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Abstract. Predicate abstraction is an important technique for extracting compact
finite state models from large or infinite state systems. Predicate abstraction uses
decision procedures to compute a model which is amenable to model checking,
and has been used successfully for software verification. Little work however has
been done on applying predicate abstraction to large scale finite state systems,
most notably, hardware, where the decision procedures are SAT solvers. \We con-
sider predicate abstraction for hardware in the framework of Counterexample-
Guided Abstraction Refinement where in the course of verification, the abstract
model has to be repeatedly refined. The goal of the refinement is to eliminate spu-
rious behavior in the abstract model which is not present in the original model,
and gives rise to false negatives (spurious counterexamples).

In this paper, we present two efficient SAT-based algorithms to refine abstract
hardware models which deal with spurious transitions and spurious counterex-
amples respectively. Both algorithms make use of the conflict graphs generated
by SAT solvers. The first algorithm extracts constraints from the conflict graphs
which are used to make the abstract model more accurate. Once an abstract tran-
sition is determined to be spurious, our algorithm does not need to make any
additional calls to SAT solver. Our second algorithm generates a compact predi-
cate which eliminates a spurious counterexample. This algorithm uses the conflict
graphs to identify the important concrete variables that render the counterexam-
ple spurious, creates an additional predicate over these concrete variables, and
adds it to the abstract model. Experiments over hardware designs with several
thousands of registers demonstrate the effectiveness of our methods.
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1 Introduction

Counterexample-Guided Abstraction Refinement. Model checking [11, 10] is a widely
used automatic formal verification technique. Despite the recent advancements in model
checking technology, practical applications are still limited by the state explosion prob-
lem, i.e., by the combinatorial explosion of system states. For model checking large
real world systems, symbolic methods such as BDDs and SAT-sovlers need to be com-
plemented by abstraction methods [6, 5]. By a conservative abstraction we understand
a (typically small) finite state system which preserves the behavior of the original sys-
tem, i.e., the abstract system allows more behavior than the original (concrete) system.
If the abstraction is conservative then we have a preservation theorem to the effect that
the correctness of universal temporal properties (in particular properties specified in
universal temporal logics such as ACT L*) on the abstract model implies the correct-
ness of the properties on the concrete model. In this paper, we are only concerned with
universal safety properties whose violation can be demonstrated on a finite counterex-
ample trace. The simplest and most important examples of such properties are system
invariants, i.e., ACTL* specifications of the form AGp.

A preservation theorem only ensures that universal properties which hold on the
abstract model are indeed true for the concrete model. If, however, a property is violated
on the abstract model, then the counterexample on the abstract model may possibly not
correspond to any real counterexample path. False negatives of this kind are called
spurious counterexamples, and are consequences of the information loss incurred by
reducing a large system to a small abstract one. Since the spurious behavior is due to
the approximate nature of the abstraction, we speak of overapproximation.
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Fig. 1. Counterexample-Guided Abstraction Refinement.

In order to remedy the effect of abstraction and overapproximation, the abstrac-
tion needs to be refined in such a way that the spurious counterexample is eliminated.
Counterexample guided abstraction refinement (CEGAR) [7] automates this procedure.
CEGAR analyzes the spurious abstract counterexample to find a refinement of the cur-
rent abstraction, such that the spurious counterexample is eliminated from the refined
abstract model. This procedure is repeated until the property is either confirmed or



refuted, cf. Figure 1. During the last years, CEGAR Methods have found many appli-
cations in verification. See [9] for an overview.

Predicate Abstraction. Predicate abstraction [17,1, 13,12, 16, 18] is a specific con-
struction to obtain conservative abstractions. In predicate abstraction, we identify a set
of predicates Py, ..., P, which describe important properties of the concrete system.
The predicates are given by formulas which depend on the variables of the concrete
system. The crucial idea is how to construct 2™ abstract states such that each abstract
state corresponds to one valuation of the predicates, and thus to a conjunction of literals
over By,..., By,.

More formally, we use the predicates P; as the atomic propositions that label the
states in the concrete and abstract transition systems, that is, the set of atomic propo-
sitions is A = {Py, P», .., P, }. A state in the concrete system is labeled with all the
predicates it satisfies. The abstract state space contains one boolean variable B; for
each predicate P;. An abstract state is labeled with predicate P; if the corresponding
Boolean variable B; has value 1 in this state.

The predicates are also used to define a relation p between the concrete and the
abstract state spaces. A concrete state s will be related to an abstract state $ through p if
and only if the truth value of each predicate on s equals the value of the corresponding
boolean variable in the abstract state 3, i.e.,

p(s,8) = N Pi(s) e Bj(3).

1<j<m

We now define the concretization function -, which maps a set of abstract states to the
corresponding set of concrete states. Each set of abstract states can be described by a
Boolean formula over the variables By, ..., B,,. For a propositional formula f over
the abstract state variables, we define v(f) = f[B; — P;] to be the formula obtained
by replacing each occurrence of some B; by the corresponding P;. The abstract initial

states S, and the abstract transition relation & are defined as

So = A8 =)} (1)
R = AY =Y [(RAY) =Y} )

where Y (Y;) denotes conjunctions (disjunctions resp.) of the literals over the current
abstract state variables {B;, ..., B,,} and Y’ denotes disjunctions of literals over the
next state variables { Bi, ..., B}, }. The abstract model built according to equations (1)
and (2) is called the most accurate abstract model. In the most accurate abstract model,
every abstract initial state has at least one corresponding concrete initial state, and every
abstract transition has at least one corresponding concrete transition.

Building the most accurate abstract model is expensive because the number of im-
plications that need to be checked in the worst case is exponential in the number of
predicates. Thus, to reduce the abstraction time, in practice an approximate abstract
model is constructed by intentionally excluding certain implications from considera-
tion. Therefore, there will be more behaviors in this approximate model than in the
most accurate abstract model. We call those abstract transitions that do not have any



corresponding concrete transitions spurious transitions. (Precise definitions are given
in Section 3.1). Since an approximate abstract model preserves all behaviors of the
original concrete system, the preservation theorem still holds.

Contribution. For software model checking, the use of predicate abstraction or simi-
lar abstraction techniques is essential because most software systems are infinite state
and the existing model checking algorithms either cannot handle infinite state systems,
or only very specific ones. Predicate abstraction can extract finite state abstract mod-
els which are amenable to model checking from infinite state systems. Since hardware
systems are finite state, model checking, possibly combined with simple forms of ab-
straction such as the localization reduction [14]) has been traditionally used to verify
them. Existing predicate abstraction techniques for verifying software however are not
efficient when applied to the verification of large scale hardware systems.

There are many proof obligations involved in predicate abstraction that require the
use of decision procedures. Proof obligations can arise from equations (1) and (2) and
also from determining whether an abstract counterexample is spurious or not. For soft-
ware verification, these proof obligations are solved using decision procedures or gen-
eral theorem provers. For the verification of hardware systems, which usually have com-
pact representation in conjunctive normal form (CNF), we can use SAT solvers instead
of general theorem provers. With the advancements in SAT technology, discharging the
proof obligations using SAT solvers becomes much faster than using general theorem
provers.

When refining the abstract model, we distinguish two cases of spurious behavior:

1. SpuriousTransitionsare abstract transitions which do not have any corresponding
concrete transitions. By definition, spurious transitions cannot appear in the most
accurate abstract model.

2. SpuriousPrefixesare prefixes of abstract counterexample paths which do not have
corresponding concrete paths. These are the typical spurious counterexamples de-
scribed in the literature.

Our first SAT based algorithm deals with the first case, i.e., spurious transitions.
As argued above, it is time consuming to build the most accurate abstract model when
the number of predicates is large. We use a heuristic similar to the one given in [1] to
build an approximate abstract model. Instead of considering all possible implications
of the form ¥ — Y/ we impose restriction on the lengths of ¥ and Y in equation (2),
and similarly for equation (1)). If the resulting abstract model is too coarse, an abstract
counterexample with a spurious transition might be generated. This spurious transi-
tion can be removed by adding an appropriate constraint to the abstract model. This
constraint however should be made as general as possible so that many related spuri-
ous transitions are removed simultaneously. An algorithm for this has been proposed
in [12] which in the worst case requires 2m number of calls to a theorem prover, where
m is the number of predicates. In this paper, we propose a new algorithm based on SAT
conflict dependency analysis (presented in Section 2) to generate a general constraint
without any additional calls to the SAT solver. Our algorithm works by analyzing the
conflict graphs generated when detecting the spurious transition. Thus our algorithm



can be much more efficient than the algorithm in [12]. We give a detailed description in
Section 3.1.

Even after removing spurious transitions the abstract counterexample can have a
spurious prefix. This happens when the set of predicates is not rich enough to capture
the relevant behaviors of the concrete system, even for the most accurate abstract model.
In this case, a new predicate is identified and added to the current abstract model to in-
validate the spurious abstract counterexample. To make the abstraction refinement pro-
cess efficient, it is desirable to compute a predicate that can be compactly represented.
Large predicates are difficult to compute and discharging proof obligations involving
them will be slow. We propose an algorithm, again based on SAT conflict dependency
analysis, to reduce the number of concrete state variables that the new predicate depends
on. The new predicate is then calculated by a projection-based SAT enumeration algo-
rithm. Our experiments show that this algorithm can efficiently compute the required
predicates for designs with thousands of registers.

Related work. SAT based localization reduction has been investigated in [2]. To iden-
tify important registers for refinement, SAT conflict dependency analysis is used. Their
method is similar to our algorithm for reducing the support of the predicates. How-
ever, there are several important differences: First, we have generalized SAT conflict
dependency analysis to find the set of predicates which disables a spurious transition,
while the algorithm in [2] only finds important registers. Second, in this paper, we
present a projection-based SAT enumeration algorithm to determine a new predicate
that can be used to refine the abstract model. Third, we approximate the most accurate
abstract model by intentionally excluding certain implications, while in [2], approxima-
tion is achieved through pre-quantifying invisible variables during image computation.
Finally, our experimental results show significant improvement over the method in [2].

An algorithm to make the abstract model more accurate given a fixed set of pred-
icates is presented in [12]. Given a spurious transition, their algorithm requires 2m
number of calls to a theorem prover, where m is the number of predicates. Our algo-
rithm is more efficient in that no additional calls to a SAT solver are required. Note
that, in general, their algorithm can come up with a more general constraint than ours.
However, we can obtain the same constraints, probably using much less time, by com-
bining the two algorithms together. Furthermore, the work in [12] does not consider the
problem of introducing new predicates to refine the abstract model.

Other refinement algorithms in the literature compute new predicates using tech-
niques such as syntactical transformations [16] or pre-image calculation [7, 18]. In con-
trast to this, our algorithm is based on SAT. They also neglect the problem of making
the representation of the predicates compact. This could result in large predicates which
affects the efficiency of abstraction and refinement.

More recently, [8] shows that predicate abstraction can benefit from localization
reduction when verifying control intensive systems. By selectively incorporating state
machines that control the behavior of the system under verification, more compact ab-
stract models can be computed than those only based on predicate abstraction.

Outline of the paper. The rest of the paper is organized as follows. In Section 2 we
describe the conflict dependency analysis. The refinement algorithms are presented in



Section 3. Section 4 contains the experimental results, and Section 5 concludes the
paper.

2 SAT Conflict Dependency Analysis

In this section, we give a brief review of SAT conflict dependency analysis [2]. Modern
SAT solvers rely on conflict driven learning to prune the search space; we assume that
the reader is familiar with the basic concepts of SAT solvers such as CHAFF [19]. As
presented in [19], a conflict graph is an implication graph whose sink is the conflict
vertex, and a conflict clause is obtained from a vertex cut of the conflict graph that
separates the decision vertices from the conflict vertex.
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Fig. 2. Part of an implication graph and its corresponding Gcur.

Let G be a conflict graph, « be the conflict vertex in G, and CUT be a vertex cut
which corresponds to the conflict clause ¢l(CUT). Then G ¢y is the subgraph of G
whose sources are the vertices in CUT and whose sink is . An example of a conflict
graph and a vertex cut is given in Figure 2. For a subgraph G’ of a conflict graph G,
let 2(G’) be the set of clauses that occur as labels on the edges in the graph G’. Since
G cyr includes the conflict vertex «, it is easy to see that —cl(CUT) A 2(Geyr) =
false. Therefore we obtain

Q(GCUT) = CZ(CUT). (3)

Given a CNF formula f, a SAT solver concludes that f is unsatisfiable if and only if the
SAT solver derives a conflict graph without decision vertices. We associate the empty
conflict clause, denoted by 6, with this last conflict graph. Note that since 6 is an empty
clause, it is logically equivalent to false.



A conflict clause cI(CUT) directly depends on a clause b iff b is one of the clauses
in 2(Geoyr). We say the conflict clause « depends on clause b iff there exist a =
€1,¢2,...,b = ¢y, such that for 1 < i < n, ¢; directly depends on ¢;+;. Given a
CNF formula f, the set of clauses in f that a given set of conflict clauses cls depend
on is called the dependent set and the set is denoted by dep(cls). Based on equation
(3), it is easy to see that dep(cls) = cls. If f is an unsatisfiable CNF formula, let
SUB(f) = dep(9) denote the clauses actually used for showing that f is unsatisfiable.
Since dep(0) = 0, SUB(f) C f is also unsatisfiable, i.e.,

f=false = SUB(f) = false 4)

During SAT search, our conflict dependency analysis algorithm keeps track of the set
of clauses on which a conflict clause directly depends. After the SAT solver concludes
that f is unsatisfiable, our algorithm identifies the unsatisfiable subset SUB(f) based
on these dependencies. Note that the dependencies and the unsatisfiable subset that
our algorithm computes are determined by the conflict graphs and the conflict clauses
generated by a concrete run of the SAT solver during SAT search. Thus, for an unsatis-
fiable CNF formula f, SUB(f) is in general not the minimal unsatisfiable subset of f;
in many practical cases, however, SU B( f) is significantly smaller than f.

3 Refinement for Predicate Abstraction

In this section, we describe the two SAT-based refinement algorithms for spurious tran-
sitions and spurious prefixes. To this end, we first need to introduce some more notation
to represent the unrolling of a transition system from initial states.

Let V' be the set of system variables, and V"’ be the corresponding set of primed
variables used to describe the next state. Both V' and V' are called untimed variables.
For every variable v in V' we maintain a version v of that variable for each time point
i > 0. V7, is the set of timed versions of variables in V at time s > 0. The variables V*
are called timed variables at time «.

Let f(V) be a boolean function describing a property of concrete states; thus, it
maps the set of states over variables V' to {0,1}. The timed version of f at time 4,
denoted by f¢(V?), is the same function as f except that it is defined over the timed
variables V*. We define an operator, called utf (“untimed function) which for a given
timed function f¢(V?) returns the untimed function £(V), i.e, f(V) = utf (f{(V?)).

Similarly, given a relation »(V, V"), which relates a current state over variables V'
to the next state over variables V', r¢(Vi, Vi*1) is the timed version of » at time i.
We define an operator, called utr (for untimed relation), which for a given timed re-
lation 7(V¢, V**1), returns the untimed relation »(V, V"), i.e., utr(ri(Vi, Vitl)) =
r(V, V).

Let B = {By,..., B, } be the set of abstract state variables, and B* be the corre-
sponding timed variables. Given a timed abstract expression f ranging over variables B
at time 4, its concretization is a timed concrete expression v(f) in terms of V* obtained
by replacing each Bj- in f with P; the timed version of the corresponding predicate.

An abstract counterexample ce(BY, ..., B") is a sequence of abstract states

(ceo(B), ce1(B"), ..., cen(B™))



where each ce;(B?) is a cube (i.e., a conjunction of literals) over the set of abstract
variables B? at time i. When it is clear from the context, we sometimes represent a
counterexample without explicitly mentioning timed variables.

Let ce = (ceq, ce, . . ., cey,) be an abstract counterexample, and ¢ a natural number,
such that 0 < ¢ < n. The set of pairs of concrete states corresponding to the abstract
transition from ce;_; to ce; is

trans(i — 1,i) = y(ce;—1) A R™1 A vy(ce;) ()

The set of concrete paths which correspond to the prefix of the abstract counterexample
up to time i is given by

prf(i) = So Ay(ceg) AROA -+ Ay(cei1) AR Av(ce;). (6)

Let BV be a set of boolean variables and let BV C BV. If ¢ is a conjunction of
literals over BV, the projection of ¢ to BV, denoted by proj[BV](c), is a conjunc-
tion of literals over BV, that agrees with c over the literals in BV 4, i.e., the conjunction
obtained from ¢ by removing all literals based on atoms in BV \ BV;.

If fis a CNF formula over BV, the satisfiable set of f over BV, denoted by
SA[BV1](f), is the set of all satisfying assignments of f projected on to BV;. Thus,
SA[BV+](f) = proj[BV](SA[BV](£f)). For a SAT solver with conflict based learn-
ing, there is a well known algorithm to compute SA[BV1](f) without first computing
SA[BV](f), cf. [15]. This SAT enumeration technique works as follows: Once a satis-
fiable solution is found, a blocking clause over BV is created to avoid regenerating the
same projected solution. After this blocking clause is added, the SAT search continues,
pretending that no solution was found. This process repeats until the SAT solver con-
cludes that the set of clauses is unsatisfiable, i.e., there are no further solutions. The set
of all satisfying assignments over BV is the required result, which can be represented
as a DNF formula.

Given a set of variables SV that are not necessarily boolean, let BSV be the set of
boolean variables in the boolean encoding of the variables in SV. Let f be a CNF for-
mula over BSV.The scalar support of the CNF formula f, denoted by ssuppt[SV](f),
is a subset of SV that includes a variable v € SV iff at least one of v’s corresponding
boolean variables isin f.

Recall from the above discussion that an abstract counterexample ce =
(ceq, ceq, . . ., ce,) corresponds to a real counterexample if and only if the set prf (n)
is not empty. If the abstract counterexample is a real counterexample, then by virtue
of the preservation theorem, the property to be verified is also false for the concrete
model. Otherwise, the counterexample is spurious and we need to refine the current
abstract model. As argued above, there are two possible reasons for the existence of a
spurious counterexample: One is that the computed abstract model is a too coarse over-
approximation of the most accurate abstract model. The other possibility is that the set
of predicates we used is not rich enough to model the relevant behaviors of the system,
and thus we have a spurious prefix. In Section 3.1, we describe how our algorithm deals
with the first case. In Section 3.2 we deal with the case where the set of predicates has
to be extended.



3.1 Refinement for Spurious Transitions

Let ce = (ceq, ce1, ..., ce,) be an abstract counterexample as defined above. If there
existsanindex i, 0 < i < n, such that the set trans(i—1,1) = R"= Ay(cei—1) Ay(ce;)
is empty, then we call the transition from ce; 1 to ce; a spurioustransition. This means
that there are no concrete transitions which correspond to the abstract transition from
ce;—1 10 ce;. Itis evident that in this case the abstract counterexample does not have a
corresponding real counterexample.

Recall that in the most accurate abstract model, there is at least one concrete tran-
sition corresponding to every abstract transition; consequently, the spurious transitions
exist only for approximate abstract transition relations. Since spurious transitions are
not due to the lack of predicates but due to an approximate abstract transition relation,
our algorithm removes spurious transitions by adding appropriate constraints to R.

To determine whether trans(i — 1,) is empty or not, we convert it into a SAT
unsatisfiability problem. For the spurious transition from ce; 1 to ce;, we have

R Avy(cei_1) Ay(ce;) < false,

and therefore, }
R = (y(cei—1) — v(—ces)).

Note that ce; 1 is a conjunction over the abstract state variables at time i — 1, and —ce;
is a disjunction over the abstract state variables at time 4. Since the concrete transition
relation does not allow any transition from ~(ce;—1) to y(ce;), a natural (but naive)
approach is to add the constraint

utr(ce;—1 — —ce;)

to R. It is evident that the resulting transition relation is correct and eliminates the
spurious transition.

The constraint ce; 1 — —ce; however can potentially involve a much larger number
of the abstract state variables than necessary; it will therefore be very specific and not
very useful in practice. It is thus reasonable to make the constraint as general as possible
as long as the cost of achieving this is not too large. In the rest of this subsection, we
describe an efficient algorithm which removes some of the literals from ce; 1 and ce;
from the constraint ce;_; — —ce; in order to obtain a more general constraint.

Computing a General Constraint. Let m be the number of predicates. The problem
of finding a general constraint which eliminates a spurious transition can be viewed as
follows: Given propositional formulas f and f;, 1 < j < 2m, which make

AN f

1<j<2m

unsatisfiable, we need to find a small subset care C {1,...,2m}, such that f A
Nje care I7 18 Unsatisfiable.

Returning to our problem of computing a general constraint, it is easy to see that
if we set f = R'~! and let each f; correspond to the concretization of a literal in



ce;_1 Or ce;, then we can drop those literals that are not in care from ce;_; — —ce;.
Consequently, the resulting constraint will be made more general.

The set care can be efficiently calculated using the conflict dependency analysis
algorithm described in Section 2. Before we run the SAT solver we need to convert
FAfiNfa A+ A far, to CNF, and in this process some of the f;’s might be split into
smaller formulas. Hence it may not be possible to keep track of all f;’s. To overcome
this difficulty, we introduce a new boolean variable ¢; for each f; in the formula and
convert the formula into

F=3t,ty... tam. fA N\ (&A= 1). @)

Itis easy to see that this formula is unsatisfiable iff the original formula is unsatisfiable.
Once (7) is translated to a CNF formula, for each ¢; there will be a clause T; containing
only the literal ¢;. So, instead of keeping track of the f;’s directly we keep track of the
clauses 7}’s. Since the CNF formula F' corresponding to (7) is unsatisfiable, we know
that SUB(F') C F is unsatisfiable, where SUB(F) is defined as in Section 2. Since
SUB(F) denotes the clauses used in the refutation of F, it is easy to see that we can
set care = {j | T; € SUB(F)} to obtain the indices for the relevant f;’s as desired.
Using only the fj/-s given by care, we can now add a more general constraint to .

Itis easy to see that our algorithm only analyzes the search process of the SAT prob-
lem during which the spurious transition was identified. Using the approach in [12], a
potentially more general constraint than the one computed by our algorithm can be
found. It works by testing for each f; whether removing it keeps the resulting formula
unsatisfiable. Their algorithm however requires 2m calls to a theorem prover, which is
time consuming when the number m of predicates is large. As presented in Section 2,
the unsatisfiable subset SUB(F') may not be a minimal unsatisfiable subset of F'. Con-
sequently, in general, the set care our algorithm computes is not minimal. In practice,
however, its size is comparable to a minimal set. Note that it is easy to modify our al-
gorithm in such a way as to make care minimal: After the set care is computed, we
can try to eliminate the remaining literals one by one as in [12], which requires | care|
additional calls to the SAT solver. Since the size of care is already small, this is not
very expensive.

3.2 Refinement for Spurious Prefixes

Even after we have ensured that there are no spurious transitions in the counterexample
ce, the counterexample itself can still be spurious. Such a situation is possible because
even in the absence of spurious transitions we only have the most accurate abstract
model; even in the most accurate abstract model it is not necessarily the case that there
exists a concrete path which corresponds to the abstract counterexample, cf. [7]. In the
current section we deal with this case.

Let n be the length of the given abstract counterexample. We are interested in find-
ing a k£ such that 1 < k& < n and the prefix py_1 = (ceo, ce1, ..., cer_1) of the
counterexample corresponds to a valid path but p,, = (ceq, ce1, . .., cey) does not. For-
mally, we call p;, a spurious prefix if and only if prf (k — 1) # 0 A prf(k) = 0. If there
is no such k then the counterexample is real.



Otherwise, let us consider the states in V=1 in more detail, adopting the terminol-
ogy of [7]:

— The set of states SA[V*~1](prf (k—1)) is called the set of deadend states, denoted
by deadend. Deadend states are those states in v(cer_1) that can be reached but
do not have any transition to y(cey).

— The set of states SA[V*~](trans(k — 1, k)) is called the set of bad states, denoted
by bad. The states in bad are those states in v(cex—1) that have a transition to some
state in y(ceg).

For a spurious abstract counterexample ce without spurious transitions, let k be the
length of the spurious prefix of ce. By construction we know that

deadend # 0, bad # 0, (deadend N bad) = 0.

As pointed out in [7], it is impossible to distinguish between the states in deadend
and bad using the existing set of predicates, because all involved states correspond to
the same abstract state cey_1. Therefore, our refinement algorithm aims to find a new
separating predicate sep, such that

deadend C sep and sep N bad = ().

After introducing sep as a new predicate, the abstract model will be able to distinguish
between the deadend and bad states. Note that we can also use an alternative symmetric
definition for sep which satisfies bad C sep and deadend N sep = 0.

We call the set of concrete state variables over which a predicate is defined the
support of the predicate. In order to compute a predicate sep with minimal support, we
will describe an algorithm which first identifies a minimal set of concrete state variables.
Then a predicate over these variables that can separate the deadend and bad states is
computed. The details of this procedure are described in the rest of this section.

Minimizing the Support of the Separating Predicate. An important goal of our refine-
ment algorithm is to compute a compact predicate, i.e., a predicate that can be rep-
resented compactly. For large scale hardware designs, existing refinement algorithms
such as weakest precondition calculation, preimage computation, syntactical transfor-
mations etc., may fail because the predicates they aim to compute become too big. Our
algorithm avoids this problem by first identifying a minimal set of concrete state vari-
ables that are responsible for the failure of the spurious prefix. Our algorithm guarantees
that there exists a separating predicate over this minimal set that can separate the dead-
end and bad states. It is reasonable to assume that a predicate with a small support has
a compact representation.

Our algorithm for computing the support of sep is similar to the one used in finding
the important registers for the localization reduction in [2]. By assumption, the CNF
formula for prf (k) is unsatisfiable. Thus, we can use the conflict dependency analysis
from Section 2 to identify an unsatisfiable subset SUB (prf (k)) of the clauses in prf (k).
Let u(ce, k — 1) denote the concrete state variables at time & — 1 whose CNF variables
are in SUB(prf(k)), i.e.,

p(ce, k — 1) = ssuppt[VE=Y(SUB (prf (k))).



When the context is clear we will for simplicity refer to p(ce,k — 1) as p. Let
deadend, = proj[u](deadend) be the projection of the deadend states on ., and
bad,, = proj[u](bad) be the projection of the deadend states on . By the definition of
SUB and y it follows that

w0 and deadend,, N bad, = 0. (8)
Thus any concrete set of states S, that satisfies
(S1 2 deadend,,) A (S1 N bad,, = 0)

is a candidate separating predicate.

To further reduce the size of ;. and to make it minimal we use the refinement min-
imization algorithm in [2], which eliminates any unnecessary variables in 1 while en-
suring that equation (8) still holds. In most of our experiments, the size of 1 was less
than 20, which is several orders of magnitude less than the total number of concrete
state variables.

Computing Separating Predicates using SAT. As argued above, any set of concrete
states that separates deadend,, and bad,, is a separating predicate. \We propose a new
projection based SAT enumeration algorithm to compute such a separating set, which
can be represented efficiently as a CNF formula or a conjunction of DNF formulas. Our
algorithm proceeds in several steps.

— First, we try to compute bad,, using a SAT enumeration algorithm, which avoids
computing bad first. To this end, the set of bad states bad is converted to a CNF
formula. Once a satisfying assignment is found, we project the satisfying assign-
ment to p and add it into the set of solutions. A blocking clause over y is also
added to the set of clauses and the SAT search is continued. This procedure repeats
until there are no more solutions. The collected set of solutions over y is naturally
represented in DNF. Since the size of 1 is pretty small, this procedure can often
terminate quickly. If that is the case, our algorithm terminates and

—bad,

is the required separating predicate. Note that —bad,, is represented as a CNF for-
mula.

— Otherwise, we try to compute deadend,, using a similar method. If this procedure
finishes in a reasonably short amount of time, our algorithm terminates and

deadend,,

is the desired separating predicate, which is represented as a DNF formula.

— In the third case when both deadend,, and bad,, can not be computed within a
given time limit, we compute an over-approximation of deadend, denoted by
ODE. Note that it is possible that the set ODE overlaps with bad,,. We define
SODE = proj[u](ODE A bad) as the intersection of the two sets. Then the de-
sired separating predicate is given by

ODE A -SODE,



which is represented as a conjunction of DNF formulas. In most cases, SODE is
much smaller than bad,,, so it can often be enumerated using SAT.

The over-approximation of deadend,, is computed by a projection-based method:
We partition the variables in 4 into smaller sets uq,..., u; based on the close-
ness of the variables, whereby the criterion for closeness is based on circuit struc-
ture [3]. Since each set ; is small, we can compute each deadend,,, easily. The
over-approximation is then given by

ODE = /\ deadend,,,.

1<i<l

— If in a rare case, even SODE can not be efficiently enumerated using SAT we
identify important registers using the algorithms in [2], and add them as a new
predicate to make sure the abstract model is refined. We did not encounter this case
in any of our experiments.

After the calculated separating predicate sep is added as a new predicate, we in-
troduce a new abstract Boolean variable B,,.1. for sep. Then we add the constraint
B+1 — utr(cep—1 — —ice) to the abstract transition relation. Thus, the spurious
counterexample is eliminated in the refined abstract model.

4 Experimental Results

We have implemented our predicate abstraction refinement framework on top of the
NuSMV maodel checker [4]. We modified the SAT checker zChaff [19] to support con-
flict dependency analysis. We also developed a Verilog parser to extract useful predi-
cates from Verilog designs directly; due to lack of space, we omit a detailed description
of this parser. All experiments were performed on a dual 1.5GHz Athlon machine with
3GB of RAM running Linux. We have two verification benchmarks: one is the inte-

circuit # regs| # gates| ctrex Localization Predicate Abstraction
length time]iters|# regs|| time|iters|# predicates
1Uscr2 4855|149143 20 29115.0/ 69| 115|/13515.0| 22 14
1Uscr3 4855|149143| true 47941 9 31j 2003.0{ 10 6
IUscr7 4855(149143] 12 7332.1| 17| 73| 3869.8| 10 8
IUprop4 4855|149143 8 5603.7| 36 61f 3495.9| 13 9
PFIRprop8 244\ 2304| true||> 24 hours|>37| >91|| 288.5| 68 35
PFIRprop9 244 2304| true|| >24 hours|>33| >85| 2448.7| 146 46
PFIRpropl10|| 244| 2304| true|| >24 hours|>46| >94| 6229.3| 161 55
PFIRprop12|| 247 2317| true|| >24 hours|>46| >91| 707.0|111 45

Table 1. Comparison between localization reduction [2] and predicate abstraction.

ger unit (1U) of the picoJava microprocessor from Sun Microsystems; the other is a



programmable FIR filter (PFIR) which is a component of a system-on-chip design. All
properties verified were simple AG p properties where p specifies a certain combination
of values for several control registers. For all the properties shown in the first column
of Table 1, we have performed the cone-of-influence reduction before the verification.
The resulting number of registers and gates are shown in the second and third columns.
We compare three abstraction refinement systems, including the BDD based aSMV [7],
the SAT based localization reduction [2] (SLOCAL), and the SAT based predicate ab-
straction (SPRED) described in this paper. The detailed results obtained using aSMV
are not listed in Table 1 because aSMV can not solve any of the properties within the
24hr time limit. This is not surprising because aSMV uses BDD based image computa-
tion and it can handle only circuits with several hundred state variables, provided that
good initial variable orderings are given. Since the time to generate good BDD variable
orderings can be substantial, we did not pre-generate them for any of the properties. For
the first four properties from 1U, SLOCAL takes about twice the time taken by SPRED.
Furthermore, the numbers of registers in the final abstract models from SLOCAL are
much larger than the corresponding numbers of predicates in the final abstract models
from SPRED. For the rest of the four properties from PFIR, SLOCAL can not solve any
of them in 24 hours because all the abstract models had around 100 registers. SPRED
could solve each of them easily using about 50 predicates.

To create the abstract transition relation in our experiments, we only considered
implications in equation (2) where the left hand side has at most 2 literals, and the
right hand side has 1 literal, and relied on the refinement algorithm to make the abstract
transition relation as accurate as necessary. In all our experiments, our projection based
SAT enumeration algorithm can successfully create the new predicates when necessary.
Thus we never have to resort to other methods for creating new separating predicates.

5 Conclusion

We have presented two SAT-based counterexample guided refinement algorithms to en-
able efficient predicate abstraction of large hardware designs. In order to reduce the ab-
straction time, we initially construct an approximate abstract model which may lead not
only to spurious counterexamples, but also to spurious transitions, i.e., abstract transi-
tions which do not have a corresponding concrete transition. Our first SAT based refine-
ment algorithm is used to eliminate spurious transitions. Our second SAT based refine-
ment algorithm eliminates spurious counterexample prefixes. It extends the predicate
abstraction by a new predicate ranging over a minimal number of state variables. The
predicates computed by our algorithm can be represented compactly as CNF formulas
or conjunctions of DNF formulas. Our experimental results demonstrate significant im-
provement of our predicate abstraction algorithms over popular abstraction algorithms
for hardware verification.
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