state variables {B1, B2, . . . , Bk} and Ŷ ′ is an arbitrary disjunction of literals

of the next state variables {B′
1, B

′
2, . . . , B

′
k}. In the above two equations,

V is the set of concrete current state variables and V ′ is the set of concrete

next state variables. The set of concrete initial states S0 is represented by

its characteristic function over V . Similarly, the concrete transition relation

R is represented by its characteristic function over V ∪ V ′. Note that γ(Ŷ1)

can be represented by a formula over V , and γ(Ŷ → Ŷ ′) can be represented

by a formula over V ∪ V ′. Thus the implications in the equations (2.5) and

(2.6) are well formed. It is easy to see that both the set of abstract initial

states and the abstract transition relation in the above equations are the most

accurate overapproximation of the set of concrete initial states and concrete

transition relations respectively. We will show that (2.6) is equivalent to

(2.2).

Theorem 2.3.1 Let R be a concrete transition relation, ρ be a simulation

relation as in (2.4), then

∃s s′. ρ(s, ŝ) ∧ ρ(s′, ŝ′) ∧ R(s, s′) =∧{Ŷ → Ŷ ′ | (∀V, V ′.(R(V, V ′) ∧ γ(Ŷ))→ γ(Ŷ ′))}

where Ŷ is a conjunction over {B1, . . . , Bk} and Ŷ ′ is a disjunction over

{B′
1, . . . , B

′
k}.

Proof: First we prove that if two states are related under

R1 = ∃s s′. ρ(s, ŝ) ∧ ρ(s′, ŝ′) ∧ R(s, s′)

2.3. Predicate Abstraction 26

then they are related under R2 =
∧{Ŷ → Ŷ ′ | ∀V, V ′.((R(V, V ′) ∧ γ(Ŷ))→

γ(Ŷ ′))}. Suppose R1(ŝ, ŝ
′)) and let the corresponding concrete states be s and

s′. So ρ(s, ŝ) and ρ(s′, ŝ′) hold. To prove that ŝ and ŝ′ satisfy R2, we need to

show that every implication of the form Ŷ → Ŷ ′, which satisfies (R∧γ(Ŷ))→
γ(Ŷ ′), is true for ŝ, ŝ′. Suppose Ŷ (ŝ) is false, then the implication Ŷ → Ŷ ′

is automatically true for (ŝ, ŝ′). Consider the case where Ŷ (ŝ) is true. We

know that state s satisfies ρ(s, ŝ) and since γ = pre[ρ], thus s ∈ γ(Ŷ). Now

since (R ∧ γ(Ŷ)) → γ(Ŷ ′), s ∈ γ(Ŷ) and R(s, s′), we also have s′ ∈ γ(Ŷ ′).

Now we show that ŝ′ ∈ Ŷ ′.

s′ ∈ γ(Ŷ ′) just proved

α(s′) ⊆ α(γ(Ŷ ′)) monotonicity of α

α(γ(Ŷ ′)) ⊆ Ŷ ′ α ◦ γ ⊆ IdŜ

ŝ′ ∈ α(s′) α(s′) = post [ρ](s′) and ρ(s′, ŝ′)

ŝ′ ∈ Ŷ ′ by the above results.

Therefore, we have shown that every implication Ŷ → Ŷ ′, which satisfies

(R ∧ γ(Ŷ))→ γ(Ŷ ′), is true for any pair of states (ŝ, ŝ′) related under R1.

For the other direction, we need to prove that if two states are related

through R2 then they are related under R1. Equivalently, we can prove

that if two states are not related under R1 then they cannot be related

under R2 either. Consider two states ŝ and ŝ′ which are not related under

R1. We will show that there exists an implication Ŷ → Ŷ ′ that satisfies

(R ∧ γ(Ŷ))→ γ(Ŷ ′) and is false for the pair (ŝ, ŝ′). We define two formulas

2.3. Predicate Abstraction 27

Cŝ and C ′
ŝ′ as follows.

Cŝ =
∧
{Bi | ŝ(Bi) = 1} ∧

∧
{¬Bi | ŝ(Bi) = 0}

C ′
ŝ′ =

∧
{B′

i | ŝ′(B′
i) = 1} ∧

∧
{¬B′

i | ŝ′(B′
i) = 0}

We will show that Cŝ → ¬C ′
ŝ′ is the required implication. Clearly, the

implication Cŝ → ¬C ′
ŝ′ is false for the pair (ŝ, ŝ

′) because by definition Cŝ(ŝ)

is true and ¬C ′
ŝ′(ŝ

′) is false. To complete the proof we just need to show that

(R ∧ γ(Cŝ))→ γ(¬C ′
ŝ′) is true. We first show that ρ(s, ŝ)⇔ s ∈ γ(Cŝ).

ρ(s, ŝ)⇔ s ∈ pre[ρ](ŝ)

⇔ s ∈ γ(ŝ) (since γ = pre[ρ])

⇔ s ∈ γ(Cŝ) (since Cŝ = {ŝ}).

Next we show that ¬ρ(s′, ŝ′)⇔ s′ ∈ γ(¬C ′
ŝ′).

¬ρ(s′, ŝ′)⇔ s′ �∈ pre[ρ](ŝ′)

⇔ s′ �∈ p̃re[ρ](ŝ′) (since ρ is a total function)

⇔ s′ ∈ pre[ρ](ŝ′)

⇔ s′ ∈ γ(ŝ′)

⇔ s′ ∈ γ(¬C ′
ŝ′).

2.3. Predicate Abstraction 28

Finally,

(ŝ, ŝ′) �∈ R1

⇔ ∀s, s′. ¬(ρ(s, ŝ) ∧ ρ(s′, ŝ′) ∧ R(s, s′))

⇔ ∀s, s′. (R(s, s′) ∧ ρ(s, ŝ))⇒ ¬ρ(s′, ŝ′)
⇔ ∀s, s′. (R(s, s′) ∧ γ(Cŝ)(s))⇒ γ(¬C ′

ŝ′)(s
′)

Thus (ŝ, ŝ′) �∈ R2. which is the required result.

There are several reasons to prefer (2.6) over (2.2) for computing the ab-

stract transition relation. Traditionally (2.2) is computed using BDDs, but

this method is not feasible for the large systems considered in this work.

Alternatively, we could formulate (2.2) as a SAT problem. Computing the

abstract transition relation would then require enumerating all possible sat-

isfying assignments to the SAT formula. Furthermore, it is not easy to get

an over-approximation using the SAT formulation of (2.2). However, in for-

mula (2.6), an implication of the form Ŷ → Ŷ ′ is included in R̂ if and

only if R ∧ γ(Ŷ) ∧ ¬γ(Ŷ ′) is unsatisfiable. Checking unsatisfiability is much

easier than enumerating all the satisfying assignments. Moreover, an over-

approximation can be easily obtained using this method by restricting the

choice of Ŷ → Ŷ ′ to be considered [66].

Equations (2.5) and (2.6) can be used to compute abstract models for

both hardware and software verification. To determine the validity of the

proof obligations involved, a general theorem prover, such as Simplify [58], is

used. Since variables in hardware designs are usually bit-vectors with small

length and the predicates involved in hardware verification are propositional

2.3. Predicate Abstraction 29

formulas, using a SAT solver, such as zChaff, can be more efficient for hard-

ware verification.

The abstract model built according to equations (2.5) and (2.6) is called

the most accurate abstract model. Note that, in this abstract model, every

abstract initial state has at least one corresponding concrete initial state, and

every abstract transition has at least one corresponding concrete transition.

However, to build the most accurate abstract model, there are exponential

number (in the number of predicates) of implications that need to be checked

in worst case. To reduce the abstraction time, in practice an approximate

abstract model is constructed by intentionally excluding certain implications

from consideration. Therefore, there are more behaviors in the approximate

model than in the most accurate abstract model. We call the abstract transi-

tions that do not have any corresponding concrete transitions spurious tran-

sitions (Precise definitions are given in Chapter 5). Since an approximate

abstract model contains all the behaviors of the original concrete system,

the preservation theorem still holds. In this thesis, to reduce the abstraction

time, we restrict Ŷ1 and Ŷ ′ to be at most one literal, and restrict Ŷ to include

at most two literals. The model so obtained will be an over-approximation

of the abstract model. We rely on refinement to compute a precise enough

abstract model when necessary.

2.3.1 A Software Example

In this subsection, we will illustrate how an abstract program can be gen-

erated for a given concrete C program and a set of predicates using the

2.3. Predicate Abstraction 30

framework presented in [6]. Let {P1, . . . , Pk} denote the given set of concrete

predicates. For each predicate Pi, let Bi be the corresponding boolean vari-

able in the abstract program. Let B = {B1, . . . , Bk}. A cube c in the abstract

program is a conjunction c1 ∧ · · · ∧ cm, where each literal cj ∈ {Bj,¬Bj} for
some Bj ∈ B. The concretization of a cube c, denoted γ(c), is the con-

junction of the concretization of each literal in c. For a statement s and a

formula φ over the concrete state variables, the weakest precondition, denoted

WP(s, φ), is the weakest predicate whose truth before s entails the truth of

φ after s terminates. Let FB(φ) denote the largest disjunction of cubes c

over B such that γ(c) implies φ. Given two boolean expressions e and f that

are never true simultaneously, we define the function H:

H(e, f) =




true if e

false if f

{true, false} otherwise

To abstract a C program, each line of code is abstracted separately. For each

literal over B, the weakest precondition is first calculated, then an expression

over B is calculated using FB for the weakest precondition. This is illustrated

by the following example from [8].

Example 2.3.1 Let P = {(x == 1), (x == 2), (x ≤ 3)} and let B =

{B1, B2, B3} be the three corresponding boolean variables. Consider the

assignment statement x:=x+1. The following table shows the calculation of

weakest precondition and the strengthening using the predicates. Based on

2.3. Predicate Abstraction 31

e = (x == 1) e = (x == 2) e = (x ≤ 3)
WP(x:=x+ 1, e) x == 0 x == 1 x ≤ 2

F(WP(x:=x+ 1, e)) false B1 B1 ∨B2

WP(x:=x+ 1,¬e) x �= 0 x �= 1 x ≥ 3
F(WP(x:=x+ 1,¬e)) B1 ∨ B2 ∨ ¬B3 ¬B1 ∨B2 ∨ ¬B3 ¬B3

Table 2.1: Predicate abstraction for a C program

this table, the following abstract program is constructed.

B1 := H(false, B1 ∨ B2 ∨ ¬B3)

B2 := H(B1,¬B1 ∨ B2 ∨ ¬B3)

B3 := H(B1 ∨B2,¬B3)

2.3.2 A Hardware Example

In this subsection, we present a hardware example and show how it can be

verified based on the framework in [66]. Note that, this example is only

used to illustrate the traditional predicate abstraction techniques. It does

not represent the kind of hardware systems and properties that this thesis is

focused on. In fact, we are more interested in verifying the control logic of

hardware designs rather than the memory read address calculation described

in this example.

This example is a simplified version of the fetch unit of a jpeg encoder

implemented using Xilinx FPGAs [45]. This fetch unit is responsible to read

each 8 pixels by 8 pixels of grey scale image data and pass it for further

processing until the whole image is read (Figure 2.1). The image data is

stored in an external memory, where each pixel is represented by one byte.

The image data is stored line by line. The fetch unit begins by first reading

2.3. Predicate Abstraction 32

the width and height of the input grey-scaled image. Noted that the width

and height are both multiples of 8. Then starting from memory address 0,

8 pixels by 8 pixels of image data is fetched according to the order following

the arrows in Figure 2.1. Essentially the fetch unit has reordered the image

data. Given a 8 pixels by 8 pixels image block, the top-left pixel is the first

Figure 2.1: Fetch each 8x8 pixel block

pixel of this block. For any pixel in this block, the left-most pixel is the

first pixel in the same row. Given two adjacent 8x8 image blocks, where the

second block is to the right of the first one, the second block is the next-right

block of the first one. Following is the Verilog implementation. Input signals

WIDTH and HEIGHT are the width and height of the image. We assume

they are parameters to the design that do not change. Output signal addr is

the memory read address. Since the property for this example only concerns

the memory read address calculation, the read and write operations of the

2.3. Predicate Abstraction 33

image data are omitted. Signals cwidth and cheight are the width and height

of the top-left pixel of the current 8x8 block. Signal row is the row number

within the current 8x8 block. Signal rowaddr is the address of the top-left

pixel in the next-right block.

module fetch(clk, reset, addr, WIDTH, HEIGHT);
input clk, reset;
output [15:0] addr;
input [7:0] WIDTH;
input [7:0] HEIGHT;

reg [15:0] addr;
reg [7:0] cwidth;
reg [7:0] cheight;
reg [2:0] row;
reg [15:0] rowaddr;

always @(posedge clk or posedge reset) begin
if (reset) begin

cwidth <= 0;
cheight <= 0;
row <= 0;
addr <= 0;
rowaddr <= 0;

end else begin
if (addr[2:0] < 3’h7)

addr <= addr + 1;
else begin

if (row == 3’h0)
rowaddr <= addr + 1;

if (row < 3’h7) begin
row <= row + 1;
addr <= (addr & 16’hfff8) + WIDTH;

end else begin
row <= 0;
if (cwidth + 8 < WIDTH) begin

cwidth <= cwidth + 8;

2.3. Predicate Abstraction 34

addr <= rowaddr;
end else begin

addr <= addr + 1;
cwidth <= 0;
if (cheight + 8 < HEIGHT)

cheight <= cheight + 8;
else begin

cheight <= 0;
addr <= 0;
row <= 0;

end
end

end
end

end
end
endmodule

The property to be verified is that the read memory address is always

smaller than the multiplication of the image width and height. To verify this

property using predicate abstraction, the following signals and predicates are

identified manually:

• Signal row[2:0]. It represents the row number of the current pixel within

its 8x8 block.

• Signal addr[2:0]. It is the lowest 3 bits of the signal addr. It represents

the column number of the current pixel within its 8x8 block.

• Predicate “addr & 16’hfff8 = (cheight+row) * WIDTH + cwidth”. It

is an invariant, which says that the address of the left-most pixel is the

addition of (row * WIDTH) and the address of the top-left pixel which

is (cheight * WIDTH + cwidth).

2.3. Predicate Abstraction 35

• Predicate “rowaddr = cheight * WIDTH + cwidth + 8”. It is not

an invariant, which is only true when (row >= 1). The predicate says

that, the address of the top-left pixel in the next-right 8x8 block (If one

exists), is 8 more than the address of the top-left pixel of the current

8x8 block. Because signal rowaddr does not get the correct value until

the end of the first row, so until then, this predicate is false in the

design.

• Predicates “cwidth + 8 < WIDTH” and “cheight + 8 < HEIGHT”.

These two predicates are branch conditions in the program.

• Predicate “addr <WIDTH * HEIGHT”. It is the property to be proven.

• Besides the above predicates, we assume the following invariants in

building the abstract model. The correctness of this assumption can

be checked easily by a syntactic analysis of the given Verilog code.

– 8 divides cwidth

– 8 divides cheight

– cwidth < WIDTH

– cheight < HEIGHT

Note that, signals row[2:0] and addr[2:0] are retained in the abstraction, so

that their initial states and transition relations are copied from the con-

crete model. The algorithms presented in [66] works for guarded command

languages. It is easy to translate the above Verilog code into a guarded com-

mand language based program. The corresponding abstract model expressed

in SMV language is shown below:

2.3. Predicate Abstraction 36

MODULE main

VAR

row : 0..7;

addr2 0 : 0..7;

p addr : boolean; –addr & 16’hfff8 = (cheight+row) * WIDTH + cwidth

p rowaddr : boolean; –rowaddr = cheight * WIDTH + cwidth + 8

p cwidth2 : boolean; –cwidth + 8 < WIDTH

p cheight2 : boolean; –cheight + 8 < HEIGHT

prop : boolean; –addr < WIDTH * HEIGHT

ASSIGN

init(row) := 0;

init(addr2 0) := 0;

init(p addr) := 1;

init(p rowaddr) := 0;

init(p cwidth2) := {0,1};
init(p cheight2) := {0,1};
init(prop) := 1;

next(p rowaddr) :=

case

addr2 0<7 : p rowaddr;

row=0 : case p addr: 1; 1: 0; esac;

row < 7 : p rowaddr;

2.3. Predicate Abstraction 37

1: {0,1};
esac;

next(addr2 0) :=

case

addr2 0 < 7: addr2 0+1;

row < 7: 0;

p cwidth2:

case p rowaddr: 1; 1: {0,1,2,3,4,5,6,7}; esac;
1: 0;

esac;

next(p addr) :=

case

addr2 0 < 7: case p addr: 1; 1: {0,1}; esac;
row < 7: case p addr: 1; 1: {0,1}; esac;
p cwidth2: case p rowaddr: 1; 1: {0,1}; esac;
p cheight2: case p addr: 1; 1:{0,1}; esac;
1: 1;

esac;

next(row) ::=

case

addr2 0<7: row;

2.3. Predicate Abstraction 38

row<7: row+1;

1: 0;

esac;

next(p cwidth2) ::=

case

addr2 0<7 | row<7: p cwidth2;

p cwidth2: {0,1};
1: 1;

esac;

next(p cheight2) ::=

case

addr2 0<7 | row<7 | p cwidth2: p cheight2;

p cheight2: {0,1};
1: 1;

esac;

next(prop) ::=

case

addr2 0<7: case prop: 1; 1: {0,1}; esac;
row < 7: case p addr: 1; 1: {0,1}; esac; –p addr, cwidth<WIDTH, cheight<HEIGHT,

– 8 divides HEIGHT, 8 divides cheight

p cwidth2: case p rowaddr: 1; 1: {0,1}; esac;

2.4. Localization Reduction 39

p cheight2: case p addr: 1; 1: {0,1}; esac;
1: 1;

esac;

SPEC AG (prop)

We have verified that this abstract model satisfies the required property,

thus the concrete Verilog program satisfies the same property.

2.4 Localization Reduction

Localization reduction [43] is also a special case of existential abstraction.

In localization reduction, a set of important state variables, called visible

variables, are retained in the abstract model; while the rest, called invisible

variables, are left unconstrained (Their values are assigned nondeterminis-

tically). The abstract transition is obtained by conjuncting the transition

relations for the visible variables. Formally, let V be the set of concrete state

variables, and S be the concrete state space. For each state s ∈ S, the value

of a variable v ∈ V in state s ∈ S is denoted by s(v). In localization re-

duction, given a set of visible variables V1 ⊆ V , the abstract state variables

U = {u1, u2, . . . , uk} satisfies U ⊆ V ∧U ⊇ V1. The set of abstract states for

localization reduction is Ŝ = Du1 × Du2 . . . × Duk
. The simulation relation

is ρ(s, ŝ) = (proj [U](s) ≡ ŝ). Given an abstract state ŝ, the set of related

concrete states is γ(ŝ) = {s|proj [U](s) ≡ ŝ}.
We also assume that neither the concrete transition relation nor the set

of initial states is described as a single formula. Instead, for each individual

2.5. Abstraction Refinement 40

variable v ∈ V , the transition relation of v is represented as a propositional

formula Rv and the set of initial states of v is represented as a propositional

formula Iv. The most accurate abstract model for localization reduction can

be easily built. That is, the abstract initial states Ŝ0 and the abstract tran-

sition relation R̂ are defined as

Ŝ0 = ∧v∈U Iv (2.7)

R̂ = ∧v∈URv (2.8)

It is usually the case that R̂ depends not only on current and next state

variables on U , but also some invisible variables which occur in some Rv or

Iv. In the abstract model, these invisible variables are treated as primary

inputs. In general, the size of the abstract transition relation may be large

since it is directly copied from the concrete model. In Section 4, we will show

techniques to reduce the size of the abstract model using approximation.

2.5 Abstraction Refinement

Existential abstraction is a conservative approach for model checking uni-

versal temporal logic [24] properties (we only consider safety properties in

this thesis). That is, the correctness of any universal formula on an ab-

stract system automatically implies the correctness of the formula on the

concrete system. However, a counterexample on an abstract system may not

correspond to any real path, in which case it is called a spurious counterex-

ample [23]. To get rid of a spurious counterexample, the abstraction needs

2.5. Abstraction Refinement 41

to be made more precise via refinement. Counterexample guided abstraction

refinement [23, 38, 72] (CEGAR) automates this procedure. It works as fol-

lows: For a given system, an abstract model that is guaranteed to include

all behaviors of the original system is built. Model checking is then ap-

plied to the abstract model. If the property holds, it is true of the concrete

model and verification terminates. In case the property is violated on the ab-

stract model a counterexample is generated. This abstract counterexample

is checked against the concrete model. If the abstract counterexample corre-

sponds to a concrete execution path, the property is proved to be false and

verification terminates. Otherwise, the abstract counterexample is spurious

and it is used to guide the refinement of the abstract model. The above pro-

cedure repeats until the property is confirmed or refuted. Figure 2.2 shows

the fours steps in the above abstraction refinement framework.

abstract model
Build property on

abstract
model

Verigy

Property
is true

on concrete
counterexample

model

Check

Refinement

Infeasible

false

abort verified

failed

true

Property
is false

Figure 2.2: General Abstraction Refinement framework

Chapter 3

SAT and Unsatisfiability Proofs

In this chapter, we first briefly review Davis-Putnam-Logeman-Loveland (DPLL)

backtracking SAT algorithms with conflict learning. Then, an unsatisfiabil-

ity proof extraction algorithm is presented. Based this algorithm, we explain

how to implement an incremental SAT solver.

3.1 Conflict based Learning in SAT Solvers

In this section, we briefly describe the learning mechanism used by modern

SAT solvers, such as GRASP [68], Chaff [56,76] and BerkMin [31]. These SAT

solvers are based on the Davis-Putnam-Logeman-Loveland (DPLL) back-

tracking SAT algorithm.

Let BV be a finite set of boolean variables. For any variable v ∈ BV ,

recall that a literal lv over v is either v or ¬v. A clause c is a finite

disjunction of literals. A CNF formula f is a finite conjunction of clauses.

For convenience, we represent a CNF formula f by the set of clauses in f . A

42

3.1. Conflict based Learning in SAT Solvers 43

set of clauses Ef which includes all the clauses of f and some other clauses

that are logically implied by f is called an extension of f . Formally

(f ⊆ Ef) ∧ (Ef ⊆ {c | c is a clause and f ⇒ c}).

It is easy to show that f is equivalent to any of its extensions.

An assignment A is a partial function from BV to {0, 1}. If v ∈ BV

is not in the domain of A, the value of v under A is undetermined. An

assignment A is complete if it assigns a value to every variable.

Boolean constraint propagation (BCP for short) is an essential component

of DPLL based SAT solvers. Given a clause c and an assignment A, if the
value of c under A is undetermined and the value of only one literal lv in c is

undetermined under A, then c is called a unit clause and lv is called a unit

literal. The rest of the literals in c are called the antecedents of lv, denoted

collectively by ant(lv, c). For a unit clause that has only one literal, the

antecedent set of the literal is empty. Given an assignment A, where clause

c is a unit clause and lv is the unit literal in c, BCP extends A by mapping lv

to 1. The resulting assignment is called an extension of A. The correctness

of the BCP algorithm relies on the fact that given a unit clause c under A,
only those extensions of A with lv = 1 can make c be 1. Such an assignment

of a value to a literal is called an implied assignment. Not all assignments

need to be implied assignments, some of them might be “guessed” by the

SAT solver. Such assignments are called decision assignments. For a partial

assignment A we define Ad to be the set of decision assignments in A.
Given an extension g of a CNF formula f , a partial assignment A and the

3.1. Conflict based Learning in SAT Solvers 44

set of decision assignments Ad ⊆ A, an implication graph IG(g,Ad) = 〈X , E〉
is a directed acyclic graph, where

• Each vertex x ∈ X is labeled with a literal. The label is denoted by

L(x).

• For each literal l in ant(L(x), c), where c is a unit clause and L(x) is
the unit literal in c, there will be a predecessor vertex of x labeled by

that literal l. For each predecessor p of x there is a directed edge e ∈ E
that starts from p and ends at x and is labeled with the unit clause c.

• A vertex x is a root of the graph, if there are no incoming edges for x.

So each decision assignment in A is the label of some root vertex. The

label of each vertex x, that is not a root, is implied by other assignments

in A.

• We associate with each decision assignment a number greater than

or equal to 1, called the decision level. When we add a new decision

assignment lv to a set of decisions A, the decision level of lv is one more

than the maximum decision level in A. The decision levels for implied

assignments will be determined by decision levels of other assignments

in A. For a non-root vertex x, let c be the unit clause that implies the

value of label L(x) of x. The decision level of L(x) is the maximum of

the decision levels of its antecedent literals.

• When some clause c evaluates to 0 under A, we introduce a new vertex

κ, and label it with false. We also add an edge from each vertex

3.1. Conflict based Learning in SAT Solvers 45

labeled with a literal in c to κ, and label each edge with c. c is called

the conflicting clause.

When an implication graph IG(g,Ad) includes the vertex κ, we call the

subgraph that can reach κ a conflict graph. A CNF formula f is unsatisfiable,

if there exists an extension g of f and a conflict graph, IG(g, ∅), where the set
of decision assignments is empty. Intuitively, any assignment implied in this

graph, including the label false of the vertex κ, is derived from the current

CNF formula g without any decisions. This means g is unsatisfiable. Thus f

itself is unsatisfiable because g is unsatisfiable if and only if f is unsatisfiable.

Given a conflict graph IG(Ef ,Ad), let Ω(IG) be the set of clauses that

label edges in IG . If Ad �= ∅, there exists at least one vertex cut CUT =

{x1, . . . , xn}, that separates decision variables and the conflict vertex κ. The

vertices of the cut can have both decision and implied assignments as labels.

Denote the subgraph obtained from IG by dropping vertices on the decision

variable side of the cut by IGCUT . Let the clause corresponding to CUT be

cl(CUT) =
∨

1≤i≤n
¬L(xi).

This clause is called a conflict clause.

Lemma 3.1.1 Let IG be a conflict graph, CUT be a vertex cut of IG that

separates the conflict vertex with the decision vertices. Then

(
∧

Ω(IGCUT))⇒ cl(CUT).

Proof: It suffices to prove that (
∧
Ω(IGCUT)) ∧ ¬cl(CUT) ⇒ false. We

3.1. Conflict based Learning in SAT Solvers 46

prove this by induction over the size of IGCUT .

• For the base case, IGCUT only includes the conflicting clause c that

directly leads to the conflict vertex κ. It is easy to see that Ω(IGCUT) =

{c} and cl(CUT) = c. Thus the conjunction is false.

• Induction step. We need to prove the lemma for a vertex cut, CUT .

For BCP to work, there is at least one clause c1, where all but one literal

v1 of it whose negations are in this cut. Thus there exist a cut CUT 1 =

CUT −{l|¬l ∈ c1}∪{v1} in IG. Since Ω(IGCUT1
) = Ω(IGCUT) \ {c1},

according to the induction hypothesis (
∧
Ω(IGCUT1))∧¬cl(CUT 1)⇒

false holds. It is easy to see that clause c1 together with the literals in

CUT imply v1. Thus the lemma holds for the CUT .

For example, the proof in the induction step can be illustrated using the

conflict graph A in Figure 3.2. The cut x2, x15, x9 is implied by the cut

¬x11, x15, x9 and clause ω1 = x11 ∨ ¬x15 ∨ x2.

Based on Lemma 3.1.1, if Ω(IGCUT) is a subset of an extension of f , then

f ⇒ cl(CUT). Conflict-based learning starts with f , and gradually extends

f by adding conflict clauses identified during the search. It is easy to prove

by induction that the set of clauses at any time during the SAT search is

always equivalent to f . Note that there will be no decision assignments in

the final conflict graph of an unsatisfiable formula. For ease of presentation,

we associate an empty cut with the last conflict graph, where the set of

decisions Ad = ∅. The corresponding conflict clause is the empty clause,

which is logically equivalent to false.

3.1. Conflict based Learning in SAT Solvers 47

It is possible to generate more than one conflict clause from a single

conflict graph [68]. Each clause corresponds to a different cut of the conflict

graph. Among the set of conflict clauses generated from a single conflict

graph, there must be at least one conflict clause cl(CUT) that contains only

one literal lv from the maximum decision level [76]. Such a conflict clause

is called asserting clause [76]. The vertex corresponding to lv in the conflict

graph is called unique implication point (UIP). Note that the cut consisting of

all decision assignments corresponds to one such conflict clause. The vertex

cut including a UIP vertex that is the closest to the conflict vertex κ is

called the first UIP cut (1UIP cut). For an asserting clause cl , the maximum

decision level of the literals in cl , other than lv, is the backtrack level and

will be denoted by blevel . The SAT solver will backtrack to the decision at

decision level blevel and remove all those assignments whose decision levels

are greater than blevel . This will make cl a unit clause and lv a unit literal.

Thus, lv which was previously a decision assignment now becomes an implied

assignment. This process is referred to as non-chronological backtracking.

while (choose_decision()) { // Decision

while (BCP() == conflict) { // Propagate implications

blevel = analyse_conflict(); // Conflict learning

if (blevel == 0) // No decisions

return UNSAT;

else

backtrack(blevel); // Non-chronological backtrack

}

}

return SAT; // All vars have been assigned

Figure 3.1: Basic DPLL backtracking search

3.2. SAT Conflict Dependency Analysis 48

3.2 SAT Conflict Dependency Analysis

In this section we present a technique called conflict dependency analysis.

When a SAT solver concludes that a given CNF formula is unsatisfiable, our

technique can efficiently identify a subset of the conflict graphs generated

during the SAT search as the proof of unsatisfiability. The set of clauses

in the extracted proof is itself unsatisfiable. Often the new set of clauses is

significantly smaller than the original set of clauses. An incremental SAT

solver is developed based on conflict dependency analysis.

3.2.1 Dependencies between Conflict Graphs and Clauses

Definition 3.2.1 Given two conflict graphs A and B, if at least one of the

conflict clauses generated from A labels one of the edges in B, then we say

that conflict graph B directly depends on conflict graph A.

For example, consider the conflicts depicted in the conflict graphs of Fig-

ure 3.2. Suppose that at a certain stage of the SAT checking, conflict graph

A is generated. This produces the conflict clause ω9 = (¬x9+x11+¬x15). We

are using the first UIP (1UIP) learning strategy [76] to identify the conflict

clause here. This conflict clause can be rewritten as x9∧¬x11 → ¬x15. In the

other conflict graph B, clause ω9 labels one of the edges, and forces variable

x15 to be 0. Hence, we say that conflict graph B directly depends on conflict

graph A.

3.2. SAT Conflict Dependency Analysis 49

−x13(2)

x2(5)

x14(5)

−x12(3)

−x11(2)

ω3

x10(5)

ω4 ω3

ω2

ω2

1UIP cut 1UIP cut

ω8

ω8

ω9

ω6

ω6

x17(2)

x16(2)

ω5

ω5
ω7

ω7

κ

κ

Conflict graph A Conflict graph B

ω1

ω9 = ¬x9 ∨ x11 ∨ ¬x15 ω10 = ¬x9 ∨ x11 ∨ x19

x15(5)

ω1

−x11(2)

ω4

x9(1)

ω9

−x15(2)

x9(1)

−x19(1)

Figure 3.2: Two dependent conflict graphs

Given the set of conflict graphs generated during satisfiability checking,

we construct the conflict dependency graph as follows:

• Vertices of the dependency graph are all conflict graphs created by the

SAT algorithm.

• Edges of the dependency graph are direct dependencies.

Figure 3.3 shows an conflict dependency graph with five conflict graphs.

A conflict graph B depends on another conflict graph A, if vertex A is reach-

able from vertex B in the dependency graph. In Figure 3.3, conflict graph

E depends on conflict graph A. When the SAT algorithm detects unsatis-

fiability, it terminates with the last conflict graph corresponding to the last

conflict.

Definition 3.2.2 The proof graph is a subgraph of the conflict dependency

graph. It includes the last conflict graph and all the conflict graphs on which

the last one depends.

3.2. SAT Conflict Dependency Analysis 50

conflict
graph E

conflict
graph C

conflict
graph A

conflict
graph B

last
conflict
graph

graph D
conflict

Figure 3.3: The conflict dependency graph and the proof graph (within dot-
ted lines)

In Figure 3.3, conflict graph E is the last conflict graph, hence the proof

graph includes conflict graphs A,C,D,E. For an unsatisfiable CNF formula,

the proof graph can be constructed from the conflict dependency graph by

any directed graph traversal algorithm for reachability. Typically, many con-

flict graphs can be pruned away in this traversal, so that the proof graph

becomes much smaller than the dependency graph. Intuitively, all SAT deci-

sion strategies are based on heuristics. For a given SAT problem, the initial

set of decisions/conflicts a SAT solver comes up with may not be related

to the final unsatisfiability result. Our dependency analysis helps to remove

that irrelevant reasoning. For an unsatisfiable CNF formula, we call the proof

graph the unsatisfiability proof. It is easy to verify the validity of a given

proof graph. Any conflict clause in the proof graph must be associated with

a conflict graph. Each conflict graph must logically leads to false as required

by Lemma 3.1.1.

Using the proof graph, we can identify the part of a given unsatisfiable

CNF formula that the SAT solver uses to prove unsatisfiability. Intuitively,

the set of clauses in the proof graph is enough to determine unsatisfiability.

Recall from Section 3.1 that each conflict clause cl(CUT) corresponds to a

3.2. SAT Conflict Dependency Analysis 51

vertex cut CUT . We associate an empty cut and an empty clause (denoted as

θ) with the last conflict graph which does not have any decision assignments.

As mentioned in Section 3.1, (
∧
Ω(IGCUT))⇒ cl(CUT). In the following f

stands for the CNF formula under consideration.

A conflict clause cl(CUT) directly depends on a clause b iff b is one of

the clauses in Ω(IGCUT). We say the conflict clause a depends on clause b iff

there exist a = c1, c2, . . . , b = cn, such that for 1 ≤ i < n, ci directly depends

on ci+1. The set of clauses in f that a given set of conflict clauses cls depend

on is called the dependent set and the set is denoted by dep(cls).

For example, consider the conflict graphs in Figure 3.2 (only parts of

the conflict graphs that are relevant are shown). The conflict clause c9 =

(¬x9∨x11∨¬x15), which corresponds to the 1UIP (see [76]) cut of A, directly

depends on the clauses c1, c2 and c3. The conflict clause c10 = ¬x9∨x11∨x19

is generated based conflict graph B and clause c9 labels one of the edges in

the subgraph of the 1UIP cut in B. Hence, we say that conflict clause c10

directly depends on conflict clause c9. The other clauses on which c10 directly

depends are c5, c6, c7 and c8. Note that the clause c9 need not be a clause

in the original CNF formula. Since c9 directly depends on c1, c2 and c3, it

follows c10 depends on c1, c2 and c3.

For an unsatisfiable CNF formula f , the SAT solver will end with an

extension g of f which is logically equivalent to false and an empty conflict

clause θ. If a conflict clause is deleted during the SAT search, we add it to

g. For each conflict clause cl ∈ (g \ f), we maintain the set of clauses that

it directly depends on. Note that g and the dependencies among the clauses

are determined by the conflict graphs and conflict clauses generated by the

3.2. SAT Conflict Dependency Analysis 52

SAT solver.

Denote by SUB(f) those clauses of f that appear in the dependent set

of the empty conflict clause θ. If we let {f} denote the set of clauses in f

then SUB(f) = dep(θ) ∩ {f}. Note that SUB(f) will have clauses from

f alone, none of the conflict clauses are in SUB(f). The following theorem

states that SUB(f) ⊆ f is itself unsatisfiable.

Theorem 3.2.1 Let cls ⊆ g be a set of conflict clauses, then (
∧
(dep(cls) ∩

{f}))⇒ (
∧

cls). In particular, SUB(f) is unsatisfiable.

In general, for an unsatisfiable CNF formula f , SUB(f) may not be the

minimal unsatisfiable subset of f , but it can be substantially smaller than f .

This is because the set of conflict graphs in the proof graph is only a subset

of all the conflict graphs, and for each conflict graph, only a subset of the

clauses in it is included in SUB(f).

Maintain Dependencies Based on Zchaff

We have implemented the conflict dependency analysis algorithm on top of

zchaff [76], which has a powerful learning strategy called first UIP (1UIP).

Experimental results from [76] show that 1UIP is the best known learning

strategy. In 1UIP, only one conflict clause is generated from each conflict

graph, and it only includes those implications that are closer to the conflict.

Refer to [76] for the details. We have built our algorithms on top of the

1UIP learning strategy. In the following, we only deal with the case that

only one conflict clause is generated from a conflict graph. Note here that

our algorithm can be easily adapted to other learning strategies.

3.2. SAT Conflict Dependency Analysis 53

We assign a unique identifier, cid , for each clause appearing in the SAT

search, which could be either an original clause or a conflict clause. In our

case, the cid of a conflict clause is also used to represent the corresponding

conflict graph. During the SAT process, once a conflict is analyzed and

conflict clauses are generated, the corresponding conflict graph is deleted.

To be able to analyze the conflict graphs when the SAT solver terminates,

we store the information of all conflict graphs in a file. For the last conflict

graph, we store the identifiers of the clauses appearing in the whole conflict

graph; while for the other conflict graphs, only those clauses between the

1UIP cut to the conflict vertex are stored. For example, for conflict graph

A in Figure 3.2, only clauses ω1, ω2, ω3 are stored. The reason to leave out

clause ω4 is because, ω1, ω2 and ω3 are enough to prove that the assignments

−x11, x9, x15 will definitely lead to a conflict. Since the 1UIP cut is very

close to the conflict vertex in a conflict graph, this reduces the size of the

generated proof graph and the size of the unsatisfiable subformula.

After SAT terminates with unsatisfiability, our pruning algorithm starts

from the last conflict graph. Based on the clauses contained in this conflict

graph, the algorithm traverses other conflict graphs that this one depends

on. The result of this traversal is the proof graph and the unsatisfiable

subformula. Note that, the dependencies we extracted are not affected by

whether the CNF formula is satisfiable or not. The knowledge about what are

the clauses that one conflict clause depends on help us to decide whether to

keep this conflict clause, when solving a new SAT instance. This is explained

in the next subsection.

3.2. SAT Conflict Dependency Analysis 54

3.2.2 Incremental SAT

A SAT solver with conflict-based learning derives conflict clauses to avoid

repeating the same contradictory assignments. Although the resulting CNF

formula is logically equivalent to the original formula f , the added conflict

clauses record the searches that the SAT solver has already tried. In fact,

modern solvers rely on periodic random restarts to avoid getting stuck due

to bad decisions made early in the search. In this case, the current set of

decisions is thrown away, and the SAT solver relies on the learned conflict

clauses to save the previous search efforts.

If two SAT problems f1 and f2 have a significant number of clauses in

common then the conflict clauses learned while solving one of them may be

useful in solving the other. In particular, if the dependent set of a conflict

clause c learned while solving the first SAT problem is a subset of f2, i.e.,

dep({c})∩ {f1} ⊆ {f2} then the conflict clause c will be useful while solving

the second SAT problem. Although, there is some overhead in maintaining

the dependencies between conflict clauses while solving f1, in practice we

have found that this speeds up SAT solver while handling f2.

Chapter 4

Localization Reduction

In this chapter, we present techniques for localization reduction that can

verify real-world designs containing thousands of registers.

As presented in Section 2.4, the most accurate abstract models for lo-

calization reduction can be easily built. However, the size of the abstract

models can be large, if the next state logic of some visible variables are large

(For a gate level circuit, the next state logic of a visible variable is the gates

in the direct fan-in of this variable). To keep an abstract model small, we

construct an overapproximation to the most accurate abstract model.

The refinement algorithm for localization reduction computes a small

set of invisible variables and makes them visible. As a result, the current

spurious abstract counterexample is invalidated. For hardware designs with

thousands of registers, to compute such a set of invisible variables is chal-

lenging. We present two refinement algorithms. The first one is based on the

fact that, if the given spurious counterexample requires an invisible variable

to be assigned a specific value, then this invisible variable is important, and

55

4.1. Overapproximate the Abstract Models 56

should become a candidate for refinement. The second algorithm makes an

invisible variable visible if it appears in the unsatisfiability proof generated

during checking the spurious counterexample on the concrete model.

4.1 Overapproximate the Abstract Models

In this section, we review the overapproximation method presented by Ho

et.al. in [40]. For a gate level circuit, we call the most accurate abstract

model built using equations (2.7) and (2.8) the no-cut model. Abstraction

in localization reduction starts with a subset of important registers. In the

initial abstraction, this subset consists of signals appearing in the property to

be proven. Later, each refinement step adds more registers to this subset. We

also refer to these important registers as visible registers, included registers,

or selected latches. Given a set of important registers, the primary inputs

and the output signals of registers that are the inputs to the next state logic

of these important registers are called the no-cut signals. A no-cut model

includes the important registers, the no-cut signals, and the combinational

logic between them. The signals in no-cut which are the output signals of in-

cluded registers are called bound inputs, the other signals in no-cut are called

free inputs. The signals in free inputs which are the output signals of invisible

registers in the concrete model are called excluded registers (or non-selected

latches). Not that, only those invisible registers that directly feed into visible

registers are the excluded registers. In our experience, given 50 important

registers, the number of free inputs in the corresponding no-cut model can be

over a thousand. Each of these free inputs becomes an abstract variable dur-

4.1. Overapproximate the Abstract Models 57

ing abstract model checking. This may not affect the performance of forward

image computation very much, because the free inputs are quantified using

the early quantification algorithm [15,69]. However, many inputs makes the

counterexample generating much harder during the backward image com-

putation, because the BDDs during the abstract counterexample generation

phase have these inputs as the BDD support which can not be quantified.

Figure 4.1: no-cut and min-cut abstract models (from [40])

To reduce the size of a no-cut abstract model while adding fewer extra-

neous behaviors, a min-cut abstract model is built. Intuitively, part of the

combinational logic that only depends on the free inputs are removed, so

that the number of inputs and the number of gates in the min-cut model can

be much less than those in the corresponding no-cut model. A gate in the

no-cut model is called a bound gate if at least one of the bound inputs are in

the transitive fan-in of this gate; otherwise it is a free gate. The signals that

4.1. Overapproximate the Abstract Models 58

separate the free gates and the bound gates are the free cuts. The output of

a free gate is in the free cuts, if it is one of the inputs for a bound gate. We

will ignore the correlations between the signals in free cuts by removing the

combinational logic between free inputs and free cuts. This will introduce

extraneous behaviors. But since the removed gates do not depend on any

bound inputs, these introduced behaviors usually won’t affect the verifica-

tion of the given property. It is usually the case that the complexity for

the model checking of a gate level circuit is more sensitive to the number of

state variables rather than the number of gates in it. Therefore, we use a

graph min-cut algorithm to find a minimal set of signals that separate the

free inputs and the free cuts, and only remove the combinational logic be-

tween the free inputs and this min cut. The resulting circuit becomes the

min-cut abstract model. The inputs of the min-cut model can be classified

into 4-tuple 〈pis, excluded, cuts, included〉 (See Figure 4.1), where pis are the

indeed primary inputs, excluded are the excluded registers, included are the

bound inputs and cuts are the internal circuit cut points which are generated

using the min-cut algorithm. In practice, the number of no-cut signals can

be 5 times bigger than the number of min-cut signals. However, the number

of min-cut signals can still be around several hundred. In the min-cut model,

the ratio of model inputs to model registers can vary between different de-

signs, for example from 0.46 to 36. It is generally the case that having a large

number of inputs slows down model checking the circuit. In Section 4.3.2,

we present an algorithm to deal with this problem.

4.2. Checking the Validity of an Abstract Counterexamples 59

4.2 Checking the Validity of an Abstract Coun-

terexamples

Given an abstract model M̂ and a safety formula φ, we run the usual BDD

based symbolic model checking algorithm to determine if M̂ |= φ. Sup-

pose that the model checker produces an abstract path counterexample ce =

〈ce0, ce1, . . . , cen〉. To check whether this counterexample holds on the con-

crete model M or not, we symbolically simulate M beginning with the initial

state using a fast SAT checker. At each stage of the symbolic simulation, we

constrain the values of variables only according to the given counterexample.

The equation for symbolic simulation is:

(S0(s0) ∧ γ(ce0)(s0)) ∧ (R(s0, s1) ∧ γ(ce1)(s1)) ∧ . . .

∧(R(sn−1, sn) ∧ γ(cen)(sn)) (4.1)

If this propositional formula is satisfiable, then we can successfully simulate

the counterexample on the concrete machine, thus M �|= φ. The satisfiable

assignments to all the variables give a valid counterexample on the concrete

model. If this formula is not satisfiable, the counterexample is spurious and

the abstraction needs to be refined.

4.3. Invisible Variables In Abstract Counterexamples 60

4.3 Invisible Variables In Abstract Counterex-

amples

In this section, an abstraction refinement framework, called RFN [72], for

the verification of safety properties on gate-level circuits using localization

reduction is presented. We design RFN to verify gate-level circuits synthe-

sized from real-world RTL designs containing approximately 5,000 registers,

which represents an order of magnitude capacity improvement over previous

results. The main feature of RFN is that it uses the spurious abstract coun-

terexamples to identify the candidates for refinement. RFN also combines

three different engines (BDD, ATPG and simulation) to handle large circuits

using abstraction and refinement.

4.3.1 Guided SAT/ATPG

To check whether an abstract counterexample corresponds to a real con-

crete path or not, symbolic simulation is performed on the concrete model.

During the symbolic simulation, the search space is restricted within the

given abstract counterexample, thus this procedure is very fast. However, a

real counterexample can only be found if it exactly corresponds to the given

abstract counterexample. We introduce guided SAT/ATPG to balance the

computation time with the chances to find real counterexamples.

In localization reduction, the free inputs, which correspond to the ex-

cluded registers and the internal cut points, are unconstrained. Therefore,

their values in an abstract counterexample are also arbitrary, which can triv-

4.3. Invisible Variables In Abstract Counterexamples 61

ially invalidate the abstract counterexample on the concrete model. For a

spurious abstract counterexample, there may exist a slightly different ab-

stract counterexample, where the free inputs are assigned differently, which

corresponds to a real counterexample. To search real counterexamples that

do not exactly correspond to a given abstract counterexample efficiently, a

new algorithm called Guided-SAT/ATPG is developed. Instead of applying

the entire abstract counterexample to the symbolic simulation, this algo-

rithm gradually incorporates more constraints from the abstract counterex-

ample until a definite answer is obtained in the given time limit. That is,

depending on how long the symbolic simulation is allowed, the search space

is automatically adjusted by some restrictions to the given abstract coun-

terexample. Therefore, using this algorithm it is more likely to find a real

counterexample. At the same time, enough restrictions are obtained from

the given abstract counterexample to achieve a reasonable speed. Figure 4.2

shows the detailed algorithm. In Figure 4.2, model is the concrete model,

Algorithm Guided-SAT (model, counterexample, goal)
backtrack = 500
constr size = 3
do

constraints = extract (counterexample, constr size)
search = SAT (model, constraints, goal, backtrack)
backtrack ∗= 1.5
constr size ∗= 1.5

while search = abort
return search

Figure 4.2: Guided-SAT Algorithm

counterexample is an abstract counterexample, goal is the set of reached

4.3. Invisible Variables In Abstract Counterexamples 62

states that violate the given property, backtrack is the maximal number of

backtracks SAT is allowed to try, after which it will return with abort. Note

that each implication conflict corresponds to a backtrack, thus this number

controls the run time of a SAT solver. Variable constr size is the number

of assignments from each time frame of the abstract counterexample that

will be used as guidance in the SAT search. Function extract returns the

constr size number of assignments at each time frame. To reduce the noise

in free inputs, we apply assignments from excluded registers and cut points

only after the assignments from the real primary inputs and included regis-

ters have been applied to the SAT search. Function SAT uses the obtained

partial constraints in satisfiability. Note that Guided-ATPG can be imple-

mented by replace SAT with ATPG [3] in Figure 4.2. In our experience,

Guided SAT/ATPG is usually able to run very fast for searching counterex-

amples of length about one hundred, even with a small amount of guidance,

for example when constr size equals 5.

4.3.2 Efficient Abstract Model Checking

BDD based model checkers are used to verify the given property on the ab-

stract model. If the property holds, it also holds on the concrete model.

Otherwise an abstract counterexample is generated. As is presented in Sec-

tion 4.1, since a min-cut model can be much smaller than the corresponding

no-cut model, we use min-cut abstract models for abstract model checking.

Consequently, the abstract counterexample can have assignments to internal

cut point signals generated using the min-cut algorithm. Since RFN exam-

4.3. Invisible Variables In Abstract Counterexamples 63

ines the excluded registers which are assigned in the abstract counterexam-

ples for refinement, having cut point signals in the counterexample hinders

the refinement process. We avoid this problem by mapping (or lifting) the

abstract counterexample generated when model checking a min-cut model to

an abstract counterexample over the corresponding no-cut model. Given a

min-cut abstract counterexample min counterexample, which leads to an er-

ror state on the min-cut abstract model, the lifting to no-cut abstract model

is achieved by calling Guided-ATPG(no-cut model, min counterexample,

error state). It is usually the case that, Guided ATPG can find a corre-

sponding abstract counterexample on the no-cut model. This is because

of two reasons: First, the sets of behaviors between a min-cut model and

the corresponding no-cut abstract model are similar. Furthermore, Guided

ATPG only uses partial constraints from the min-cut abstract counterexam-

ple during the search. However, it is possible that no corresponding abstract

counterexamples are found over the no-cut abstract model. In such a case,

we are forced to use the abstract counterexample from the min-cut model to

perform abstraction and refinement. If an abstract counterexample on a min-

cut model is proven to be spurious, we use the influential register heuristic

presented in Section 4.3.4 to refine the abstraction.

It is desirable to include only the necessary assignments in a counterexam-

ples. We have two model checking algorithms to achieve this goal for min-cut

models that have different number of inputs. The first algorithm is based on

the standard counterexample generation method used in symbolic reachabil-

ity analysis [24]. This algorithm is suitable for circuits with relatively small

number of inputs. First forward image computation from the initial states is

4.3. Invisible Variables In Abstract Counterexamples 64

performed using BDDs until the property is violated (or a fixpoint is reached

and no counterexamples exist). Then backward images are calculated while

restricting to the already calculated forward images, and an input cube is se-

lected from the BDD at each time frame. We reduce the assignments in the

counterexample using a smart cube selection heuristic. Given a BDD repre-

senting the set of abstract states, we pick a minimal weighted-path to BDD

terminal 1 while assigning higher weights to the variables in excluded and

cuts, but lower weights to the variables in pis and included. In this way, the

counterexamples generated will less depend on variables in excluded and cuts,

which are the potential source of conflicts when checking the counterexample

on concrete model.

The second algorithm combines BDD and ATPG. When there are hun-

dreds of inputs in the abstract model, backward image computation to gen-

erate the BDD over free inputs is very expensive. Although BDD subsetting

can be used to dynamically under-approximate the BDDs, without careful

control of the parameters, subsetting could generate empty BDDs, which are

not useful to construct the counterexample. In the combined BDD/ATPG

method, after BDD-based forward image computation is performed to hit one

of the bad states, ATPG is used to generate assignments to the free inputs

for each time frame. More specifically, in each backward step, we use back-

ward image computation to obtain the pre-image (over the visible registers

only, the free inputs are quantified early) of a target state, then a minimal

state cube (corresponds to the shortest path to BDD terminal 1) is selected.

Using this state as the initial state, and the target state as the state to reach,

a combinational ATPG is used to compute the required assignments to the

4.3. Invisible Variables In Abstract Counterexamples 65

free inputs. As in the first method, we prefer more assignments to variables

in pis and included than variables in excluded and cuts. For ATPG, this can

be achieved by giving higher values of controllability to variables in pis and

included, so that ATPG will try to avoid assignments to variables in excluded

and cuts.

We prefer ATPG to SAT in both generating and lifting counterexamples.

Although SAT has similar capacity as ATPG, for a satisfiable instance, SAT

tries to make every clause true, and therefore more assignments to the model

inputs are needed than ATPG, which will adversely affect the chance to find

real counterexamples.

4.3.3 Check Counterexample

After a counterexample is generated from the abstract model, it is checked

on the concrete model. If it is also a counterexample, then the property is

violated, and the verification is done; otherwise this abstract counterexample

is spurious, and error diagnosis will be performed to compute the invisible

registers that need to be refined. As is presented in Section 4.3.1, we use

Guided SAT/ATPG to increase the chance in finding real counterexamples.

Since this abstraction refinement algorithm targets designs with thou-

sands of registers and more than 100K gates, SAT is used as the engine to

check abstract counterexamples, instead of BDD-based engines. Although,

SAT is limited by the length of the search, the restriction to a specific abstract

counterexample increases its capability to search longer. In our experiments,

SAT without guidance has difficulty searching for more than 20 cycles deep,

4.3. Invisible Variables In Abstract Counterexamples 66

while with guidance it can search more than 130 cycles. Thus it is possible

for SAT based abstraction refinement algorithms to search longer counterex-

amples than bounded model checking based on SAT solvers. .

4.3.4 Refinement Algorithms

If the abstract counterexample is shown to be spurious, the failed coun-

terexample is used to perform refinement. Refinement identifies a set of

important registers and adds them into the current abstraction, so that the

given spurious abstract counterexample is excluded from the refined abstract

model. In our experiments, the immediate support of the visible registers can

include more than a thousand registers. Examining them one by one is time-

consuming. We have devised four refinement heuristics, so that only a small

set of invisible registers are examine in order to compute refinement. First,

a list of important registers is identified and ordered by their importance.

Then a minimization algorithm based on Guided SAT is used to select a

minimal subset from this list.

Assignments in Counterexamples

Although the direct support of the included registers is very large, usually

only a small portion of them appear in the abstract counterexamples. Our

first heuristic only examine the invisible registers assigned in the abstract

counterexample. The intuitive reason is that these assignments are required

for the validity of the counterexample on the abstract model, thus refining

them will reduce the degree of approximation and thus invalidate the current

4.3. Invisible Variables In Abstract Counterexamples 67

counterexample on the refined model. We associate two weights with each

excluded register to represent its importance.

1. One weighting method is called frequency, which counts the number of

times that each signal appears in the given counterexample. Thus a

signal is considered important if it is assigned at many time frames in

the given counterexample.

2. The second method is called reappearance, which counts the number

of times that each signal appears in all the previously generated coun-

terexamples. A signal is considered important if it appears in many

counterexamples.

3-value Simulation

The assignments to the excluded and cuts in an abstract counterexample are

arbitrary, because they are primary inputs for the abstract model. In this

heuristic, we use 3-value simulation on the concrete model to find out which

assignments to the excluded registers are directly conflicting with the rest

of the abstract counterexample, and weight an excluded register based on

the number of conflicts it incurred. In the simulation, only the real primary

inputs that are assigned in the abstract counterexample are given the same

value as in the counterexample, the rest of the primary inputs have value X.

Then 3-value simulation is calculated for the same number of time frames as

the length of the abstract counterexample. Finally, the number of conflicts

for each excluded registers are calculated. An excluded register is considered

to have a conflict at a time frame if both abstract counterexample and 3-value

4.3. Invisible Variables In Abstract Counterexamples 68

simulation assign values to it at that time frame, but the values are different.

In Table 4.1, possible combinations of values for excluded registers between

3-value simulation and abstract counterexamples, as well as the value to

be used in the next time frame in further 3-value simulation are listed. In

this table, ? represents any value, so it is a don’t care. The last two rows

represent situations of conflict. When a conflict happens, the value from

the abstract counterexample is used to continue the 3-value simulation to

reduce the number of conflicts during further simulation. 3-value simulation

is very fast but conservative, so only a small number of possible conflicts are

identified.

3-value
simula-
tion

abstract
counterex-
ample

simulation
for next
time frame

? X ?
�= 1 0 0
�= 0 1 1
1 0 0
0 1 1

Table 4.1: 3-value simulation of an abstract counterexample

Influential Registers

So far the heuristics we have considered ignore the assignments to internal

cut points. Such assignments are possible in an abstract counterexample

over a min-cut model. As is pointed out in Section 4.3.2, when lifting the

counterexample from a min-cut model to the corresponding no-cut model

fails, we use min-cut counterexample in refinement. Note that, the reason

4.3. Invisible Variables In Abstract Counterexamples 69

for the lifting to fail is because of the loss of combinational logic after the

graph min-cut procedure. In this heuristic, we collect all the assigned cuts

in the abstract counterexample, and examine the combinational logic being

removed by the min-cut model. Weights are assigned to the excluded registers

lies in the support of these cuts. Several structural measures are taken into

account during the weighting procedure, including the number of fan-ins and

fan-outs to the cuts, combinational distance to a cut, etc.

Refinement Minimization

Using the heuristics described above, each excluded register is associated

with four weights. For each register, a final weight is calculated by summing

the given four weights together. An ordered list of the excluded registers is

then calculated using these final weights. Although refining the whole list

generates a model that could eliminate the counterexample, the size of the re-

fined model could become unnecessarily large. In fact, our experience shows

that usually one or two key registers are needed to disable a counterexample.

Given a list of ordered candidates for refinement, an algorithm, called Min-

imize, is used to identify a minimal subset of them, so that after this subset

is refined, the counterexample is invalidated. The algorithm has two phases.

The first one corresponds to the first loop, which finds a prefix of the given

list of candidates to eliminate the counterexample. The second phase mini-

mize the subset, addedRegister, by identifying members of it, whose removal

keeps invalidating the counterexample.

4.3. Invisible Variables In Abstract Counterexamples 70

Algorithm Minimize (abst model, candidates, counterexample, goal)
addedRegister = empty ;
Foreach register in candidates do

Add the register into abst model
search = GuidedSAT(abst model, counterexample, goal)
AddedRegister += register

while search = reachable
Foreach register in addedRegister do

Remove the register from abst model
search = GuidedSAT(abst model, counterexample, goal)
if (search == unreach)

addedRegister = addedRegister - register
else

Add the register into abst model
while TRUE

return addedRegister

Figure 4.3: Refinement Minimization Algorithm

4.3.5 Experimental Results

We have implemented the RFN algorithm in C. The prototype system in-

cludes a symbolic model checker implemented using the BDD package in [14],

an ATPG program and a 3-value simulation program.

We performed two types of experiments on some real-world RTL designs.

The first type of experiments is property verification, in which we verify

that none of the target states specified by the unreachability property can

be reached from an initial state. The purpose of this type of experiments is

obvious — we would like to compare the property verification (and falsifica-

tion) capability of RFN against plain symbolic model checking. To be fair,

we perform symbolic model checking with cone-of-influence (COI) reduction.

We verified five properties against two real-world Verilog designs. The

4.3. Invisible Variables In Abstract Counterexamples 71

gate-level designs were obtained from logic synthesis. The first two proper-

ties “mutex” and “error flag” were verified against a module of a processor

design. The next three properties “push hf”, “push af” and “push full” were

verified against a FIFO controller design. All properties are interesting safety

properties that the designers wanted to verify. Each safety property was mod-

eled as an unreachability property with a watchdog module that asserts its

output when the property is violated. In Table 4.2, the first column shows

the names of the properties. The second and the third columns respectively

show the number of registers and the number of gates in the COI of the

properties. The fourth column shows the CPU time that RFN took to ver-

ify or falsify the properties. The fifth column shows the verification results

(T=True and F=False). The last column shows the number of registers in

the abstract model when RFN terminates.

We also applied our symbolic model checker to verify these properties

with the COI reduction. Our symbolic model checker failed to verify any of

the above five properties. Therefore, RFN enabled the formal verification of

these properties that cannot be verified by our symbolic model checker. The

violated property “error flag” indicated a violation to the specification of the

design. The generated error trace was 30-cycle long.

Properties No.

registers

in COI

No.

gates in

COI

Time

(sec)

Result No.

registers

in

abstract

model

4.3. Invisible Variables In Abstract Counterexamples 72

mutex 4,982 111,151 9,795 T 57

error flag 4,986 111,203 5,830 F 55

psh hf 135 3,770 480 T 49

psh af 135 3,771 1,075 T 42

psh full 135 3,765 180 T 42

Table 4.2: Property Verification Results

The second type of experiments is unreachable-coverage-state analysis.

The unreachable-coverage-state analysis problem is as follows. We are given a

set of signals, called the coverage signals, of the gate-level design. A coverage

state is a combination of the values of the coverage signals. The objective is to

identify as many unreachable coverage states (on the original design, not the

subcircuit containing only the coverage signals) as possible. The application

of unreachable-coverage-state analysis to coverage analysis is described in [8].

RFN can be used to perform unreachable-coverage-state analysis as fol-

lows. In Step 2, we project the forward fixpoint to the set of coverage signals

and identify the coverage states that are not in the projected fixpoint as un-

reachable. In Step 4, we mark the reached coverage states by projecting the

reached states of the original design to the coverage signals. At the end of an

iteration, the coverage states that have not been identified as unreachable or

marked as reachable become the target states for the next iteration of RFN.

An alternative method for generating abstract models is the BFS method

introduced in [8]. The BFS method relies on topological information of the

gate-level design to generate abstract models. Given a size k, the BFS method

4.3. Invisible Variables In Abstract Counterexamples 73

first computes from the original design a min-cut subcircuit that contains

the closest k registers to the coverage signals. Then it performs forward fix-

point computation on the min-cut subcircuit to identify unreachable coverage

states.

The purpose of this type of experiments is to compare the quality of

the abstract models generated by RFN against the quality of the abstract

models generated by BFS, in terms of the number of unreachable coverage

states that they identify. We performed unreachable-coverage-state analysis

for seven sets of coverage signals selected from two real-world Verilog designs.

The first five sets of coverage signals are selected from the Integer Unit (IU)

of the Sun picoJava microprocessor [15]. The next two sets of coverage sig-

nals are selected from a USB bus controller design. Each of the first five sets

of coverage signals contain 10 distinct coverage signals that introduce 1024

coverage states. The last two sets contain 6 and 21 coverage signals, respec-

tively. The coverage signals were selected among the registers that encode

control state machines.

The results of the experiments are summarized in Table 4.3. The BFS

abstract models contain exactly 60 registers in each experiment. We picked

the number 60 based on our experience that the forward fixpoint computation

almost always completes on an abstract model with 60 registers. We applied

a time limit of 1,800 CPU seconds to each RFN experiment.

In Table 4.3, the first column shows the code names of the sets of coverage

signals. The second and third columns respectively show the number of

registers and gates in the COIs of the coverage signals. We were a little

bit surprised when we saw that the sizes of the COIs of the first five sets

4.3. Invisible Variables In Abstract Counterexamples 74

of coverage signals are exactly the same. The coverage signals are likely to

be in a strongly connected component of the gate-level design. The fourth

column shows the number of unreachable coverage states identified by RFN.

The fifth column shows the number of registers in the abstract model before

the time out. The sixth and seventh columns respectively show the number

of unreachable coverage states identified by BFS and the time taken by BFS.

From Table 4.3 we can see that RFN uniformly beats or matches the BFS

results. In addition, the time taken by BFS is more unpredictable (10,000

seconds for IU5) than RFN.

Cov.

sig-

nals

No.

regis-

ters in

COI

No.

gates

in COI

No.

unreach

by RFN

No.

regis-

ters in

RFN

No.

unreach

by BFS

BFS

time

(sec)

IU1 4,458 74,258 448 40 256 5,006

IU2 4,458 74,258 736 43 256 767

IU3 4,458 74,258 880 48 880 867

IU4 4,458 74,258 448 36 256 2,667

IU5 4,458 74,258 784 42 664 10K

PE1 6,747 252,935 42 30 32 183

PE2 4,460 173,924 2,076,160 50 2,067,136 562

Table 4.3: Unreachable-coverage-state analysis results

4.4. Invisible Variables in Unsatisfiability Proofs 75

4.4 Invisible Variables in Unsatisfiability Proofs

In this section, we introduce a proof based approach for localization reduc-

tion (PBL). In Section 4.3, candidates for refinement are based on those

invisible registers that are assigned in the abstract counterexample. In PBL,

the abstract counterexamples only assign values to real primary inputs and

visible registers. Furthermore, SAT conflict dependency analysis is used to

select the refinement candidates. We believe there are two advantages to

disallowing invisible registers in the abstract counterexample. First of all,

generating an abstract counterexample over invisible registers is computa-

tionally expensive, because the number of invisible registers is often large. In

fact, for efficiency reasons, a BDD/ATPG hybrid engine is used in RFN to

model check the abstract model. By quantifying the invisible variables early

during image computation, we avoid this bottleneck. More importantly, in

RFN, invisible registers are free inputs in the abstract model, their values

are totally unconstrained. When checking such an abstract counterexample

on the concrete machine, it is more likely to be spurious. In our case, the ab-

stract counterexample only includes assignments to the real primary inputs

and visible registers, hence a real counterexample can be found more easily.

The choice of which invisible registers to make visible is the key to the

success of the refinement algorithm. Ideally, we want this set of registers

to be small and still be able to prevent the spurious trace. Obviously, the

set of registers appearing in the conflict graphs during the checking of the

counterexample could prevent the spurious trace. However, this set can be

very large. We will show here that it is unnecessary to consider all conflict

4.4. Invisible Variables in Unsatisfiability Proofs 76

graphs.

4.4.1 Identifying Important Variables

If the given abstract counterexample is spurious, refinement is done to make

relevant invisible registers visible, so that the spurious abstract counterexam-

ple is invalidated in the refined model. Assume that the counterexample can

be simulated up to the abstract state cek−1, but not up to cek. Thus formula

4.2 is satisfiable while formula 4.3 is not satisfiable, as shown in Figure 4.4.

(S0(s0) ∧ γ(ce0)(s0)) ∧ (R(s0, s1) ∧ γ(ce1)(s1)) ∧ . . .

∧(R(sk−2, sk−1) ∧ γ(cek−1)(sk−1)) (4.2)

(S0(s0) ∧ γ(ce0)(s0)) ∧ (R(s0, s1) ∧ γ(ce1)(s1)) ∧ . . .

∧(R(sk−1, sk) ∧ γ(cek)(sk)) (4.3)

Using the terminology introduced in [23], we call the abstract state cek−1

a failure state. The abstract state cek−1 contains many concrete states given

by all possible combinations of invisible variables, keeping the same values for

variables as given by cek−1. The concrete states in cek−1 reachable from the

initial states following the spurious counterexample are called the deadend

states. The concrete states in cek−1 that have a reachable set in cek are called

bad states. Because the deadend states and the bad states are part of the

same abstract state, we get the spurious counterexample. The refinement

4.4. Invisible Variables in Unsatisfiability Proofs 77

Abstract

Concrete
Trace

Trace

states

bad states

deadend

ce0

γ(cek)

ce1 cek

γ(ce0) γ(ce1) γ(ce2) γ(cek−1)

cek−1

failure
state

ce2

Figure 4.4: A spurious prefix and the associated deadend/bad states.

step then is to separate deadend states and bad states by making a small

subset of invisible variables visible. It is easy to see that the set of deadend

states are given by the values of state variables in the (k − 1)th step for

all satisfying solutions to Equation 4.2. Note that in symbolic simulation

formulas, we have a copy of each state variable for each time frame.

We do this symbolic simulation using the SAT checker Chaff [56, 76].

We assume that there are concrete transitions which correspond to each ab-

stract transition from cei to cei+1, where 0 ≤ i < k (Otherwise, we use the

refinement algorithms in Section 5.2.1 to remove the spurious abstract tran-

sitions). In this case, the set of bad states is not empty. Since 〈ce0, . . . , cek〉
is the shortest prefix that is unsatisfiable, there must be information passed

through the invisible registers at time frame k − 1 in order for the SAT solver

to prove 〈ce0, . . . , cek〉 is unsatisfiable on the concrete model. The SAT solver

implicitly generates constraints on the invisible registers at time frame (k−1)

4.4. Invisible Variables in Unsatisfiability Proofs 78

based on both the last abstract transition and the prefix 〈ce0, . . . , cek−1. Ob-

viously the intersection of these two constraints on those invisible registers is

empty. Thus the set of invisible registers that are constrained in time frame

(k−1) during the SAT search is sufficient to separate deadend states and bad

states (The formal proof is given in Lemma 5.2.3 of Section 5.2.2). There-

fore, our algorithm limits the refinement candidates to the registers that are

constrained in time frame (k − 1).

The proof graph records the reasons for unsatisfiability. Therefore, only

the variables appearing in the proof graph are important. Instead of collect-

ing all the variables appearing in any conflict graph, those in the proof graph

are sufficient to disable the spurious counterexample. When Chaff terminates

with unsatisfiability, we collect the clauses from the proof graph. Recall from

Section 3.2.1, these clauses become the dependent set of the last empty con-

flict clause. Therefore, the set of invisible registers that, when expanded to

time frame (k− 1), correspond to literals in these clauses are the candidates

for refinement.

4.4.2 Refinement Minimization

The set of refinement candidates identified from conflict analysis is usually

not minimal, i.e., not all registers in this set are required to invalidate the

current spurious abstract counterexample. To remove those that are unnec-

essary, we have adapted the greedy refinement minimization algorithm in

Section 4.3.4. The algorithm in Section 4.3.4 has two phases. The first phase

is the addition phase, where a set of invisible registers that suffices to disable

4.4. Invisible Variables in Unsatisfiability Proofs 79

the spurious abstract counterexample is identified. In the second phase, a

minimal subset of registers that is necessary to disable the counterexample

is identified. Their algorithm tries to see whether removing a newly added

register from the abstract model still disables the abstract counterexample.

If that is the case, this register is unnecessary and is no longer considered

for refinement. In our case, we only need the second phase of the algorithm,

because the set of refinement candidates provided by our conflict dependency

analysis algorithm already suffices to disable the current spurious abstract

counterexample. Since the first phase of their algorithm takes at least as

long as the second phase, this should speed up this minimization algorithm

considerably. The Detailed description of the minimization algorithm is de-

ferred until in Section 5.2.2 (Refer to Figure 5.1 for an illustration of the

algorithm).

4.4.3 Experimental Results

We have implemented our abstraction refinement framework on top of NuSMV

model checker [20]. We modified the SAT checker Chaff to produce conflict

dependency graphs and to do incremental SAT. The IU-p1 benchmark was

verified by conflict analysis based refinement on a SunFire 280R machine with

two 750Mhz UltraSparc III CPUs and 8GB of RAM running Solaris (This

is because there is a 72 long abstract counterexample for IU-p1. Checking

such a counterexample using SAT by unrolling the concrete model consumes

a lot of memory.). All other experiments were performed on a dual 1.5GHz

Athlon machine with 3GB of RAM running Linux. We compare several

4.4. Invisible Variables in Unsatisfiability Proofs 80

verification algorithms: Cadence SMV (CSMV) which is a state of the art

BDD based model checker, heuristic score based abstraction refinement [18],

ILP and machine learning based abstraction refinement [22], and the proof

based abstraction refinement presented in this section. In the heuristic score

based abstraction refinement, all conflict graphs during the SAT search are

considered. While the proof based algorithm only considers those in the

unsatisfiability proof.

The experiments were performed on two sets of benchmarks. The first set

of benchmarks in Table 4.4 are industrial benchmarks obtained from various

sources. The benchmarks IU-p1 and IU-p2 refer to the same circuit, IU,

but different properties are checked in each case. This circuit is an integer

unit of a picoJava microprocessor from Sun. The D series benchmarks are

from a processor design. The properties verified were simple AG properties.

The property for IU-p2 has 7 registers, while IU-p1 and D series circuits

have only one register in the property. The circuits in Table 4.5 are various

abstractions of the IU circuit. The property being verified has 17 registers.

They are smaller circuits that are easily handled by our methods but they

have been shown to be difficult to handle by Cadence SMV [22]. We include

these results here to compare our methods with the results reported in [22] for

property 2. We do not report the results for property 1 in [22] because it is too

trivial (all counterexamples can be found in 1 iteration). It is interesting to

note that all benchmarks but IU-p1 and IU-p2 have a valid counterexample.

In Table 4.4, we compare our methods against the BDD based model

checker Cadence SMV (CSMV) and heuristic score based refinement. We

enabled cone of influence reduction and dynamic variable reordering in Ca-

4.4. Invisible Variables in Unsatisfiability Proofs 81

circuit # regs ctrex CSMV Heuristic Score Proof
length time time iters # regs time iters # regs

D2 105 15 152 105 10 51 79 11 39
D5 350 32 1,192 29 3 16 38.2 8 10
D6 177 20 45,596 784 24 121 833 48 90
D18 745 28 >4 hrs 12,086 69 346 9,995 142 253
D20 562 14 >7 hrs 1,493 56 281 1,947 74 265
D24 270 10 7,850 14 1 6 8 1 4
IU-p1 4855 true - 9,138 22 107 3,350∗ 13 19
IU-p2 4855 true - 2,820 7 36 712 6 13

Table 4.4: Comparison between Cadence SMV (CSMV), heuristic score based
refinement and proof based refinement for larger circuits.

dence SMV. The performance of “vanilla” NuSMV was worse than Cadence

SMV, hence we do not report those numbers. We report total running time,

number of iterations and the number of registers in the final abstraction. The

columns labeled with “Heuristic Score” report the results with the heuristic

score method. The columns labeled with “Proof” report the results of the

proof based refinement. A “-” in a cell indicates that the model checker ran

out of memory.

Table 4.5 compares the three localization reduction algorithms: heuristic

score based, ILP and machine learning based, and proof based abstraction

refinement. The results obtained using ILP and machine learning based

methods is listed in column 4. in [22] for property 2.

We can see that the proof based method outperforms a standard BDD

based model checker, the method reported in [22] and the heuristic score

based method. We also conclude that the computational overhead of the

proof based method is well justified by the smaller abstractions that it pro-

duces. The variable scoring based method does not enjoy the benefits of re-

duced candidate refinement sets obtained through SAT conflict dependency

4.4. Invisible Variables in Unsatisfiability Proofs 82

circuit # regs ctrex [22] Heuristic Score Proof
length time time iters # regs time iters # regs

IU30 30 11 6.5 2.3 2 27 1.9 4 20
IU35 35 20 11 8.9 2 27 10.4 5 21
IU40 40 20 16.1 28.4 3 32 13.3 6 22
IU45 45 20 22.1 32.9 3 32 25 6 22
IU50 50 20 85.1 36 3 32 32.8 6 22
IU55 55 11 - 43 2 27 61.9 4 20
IU60 60 11 - 52.8 2 27 65.5 4 20
IU65 65 11 - 50.3 2 27 67.5 4 20
IU70 70 11 - 55.6 2 27 71.4 4 20
IU75 75 11 130.5 38.5 4 37 15.7 5 21
IU80 80 11 153.4 47.1 4 37 21.1 5 21
IU85 85 11 167.7 44.7 4 37 24.6 5 21
IU90 90 11 167.1 49.9 4 37 24.3 5 21

Table 4.5: Comparison between [22], heuristic score based refinement and
proof based refinement for smaller circuits.

analysis. Therefore, it results in a bigger abstraction in general. The heuris-

tic based refinement method adds 5 registers at a time, resulting in some

uniformity in the final number of registers, especially evident in Table 4.5.

Due to the smaller number of refinement steps it performs, the total time

it has to spend in model checking abstract machines may be smaller (as for

D5, D6, D20, IU60, IU65, IU70).

4.4.4 Performance Improvements

In this subsection, we give several algorithms to improve the localization

reduction system (PBL) presented in this section.

The set of visible registers in the initial abstraction includes all the regis-

ters appearing in the given property to be proven. To make the abstraction

refinement process converge more quickly, a possible way is to start with a

bigger set of visible registers. Given a safety property, usually bounded model

checking is first performed with a relatively small bound to see whether the

4.4. Invisible Variables in Unsatisfiability Proofs 83

given property can be easily shown to be false. This involves solving a series

of satisfiability problems. When all this SAT problems are unsatisfiable, we

know that the property can not be violated within the given bound. We

can take advantage of BMC to identify important registers. Since the SAT

instances involved are unsatisfiable, we can use the SAT conflict dependency

analysis to extract the proofs of unsatisfiability. The registers appearing in

these proofs are important, if we add all of them as visible registers into

the initial abstraction, the abstract model can make sure that any abstract

counterexample must be longer than the given BMC bound. Thus, we have

speeded up the convergence of the abstraction refinement procedure. How-

ever, it is usually the case that, a large number of registers are in the unsatisfi-

ability proofs. Having all of them in the initial abstraction makes the abstract

model too large. As is pointed out early, the proof extraction method may

not come up with the minimal proof. So instead of adding all the registers

in the unsatisfiability proofs of the BMC instances, we score these registers

based on the extract proofs. Then we only make a small number of registers

with the highest scores visible. Currently, the scoring heuristic is very simple,

the score of a register is the number of times it appears in the unsatisfiability

proofs. It is possible to regard an unsatisfiability proof as a graph, and use

the structure of the graph to design new scoring heuristics.

In counterexample based abstraction refinement, a single counterexam-

ple is considered, where each abstract state in the abstract counterexample

gives values to all abstract state variables. We call such a counterexample

minterm based counterexample. Our algorithm tries to make the generated

counterexamples more general by selecting abstract states with less assign-

4.4. Invisible Variables in Unsatisfiability Proofs 84

ments to the abstract variables, so that each abstract state only specifies

the necessary variables while leaving other variables unconstrained. We call

such a counterexample cube based counterexample. For safety property, the

counterexample is a path to a state where the property is violated. We can

further generalize cube based counterexample, so that the counterexample

represents all the shortest counterexample by representing the abstract states

at each time frame using a BDD. We call the resulting counterexample BDD

based counterexample. A BDD based counterexample can be generated by

modifying the standard algorithm used for reachability analysis. Once the

intersection of the reachable states and the unsafety states is not empty, we

keep the intersection as a BDD. Then we go backwards by calculating the

preimage of this BDD, then intersect it with the reachable BDD calculated

during the forward phase. This process is repeated until the intersection

with the set of initial states is calculated. The BDDs calculated in the back-

ward phase represent all the shortest counterexamples. Once a BDD based

abstract counterexample is calculated, the abstract refinement algorithms

presented in this section can be modified to work with the BDD based coun-

terexample. The modification is trivial, instead of a cube based abstract

state, the new algorithm just need to understand a BDD over the visible

variables. There are two issues to deal with when using BDD based abstract

counterexamples.

• It is possible that, to represent a BDD based abstract counterexample

requires too much memory. This can be avoided by BDD underapprox-

imation during the backward counterexample generation phase.

4.4. Invisible Variables in Unsatisfiability Proofs 85

• It is possible that, to verify whether a BDD based abstract counterex-

ample corresponds to a concrete counterexample or not requires too

much time using a SAT solver. For example, the SAT solver zChaff

has spent more than an hour in order to check one BDD based ab-

stract counterexample for one of the IU properties given in Table 4.4.

To avoid this problem, we give a bound to the time that the SAT solver

is allowed to run and abort the SAT search after that. We then use

the cube based counterexample for the current abstraction refinement

iteration.

In the refinement algorithm presented previously in this section, we try

to find the shortest prefix of an abstraction counterexample that does not

correspond to a real concrete path. Let k be the length of such a prefix.

We restrict the refinement to the invisible registers at time k − 1. In prac-

tice, to find the shortest unsatisfiable prefix may be time consuming for long

counterexamples. For example, an abstract counterexample of length 72 has

been generated for one of the IU properties in Table 4.4, where all the proper

prefixes of the counterexample can be satisfied by the concrete model, yet

the whole counterexample is unsatisfiable on the concrete model. We can

avoid the time spent in checking the prefixes, by only checking the whole

counterexample on the concrete model as in equation (4.1). When this re-

turns unsatisfiability, we do not know the shortest unsatisfiable prefix. One

way to disable the counterexample is to refine all registers appearing in this

unsatisfiability proof. However, it is possible that there are too many regis-

ters in the proof. In such a case, we use the same scoring heuristic presented

in the previous paragraph to evaluate the importance of invisible registers,

4.4. Invisible Variables in Unsatisfiability Proofs 86

and only refine those registers with the highest scores.

Chapter 5

SAT based Predicate

Abstraction

Localization reduction, presented in Chapter 4, is a powerful technique for

hardware verification. However, when the size of the required abstract model

is over the capacity of BDD based model checking engines, localization re-

duction becomes infeasible. In this chapter, we present techniques based

on predicate abstraction that can often produce small abstract models, thus

enabling the verification of large scale hardware designs where localization

reduction fails.

Predicate abstraction has been traditionally used for verifying infinite

state systems, like software programs. For software model checking [6–8,30,

61,70], the use of predicate abstraction (or similar abstraction techniques) is

essential because, most software systems are infinite state and the existing

model checking algorithms cannot handle infinite state systems. Predicate

abstraction can extract finite state abstract models, which are amenable

87

Chapter 5. SAT based Predicate Abstraction 88

to model checking, from infinite state systems. Since hardware systems are

finite state, model checking (or simpler forms of abstraction, e.g., localization

reduction [43]) has been traditionally used to verify them. Existing predicate

abstraction techniques for verifying software are not efficient when applied

to the verification of large scale hardware systems.

There are many proof obligations involved in predicate abstraction that

require the use of decision procedures. Proof obligations can arise from

equations (2.5) and (2.6) and also from determining whether an abstract

counterexample is spurious or not. For software verification, these proof

obligations are solved using general theorem provers. For the verification of

hardware systems, which usually have compact representation in conjunc-

tive normal form (CNF), we can use SAT solvers instead of general theorem

provers. With the advancements in SAT technology, discharging the proof

obligations using SAT solvers becomes much faster than using general theo-

rem provers.

The abstract model built according to equations (2.5) and (2.6) is called

the most accurate abstract model. Note that, in this abstract model, every

abstract initial state has at least one corresponding concrete initial state, and

every abstract transition has at least one corresponding concrete transition.

However, to build the most accurate abstract model, there are exponential

number (in the number of predicates) of implications that need to be checked

in worst case. To reduce the abstraction time, in practice an approximate

abstract model is constructed by intentionally excluding certain implications

from consideration. Therefore, there are more behaviors in the approximate

model than in the most accurate abstract model. We call the abstract transi-

Chapter 5. SAT based Predicate Abstraction 89

tions that do not have any corresponding concrete transitions spurious tran-

sitions (Precise definitions are given in Section 5.2.1). Since an approximate

abstract model contains all the behaviors of the original concrete system, the

preservation theorem still holds, which guarantees the correctness of a uni-

versal temporal logic formula on the concrete system once it has been proven

on the abstract model. To further reduce the abstraction time, we present a

technique to reduce the number of implications that are checked in building

the abstract models using equations (2.5) and (2.6).

There are two cases for an abstract counterexample to be spurious: One

is that there is a spurious transition, that is, an abstract transition which

does not have any corresponding concrete transitions; the other is that the

counterexample has a spurious prefix, that is, there are no concrete paths

that correspond to the prefix.

Our first SAT based algorithm deals with the first case. Recall that, it is

time consuming to build the most accurate abstract model when the number

of predicates is large. Since it is usually the case that, the most accurate

abstract model is not necessary in order to verify the given property, we

compute an approximate abstract model initially and rely on refinement to

make the abstract model as accurate as possible. We use a heuristic similar

to the one given in [6] to build an approximate abstract model. Instead of

considering all possible implications of the form Ŷ → Ŷ ′ we impose restric-

tion on the lengths of Ŷ and Ŷ ′ in equation (2.6) (The approximation to the

set of abstract initial states can be similarly done for equation (2.5)). If the

resulting abstract model is too coarse, an abstract counterexample with a

spurious transition might be generated. This spurious transition can be re-

Chapter 5. SAT based Predicate Abstraction 90

moved by adding an appropriate constraint to the abstract model (details are

given in Section 5.2.1). The constraint should be made as general as possible

so that many related spurious transitions are also removed. An algorithm for

this has been proposed in [28] which in the worst case requires 2m number of

calls to a theorem prover, where m is the number of predicates. We propose

a new algorithm, based on SAT conflict dependency analysis (presented in

Section 3.2), to generate a general constraint without any additional calls

to the SAT solver. Our algorithm works by analyzing the conflict graphs

generated when detecting the spurious transition. Thus our algorithm can

be much more efficient than the algorithm in [28].

Even after removing spurious transitions there could be a spurious pre-

fix of the given abstract counterexample. This happens because the set of

predicates is not enough to capture the relevant behaviors of the concrete sys-

tem. In such a case, a new predicate is identified and added to the current

abstract model to invalidate the counterexample. To make the abstraction

refinement process efficient, it is desirable to compute a predicate that can

be compactly represented. Large predicates are difficult to compute and dis-

charging any proof obligation involving them will be slow. We propose an

algorithm, again based on SAT conflict dependency analysis, to reduce the

number of concrete state variables that the new predicate depends on. Then

the predicate is calculated by a projection-based SAT enumeration algorithm.

Experiments show that this algorithm can efficiently compute the required

predicates for design with thousands of registers.

5.1. SAT based Abstraction 91

5.1 SAT based Abstraction

In this section, we describe a SAT based algorithm to build the abstract

model. Since the concrete transition relation must be used during abstrac-

tion, it is not feasible to use BDD based existential quantification [23] for

large designs. Traditional predicate abstraction algorithms [6, 66] abstract

each line of code separately, or for improved accuracy, each basic block sep-

arately. It is well known [47] that pushing abstraction to each line of code

(or each basic block) results in an over-approximation. Big Verilog designs

can have more than quarter million lines of code. So line by line abstraction

is infeasible for such designs. Since variables in hardware designs are usually

bit-vectors with small length, and the predicates involved in hardware verifi-

cation are propositional formulas, we abstract the circuit as a whole instead

of abstracting it part by part.

Recall from Section 2.3 that, R̂ is given by the equation

R̂ =
∧
{Ŷ → Ŷ ′ | (R ∧ γ(Ŷ))→ γ(Ŷ ′)}.

where Ŷ is a conjunction of literals over the current state abstract variables

Bis and Ŷ ′ is a disjunction of literals over the next state abstract variables

B′
is (from now on we call each pair consisting of Ŷ and Ŷ ′ used in building R̂

a testpoint). As discussed earlier this equation is equivalent to the standard

existential formulation:

R̂(ŝ1, ŝ2) = ∃s1s2.ρ(s1, ŝ1) ∧ ρ(s2, ŝ2) ∧R(s1, s2).

5.1. SAT based Abstraction 92

In order to build the abstract transition relation R̂, we must consider all

possible pairs Ŷ and Ŷ ′. For each such pair we need to determine whether

the implication

(R ∧ γ(Ŷ))→ γ(Ŷ ′)

is a tautology or not. To do that we can negate the formula, translate it

into CNF and give it to a SAT solver. If the result is unsatisfiable, then the

implication is a tautology. Note that R is common to all the formulas given

to the SAT solver. This means the incremental SAT technique described in

Section 3.2.2 can be used, so that the conflict clauses derived from R alone

are generated only once.

After having constructed R̂, we need to construct the set of abstract

initial states. This can be done with SAT solvers as well. Recall that the set

of abstract initial states is given by

Ŝ0 =
∧
{Ŷ | S0 → γ(Ŷ)}.

where S0 is the set of initial states and Ŷ is a disjunction of current state

abstract variables Bis. For each Ŷ we can convert the negation of the condi-

tion S0 → γ(Ŷ) into CNF and give it to SAT solver. If the CNF formula is

unsatisfiable then the condition S0 → γ(Ŷ) is a tautology.

5.1.1 Reducing the number of testpoints

In building the exact abstract transition relation we need to consider all

testpoints (Ŷ , Ŷ ′). The number of different testpoints is exponential in the

5.1. SAT based Abstraction 93

number of abstract state variables. Experiments show that the efficiency of

abstraction is mainly dominated by the number of calls to the SAT solver.

So we restrict the number of literals in Ŷ to be less than or equal to 2, and we

only allow one literal in Ŷ ′. Because of this restriction, our abstraction will be

an over-approximation of the exact transition relation. An inexact transition

relation can lead to spurious counterexamples, but it is better to go ahead

with an approximate abstract model rather than to spend considerable effort

building the exact abstract system. Experiments demonstrate that spending

too much effort building the abstract model can hurt the overall runtime

because an accurate abstract model may not really be necessary. Given m

predicates, the total number of the restricted testpoints is O(m3) using our

length restriction.

Because the number of testpoints is O(m3), where m is the number of

abstract state variables (which is the same as the number of predicates),

building the abstract model can still be too expensive in practice. When a

testpoint is determined to be a tautology, it may make some other testpoints

trivially true or false (See [66] for details.). In practice, the application of this

heuristic is limited, because most of the testpoints are not tautologies. To

reduce the number of calls to the SAT solver, which is the main bottleneck,

we try to check many testpoints in a single call to the SAT solver if possible.

Given two testpoints t1 = Ŷ 1 → Ŷ 1′ and t2 = Ŷ 2 → Ŷ 2′, the combined

testpoint is Ŷ 1 ∧ Ŷ 2 → Ŷ 1′ ∨ Ŷ 2′. Two testpoints t1 and t2 are compatible

iff Ŷ 1 ∧ Ŷ 2 �= false and Ŷ 1′ ∨ Ŷ 2′ �= true. We call the combined testpoint

of two incompatible testpoints a trivial testpoint. To speed up the process,

we use the following simple heuristic to decide whether two testpoints are

5.2. SAT based Refinement 94

compatible or not. The conjunction of Ŷ 1 and Ŷ 2 is false if the conjunction

contains both Bi and ¬Bi (Similarly for Ŷ 1′ and Ŷ 2′). If the combined

testpoint is not a tautology, then neither t1 nor t2 is tautology. This fact

can be used to reduce the number of calls to the SAT solver in building the

abstract model. Given a list of testpoints, we first partition them, so that the

combined testpoint for each partition is not trivial. For a partition, we first

test whether the combined testpoint is a tautology or not. If it is, we add it to

the abstract model and then check each testpoint in the partition as usual. If

the combined testpoint is not a tautology, then none of the testpoints in the

partition is a tautology and all testpoints in this partition can be excluded

from further consideration. By this method we can effectively reduce the

number of calls to the SAT solver.

5.2 SAT based Refinement

We first introduce some notation to represent the unrolling of a transition

system from initial states. Let V be a set of variables, let the corresponding

set of next state variables be V ′. We call V and V ′ untimed variables. For

every variable in V we maintain a version of that variable at each time

i ≥ 0. If V is a set of state variables, then V i, is the set of timed versions

of variables in V at time i ≥ 0. We call V i timed variables at time i.

Using timed abstract state variables Bi corresponding to a set of abstract

state variables B, an abstract counterexample ce(B0, . . . , Bn) is a sequence of

abstract states 〈ce0(B
0), ce1(B

1), . . . , cen(B
n)〉, where ce i(B

i) is a cube over

5.2. SAT based Refinement 95

the abstract variables at time i. When it is clear from context, we sometimes

represent a counterexample without explicitly mentioning timed variables.

Let f(V) be a boolean function, which maps the set of states over variables

V to {0, 1}. The timed version of f at time i, denoted by f i(V i), is the same

function as f except that it is over the timed variables V i. We define an

operator, called utf (for untimed function), which for a given timed function

f i(V i), returns the untimed function f(V), i.e, f(V) = utf (f i(V i)). Given

a relation r(V, V
′
), which maps the set of states over current state variables

V to the set of states over the next state variables V ′, ri(V i, V i+1) is the

timed version of r at time i. We define an operator, called utr (for untimed

relation), which for a given timed relation ri(V i, V i+1), returns the untimed

relation r(V, V
′
),i.e., utr (ri(V i, V i+1)) = r(V, V

′
).

Let B = {B1, . . . , Bm} and V be the set of abstract and concrete state

variables, respectively. Given a timed abstract expression f in terms of Bi at

time i, its concretization is a timed concrete expression γ(f) in terms of V i

obtained by replacing each Bi
j in f with the timed version of the correspond-

ing predicate P i
j . Let ce = 〈ce0, ce1, . . . , cen〉 be an abstract counterexample.

Let i be a natural number, such that 0 < i ≤ n. The set of pairs of concrete

states corresponding to the abstract transition from cei−1 to cei is

trans(i− 1, i) = γ(cei−1) ∧Ri−1 ∧ γ(cei) (5.1)

The set of concrete paths which corresponds to the prefix of the abstract

counterexample up to time i, is a set of lists of concrete states {〈s0(V
0), . . . , si(V

i)〉}

5.2. SAT based Refinement 96

that satisfy the following equation:

prf (i) = S0 ∧ γ(ce0) ∧ R0 ∧ · · · ∧ γ(cei−1) ∧Ri−1 ∧ γ(cei). (5.2)

Let BV be a set of boolean variables and let BV 1 ⊆ BV . If f is a CNF

formula over BV , the satisfiable set of f over BV 1, denoted by SA[BV 1](f),

is the set of all satisfying assignments of f projected on to BV 1. Thus,

SA[BV 1](f) = proj [BV 1](SA[BV](f)). For a SAT solver with conflict based

learning, there is a well known algorithm to compute SA[BV 1](f) without

first computing SA[BV](f) [49]. Once a satisfiable solution is found, a block-

ing clause over BV 1 is created to avoid generating the same projected so-

lution. After this blocking clause is added, the SAT search continues. This

process repeats until the SAT solver concludes that the set of clauses is

unsatisfiable, i.e., there are no further solutions. The set of all satisfying

assignments over BV 1 is the required result, which can be represented as a

DNF formula.

Given a set of variables SV that are not necessarily boolean, let BSV be

the set of boolean variables in the boolean encoding of variables in SV . Let

f be a CNF formula over BSV .The scalar support of the CNF formula f ,

denoted by ssuppt [SV](f), is a subset of SV that includes a variable v ∈ SV

iff at least one of v’s corresponding boolean variables is in f .

An abstract counterexample ce = 〈ce0, ce1, . . . , cen〉 is a real counterex-

ample if and only if the set prf (n) is not empty. If the abstract counterex-

ample is a real counterexample, then the property is false on the concrete

machine. Otherwise the counterexample is spurious and we need to refine

5.2. SAT based Refinement 97

the current abstract model. There are two possible reasons for the existence

of a spurious counterexample: One is that the computed abstract model is

an over-approximation of the most accurate abstract model. The other is

that the set of predicates is insufficient to model the relevant behaviors of

the system. In Section 5.2.1, we describe how our algorithm deals with the

first case (we only show how to remove spurious transitions from the abstract

transition relation. The refinement for an approximate set of abstract initial

states is similar.). In Section 5.2.2 we deal with the case where the the set

of predicates is not sufficient.

5.2.1 Refinement to Exclude Spurious Transitions

Given an abstract counterexample ce = 〈ce0, ce1, . . . , cen〉, if there exists
i, 0 < i ≤ n, such that the set trans(i−1, i) = Ri−1∧γ(ce i−1)∧γ(ce i) is empty,

then we call the transition from cei−1 to cei a spurious transition. That is,

there are no concrete transitions corresponding to the abstract transition

from cei−1 to cei. Clearly, the counterexample is not a real counterexample.

To determine whether trans(i−1, i) is empty or not, we convert it into a SAT

unsatisfiability problem. Since, in the most accurate abstract model, there

is at least one concrete transition corresponding to every abstract transition,

spurious transitions exist only for approximate abstract transition relations.

Since spurious transitions are not due to the lack of predicates but due

to an approximate abstract transition relation, our algorithm removes spu-

rious transitions by adding appropriate constraints to R̂. For the spurious

5.2. SAT based Refinement 98

transition from cei−1 to cei, we have Ri−1∧γ(cei−1)∧γ(ce i)⇔ false. There-

fore, Ri−1 ⇒ (γ(cei−1) → γ(¬cei)). Note that cei−1 is a conjunction over

the abstract state variables at time i − 1, and ¬ce i is a disjunction over

the abstract state variables at time i. Since the concrete transition relation

does not allow any transition from γ(cei−1) to γ(cei) we should add the con-

straint utr (cei−1 → ¬ce i) to R̂. The resulting transition relation is correct

and disallows the spurious transition. The constraint cei−1 → ¬ce i can po-

tentially involve most of the abstract state variables, thus making it very

specific and not useful in general. It is advantageous to make the constraint

as general as possible (thus making the abstract transition relation more ac-

curate), provided that the cost of achieving this is not too large. In the rest

of this subsection, we describe an efficient algorithm which removes some of

the literals from cei−1 and cei in cei−1 → ¬ce i, making the constraint more

general.

Computing A General Constraint. Let m be the number of predicates.

The problem of finding a general constraint to eliminate a spurious transition

can be formalized as follows: Given propositional formulas f and fj where

1 ≤ j ≤ 2m, which make f ∧ ∧
1≤j≤2m fj unsatisfiable, find a small subset

care ⊆ {1, . . . , 2m}, such that f ∧∧
j∈care fj is unsatisfiable. It is easy to see

that if we let f = Ri−1 and let each fj correspond to the concretization of

a literal in cei−1 or cei, then we can drop those literals that are not in care

from cei−1 → ¬cei. The resulting constraint will be made more general. The

set care can be efficiently calculated using the conflict dependency analysis

algorithm described in Section 3.2.

5.2. SAT based Refinement 99

Before we run the SAT solver we need to convert f ∧ f1 ∧ f2 ∧ · · · ∧ f2m

to CNF, and in this process some of the fj’s might be split into smaller

formulas. Hence it may not be possible to keep track of all fj’s. To overcome

this difficulty, we introduce a new boolean variable tj for each fj in the

formula and convert the formula into

F = ∃t1, t2 . . . , t2m. f ∧
∧

j∈{1,...,2m}
(tj ∧ (tj ≡ fj)). (5.3)

It is easy to see that this formula is unsatisfiable iff the original formula is un-

satisfiable, because the two are logically equivalent. Once (5.3) is translated

to a CNF formula, for each tj there is a clause Tj containing only one literal,

tj . So, instead of keeping track of fj ’s directly we keep track of Tj ’s. Since

the CNF formula F corresponding to (5.3) is unsatisfiable, we know that

SUB(F) ⊆ F is unsatisfiable, where SUB (F) is defined as in Section 3.2. It

can be shown that care = {j | Tj ∈ SUB(F)} represents the desired set of

fj ’s. Using the set care, we can add a more general constraint to R̂.

Lemma 5.2.1 Let F be a unsatisfiable CNF formula as defined in equation

(5.3). Let care = {j | Tj ∈ SUB (F)}. Then f ∧∧
j∈care fj is unsatisfiable.

5.2. SAT based Refinement 100

Proof: It is easy to see the following:

F is unsatisfiable

⇒ F1 = ∃t1, . . . , t2m. f ∧∧
j∈care(tj ∧ (tj ≡ fj)) ∧

∧
j
∈care(tj ≡ fj) is unsatisfiable

because {F1} ⊇ SUB(F)

⇒ f ∧∧
j∈care ∃tj (tj ∧ (tj ≡ fj)) ∧

∧
j
∈care ∃tj (tj ≡ fj) is unsatisfiable

because tj is unique

⇒ f ∧∧
j∈care fj is unsatisfiable

It is easy to see that our algorithm only analyzes the search process of

the SAT problem during which the spurious transition was identified. In [28],

a potentially more general constraint than the one computed by the above

algorithm can be found. It works by testing whether each fj can be removed

to keep the resulting formula unsatisfiable. Their algorithm requires 2m calls

to a theorem prover, which is time consuming when the number of predicates,

m, is large. As presented in Section 3.2, the unsatisfiable subset SUB(F) may

not be a minimal unsatisfiable subset of F . Consequently, in general, the set

care our algorithm computes is not minimal. However, in practice, its size

is comparable to a minimal set. It is easy to modify our algorithm to make

care minimal. After the set care is computed, we can try to eliminate the

remaining literals one by one as in [28], which requires |care| additional calls
to the SAT solver. Since the size of care is already small, this is not very

expensive.

5.2. SAT based Refinement 101

5.2.2 Refinement by adding a New Predicate

Even after we have ensured that there are no spurious transitions (and

γ(ce0) ∧ S0 �= ∅) in the counterexample ce, the counterexample itself can

still be spurious. Let n be the length of the given abstract counterexam-

ple. We are interested in k such that 1 < k ≤ n and the prefix pk−1 =

〈ce0, ce1, . . . , cek−1〉 of the counterexample corresponds to a valid path but

pk = 〈ce0, ce1, . . . , cek〉 does not. Formally, we call pk a spurious prefix if

and only if prf (k − 1) �= ∅ ∧ prf (k) = ∅. If there is no such k then the

counterexample is real. Otherwise, the set of states SA[V k−1](prf (k − 1)) is

called the set of deadend states, denoted by deadend [23]. Deadend states are

those states in γ(cek−1) that can be reached but do not have any transition

to γ(cek). The set of states SA[V k−1](trans(k− 1, k)) is called the set of bad

states, denoted by bad [23]. The states in bad are those states in γ(cek−1)

that have a transition to some state in γ(cek).

Lemma 5.2.2 For a spurious abstract counterexample ce without spurious

transitions, let k be the length of the spurious prefix of ce. Then deadend �= ∅,
bad �= ∅ and (deadend ∩ bad) = ∅.

Proof: Since there are no spurious transitions in ce, for every i, 0 < i ≤ n,

trans(i − 1, i) is satisfiable. Thus bad = SA[V k−1](trans(k − 1, k)) is not

empty. Since prf (k− 1) is satisfiable, the set of deadend states is not empty

either. Finally, if (deadend ∩ bad) �= ∅ then prf (k) would be satisfiable. So

(deadend ∩ bad) = ∅

5.2. SAT based Refinement 102

As is pointed out in [23], it is impossible to distinguish between deadend and

bad states using the existing set of predicates, because the abstraction of the

two is the same abstract state cek−1. Therefore, our refinement algorithm

aims to find a separating predicate, sep, such that deadend ⊆ sep and sep ∩
bad = ∅ (the alternative definition for sep, which satisfies bad ⊆ sep ∧
deadend ∩ sep = ∅, also works). After introducing sep as a new predicate,

the abstract model will be able to distinguish between the deadend and bad

states. We call the set of concrete state variables over which a predicate is

defined the support of the predicate. Our algorithm first identifies a minimal

set of concrete state variables. Then a predicate over these variables that

can separate the deadend and bad states is computed.

Minimizing the Support of the Separating Predicate

An important goal of our refinement algorithm is to compute a predicate

that can be represented compactly (called compact predicates for short). For

large scale hardware designs, existing refinement algorithms, such as weakest

precondition calculation, preimage computation, syntactical transformation

etc., may fail because the predicates they are trying to compute are too big

to be represented. Our algorithm avoids this problem by first computing a

minimal set of concrete state variables that are responsible for the failure

of the spurious prefix. Our algorithm guarantees that there is a separating

predicate over this minimal set that can separate the deadend and bad states.

It is usually the case that the size of any representation of a predicate can

be bound by the size of its support. Therefore, our algorithm can compute

compact predicates with minimal supports.

5.2. SAT based Refinement 103

Our algorithm to compute the desired support is similar to the one used

in finding the important registers in localization reduction as described in

Section 4.4 and in [18]. Since the CNF formula for prf (k) is unsatisfiable, we

can use conflict dependency analysis from Section 3.2 to identify SUB(prf (k))

that is unsatisfiable. Let all the concrete state variables at time k− 1 whose

CNF variables are in SUB(prf (k)) be µ(ce, k − 1). That is µ(ce, k − 1) =

ssuppt [V k−1](SUB(prf (k))). For the sake of brevity we will refer to µ(ce, k−
1) as µ. Let deadendµ = proj [µ](deadend) be the projection of the deadend

states on µ. Let badµ = proj [µ](bad) be the projection of the deadend states

on µ. We will show that

µ �= ∅ ∧ deadendµ ∩ badµ = ∅. (5.4)

Thus any concrete set of states S1 that satisfies (S1 ⊇ deadendµ)∧(S1∩badµ =

∅) is a candidate separating predicate. We prove equation (5.4) through the

following two lemmas:

Theorem 5.2.1 For a spurious abstract counterexample ce without spuri-

ous transitions, let k be the length of the spurious prefix. Then µ(ce, k − 1)

is not empty.

Proof: Since prf (k) = prf (k− 1)∧ trans(k− 1, k) is unsatisfiable, and both

prf (k − 1) and trans(k − 1, k) are satisfiable. The intersection of the CNF

variables of prf (k− 1) and trans(k− 1, k) corresponds to the state variables

at time k − 1, i.e, V k−1 is their common scalar support. Thus, SUB(prf (k))

must include some CNF variables which correspond to variables in V k−1.

5.2. SAT based Refinement 104

Lemma 5.2.3 The intersection of deadendµ and badµ is empty.

Proof: Note that prf (k) = prf (k − 1) ∧ trans(k − 1, k) is unsatisfiable

and both prf (k − 1) and trans(k − 1, k) are satisfiable. Thus both f1 =

{SUB(prf (k))} ∩ {prf (k − 1)} and f2 = {SUB(prf (k))} ∩ {trans(k − 1, k)}
are satisfiable. The conjunction of f1∧ f2 is SUB(prf (k)), which is unsatisfi-

able. Since variables in µ are the only common variables between f1 and f2,

and f1 ∧ f2 is unsatisfiable we have

SA[µ](f1) ∩ SA[µ](f2) = ∅. (5.5)

We also have

SA[µ](f1) ⊇ SA[µ](prf (k − 1))

SA[µ](f2) ⊇ SA[µ](trans(k − 1, k))

So using equation (5.5), we have SA[µ](prf (k−1))∩SA[µ](trans(k−1, k)) = ∅,
i.e., deadendµ ∩ badµ = ∅.

To further reduce the size of µ and to make it minimal we have developed

a refinement minimization algorithm, which eliminates any unnecessary vari-

ables in µ while ensuring that equation (5.4) still holds. The algorithm is

illustrated in Figure 5.1. In the figure, the concrete transition relation is un-

rolled at time 0, 1, 2, . . . , k− 2, k (not at k− 1). The gray box represents the

state variables of the concrete model. For all i < k−2, next state variable of

time i is the same as the current state variable of time i+1. The unrolling of

the transition relation is also conjuncted with the counterexample from ce0

to cek−1. Note that, the current state variable at time k is constrained by

the concretization of the counterexample at time k − 1, and the next state

5.2. SAT based Refinement 105

Rk

V k V k+1

γ(cek−1) γ(cek)

R0 Rk−2......

V 0

µ(ce, k − 1)

V k−1V k−2

∧
γ(ce0) ∧ S0 γ(ce1) γ(ce2) γ(cek−2)γ(ce3) γ(cek−1)

R2R1

V 1 V 2 V 3

Figure 5.1: Greedy Minimization Based on Incremental SAT.

variables at time k is constrained by the concretization of the counterexam-

ple at time k. This is used to duplicate the concretization of cek−1, so that

their supporting variables are disjoint. We reduce the set of state variables

in µ(ce, k − 1) as follows. Our algorithm starts by equating all variables in

µ(ce, k − 1) to the corresponding current state variable at time k. So that

the resulting CNF formula should be logically equivalent to SUB(prf (k)), so

it should be unsatisfiable. Let µ′ = ∅. For each variable vk−1 ∈ µ(ce, k − 1),

we remove the constraint that makes vk−1 = vk. This new CNF formula is

solved. If it is satisfiable, we add vk−1 into µ′. After this is repeat for each

variable in µ(ce, k − 1), we get a reduced set µ′, which is minimal to keep

deadendµ′ ∩ badµ′ = ∅. The proof for the correctness of this procedure can

be similarly constructed according to the proof in Lemma 5.2.3. This mini-

mization algorithm requires |µ(ce, k− 1)| number of calls to the SAT solver.

Since the difference between any two CNF formulas during two consecutive

calls to the SAT solver is only one clause, we can use incremental SAT from

Section 3.2.2 to solve them efficiently. The size of the achieved minimal set

5.2. SAT based Refinement 106

is small. In most of our experiments, the size of µ was less than 20, which

is several orders of magnitude less than the total number of concrete state

variables.

Computing Separating Predicates using SAT

Note that, any set of concrete states that separates deadendµ and badµ is

a desired separating predicate. We propose a new projection based SAT

enumeration algorithm to compute such a separating set, which can be rep-

resented efficiently as a CNF formula or a conjunction of DNF formulas.

Our algorithm has three steps. First, we try to compute badµ using a SAT

enumeration algorithm, which avoids computing bad by creating blocking

clauses over µ. Since the size of µ is pretty small, this procedure can often

terminate quickly. If that is the case, our algorithm terminates and ¬badµ

is the required separating predicate, which is represented as a CNF formula.

Otherwise, we try to compute deadendµ using a similar method. If this proce-

dure finishes in a reasonably short amount of time, our algorithm terminates

and deadendµ is the desired separating predicate, which is represented as a

DNF formula.

In the third case when both deadendµ and badµ can not be computed

within a given time limit, we compute an over-approximation of deadendµ,

denoted by ODE . It is possible that the set ODE overlaps with badµ. Let

SODE = proj [µ](ODE ∧ bad) be the intersection of the two. Then the de-

sired separating predicate is ODE ∧ ¬SODE , which is represented as a con-

junction of DNF formulas. In most cases, SODE is much smaller than badµ,

so it can often be enumerated using SAT. If in a rare case, even SODE can

5.2. SAT based Refinement 107

not be efficiently enumerated using SAT (we do not encounter this problem

for all our experiments.), we use other methods to compute a new predicate.

For example, any register in µ can be added as a new predicate to make sure

the abstract model is refined. We now present a projection based method

to compute an over-approximation of deadendµ. We partition the variables

in µ into smaller sets µ1, . . . , µl based on the closeness of the variables (the

criterion for closeness is based on circuit structure [19]). Because each set

is small, we can compute each deadendµi
easily. The over-approximation is

ODE = ∧i∈{1,...,l}deadendµi
.

After the calculated separating predicate sep is added as a new predicate,

suppose we introduce Bm+1 as the corresponding abstract boolean variable.

Then we add the constraint Bm+1 → utr (cek−1 → ¬cek) to the abstract

transition relation. The following theorem says that the concrete transition

relation implies the concretization of this constraint.

Theorem 5.2.2 R⇒ γ(Bm+1 → ¬(utr (cek−1 ∧ cek))).

Proof: The abstract state variable Bm+1 corresponds to a separating predi-

cate sep which satisfies sep ∩ bad = ∅. Thus sep∧Rk−1∧γ(cek−1)∧γ(cek) ≡
false. Therefore, R⇒ γ(Bm+1 → ¬(utr (cek−1 ∧ cek))).

By adding a small predicate sep over the variables in µ we can eliminate the

spurious counterexample ce and refine the abstract model R̂. We can also

remove unnecessary assignments in cek−1, cek to make the new constraint

Bm+1 → ¬(utr(cek−1 ∧ cek)) more general. This can be done using the

method from Section 5.2.1.

5.3. Exploit RTL Information 108

5.3 Exploit RTL Information

Current predicate abstraction methods do not make use of information avail-

able in the high level descriptions of the system under verification. Most

hardware design tools use high level design languages, such as ESTEREL,

graphical FSMs, RTL Verilog/VHDL etc. But most model checking engines

and existing verification tools use the bit level representation of the design

under verification. There is much useful information that is relevant to ver-

ification in the high level representation, which is lost once the design is

translated to bit level representation. To retain this information, we extract

the branch conditions in RTL Verilog (the language considered in this paper)

and use them as predicates. This technique can be easily adapted to other

design languages.

For a given design, there are usually many branch conditions that we can

extract. Not all of them are relevant to the verification of a given property.

We propose a lazy counterexample based refinement algorithm to efficiently

identify the branch conditions that are relevant.

5.3.1 Extracting Branch Conditions

High level design languages usually contain branch statements, such as if,

case statements. The if statement has two branches, while the case state-

ment may have multiple branches. Usually, a case statement can be con-

verted to multiple if-then-else statements that are equivalent to it. We call

the boolean predicates that determine which branch to be executed, branch

conditions. We intend to extract the branch conditions and use them as

5.3. Exploit RTL Information 109

predicates in predicate abstraction.

For the purpose of model checking, the high level representation of the

system under verification is translated into a formula over the current and

next state variables (referred to as the transition relation). Each extracted

branch condition is translated into a subformula of the transition relation.

For a branch condition, the corresponding subformula of the transition rela-

tion is called the flattened branch condition. The transition relation is further

converted into different representations that are suitable for different model

checking engines. For example, it is converted to BDDs for BDD-based model

checkers, or CNF for SAT-based model checkers. For a flattened branch

condition, it is straightforward to identify the corresponding representation

inside the model checking engines.

We will describe a simple method to extract a set of flattened branch

conditions for RTL Verilog designs. We believe it is easy to generalize this

method to other design languages. One possible method is to develop a

translator from RTL Verilog to gate level circuits, which can then be easily

converted into a transition relation. The main disadvantage of this method

is the amount of work involved in handling the semantics of Verilog, which is

not formally defined [34]. In practice Verilog is interpreted by a set of stan-

dard commercial tools, such as Synopsys Design Compiler [41]. Our method

relies on the fact that commercial synthesis tools already exist for Verilog.

We first convert the RTL design into another equivalent design, where the

relevant branch conditions are renamed to signals with unique names. An

example is shown in Figure 5.2. We use the continuous assignment statement

in Verilog to rename the branch conditions using unique signals, such that

5.3. Exploit RTL Information 110

Original design
always @(posedge clk) begin

if (mode != NO CONF) begin
...

end else if (a == b) begin
...

end
end

Modified design
assign pred1 = mode != NO CONF;
assign pred2 = a == b;
always @(posedge clk) begin

if (pred1) begin
...

end else if (pred2) begin
...

end
end

Figure 5.2: Replace branch conditions using unique signals

5.3. Exploit RTL Information 111

the modified design is equivalent to the original one. After this, a gate level

circuit is generated from the modified design using Synopsys Design Com-

piler. We further translate the gate level circuit into a transition relation

and the flattened branch conditions can be identified using the unique signal

names. Our method can be easily applied to other design languages as long

as there are language constructs to rename boolean predicates using new

variables. Our method can take advantage of existing translators, therefore

the implementation time is much shorter than building a translator from

scratch.

It is usually the case that there are many branch conditions that we can

extracted from a high level representation of designs. Not all of them can

be used as predicates to build the initial abstraction, otherwise the abstract

model will become too large. We use the refinement algorithm in Section 5.3.2

to identify a subset of the branch conditions which are necessary to invalidate

the given spurious abstract counterexample.

5.3.2 Counterexample-based Lazy Refinement

In counterexample guided abstraction refinement, a given spurious abstract

counterexample is invalidated during refinement through the introduction of

a set of predicates, called invalidating predicates, into the abstract model.

Once an abstract counterexample is determined to be spurious, the algo-

rithm described in this subsection identifies a subset of the flattened branch

conditions as invalidating predicates.

We first introduce some notation. Let f be a boolean formula, we use ±f

5.3. Exploit RTL Information 112

to denote f or f . Let v ∈ V be a concrete state variable, we use v′ ∈ V ′ to

denote the corresponding next state variable. If f is a boolean function over

V , then f ′ is the same function over V ′. In this subsection, when it is clear

from the context, we sometimes omit timed variables. For example we use

R ∧ γ(ce0)→ γ(ce1) to really mean R0 ∧ γ(ce0)→ γ(ce1).

The flattened branch conditions, which have not yet been added as pred-

icates, are called the candidate predicates. A naive algorithm to compute the

required set of invalidating predicates is the following: First, the set of candi-

date predicates is ordered according to some importance criteria. Using this

order, candidate predicates can be added to the abstract model one at a time

and the given counterexample can be checked on the refined abstract model.

If the counterexample is invalidated, the already added candidate predicates

will be the required set of invalidating predicates. This naive algorithm has

two disadvantages. One is that the order of the predicates affects the size of

the result. A bad order may prevent the discovery of a smaller number of

invalidating predicates. Most importantly, the computation time is too high,

because once a predicate is added, the abstract model has to be updated as

described in Section 2.3. Instead, we have developed a new lazy refinement

algorithm, which avoids computing the full refined abstract model at each

stage. Intuitively, in this algorithm, the given abstract counterexample is

extended by assigning 0, 1 or x values to the abstract variables correspond-

ing to the candidate predicates. A candidate abstract variable is given a 0

or a 1 value at time i if it can be determined from the counterexample at

time i − 1 and i; otherwise an unknown value x is given. The counterex-

ample is invalidated if it can not be extended to the next time step. If that

5.3. Exploit RTL Information 113

is the case, we perform a backward analysis from the time of failure until

time 0 to identify those candidate predicates that are responsible for this

failure. The predicates identified in this manner will invalidate the spurious

counterexample.

Suppose there are already m predicates in the abstract model. Let

ce = 〈ce0, ce1, . . . , cen〉 be a spurious abstract counterexample. Note that,

each cej is a conjunction of literals over the set of abstract state variables

B1, . . . , Bm. Let cp = {cpm+1, cpm+2, . . . , cpm+k} be the set of candidate

predicates, which are temporarily represented by abstract state variables

{Bm+1, Bm+2, . . . , Bm+k} (These candidate predicates have not been added

to the abstract model yet). The example in Figure 5.3 illustrates how our

algorithm works. Suppose there are 2 predicates, 3 candidate predicates

time 0 time 1 time 2

1
0 1

0 1
1

0

1 1

1
x0

B1
B2

B3
B4
B5

Figure 5.3: A refinement example

and a spurious abstract counterexample of length 3. The counterexample

contains values for predicates P1 and P2 at each time from 0 to 2. Our al-

gorithm first determines the values for the candidate predicates at time 0.

If (S0 ∧ γ(ce0)) → cp4 is a tautology, then any valid extension of ce0 must

have the abstract variable corresponding to cp4 set to 0. The values of other

candidate predicates at time 0 can be determined similarly. The resulting

extended counterexample at time 0 is denoted by ece0. We then extend the

5.3. Exploit RTL Information 114

counterexample at time 1 to obtain ece1. For example, if we can prove that

(R ∧ γ(ce0) ∧ cp3 ∧ cp4 ∧ cp5 ∧ γ(ce1))→ cp′
3 (5.6)

is a tautology (where cp ′
3 is the same as cp3 except that it is over the next

state variables), the value of this candidate predicate must be 1. Note that we

can not determine the value of cp4 at time 1, therefore its value is unknown

in the extended counterexample. After ece1 is determined, if

(R ∧ γ(ce1) ∧ cp3 ∧ cp5)→ γ(ce2) (5.7)

is a tautology, then the counterexample can not be extended to time 2, thus it

has been invalidated. Finally, we identify the set of invalidating predicates. It

is possible that not all candidate predicates in the left hand side of equations

(5.6) and (5.7) are necessary in showing that they are tautologies. Only those

in the proof of the tautologies are necessary. Proofs can be obtained from the

SAT conflict dependency analysis described in Chapter 3. Suppose, we can

determine that cp3, cp5 in equation (5.6) and cp5 in equation (5.7) are not in

the respective proofs for those two implications. Then we can deduce that, of

all candidate predicates, cp3 alone is responsible for disabling the transition

from time step 1 to time step 2 (since cp5 is not needed in the proof of

equation (5.7)). Moreover, of all candidate predicates, only cp4 at time 0

determines the value of cp3 at time step 1 (since cp3, cp5 do not appear in

the proof of equation (5.6)). Thus the set of invalidating predicates is {cp3,

cp4}. Note, we have worked backwards along the counterexample. We first

5.3. Exploit RTL Information 115

found some invalidating predicates at time step 1 and then used that to find

more invalidating predicates at time step 0. This is the basic idea of our

algorithm to find the set of invalidating predicates.

We now present the lazy refinement algorithm in detail. Our algorithm is

separated into three parts, the first one, which computes ece0, is shown in Fig-

ure 5.4. The second one, which computes ecei+1 making use of ecei, is shown

in Figure 5.5. The last one, shown in Figure 5.6, computes the invalidating

predicates as a subset of the candidate predicates once the counterexample

is invalidated.

Compute Initial
1 let ece0 = ce0

2 for each candidate predicate cpm+j

3 if (S0 ∧ γ(ce0))→ cpm+j is a tautology
4 let ece0 = ece0 ∧Bm+j

5 elseif (S0 ∧ γ(ce0))→ cpm+j is a tautology
6 let ece0 = ece0 ∧Bm+j

7 endif
8 endfor

Figure 5.4: Algorithm to compute ece0

The algorithm to compute ece0 is similar to the algorithm for computing

the set of abstract initial states in Section 2.3, except that we use S0∧γ(ce0)

instead of S0 alone. This makes sense because our goal is to extend the

current counterexample. The idea is to determine if the set of concrete

initial states S0 and the concrete states corresponding to ce0 can imply either

the truth or falsity of each candidate predicate; otherwise the value of the

candidate predicate is unknown.

Given the extended counterexample at time i, the algorithm in Figure 5.5

5.3. Exploit RTL Information 116

extends the counterexample to time i + 1. It first checks whether there are

any concrete transitions between γ(ecei) and γ(ce i+1). The code for this is

given in lines (1) to (4). If it is not the case, the counterexample has been

invalidated by the candidate predicates, the set of invalidating predicates is

calculated and returned in line (3). If it is possible to make a concrete tran-

sition from γ(ecei) to γ(cei+1), the algorithm will check whether a candidate

predicate is guaranteed to be true/false for such concrete transitions. This

is computed in line (7) and line (9) and ecei+1 is updated. If the counterex-

ample can be extended from time 0 until time n, the set of flattened branch

conditions are not enough to invalidate the counterexample. We will resort to

the traditional refinement methods as described in this chapter to compute

a new predicate.

//i: time to extend counterexample
Compute Next(i)

1 if (R ∧ γ(ecei))→ γ(cei+1) is a tautology
2 let f = (R ∧ γ(ecei))→ γ(cei+1)
3 return determine predicates(i, f)
4 endif
5 let ecei+1 = cei+1

6 for each candidate predicate cpm+j

7 if (R ∧ γ(ecei) ∧ γ(cei+1))→ cp ′
m+j is a tautology

8 let ecei+1 = ecei+1 ∧ Bm+j

9 elseif (R ∧ γ(ecei) ∧ γ(cei+1))→ cp′
m+j is a

tautology
10 let ecei+1 = ecei+1 ∧ Bm+j

11 endif
12 endfor

Figure 5.5: Algorithm to compute ecei+1

If the counterexample is invalidated at line (1) in Figure 5.5, the algo-

5.3. Exploit RTL Information 117

//t: the time when extending counterexample fails
//f = (R ∧ γ(ecet))→ γ(cet+1)
Determine Predicates(t, f)

1 let np = {〈±Bm+j , t〉 | ± cpm+j is in the proof of f}
2 for i = t− 1 to 0
3 let taut(i) = {(R ∧ γ(ecei) ∧ γ(cei+1))→ ±cp ′

m+q |
〈±Bm+q, i+ 1〉 ∈ np}

4 let prf = { proofs for the implications in taut(i)}
5 let np = np ∪ {〈±Bm+w, i〉 |

±cpm+w is in any proof in prf }
6 endfor
7 return {cpm+j | ∃0 ≤ i ≤ t. 〈±Bm+j , i〉 ∈ np}

Figure 5.6: Algorithm to compute invalidating predicates

rithm in Figure 5.6 is called with the time t and f = (R∧γ(ecet))→ γ(cet+1).

We use the set np to hold all candidate predicates that are given a 0 or 1

value in the time steps preceding t and result in the failure of the coun-

terexample. In line (1), np is initialized to all candidate predicates that are

directly responsible for the failure. This is done by analyzing the proof for

the failure of the counterexample. In the loop between line (2) and line (6),

we go backward in time to find the set of candidate predicates that are in-

directly responsible for the failure. Finally in line (7), the set of invalidating

predicates is returned. Note that, in line (3), taut(i) is a subset of the tau-

tologies we computed from the algorithm in Figure 5.5. For each implication

(R ∧ γ(ecei) ∧ γ(cei+1))→ ±cp ′
m+q in taut(i), we refine the abstract transi-

tion relation R̂ by conjuncting it with ecei → (cei+1 ∨ ±B′
m+q). Therefore,

our algorithm not only computes the subset of the flattened branch condi-

tions which can invalidate the given spurious abstract counterexample but

also computes the refined abstract model. Our algorithm does not build

5.4. Experimental Results 118

the whole refined abstract model and then test whether it invalidates the

counterexample. Instead, it gradually refines the abstract model until the

counterexample is invalidated. Therefore, our lazy algorithm can be more

efficient than the naive algorithm.

5.4 Experimental Results

We have implemented our predicate abstraction refinement framework on

top of NuSMV model checker [20]. We modified the SAT checker zChaff to

support conflict dependency analysis. We have developed a simple transla-

tor for Verilog. Given a RTL Verilog design, it can generate an equivalent

design where the branch conditions are replaced using unique signals. This

translator is based on the Icarus Verilog simulator and synthesis tool kit [74].

We have also developed synthesis scripts for Synopsys Design Compiler [41]

to translate a RTL Verilog design to gate level Verilog design. Then we use

the Ver structural Verilog compiler to convert gate level Verilog design to

the IVF format. Finally, we have developed several perl scripts to translate

a design in IVF format to a SMV file. These scripts are available at [71]. All

experiments were performed on a dual 1.5GHz Athlon machine with 3GB of

RAM running Linux.

We have two verification benchmarks: one is the integer unit (IU) of the

picoJava microprocessor from Sun; the other is a programmable FIR filter

(PFIR) which is a component of a system-on-chip design. All properties veri-

fied were simple AG properties. We enable dynamic BDD variable reordering

and cone of influence reduction during verification. In Table 5.1, the second

5.4. Experimental Results 119

and third columns show the number of registers and gates in the COI of each

property. We compare three abstraction refinement systems, including the

BDD based aSMV [23], the SAT based localization reduction [18] (SLOCAL),

and the SAT based predicate abstraction (SPRED) described in this paper.

The detailed results obtained using aSMV are not listed in Table 5.1 because

aSMV can not solve any of the properties within the 24hr time limit. This is

not surprising because aSMV is based on BDD based image computation and

it can only handle circuits with hundreds of state variables, that too provided

good initial variable ordering. Since the time to generate good BDD variable

orderings can be substantial, we did not pre-generate them for any of the

properties. Another limitation of aSMV is that the current implementation

(described in [23]) can not extract useful predicates from RTL Verilog. For

the first four properties from IU, SLOCAL takes about twice the time taken

by SPRED. Furthermore, the number of register in the final abstract models

from SLOCAL are much larger than the number of predicates in the final

abstract models from SPRED. For the rest of the four properties from PFIR,

SLOCAL can not solve any of them in 24 hours because all the abstract

models had around 100 registers. SPRED could solve each of them easily

using about 50 predicates. A detailed analysis of the PFIR results shows

that the extraction algorithm extracted about 9 branch conditions from the

RTL Verilog, which were later used as predicates. Without these extracted

predicates, the set of predicates computed using traditional refinement algo-

rithm was not sufficient to finish verification within 24 hours for these four

properties from PFIR.

5.4. Experimental Results 120

circuit # regs # gates ctrex Localization Predicate Abstraction
length time iters regs time iters pred

IUscr2 4855 149143 20 29115.0 69 115 13515.0 22 14
IUscr3 4855 149143 true 4794.1 9 31 2003.0 10 6
IUscr7 4855 149143 12 7332.1 17 73 3869.8 10 8
IUprop4 4855 149143 8 5603.7 36 61 3495.9 13 9
PFIRprop8 244 2304 true > 24 hours >37 >91 288.5 68 35
PFIRprop9 244 2304 true >24 hours >33 >85 2448.7 146 46
PFIRprop10 244 2304 true >24 hours >46 >94 6229.3 161 55
PFIRprop12 247 2317 true >24 hours >46 >91 707.0 111 45

Table 5.1: Comparison between localization reduction and predicate abstrac-
tion.

Chapter 6

Combine Localization

Reduction with Predicate

Abstraction

It is usually the case that verification effort is focused more on the control

logic than the data computation because most bugs exist in designing the

control logic. Traditional predicate abstraction techniques can perform badly

when verifying hardware systems which contain extensive control structure

(control intensive systems). The control logic usually consists of concurrent

state machines. Each of these state machines may depend on several control

variables, that encode the change of state. Since the behavior of a control

intensive system is determined to a large extent by the control variables, the

number of predicates over the control variables that are needed can be much

larger than the number of control variables. In such a case, it is better to

use the control variables as predicates, (called variable predicates), instead of

121

6.1. Identifying Control Variables 122

the original predicates (called original or formula predicates). We propose a

clustering based heuristic to identify important control variables and retain

these control variables in the abstract model. By doing this we also circum-

vent to a certain extent the problem of building the abstract model. This

method works extremely well in practice.

It is usually the case that different predicates are not independent. We

describe efficient methods to compute constraints between predicates, which

are added as invariants to the abstract model to make it more accurate.

6.1 Identifying Control Variables

Predicate abstraction is suitable for handling variables with large domains.

Such variables are usually called data variables. By replacing important for-

mulas over concrete data variables with abstract predicates, it is possible to

reduce the complexity of verification significantly. Besides data variables,

there are other variables with small domains (e.g., boolean variables) that

control the behavior of the system to be verified. These variables are called

control variables. Abstracting control variables does not give much advan-

tage. Because control variables typically have small domains, the amount

of reduction obtained by replacing a predicate over several control variables

with an abstract boolean variable is not very significant.

We propose a clustering-based heuristic to identify the important con-

trol variables for the verification of the given property. Let {P1, . . . , Pk} be

the set of predicates. Each predicate Pi is a boolean formula over a set of

concrete state variables, called the supporting variables of Pi. We partition

6.2. Combining with Localization Reduction 123

predicates into small clusters. Initially, each predicate is a cluster. We merge

two clusters if the intersection of their supports crosses a certain threshold

(the support of a cluster is the union of the supporting variables for each

predicate in the cluster). We continue this process until no more clusters can

be merged. Thus, the clusters we create partition the predicates into disjoint

sets (but the supporting variables of different clusters may still overlap). Let

c be a cluster, the set of indexes of predicates in c be I(c), the supporting

variables of c be v(c). In general, for each variable there are several equiva-

lent boolean variables which encode the domain of this variable. The set of

boolean variables for variables in v(c) is called the set of supporting boolean

variables. For a cluster c, if the number of predicates is comparable to the

number of supporting boolean variables, then this cluster is called a control

cluster and the supporting variables of c are regarded as control variables.

6.2 Combining with Localization Reduction

It is well known that, given n boolean variables, the number of distinct

propositional formulas over them is 22n
. Since control variables determine

the control flow of the system under verification, in order to approximate the

behavior of the concrete system, many predicates over the control variables

may be necessary. Each of these propositional formulas may become a pred-

icate during predicate abstraction. Therefore, for the verification of control

intensive systems, a blowup of the abstract model is likely when using exist-

ing predicate abstraction methods. Furthermore, building the abstract model

using equations (2.5) and (2.6) is time consuming. Both these problems can

6.2. Combining with Localization Reduction 124

be avoided by using our technique of combining the localization reduction

with predicate abstraction. Using our method, it is possible to bound the

size of the abstract model by that of the concrete model. We retain some

of the control variables in the abstract model (the criteria for retaining a

control variable is discussed later in this section). The concrete transition

relations for these control variables also serve as abstract transition relations

after some minor modifications. So we can easily build abstract transition

relations for all these control variables.

The modification to the concrete transition relation is as follows: for

a variable v ∈ v(c), let Rv be the concrete transition relation for v. Let

R′
v = Rv[Pj ← Bj, for all j such that Pj is a formula predicate]. That is, we

replace all occurrences of every formula predicate Pj in Rv by the correspond-

ing abstract boolean variable Bj. Then, we use R′
v as the abstract transition

relation for variable v. In the terminology of localization reduction, variable

v is visible and unabstracted. There is one major difference between local-

ization reduction and our method: In localization reduction, the transition

relation for a visible variable is copied from the concrete model to the ab-

stract model, whereas in our method, we replace a subformula of the concrete

transition relation if that subformula corresponds to a formula predicate.

Therefore, in our modified localization reduction algorithm, the transition

relations for the control variables are modified so that the abstract variables

corresponding to formula predicates constrain the possible next states of the

control variables. This leads to a more accurate model.

Note that the abstract model built using the localization reduction has

more primary inputs (invisible variables) than the abstract model built using

6.3. Correlations between Control Variables and Predicates 125

predicate abstraction. Therefore, we retain unabstracted only those variables

whose next state logic has a small number of inputs.

6.3 Correlations between Control Variables

and Predicates

Our abstract model includes real predicates and control variables. In this sec-

tion, a method to correlate predicates and control variables will be discussed.

Recall from Section 6.1 that the clusters we build partition the predicates into

disjoint sets (although the supporting variables of the clusters may overlap).

Our method replaces the predicates in the control clusters by the supporting

variables. There might be other predicates which have these control variables

in their support. As an example, suppose we decide to drop a predicate clus-

ter {P1 ≡ x∨y, P2 ≡ x∧y} and replace the two predicates with the variables

{x, y}. Suppose also there are two additional predicates, P3 ≡ x ∨ y ∨ z and

P4 ≡ x ∧ y ∧w whose corresponding abstract state variables are B3 and B4,

respectively. Thus, the abstract state variables include x, y, B3, B4. Further

assume that the next state value for variable x is defined as ¬z in the con-

crete model. Note that the values of variables x, y and values of B3, B4 are

not independent. The following are three possible scenarios:

• If we know that B3 is false in an abstract state, then x = false and

y = false in that state.

• If we know x = false in an abstract state, then B4 must be false in that

state.

6.3. Correlations between Control Variables and Predicates 126

• If we know B3 is false in an abstract state, then in the corresponding

concrete states, z is false. Therefore, in the abstract successor states,

x will be true.

It is desirable to incorporate the correlations/constraints between control

variables and real predicates into the abstract model. This will make the

abstraction more accurate. Our method does not directly compute these

constraints. Instead, we selectively introduce the concrete definitions of

some predicates into the abstract model as invariants. The model check-

ing procedure will enforce any implied constraints through these invariants.

For the above example, we add z, w as two additional abstract input vari-

ables and add the definitions of the two predicates as abstract invariants:

B3 = (x ∨ y ∨ z), and B4 = (x ∧ y ∧ w). This will force the abstract model

to observe any constraints between variables x, y and B3, B4. Note that by

doing this we have added two new variables z, w to the abstract model. This

could make the abstract model larger. To overcome this problem, we add the

definition of a predicate to the abstract model only if most of the variables

in the support of this predicate are either control variables themselves (e.g.

x, y for B3) or in the support of control variables (e.g. z for x). In this way,

the added invariants will restrict the possible values of the control variables

and predicates. This will ensure we only add a small number of additional

variables, e.g., z and w.

6.4. Correlations Between Formula Predicates 127

6.4 Correlations Between Formula Predicates

It is also possible that the predicates in a non-control cluster may not be

independent, in the sense that not all possible combinations of assignments

to their abstract state variables are possible. For the example in the previous

section, when B3 = false, B4 must also be false. For a given cluster c, let

v(c) be the concrete supporting variables in c, let I(c) be the indexes of the

predicates in c. We define g(c), called the consistent abstract states over

cluster c, as follows

g(c) = {ŝ | ∃s ∈ S.
∧

j∈I(c)
(Pj(s) = Bj(ŝ))} (6.1)

It is easy to see that any ŝ �∈ g(c) does not have any corresponding concrete

state and therefore it should be excluded from the abstract model checking.

We represent the computed consistent abstract states for each non-control

cluster as invariant in the abstract model. It is possible to compute a sin-

gle set of consistent abstract states by conjuncting all predicates instead of

conjuncting predicates of each cluster separately. Although this will result

in a more accurate constraint, it may be computationally expensive when

the number of predicates is large. We now show how to compute g(c). Our

algorithm is based on BDDs. We first build BDDs for each Pj and Bj , then

g(c) can be calculated by conjuncting Pj(s) = Bj(ŝ), j ∈ I(c) and quantify-

ing v(c). This is not expensive because the number of predicates in a cluster

is usually small.

6.5. Experimental Results 128

6.5 Experimental Results

We have implemented our abstraction refinement framework on top of NuSMV

model checker and the zChaff SAT solver [76].

We present the results in Table 6.1. We used two benchmarks: one is

the integer unit (IU) of the picoJava microprocessor from Sun; the other is a

programmable FIR filter (PFIR) which is a component of a system-on-chip

design. For all the properties shown in the first column of Table 6.1, we have

performed cone-of-influence reduction before the verification. The resulting

number of registers and gates is shown in the second and third columns.

Most properties are true, except for PFIRscr1 and PFIRprop5. The lengths

of the counterexamples are shown in the fourth column. All these properties

are difficult to verify for the state-of-art BDD-based model checker, Cadence

SMV. Except for the two false properties, Cadence SMV can not verify any

of them in 24 hours. The verification time for PFIRscr1 is 834 seconds, and

for PFIRprop5 is 8418 seconds, which are worse than our results.

We compare two algorithms: one is the pure predicate abstraction (PRED),

the other is the combined algorithm described in this chapter (COMB). In

Table 6.1, the fifth to seventh columns are the results obtained using PRED;

while the last four columns are the results obtained using COMB. We com-

pare the time (in seconds), the number of refinement iterations, and the

number of predicates in the final abstraction. In all cases, the combined al-

gorithm outperforms pure predicate abstraction in the amount of time used,

sometimes over an order of magnitude improvement is achieved. With the

new method, the number of refinement iterations is usually smaller. This

6.5. Experimental Results 129

is because our new method can build a more accurate abstract transition

relation. Building the abstract transition relation in predicate abstraction

is time consuming because of the potentially exponential number of calls

to a theorem prover (or a SAT solver in our case). In practice, the abstract

transition relation is approximated initially and is refined as necessary during

refinement. Each refinement of the abstract transition relation is an iteration

of the algorithm. The combined algorithm described in this chapter replaces

predicates with the supporting concrete state variables. The abstract tran-

sition relation for these variables is directly copied from the concrete model.

Thus, these concrete state variables are not abstracted at all. Since there is

no need to refine the transition relation for these variables, the number of

refinement iterations can be much smaller. The number of predicates in the

final abstraction is usually smaller using COMB than PRED. Two exceptions

are the first two properties in Table 6.1. The reason is that we have replaced

some predicates by the concrete state variables for those two properties. As

described in Section 6.2, for a cluster, when the number of predicates is big-

ger than the number of supporting variables, the predicates are replaced by

the supporting variables. In practice, we perform this replacement even if

the number of predicates are slightly smaller. By doing this we can avoid

generating any new predicates with the same supporting variables, thus re-

duce the run time. But it is possible that no such predicates are generated

later during verification. As a result, this early replacement actually slightly

increases the number of predicates.

6.5. Experimental Results 130

circuit # regs # gates ctrex PRED COMB
length time iters pred time iters pred

IUscr1 4855 149143 true 2000.6 11 7 1218.6 7 18
IUscr3 4855 149143 true 2003.0 10 6 1466.6 10 15
IUscr6 4855 149143 true 9976.1 27 12 3498.2 20 11
PFIRscr1 243 2295 16 637.5 103 40 386.4 67 34
PFIRprop5 250 2342 17 2262.0 131 48 756.2 101 44
PFIRprop8 244 2304 true 288.5 68 35 159.8 40 25
PFIRprop9 244 2304 true 2448.7 146 46 202.7 43 27
PFIRprop10 244 2304 true 6229.3 161 55 178.2 50 25
PFIRprop12 247 2317 true 707.0 111 45 591.2 80 38

Table 6.1: Compare the pure predicate abstraction (PRED) with the com-
bined algorithm (COMB)

Chapter 7

Removing Redundant

Predicates

In predicate abstraction, the number of predicates affects the overall perfor-

mance. Since each predicate corresponds to a boolean state variable in the

abstract model, the number of predicates directly determines the complex-

ity of building and checking the abstract model. Most predicate abstraction

systems build an abstract model of the system to be verified. While build-

ing the abstract model, the number of calls made to a theorem prover (or

a SAT solver in our case) can be exponential in the number of predicates.

Consequently, it is desirable to use as few predicates as possible. Existing

techniques for choosing relevant predicates may use more predicates than

necessary to verify a given property. That is some of the predicates used can

be redundant (the precise definition of redundancy is given later).

Counterexample guided abstraction refinement (CEGAR) [23,44,61] is an

example of a commonly used abstraction technique. It works by introducing

131

Chapter 7. Removing Redundant Predicates 132

new predicates to eliminate spurious counterexamples. The new predicates

depend on certain abstract states in the spurious abstract counterexample.

Thus, different predicates are likely to be closely related when similar abstract

counterexamples occur and this might lead to redundancy in the predicate

set. These similarities may result in the following two cases: (a) A predi-

cate may be logically equivalent to a propositional formula in terms of other

predicates. (b) For the predicate P under consideration, there exist two

nontrivial propositional formulas Psub and Psup in terms of other predicates

such that Psub implies P and P implies Psup. It is obvious that when case

(a) happens, the predicate is redundant. This predicate can be replaced by

the equivalent formula and we thus obtain a new abstract model. We call

the original abstract model the current/original abstract model and the new

one the reduced abstract model. It is easy to show that the two models are

bisimilar. In the other case, a predicate P satisfying case (b) may not be

redundant. More conditions on the abstract model are needed to ensure that

replacing P by Psub or Psup will not affect the results of model checking the

abstract model. We have identified two redundancy conditions for case

(b), one that preserves safety properties (that is the original and the reduced

abstract models both satisfy the same safety properties) and one that pre-

serves bisimulation equivalence (that is the original and the reduced abstract

models are bisimulation equivalent). different situations and there are cases

where one works better than the other. Altogether there are three different

redundancy conditions. One useful feature of our redundancy conditions is

that they do not require exact computation, we can use approximations and

still identify redundancy.

Chapter 7. Removing Redundant Predicates 133

Removing a predicate involves constructing the abstract model using the

reduced predicate set. We give a simple method to construct the reduced

abstract model from the original abstract model in Section 7.2.

Related Work. The notion of redundancy has been explored in resolution

theorem proving [17], where it is called subsumption. Intuitively a clause

is considered redundant if it is logically implied via substitution by other

clauses. Our conditions for redundancy are more complicated. Even if a

predicate is implied by other predicates, we still need to consider the abstract

transition relation in order to decide whether removing the predicate will

affect the results of verifying a given property.

The work that is closest to ours is the notion of strengthening in [6].

To build the abstract model, the weakest precondition is converted to an

expression over the set of predicates in the abstraction. Thus strengthening

is somewhat similar to the replacement function in this paper. However,

in [6], the result of the strengthening is over all the predicates, while the

replacement function used here is defined over a subset of the predicates.

Finally, the two transformations have different purposes. Strengthening is

only used to build an abstract model; while our transformation is used to

remove redundant predicates and thus reduce the complexity of the abstract

model.

7.1. The Replacement Function 134

7.1 The Replacement Function

Our goal is to eliminate Bi from the abstract model M̂ without sacrificing

accuracy. For this purpose, we define an under-approximation, FU(Bi), for

Bi in terms of the other variables. More precisely, let M be a concrete

transition system, {P1, P2, .., Pk} be a set of predicates defined on the states

of M , and let ρ be a total function defined by equation (2.4). Also, let M̂ be

the corresponding abstract transition system over V = {B1, B2, .., Bk}. The
support of an abstract set of states Ŝ1 includes Bi if and only if

∃ŝ ∈ Ŝ1.ŝ[Bi ← 0] ∈ Ŝ1 �⇔ ŝ[Bi ← 1] ∈ Ŝ1.

where ŝ[Bi ← 0] is a state that agrees with ŝ on all bits except possibly the

bit Bi, which is fixed to 0. ŝ[Bi ← 1] is similar. Consider the boolean variable

Bi and the set U = V \{Bi}. Let Φ denote either Bi or ¬Bi. The replacement

function for Φ, denoted by FU(Φ), is defined as the largest set of consistent

abstract states (we call an abstract state consistent if its concretization is not

empty) whose support is included in U and whose concretization is a subset

of γ(Φ). The implications γ(FU(Bi)) → γ(Bi) and γ(FU(¬Bi)) → γ(¬Bi)

follow from this definition. Figure 7.1 shows the relationship between the

concretization of a predicate Bi, FU(Bi), and ¬FU(¬Bi).

We now show how to compute FU(Bi). Consider the abstract state space

Ŝ given by tuples of the form (B1, B2, .., Bk). Not all the abstract states

have corresponding concrete states. We consider only the set of consistent

abstract states, g, that are related to some concrete states by the relation

(2.4) in Section 2.3. Formally, if S is the set of concrete states, {Pj|1 ≤ j ≤ k}

7.1. The Replacement Function 135

γ(¬FU (¬Bi))
γ(FU (Bi)) Pi

Figure 7.1: Relationship between the concretization of Bi, FU(Bi), and
¬FU(¬Bi)

is the set of predicates and ρ is the simulation relation as in Section 2.3, then

g = post [ρ](true) = {ŝ | ∃s ∈ S.
∧

1≤j≤k
Pj(s)⇔ Bj(ŝ)}.

For hardware verification, all the concrete state variables have finite domain.

The set g can be efficiently computed using OBDDs [14] through a series of

conjunction and quantification operations. We define g |Bi
to be the set of

reduced abstract states obtained by taking all the states in g that have the

bit Bi equal to 1 and dropping the bit Bi. Similarly g |¬Bi
is obtained by

taking all those states in g with bit Bi equal to 0 and dropping the bit Bi.

The following theorem shows that the set (g|Bi
∧¬g|¬Bi

) is a candidate for

FU(Bi).

Theorem 7.1.1 Let V = {B1, B2, . . . , Bk} be the boolean variables. Let

U = V \ {Bi}, and let f1 = g |Bi
∧¬g |¬Bi

be a set of abstract states. Then

γ(f1) ⇒ γ(Bi) and f1 is the largest set of consistent abstract states that

does not have bit Bi in its support. Likewise, if f2 = g |¬Bi
∧¬g |Bi

, then

γ(f2) ⇒ γ(¬Bi) and f2 is the largest set of consistent abstract states that

does not have bit Bi in its support.

7.1. The Replacement Function 136

Proof: We first prove that γ(f1) ⇒ γ(Bi). According to the definition of

g|¬Bi

g|¬Bi
= {sr | ∃s ∈ S.¬Pi(s) ∧ (

∧
1≤j≤k,j
=i

Pj(s)⇔ Bj(sr))}.

Therefore, ¬g |¬Bi
= {sr | ∀s ∈ S.(s ∈ γ(sr)) → (s ∈ γ(Bi))}. So γ(¬g |¬Bi

)⇒ γ(Bi). Since f1 ⊆ ¬g|¬Bi
, we have γ(f1)⇒ γ(Bi).

Next, we prove that f1 is the largest consistent set of abstract states on

U such that γ(f1)⇒ γ(Bi). It is easy to show that

f1 = (g|Bi
∨g|¬Bi

) ∧ ¬g|¬Bi
= (∃Bi g) ∧ ¬g|¬Bi

.

We will prove the result by contradiction. Assume there is a consistent

abstract state sr �∈ f1 such that γ(sr)⇒ γ(Bi). According to the definition of

¬g|¬Bi
, sr ∈ ¬g|¬Bi

. It is easy to see that (∃Bi g) is the largest consistent set

of abstract states on U , so sr ∈ ∃Bi g. This contradicts with the assumption

that sr �∈ f1. Therefore, f1 is the required set.

Replacement function is used extensively in the later sections. The cor-

rectness of our algorithms only depend on the property that γ(FU(Bi)) →
γ(Bi). The nice advantage of this is we can use any f that satisfies γ(f)→
γ(Bi) instead of using FU(Bi) = f1, which is difficult to compute when there

are many predicates. Instead we use the following approximation: we first

partition predicates into clusters as in Section 6.1, then compute the set of

consistent abstract states and replacement function for each cluster sepa-

rately. We use these easy to compute approximations to identify and remove

7.2. Removing Redundant Predicates 137

redundant predicates. This does not affect the correctness (i.e., every identi-

fied predicate is indeed redundant), but some redundant predicates may fail

to be identified.

7.2 Removing Redundant Predicates

The removal of a predicate involves constructing a new abstract transi-

tion system from the old abstract transition system. The state space of

the new abstract transition system is the set of all possible valuations of

the boolean variables corresponding to the new predicate set. The new

predicate set has one less predicate than the old predicate set. Let Pi be

the redundant predicate that is to be removed. If the old state space is

given by k -tuples (B1, B2, ..., Bk), then the new state space is given by (k-

1)-tuples (B1, . . . , Bi−1, Bi+1, . . . , Bk). Suppose the original abstract model

is M̂ = (Ŝ, Ŝ0, R̂, L̂). We now describe how to construct the new abstract

model, Mr = (Sr, S0r, Rr, Lr) (r for “reduced”), from M̂ if we decide to drop

the predicate Pi. The relation ρr between the concrete state space and the

reduced state space is

ρr(s, sr) =
∧

1≤j≤k∧j
=i
Pj(s)⇔ Bj(sr).

The construction of the new state space is straightforward: we just drop

the boolean variable Bi. The labeling Lr is as described in Section 2.3: a

reduced abstract state sr is labeled with a predicate Pj if and only if the

corresponding bit Bj is 1 in that state. The new transition relation Rr is

7.2. Removing Redundant Predicates 138

obtained from the original abstract transition relation R̂ by the following

equation

Rr(sr, s′r) = ∃bi, b′i. R̂(〈sr, bi〉, 〈s′r, b′i〉) (7.1)

where 〈sr, bi〉 stands for the state (in the original abstract model) obtained

by inserting bi into sr as the i-th bit. Thus two reduced abstract states are

related if there are two related states in the original abstract model that

are “extensions” of these reduced abstract states. The reduced initial set of

states can be similarly constructed using existential quantification as follows

S0r(sr) = ∃bi. Ŝ0(〈sr, bi〉) (7.2)

Lemma 7.2.1 The transition relation of the reduced abstract model defined

by equation (7.1) is the same as the one built directly from the concrete model

using equation (2.2) and ρr over the reduced set of predicates.

Proof: Let the transition relation constructed directly be

∃s s′. ρr(s, sr) ∧ ρr(s
′, s′r) ∧ R(s, s′).

Here ρr is the relation between the concrete state space and the new abstract

state space. Now, following equation (7.1)

7.3. Redundant Predicates for Safety Properties 139

Rr(sr, s′r)

≡ ∃bi, b′i. R̂(〈sr, bi〉, 〈s′r, b′i〉)

≡ ∃bi, b′i.∃s s′.ρ(s, 〈sr, bi〉) ∧ ρ(s′, 〈s′r, b′i〉) ∧ R(s, s′)

≡ ∃bi, b′i.∃s, s′.(Pi(s)⇔ bi) ∧ (P ′
i(s

′)⇔ b′i) ∧ ρr(s, sr) ∧ ρr(s
′, s′r) ∧R(s, s′)

(since ρ(s, ŝ) ≡ ∧
1≤i≤k Pi(s)⇔ Bi(ŝ))

≡ ∃s, s′. (∃bi, b′i.(Pi(s)⇔ bi) ∧ (P ′
i(s

′)⇔ b′i)) ∧ ρr(s, sr) ∧ ρr(s
′, s′r) ∧R(s, s′)

≡ ∃s, s′.ρr(s, sr) ∧ ρr(s
′, s′r) ∧R(s, s′)

(since ∃bi, b′i.(Pi(s)⇔ bi) ∧ (P ′
i(s

′)⇔ b′i) is a tautology).

The last expression is equivalent to the transition relation constructed di-

rectly using (2.2).

Thus, Rr constructed using equation (7.1) is equivalent to the one constructed

directly from the concrete model using equation (2.2).

7.3 Redundant Predicates for Safety Proper-

ties

A predicate in a given set of predicates is redundant for a set of properties in

L if the abstract transition system constructed without using this predicate

satisfies the same set of properties as the original abstract transition system

(constructed using all the predicates). In this section we deal with safety

7.3. Redundant Predicates for Safety Properties 140

properties of the form AG p, where p is a boolean formula without temporal

operators. Note that any safety property can be rewritten into the above

form through tableau construction with no fairness constraints [24].

Let Ŝ be a set of states defined by a set of boolean variables V =

{B1, B2, .., Bk} as before, and U = V \{Bi}. Let Sr = proj [U](Ŝ) denote the

projection of the set Ŝ on U . For any state sr ∈ Sr, extend [Bi](sr) is a set

of states defined as follows:

• If FU(Bi)(sr), then extend [Bi](sr) = {〈sr, 1〉}.

• If FU(¬Bi)(sr), then extend [Bi](sr) = {〈sr, 0〉}.

• If ¬FU(Bi)(sr) ∧ ¬FU(¬Bi)(sr), extend [Bi](sr) = {〈sr, 0〉, 〈sr, 1〉}.

We say that a set of consistent abstract states Ŝ is oblivious to Bi if and only

if

∀ŝ ∈ Ŝ. (¬FU(Bi)(ŝ) ∧ ¬FU(¬Bi)(ŝ))⇒ (ŝ[Bi ← 0] ∈ Ŝ ∧ ŝ[Bi ← 1] ∈ Ŝ)

Intuitively, if neither FU(Bi)(ŝ) nor FU(¬Bi)(ŝ)) holds, the values of variables

B1, . . . , Bi−1, Bi+1, . . . , Bk can not determine the value of Bi. In order for Ŝ

to be oblivious, it must contain states with both possible values of Bi.

Lemma 7.3.1 Given a set of states Ŝ1 ⊆ Ŝ, such that Ŝ1 is oblivious to a

predicate Bi, then extend [Bi](proj [U](Ŝ1)) ≡ Ŝ1.

Proof: The proof follows from the definitions of extend [Bi](sr) and oblivious

set.

7.3. Redundant Predicates for Safety Properties 141

• First we prove extend [Bi](proj [U](Ŝ1)) ⊆ Ŝ1. Let 〈sr, bi〉 be a state in

extend [Bi](proj [U](Ŝ1)). Therefore, sr ∈ proj [U](Ŝ1). Let 〈sr, b′i〉 be
the state in Ŝ1 whose projection is sr.

– If FU(Bi)(sr), according to the definition of extend, bi must be 1.

Since 〈sr, b′i〉 is a consistent abstract state, b′i must be 1. Therefore

〈sr, bi〉 ∈ Ŝ1.

– If FU(¬Bi)(sr), the proof is similar to the previous case.

– Otherwise, since Ŝ1 is oblivious to Bi, the two states 〈sr, 0〉 and
〈sr, 1〉 are all in Ŝ1. Therefore 〈sr, bi〉 ∈ Ŝ1.

• Now we prove Ŝ1 ⊆ extend [Bi](proj [U](Ŝ1)). Let 〈sr, bi〉 be a consistent
state in Ŝ1. So sr ∈ proj [U](Ŝ1). Based on the definition of extend, it

is easy to see 〈sr, bi〉 ∈ extend [Bi](proj [U](Ŝ1)).

Hence, extend [Bi](proj [U](Ŝ1)) ≡ Ŝ1.

Lemma 7.3.2 Given an abstract transition system M̂ = (Ŝ, Ŝ0, R̂, L̂) which

corresponds to a set of boolean variables V = {B1, . . . , Bk}. Let Bi be one of

the variables in V and U = V \ {Bi}. Let Mr = (Sr, S0r, Rr, Lr) be the ab-

stract transition system corresponding to U . If Ŝ1 is a set of states on V that

is oblivious to Bi, then proj [U](post [R̂](Ŝ1)) is the same as post [Rr](proj [U](Ŝ1)),

i.e., proj and post commute.

Proof: For this proof we use

Rr(sr, s′r) = ∃bi, b′i. R̂(〈sr, bi〉, 〈s′r, b′i〉)

7.3. Redundant Predicates for Safety Properties 142

• First we prove that proj [U](post [R̂](Ŝ1)) ⊆ post [Rr](proj [U](Ŝ1)). Let

s′r be a state in proj [U](post [R̂](Ŝ1)). There exist two states ŝ, ŝ′ such

that (ŝ ∈ Ŝ1) ∧ R̂(ŝ, ŝ′) ∧ (proj [U](ŝ′) = s′r). Let sr be proj [U](ŝ).

Since R̂(ŝ, ŝ′) Rr(sr, s′r) holds. Therefore, s′r ∈ post [Rr](proj [U](Ŝ1)).

• Now we prove post [Rr](proj [U](Ŝ1)) ⊆ proj [U](post [R̂](Ŝ1)). Let s
′
r be

a state in post [Rr](proj [U](Ŝ1)). There exists sr ∈ proj [U](Ŝ1) such

that Rr(sr, s
′
r). According to the definition of Rr, there must be two

states ŝ, ŝ′ such that ŝ = 〈sr, bi〉 ∧ ŝ′ = 〈s′r, b′i〉 ∧ R̂(ŝ, ŝ′) for some

values of bi, b
′
i. Therefore, ŝ ∈ extend [Bi](sr). Since sr ∈ proj [U](Ŝ1),

thus ŝ ∈ extend [Bi](proj [U](Ŝ1)). According to Lemma 7.3.1, ŝ ∈ Ŝ1.

Therefore, s′r ∈ proj [U](post [R̂](Ŝ1)).

Hence, proj [U](post [R̂](Ŝ1)) = post [Rr](proj [U](Ŝ1)).

A transition relation R̂ ⊆ Ŝ × Ŝ is called oblivious to Bi, if for any state

ŝ ∈ Ŝ, post [R̂](ŝ) is oblivious to Bi. More formally, R̂ is oblivious to Bi if

and only if

∀ŝ, ŝ′[¬FU(Bi)(ŝ
′) ∧ ¬FU(¬Bi)(ŝ

′)⇒

(R̂(ŝ, ŝ′[Bi ← 1])⇔ R̂(ŝ, ŝ′[Bi ← 0]))] (7.3)

In order to test whether a transition relation R̂ is oblivious to Bi or not, we

take the negation of (7.3) and formulate it as a SAT instance by converting

it into a CNF formula. If the CNF formula is satisfiable then we conclude

7.3. Redundant Predicates for Safety Properties 143

that R̂ is not oblivious otherwise it is. The negation of (7.3) is the following

∃ŝ, ŝ′[¬FU(Bi)(ŝ
′) ∧ ¬FU(¬Bi)(ŝ

′) ∧

(R̂(ŝ, ŝ′[Bi ← 1]) ⇔ (¬R̂)(ŝ, ŝ′[Bi ← 0]))] (7.4)

Theorem 7.3.1 Given an abstract transition system M̂ = (Ŝ, Ŝ0, R̂, L̂)

which corresponds to a set of predicates V , and a safety property f = AG p,

where p is a propositional formula without temporal operators. Also assume

that predicate Bi is one of the predicates in V but not one of the predicates

in f . If Ŝ0 and R̂ are oblivious to Bi, then the abstract transition system

corresponding to the reduced set of predicates U = V \{Bi} satisfies f if and

only if M̂ satisfies it.

Proof: Since both Ŝ0 and R̂ are oblivious to Bi, then the set of reachable

states, Sj , after j steps is oblivious to Bi for any j. Let Mr = (Sr, S0r, Rr, Lr)

be the abstract transition system corresponding to U . According to the

definition of S0r and Lemma 7.3.2, the set of reachable states Sjr in Mr after

j steps is a projection on U of Ŝj. Since the validity of any propositional

formula p, without temporal operators, on a set of states can be determined

by looking only at predicates other than Pi, all the states in Ŝj satisfy p if

and only if all the states in Sjr satisfy it. Therefore, Mr satisfies f if and

only if M̂ satisfies f .

7.4. Redundant Predicates for Bisimulation Equivalence 144

7.4 Redundant Predicates for Bisimulation Equiv-

alence

In the previous section, the reduced abstract model Mr was such that it

satisfies a safety property, if and only if M̂ satisfies it. We can strengthen

this result so that Mr is bisimulation equivalent to M̂ by imposing slightly

different conditions on R̂.

Let β ⊆ Ŝ×Sr be a relation defined such that two states ŝ ∈ Ŝ and sr ∈ Sr

are related under β if and only if ŝ ∈ extend [Bi](sr), where extend [Bi](sr) is

as defined previously. We intend to make β a bisimulation relation between

M̂ and Mr. From the construction of Mr, it is easy to see that M̂ �β Mr. In

order for M̂ to simulate Mr, we must make sure that for any bi ∈ {0, 1}, if
〈sr, bi〉 is a consistent abstract state, then 〈sr, bi〉 can simulate sr. If only one

of 〈sr, 0〉 and 〈sr, 1〉 is a consistent state, from (7.1), it is easy to see that any

successor state of sr corresponds to a successor of the single consistent state.

In order to handle the case when both 〈sr, 0〉 and 〈sr, 1〉 are consistent, we

have the following condition on R̂: for any state ŝ ∈ Ŝ

¬FU(Bi)(ŝ) ∧ ¬FU(¬Bi)(ŝ)⇒ ∀ŝ′.(R̂(ŝ[Bi ← 0], ŝ′)⇔ R̂(ŝ[Bi ← 1], ŝ′))

(7.5)

This condition says that if the value of Bi cannot be determined by the

values of the other boolean variables, i.e., both ŝ[Bi ← 0] and ŝ[Bi ← 1]

are consistent, then R̂ does not distinguish between different values of the

bit Bi. If FU(Bi)(ŝ) is true then we know that ŝ[Bi ← 0] is inconsistent. If

FU(¬Bi)(ŝ) is true then we know that ŝ[Bi ← 1] is inconsistent. In case that

7.4. Redundant Predicates for Bisimulation Equivalence 145

both of these are false (which is the condition on the left hand side of (7.5)),

then we require that the successors of the states ŝ[Bi ← 0], ŝ[Bi ← 1] be the

same. Similar to Section 7.3, to test whether R̂ satisfies condition (7.5) or

not, we test the satisfiability of its negation.

∃ŝ, ŝ′. ¬FU(Bi)(ŝ) ∧ ¬FU(¬Bi)(ŝ) ∧

(R̂(ŝ[Bi ← 0], ŝ′)⇔ (¬R̂)(ŝ[Bi ← 1], ŝ′)) (7.6)

Theorem 7.4.1 If condition (7.5) holds, then β is a bisimulation relation

between M̂ and Mr

Proof: We just need to show that M̂ �β Mr and Mr �β−1 M̂ . It is easy

to see that for any state ŝ ∈ extend [Bi](sr), L(ŝ)∩ {P1, . . . , Pi−1, Pi+1, Pk} =
Lr(sr).

• We first prove M̂ �β Mr. Based on equations (7.1) and (7.2), Mr is an

existential abstraction over M̂ induced by the simulation relation β.

• Next we prove Mr �β−1 M̂ . Based on equation (5′), it is easy to see

that for every state sr ∈ S0r, at least one of 〈sr, 0〉 or 〈sr, 1〉 must be

in Ŝ0.

We now prove that if β−1(sr, ŝ) and Rr(sr, s
′
r) then there exists ŝ1 such

that R̂(ŝ, ŝ1) and β−1(s′r, ŝ1). If β
−1(sr, ŝ) and Rr(sr, s

′
r), by definition

of Rr, there exit b
0
i , b

1
i such that R̂(〈sr, b0

i 〉, 〈s′r, b1
i 〉). In case FU(Bi)(sr)

is true then b0
i has to be 1 and ŝ = 〈sr, 1〉. In case FU(¬bi)(sr) is

7.5. Difference in the Bisimulation and AG p conditions 146

true then b0
i has to be 0 and ŝ = 〈sr, 0〉. In either case there exists

ŝ1 = 〈s′r, b1
i 〉 such that R̂(ŝ, ŝ1) and by definition of β, s′r is related

to ŝ1 under β. In case neither FU(Bi)(sr) nor FU(¬Bi)(sr) holds, we

know by condition (7.5) on R̂ that successors of 〈sr, 0〉 under R̂ must

be exactly the same as those 〈sr, 1〉. ŝ can be either 〈sr, 0〉 or 〈sr, 1〉.
So there exists ŝ1 = 〈s′r, b1

i 〉 such that R̂(ŝ, ŝ1) and by definition of β,

s′r is related to ŝ1 under β.

It is interesting to note that the conditions for preserving safety properties

and bisimulation equivalence are different and do not subsume each other.

This is illustrated in the next section.

7.5 Difference in the Bisimulation and AG p

conditions

We have seen two redundancy conditions, one for preserving AG p proper-

ties and the other for preserving CTL∗ properties. In this section, we give

examples of transition relation which satisfy one of the conditions and vio-

lates the other. This demonstrates that the conditions (7.3) and (7.5) are

not comparable.

7.5. Difference in the Bisimulation and AG p conditions 147

7.5.1 A transition relation that satisfies the Bisimula-

tion condition

We first present an abstract transition relation that satisfies the Bisimulation

condition, (7.5), but does not satisfy the obliviousness condition required for

preserving AG p properties. The abstract transition system is:

(a) B2 → B′
1 ∧ B′

4

(b) B3 → B′
1 ∧ B′

2

(c) B4 → B′
4

Suppose we are trying to remove B2. Assume that FU(B2) = ¬B3 and

FU(¬B2) = ¬B4. The condition for bisimulation, (7.4), then is

B3 ∧ B4 ⇒ [((B3 → B′
1 ∧B′

2) ∧ (B4 → B′
4))⇔

((B′
1 ∧ B′

4) ∧ (B3 → B′
1 ∧B′

2) ∧ (B4 → B′
4))]

If B3 ∧B4 is false then the condition is true. If B3 ∧B4 is true then we need

to check the validity of

((B3 → B′
1 ∧B′

2) ∧ (B4 → B′
4))⇔ ((B′

1 ∧B′
4) ∧ (B3 → B′

1 ∧ B′
2) ∧ (B4 → B′

4)) .

Now from (b) B′
1 is true if B3 is true and from (c) B′

4 is true if B4 is true.

So the problem now reduces to validity of

((B3 → B′
1 ∧B′

2) ∧ (B4 → B′
4))⇔ ((B3 → B′

1 ∧ B′
2) ∧ (B4 → B′

4))

7.5. Difference in the Bisimulation and AG p conditions 148

which is trivially true. So R̂ satisfies the bisimulation condition. Now we

show that it does not satisfy the condition for AG p preservation. Condition

for AG p preservation in this case would be

B′
3 ∧B′

4 ⇒ [((B2 → B′
1 ∧ B′

4) ∧ (B3 → B′
1 ∧ 0) ∧ (B4 → B′

4))⇔
((B2 → B′

1 ∧ B′
4) ∧ (B3 → B′

1 ∧ 1) ∧ (B4 → B′
4))]

which is equivalent to

B′
3 ∧ B′

4 ⇒ [((B2 → B′
1 ∧B′

4) ∧ (B3 → false) ∧ (B4 → B′
4))⇔

((B2 → B′
1 ∧B′

4) ∧ (B3 → B′
1) ∧ (B4 → B′

4))]

This expression is not true for B′
3 = B′

4 = B′
1 = B3 = 1 and

B2 = B4 = 0. So we have shown a transition relation R̂ that satisfies the

bisimulation condition but not the AG p preservation condition.

7.5.2 A transition relation that satisfies the AG p con-

dition

The transition relation is

B3 → ¬B′
4

B2 → B′
1 ∧ B′

5

B3 → B′
1 ∧ ¬B′

2

We assume that FU(B2) = ¬B3 and FU(¬B2) = ¬B4. The AG p preserva-

tion condition (after some simplification) is

7.5. Difference in the Bisimulation and AG p conditions 149

B′
3 ∧ B′

4 ⇒ [((B3 → ¬B′
4) ∧ (B2 → B′

1 ∧ B′
5) ∧ (¬B3))⇔

((B3 → ¬B′
4) ∧ (B2 → B′

1 ∧ B′
5) ∧ (B3 → B′

1))]

If B′
3∧B′

4 is false then the above expression is true. In B′
3∧B′

4 is true,

then we can prove the following:

• ((B3 → ¬B′
4) ∧ (B2 → B′

1 ∧ B′
5) ∧ (¬B3))

⇒ ((B3 → ¬B′
4) ∧ (B2 → B′

1 ∧ B′
5) ∧ (B3 → B′

1)). We only need to

prove ¬B3 implies (B3 → B′
1), which is trivially true.

• ((B3 → ¬B′
4) ∧ (B2 → B′

1 ∧ B′
5) ∧ (B3 → B′

1))

⇒ ((B3 → ¬B′
4) ∧ (B2 → B′

1 ∧ B′
5) ∧ (¬B3)). We just need to show

that if B′
3 ∧ B′

4 is true and (B3 → ¬B′
4) is true then ¬B3. This is

clear since B′
4 is true implies ¬B′

4 is not true. And (B3 → false) can

be true only if ¬B3 is true.

Hence the AG p preservation condition is satisfied. The bisimulation condi-

tion for this example (after some simplification) is:

B3 ∧ B4 ⇒ [((B3 → ¬B′
4) ∧ (B3 → B′

1 ∧ ¬B′
2))⇔

((B3 → ¬B′
4) ∧ (B′

1 ∧ B′
5) ∧ (B3 → B′

1 ∧ ¬B′
2))]

This expression is not true for B3 = B4 = B′
1 = 1 and B′

5 = B′
4 = B′

2 = 0.

Hence we have shown two transition relations such that they satisfy only

one of the two preservation conditions. From this we can conclude that the

two preservation conditions are not subsumed by each other.

Chapter 8

Conclusion and Future Work

To alleviate the state explosion problem in model checking large scale hard-

ware designs, this thesis investigates abstraction refinement algorithms in-

cluding the localization reduction and predicate abstraction.

We describe four technqiues to improve abstraction refinement:

• We give a localization reduction algorithm that uses multiple verifi-

cation engines, including BDDs, ATPG, SAT and 3-value logic sim-

ulation. This algorithm was developed together with researchers at

Synopsys.

• We also show how to perform efficient localization reduction and pred-

icate abstraction using CNF unsatisfiability proofs.

• Predicate abstraction can be enhanced by extracting branch conditions

from a Verilog program and using them as predicates. To make the set

of predicates as small as possible, we describe an algorithm to remove

redundant predicates.

150

Chapter 8. Conclusion and Future Work 151

• Finally, we show how to combine localization reduction with predicate

abstraction.

The effectiveness of our abstraction refinement algorithms has been demon-

strated on various industrial hardware designs with thousands of registers.

There are several directions for extending this work. Bounded model

checking based on SAT is a powerful technique to search for design errors. By

comparing bounded model checking with the methodology described in this

thesis, it may be possible to discover when each technqiue is most applicable.

Given a CNF unsatisfiability proof, it is desirable to have a ranking al-

gorithm to evaluate the relative importance of the registers in the proof.

When the total number of registers in the proof is very large, such a ranking

algorithm is valuable for selecting a small subset of the most important reg-

isters. Heuristics based on graph ranking algorithms used by Internet search

algorithms [59] may be helpful.

In general, the proof extracted using the SAT conflict dependency analysis

is not minimal. Efficient algorithms to reduce the unsatisfiability proofs are

necessary. As demonstrated in [76], it is possible to reduce the number of

decisions during the SAT search by learning multiple conflict clauses from

a single conflict graph. However, this may slow down the SAT solver. It

is desirable to reduce proof size while maintaining the speed of the SAT

solver. For example, it may be possible to exclude a conflict graph if the

conflict clauses generated from it can also be derived from other conflict

graphs already found.

We have shown two ways to compute a predicate: One is based on sepa-

rating deadend and bad states, the other is by extracting branch conditions

Chapter 8. Conclusion and Future Work 152

from RTL Verilog designs. Program profiling techniques have been proposed

in [32] to discover likely invariants that are important for the behavior of

the system under verification. It may be possible to use these invariants as

predicates in predicate abstraction.

Given a small set of variables, a separating predicate over these variables

can be computed using a projection based SAT enumeration algorithm as

describe in Section 5.2 of this thesis. McMillan has recently shown how to

use the concept of interpolation [54] for unbounded model checking based

on SAT. It would be interesting to apply his algorithm for computing the

separating predicate in our algorithm.

Bibliography

[1] M. Abadi and L. Lamport. Composing specications. In ACM Trans. on

Prog. Lang. and Syst., pages 73–132, 1993.

[2] Parosh Aziz Abdulla, Per Bjesse, and Niklas Eén. Symbolic Reachability

Analysis Based on SAT-Solvers. In Proceedings of the 6th International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS’2000), 2000.

[3] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital

System Testing and Testable Design. IEEE Computer Society Press,

1990.

[4] R. Alur and T. A. Henzinger. Reactive modules. In 11th annual IEEE

symp. Logic in Computer Science (LICS ’96), 1996.

[5] F. Balarin and A. L. Sangiovanni-Vincentelli. An iterative approach to

language containment. In C. Courcoubetis, editor, Fifth Conference on

Computer Aided Verification (CAV ’93), Berlin, 1993.

[6] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Raja-

mani. Automatic Predicate Abstraction of C Programs. In PLDI 2001.

153

Bibliography 154

[7] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and

cartesian abstractions for model checking c programs. In TACAS 2001,

volume 2031 of LNCS, pages 268–283, April 2001.

[8] Thomas Ball and Sriram K. Rajamani. Boolean programs: A model and

process for software analysis. In MSR Technical Report, 2000-14.

[9] Sharon Barner, Daniel Geist, and Anna Gringauze. Symbolic local-

ization reduction with reconstruction layering and backtracking. In

CAV’02, pages 65–77, 2002.

[10] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan

Zhu. Symbolic model checking without BDDs. In Tools and Algorithms

for Construction and Analysis of Systems, pages 193–207, 1999.

[11] Armin Biere, Edmund Clarke, Richard Raimi, and Yunshan Zhu. Ver-

ifiying safety properties of a power pc microprocessor using symbolic

model checking without bdds. In CAV’99, pages 60–71, 1999.

[12] Per Bjesse and Koen Claessen. SAT-based verification without state

space traversal. In Formal Methods in Computer-Aided Design, pages

372–389, 2000.

[13] Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding bugs in an

alpha microprocessor using satisfiability solvers. In CAV’01, pages 454–

464, 2001.

Bibliography 155

[14] Randal E. Bryant. Graph-based Algorithms for Boolean Function Ma-

nipulation. IEEE Transactions on Computers, C-35(8):677–691, August

1986.

[15] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking

with partitioned transition relations. In A. Halaas and P. B. Denyer,

editors, Proceedings of the International Conference on Very Large Scale

Integration, Edinburgh, Scotland, August 1991.

[16] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic Model Checking: 1020 States and Beyond. Information and

Computation, 98(2):142–170, June 1992.

[17] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Me-

chanical Theorem Proving. Computer Science and Applied Mathematics

Series. Academic Press, New York, NY, 1973.

[18] Pankaj Chauhan, Edmund M. Clarke, Samir Sapra, , James Kukula,

Helmut Veith, and Dong Wang. Automated abstraction refinement for

model checking large state spaces using sat based conflict analysis. In

FMCAD’02, 2002.

[19] H. Cho, G. Hachtel, E. Macii, M. Poncino, and F. Somenzi. Automatic

state space decomposition for approximate fsm traversal based on circuit

analysis. IEEE TCAD, 15(12):1451–1464, December 1996.

[20] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A

New Symbolic Model Verifier. In CAV’99, pages 495–499, 1999.

Bibliography 156

[21] E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.

In POPL, pages 343–354, 1992.

[22] E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based

abstraction-refinement using ILP and machine learning techniques. In

Proc. of Conference on Computer-Aided Verification (CAV’02), LNCS,

2002.

[23] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut

Veith. Counterexample-guided Abstraction Refinement. In Twlfth Con-

ference on Computer Aided Verification (CAV’00). Springer-Verlag, July

2000.

[24] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.

MIT Press, 1999.

[25] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization

skeletons using branching t ime temporal logic. In Proc. Workshop on

Logic of Programs, volume 131 of Lect. Notes in Comp. Sci., pages 52–

71, 1981.

[26] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and

M.Y. Vardi. Benefits of bounded model checking at an industrial setting.

In CAV’01, pages 436–453, 2001.

[27] D. Dams. Abstract Interpretation and Partition Refinement for Model

Checking. PhD thesis, Technical University of Eindhoven, 1996.

Bibliography 157

[28] S. Das and D. Dill. Successive approximation of abstract transition

relations. In LICS’01, 2001.

[29] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with pred-

icate abstraction. In CAV’99, pages 160–171, 1999.

[30] Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach,

Corina S. Pasareanu, Robby, Hongjun Zheng, and W Visser. Tool-

supported program abstraction for finite-state verification. In Interna-

tional Conference on Software Engineering, pages 177–187, 2001.

[31] E.Goldberg and Y.Novikov. Berkmin: a fast and robust sat-solver. In

DATE, 2002.

[32] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David

Notkin. Dynamically discovering likely program invariants to support

program evolution. In International Conference on Software Engineer-

ing, pages 213–224, 1999.

[33] Marcelo Glusman, Gila Kamhi, Sela Mador-Haim, Ranan Fraer, and

Moshe Y. Vardi. Multiple-counterexample guided iterative abstraction

refinement: An industrial evaluation, 2003.

[34] Michael J. C. Gordon. The semantic challenge of Verilog HDL. In

LICS’95, pages 136–145, 1995.

[35] Shankar G. Govindaraju and David L. Dill. Counterexample-Guided

choice of projections in approximate symbolic model checking. In IC-

CAD, pages 115–119, 2000.

Bibliography 158

[36] Orna Grumberg and David E. Long. Model checking and modular ver-

ication. In J. C. M. Baeten and J. F. Groote, editors, CONCUR 91,

volume 527 of LNCS, August 1991.

[37] Aarti Gupta, Zijiang Yang, Pranav Ashar, and Anubhav Gupta. Sat-

based image computation with application in reachability analysis. In

FMCAD’00, pages 354–371, 2000.

[38] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire

Sutre. Lazy abstraction. In POPL, pages 58–70, 2002.

[39] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You

assume, we guarantee: methodology and case studies. In Proceedings

of the Tenth International Conference on Computer-aided Verification

(CAV 1998), Lecture Notes in Computer Science 1427, pages 440–451,

1998.

[40] Pei-Hsin Ho, Thomas R. Shiple, Kevin Harer, James H. Kukula, Robert

Damiano, Valeria M. Bertacco, Jerry Taylor, and Jiang Long. Smart

Simulation Using Collaborative Formal and Simulation Engines. In Pro-

ceedings of the IEEE international Conference on Computer Aided De-

sign (ICCAD), pages 120–126, 2000.

[41] Synopsys Inc. Synopsys design compiler. http://www.synopsys.com.

[42] J. Kim, J. Whittemore, and K. Sakallah. On solving stack-based incre-

mental satisfiability problems. In International Conference on Computer

Design, 2000.

Bibliography 159

[43] R. P. Kurshan. Computer-Aided Verification. Princeton Univ. Press,

Princeton, New Jersey, 1994.

[44] Yassine Lachnech, Saddek Bensalem, Sergey Berezin, and Sam Owre.

Incremental verification by abstraction. In Tools and Algorithms for the

Construction and Analysis of Systems: 7th International Conference,

TACAS 2001, pages 98–112, 2001.

[45] Chen-Li Lin, Yen-Pang Lin, Dong Wang, and Salman

Yussof. 18-545 advanced digital design project.

http://www.ece.cmu.edu/ ee545/f98/final fantasy/index.html.

[46] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property

preserving abstractions for the verification of concurrent systems. For-

mal Methods in System Design: An International Journal, 6(1):11–44,

January 1995.

[47] D. E. Long. Model checking, abstraction and compositional verifica-

tion. Technical Report CMU-CS-93-178, Carnegie Mellon University,

Computer Science Department, 1993.

[48] Yuan Lu. Automatic Abstraction in Model Checking. PhD thesis,

Carnegie Mellon University, ECE Department, 2000.

[49] K. McMillan. Applying sat methods in unbounded symbolic model

checking. In CAV’02, pages 250–264, 2002.

[50] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

Boston, MA, 1994.

Bibliography 160

[51] K. L. McMillan. Verication of an implementation of tomasulo’s algo-

rithm by compositional model checking. In A. J. Hu and M. Y. Vardi,

editors, Conference on Computer-aided Verication (CAV ’98), number

1427 in LNCS, pages 100–121, 1998.

[52] K. L. McMillan. Verication of infinite state sys-

tems by compositional model checking. http://www-

cad.eecs.berkeley.edu/ kenmcmil/papers/1999-01.ps.gz, February

1999.

[53] Ken McMillan. Applying sat methods in unbounded symbolic model

checking. In Computer-Aided Verification, CAV ’02. Springer-Verlag,

2002.

[54] K.L. McMillan. Interpolation and sat-based model checking. 2003.

[55] K.L. McMillan and Nina Amla. Automatic abstraction without coun-

terexamples. In To appear, TACAS’03, 2003.

[56] Matthew Moskewicz, Conor Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In 38th

ACM/IEEE Design Automation Conference(DAC), June 2001.

[57] Kedar S. Namjoshi and Robert P. Kurshan. Syntactic program trans-

formations for automatic abstraction. In CAV’00, 2000.

[58] Greg Nelson. Techniques for Program Verification. PhD thesis, Stanford

University, 1980.

Bibliography 161

[59] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

The pagerank citation ranking: Bringing order to the web. Technical

report, Stanford Digital Library Technologies Project, 1998.

[60] Abelardo Pardo and Gary D. Hachtel. Incremental CTL model checking

using BDD subsetting. In Design Automation Conference, pages 457–

462, 1998.

[61] Corina Pasareanu, Matthew Dwyer, and Willem Visser. Finding feasible

counter-examples when model checking abstracted java programs. In

Tools and Algorithms for the Construction and Analysis of Systems:

7th International Conference, TACAS 2001, 2001.

[62] A. Pnueli. In transition from global to modular temporal reasoning

about programs. In Logics and Models of Concurrent Systems, NATO

ASI Series, pages 123–144, 1984.

[63] Amir Pnueli. The temporal logic of programs. In Proc 18th IEEE

Symposium on Foundations of Computer Science (FOCS 1977), pages

46–57, 1977.

[64] R.P. Kurshan. Analysis of discrete event coordination. In J.W. de

Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proceedings of

REX Workshop on Stepwise Refinement of Distributed Systems: Models,

Formalisms, Correctness, volume 430, New York, 1989. Springer-Verlag.

[65] S. Graf and H. Saidi. Construction of abstract state graphs with PVS.

In CAV’97, volume 1254, pages 72–83. Springer Verlag, 1997.

Bibliography 162

[66] H. Saidi and N. Shankar. Abstract and model check while you prove. In

11th Conference on Computer-Aided Verification, volume 1633 of LNCS,

pages 443–454, July 1999.

[67] M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties us-

ing induction and a sat-solver. In Hunt and Johnson, editors, Proc. Int.

Conf. on Formal Methods in Computer-Aided Design (FMCAD 2000),

2000.

[68] J.P. Marques Silva and Karem A. Sakallah. GRASP - A New Search

Algorithm for Satisfiability. In Proceedings of the IEEE international

Conference on Computer Aided Design (ICCAD), pages 220–227, 1996.

[69] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-

Vincentelli. Implicit enumeration of finite state machines using bdds. In

Proceedings of the IEEE international Conference on Computer Aided

Design (ICCAD), November 1990.

[70] W. Visser, S. Park, and J. Penix. Applying predicate abstraction to

model check object-oriented programs. In 3rd ACM SIGSOFT Work-

shop on Formal Methods in Software Practice, August 2000.

[71] Dong Wang. Perl scripts to translate verilog to smv. Available from:

http://www.icarus.com/eda/verilog.

[72] Dong Wang, Pei-Hsin Ho, Jiang Long, James Kukula, Yunshan Zhu,

Tony Ma, and Robert Damiano. Formal Property Verification by Ab-

straction Refinement with Formal, Simulation and Hybrid Engines. In

DAC’01, 2001.

Bibliography 163

[73] Poul Frederick Williams, Armin Biere, Edmund M. Clarke, and Anubhav

Gupta. Combining decision diagrams and SAT procedures for efficient

symbolic model checking. In Computer Aided Verification, pages 124–

138, 2000.

[74] Stephen Williams. Icarus Verilog simulation and synthesis tool. Avail-

able from: http://www.icarus.com/eda/verilog.

[75] L. Zhang and S. Malik. Validating sat solvers using an independent

resolution-based checker: Practical implementations and other appli-

cations. In Proceedings of Design, Automation and Test in Europe

(DATE2003), March 2003.

[76] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad

Malik. Efficient conflict driven learning in a Boolean satisfiability solver.

In ICCAD’01, 2001.

