
Formal Verification of the PCI Local Bus: A Step Towards IP Core
Based System-On-Chip Design Verification

by

Dong Wang

Submitted to the
Department of Electrical and Computer Engineering

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical and Computer Engineering

at

CARNEGIE MELLON UNIVERSITY

May 1999

c
 Dong Wang, 1999. All rights reserved.

The author hereby grants to CMU permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part, and to grant others the

right to do so.

Author :

Department of Electrical and Computer Engineering
May 3, 1999

Certified by :

EDMUND M. CLARKE, Thesis Advisor
FORE Systems Professor of Computer Science and Professor of Department of Electrical

and Computer Engineering(C)

Certified by :

Randal E. Bryant, Thesis Reader
President’s Professor of Computer Science with courtesy appointment in Electrical and

Computer Engineering

Accepted by :

Robert M. White
University Professor and Head, Department of Electrical and Computer Engineering;

Professor of Engineering and Public Policy

Formal Verification of the PCI Local Bus: A Step Towards IP Core Based

System-On-Chip Design Verification

by

Dong Wang

Submitted to the Department of Electrical and Computer Engineering
on May 3, 1999, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical and Computer Engineering

Abstract

We describe a methodology for verifying system-on-chip designs. In our methodology, the problem
of verifying system-on-chip designs is decomposed into three tasks. First, we verify, once and
for all, the standard bus interconnecting IP Cores in the system . The next task is to verify the
glue logic, which connects the IP Cores to the buses. Finally, using the verified bus protocols and
the IP core designs, temporal properties about the complete system are deduced. To illustrate our
methodology, we verify the PCI Local Bus, a widely used bus protocol in system-on-chip designs.
We demonstrate various modeling and verification techniques for buses by modeling the PCI Local
Bus with the symbolic model checker SMV. We have found two potential bugs in the PCI bus
specification that await confirmation of the PCI Special Interest Group(PCI-SIG).

Thesis Advisor: EDMUND M. CLARKE
Title: FORE Systems Professor of Computer Science and Professor of Department of Electrical and
Computer Engineering(C)

Thesis Reader: Randal E. Bryant
Title: President’s Professor of Computer Science with courtesy appointment in Electrical and Com-
puter Engineering

ii

Acknowledgments

The preparation of this report has benefited greatly from my advisor, Ed Clarke. Ed got me started

in this field and has opened my eyes to many challenging problems in model checking. His encour-

agement and help are among the most important reasons behind the completion of this report.

I would like to thank Pankajkumar Punjabrao Chauhan and Yuan Lu for working at the same

project. Their contributions to this report are phenomenal. I especially enjoyed the counterless talks

with Yuan, which has significantly improved the quality of this work.

I would like to thank Sergey Berezin for numerous insightful conversations on topics in formal

verification. I would like to thank every member of our research group for their help.

Special thanks to Kenneth McMillan of Cadence Berkeley Labs for initially suggesting us the

idea of verifying IP Core based system-on-chip designs.

iii

Contents

0.1 Introduction . 1

0.2 Symbolic Model Checking . 4

0.2.1 Binary Decision Diagram . 4

0.2.2 Temporal Logic Model Checking . 5

0.2.3 Implementation Relation between Models 7

0.3 PCI Local Bus . 8

0.3.1 PCI Signals and Transactions . 8

0.3.2 PCI Bridge . 14

0.4 Verifying PCI Bus . 18

0.4.1 Single PCI Bus . 18

0.4.2 PCI Bus with Multiple Masters and Targets 23

0.4.3 Verifying PCI Bridge . 26

0.5 Experimental Results . 28

0.6 Conclusions and Future Work . 32

iv

0.1 Introduction

Hardware designs have reached a mammoth scale today, with over ten million transistors integrated

on a single chip. This breakthrough in technology has, in fact, reached the point, where it is hard

to design a complete system from scratch. Industry has already started designing ASICs from a

large repertoire of Intellectual Property Components or IP Cores sold by many vendors. System-

on-chip designs usually involve the integration of heterogeneous components on a standard bus.

These components may require different protocols or have different timing requirements. Moreover,

designers often do not have complete knowledge of the implementation details of each component.

For example, vendors may want to protect their IP Cores by only providing interface specifications.

Consequently, the validation of such designs is becoming more and more challenging. This report

outlines a new methodology for formally verifying IP Core based, system-on-chip designs.

An IP Core based system can be viewed as a collection of various IP cores, with interconnecting

buses running among them (see Figure 0-1). Since the cores are obtained from different vendors,

there is a need for standard buses to connect them. We also envision some kind of interface logic,

which we call glue, to connect IP Cores to the standard buses. In some cases IP Cores are designed

to be compliant to a standard bus protocol and can be connected directly to the bus without glue.

Bridges are used to extend such systems in a hierarchical fashion by connecting buses.

IP Cores are often pre-validated. This increases the confidence of system designer in third party

IP Cores. The validation of IP Cores must be part of the IP Core design itself. So in this scenario,

where we have a) pre-verified IP Cores with certain guarantees and confidence, b) a standard bus

protocol, and c) IP Core specific glue to connect cores to the bus, we can decompose the task of

verifying system-on-chip designs into three parts as follows.

1. Verify the interconnecting buses and bus bridges based on the abstract models developed

1

IP Core IP Core

IP Core
IP Core

BridgeInterconnecting Buses

Glue Glue

Glue

Figure 0-1: A typical IP Core based System

according to the bus specifications;

2. Verify the IP Core specific glue logic with respect to the pre-verified abstract glue models;

3. Given the verification guarantees of interconnecting buses and IP Cores, deduce properties

about the actual system.

Since the bus protocol is standard, it needs to be verified once and for all. One of the major

task in this process is the development of bus specific abstract models including master and target

state machines, and master and target back-end models. These models should be general enough

to incorporate all the behaviors of the interesting verification-related bus transactions. Temporal

properties verified in this stage should be focused on the subsets that can be preserved by the second

stage[15, 13, 11]. Glue logic is IP Core specific. If we have a collection of protocols for IP Cores,

then we can design an abstraction of the glue between the standard bus and each IP Core protocol.

2

This abstract model is designed once. Then, we intend to check if the actual glue implementation

refines the abstract model of the glue [12]. Thus, we have reduced the complexity of verifying

the glue to checking refinement. There is efficient algorithm that is both linear in the sizes of

the state spaces of both implementation and specification machines[10]. Compositional reasoning

techniques can be used to check refinement and provide abstract environments when checking part

of the design[15]. When this is completed for all IP Cores and their glues, we can proceed to the

third step, where temporal properties about the whole system can be easily deduced. The verified

complete system should be free of deadlocks and livelocks[9]. We envision the following design

language which forcilitate the application of our verification methdology:

Experience in industry with IP Core based ASIC designs shows that most of the bugs are found

in the bus or glue logic. To our knowledge, there is still no agreement on a standard bus protocol for

system-on-chip designs. However, the PCI Local Bus protocol [18, 19, 20] is widely accepted by

many microprocessor based systems (eg. Pentium and Alpha) and IP Core companies. Therefore,

the report focuses on verifying system-on-chip designs using the PCI Local Bus. This will provide

insight into questions like, what basic functionality is required of the buses, what kind of standard

interfaces are needed for IP Core based designs, and how glue logic may be designed and verified

for heterogeneous IP Cores. We have formally verified the correctness of the PCI bus protocol using

symbolic model checking [6].

In many cases, bus protocols can be verified with current formal verification techniques as

demonstrated by [5] and [8]. We concentrate more on the functional properties of the PCI local

bus and bridges rather than performance issues. A formal treatment of PCI bus performance is

given by Campos, et al. in [5]. In a recent paper [17], theorem proving techniques have been

used to validate a proposed solution for a bug in the PCI bus protocol, but this approach requires

considerable expertise in modeling the bus and is not easily automated. ‘

3

0.2 Symbolic Model Checking

Model Checking[6] is an automatic technique to check an implementation described as a state tran-

sition system satisfies the specification expressed in temporal logic formulas or another state tran-

sition system. Symbolic Model Checking uses ROBDD[1] as the underlying representation, which

makes it practical for many applications.

0.2.1 Binary Decision Diagram

Ordered binary decision diagrams (BDDs) are a canonical representation form for boolean formu-

las [1]. They are often substantially more compact than conjunctive normal form and disjunctive

normal form, and they can be manipulated very efficiently. BDD is a directed acyclic graph which

can be obtained from the ordered decision tree by the following two steps:

� Combine any isomorphic subtrees into a single tree.

� Eliminate any nodes whose left and right children are isomorphic.

An efficient BDD package[2] normally include a unique table, an operation cache. Boolean

operations can be implemented based on ITE operator. Suppose x is a boolean variable, then

ITE(I; T; E) = x ^ ITE(Ix; Tx; Ex) _ x0 ^ ITE(Ix0; Tx0; Ex0)

The time complexity is O(jI j:jT j:jEj).

OBDDs are used for obtaining concise representations of relations over finite domains. If

R is n-ary relation over 0,1 then R can be represented by the OBDD of its characteristic func-

tion fR(x1; :::x2) = 1, iffR(x1; :::; xn). The transition relation of a FSM can be represented by

f(v; x; v0), where v is the current state variables, x is the input variables, v 0 is the next state vari-

ables. Image and Pre-image computation can be computed efficiently using BDDs. [14] gave an

AndExists algorithm to efficiently compute 9V 0
:(p_q). By reducing 3SAT problem toAndExists

4

BDD computation, it is shownAndExists is at least NP hard.

0.2.2 Temporal Logic Model Checking

The model of computation in temporal logic model checking is called Kripke structure M =<

S; S0; AP;R; L;H >, where

� S is the set of states, S0 is the initial state,

� AP is the set of atomic propositions,

� R 2 S � S is the transition relation, and

� L : S ! P (AP) gives the set of atomic propositions true in each state.

� H = h1; :::; hn is a set of fairness constraints, where hi � S.

Models such as Moore machine[13], Mealy machine commonly used in hardware description can

be easily translated into Kripke structure.

In temporal logic, there are two branching time operators: A which stands for all execution

paths from a given state and E which stands for some execution path. There are mainly four linear

time operators(F, G, X or U):

1. F' (“' holds sometime in the future”) is true of a path if there exists a state on the path for

which the formula ' is true.

2. G' (“' holds globally”) means that ' is true at every state on the path.

3. X' (“' holds in the next state”) means that ' is true in the second state on the path.

4. 'U (“' holds until holds”) means that there exists some state on the path for which is

true, and for all states preceding this one, ' is true.

5

computation tree logic(CTL) and linear temporal logic(LTL) are two kinds of temporal logic

widely used as specification languages in model checking. In CTL each of the usual linear time

operators must be directly preceded by a path quantifier. Examples of CTL formulas are:

1. AG(Req ! AFAck): it is always the case that if the signal Req is true, then eventually Ack

will also be true.

2. AG AFDeviceEnabled: DeviceEnabled holds infinitely often on every computation path.

3. AG EFRestart : from any state, it is possible to get to the Restart state.

4. AG
�
Send ! A(Send U Recv)

�
: if Send holds, then eventually Recv is true, and until that

time, Send remains true.

Since AG, AU and AX can be rewritten in terms of EG, EU and EX, it is sufficient to only

consider EX f , E(f U g) and EG f in CTL model checking. The procedure to return the BDD

representation of the states where the formula is true is called Check [4]:

1. CheckEX(f(v)) = 9v
0[f(v0) ^ R(v; v0)].

2. CheckEU(f(v); g(v)) = lfpZ(v)[g(v) _ (f(v) ^ CheckEX(Z(v)))].

3. CheckEG(f(v)) = gfpZ(v)[f(v) ^ CheckEX(Z(v))].

Fairness constraints are needed for reactive concurrent systems. A path is said to be fair with

respect to a set of fairness constraints if each constraint holds infinitely often along the path. CTL

model checking with fairness can be described as:

1. EGfair f = gfpS

�
f ^

nV
k=1

EX(E(f U S ^ hk))

�
.

2. EXfair f = EX(f ^ EGfair true)

3. Efair(f U g) = E(f U (g ^ EGfair true))

6

Linear temporal logic(LTL) consists of formulas that have the formAf where there is no branch-

ing time operators in f . [7] gave a LTL modeling checking algorithm based on CTL model checker

SMV [14]. LTL formula Af is converted to :E:f . A tableau T = (ST ; RT ; LT) with APf as

its set of atomic propositions is constructed which has all the possible paths that satisfy f. Each

state in the tableau is a set of elementary formulas el(f) obtained from f . New state variables are

introduced for each occurrence of a temporal operator in f to encode the transition relation in T . A

function sat(g) is defined for each subformula g of f to return a set of states in T where g is true.

The following theorem establishes the conversion of LTL model checking to CTL model checking:

Theorem [7]: M;�
0
j= Ef if and only if there is a state � in T such that (�; � 0) 2 sat(f) and

P; (�; �0) j= EG true under fairness constraints fsat(:(gUh) _ h)jgUh occurs in fg.

0.2.3 Implementation Relation between Models

In Model checking, both specification and implementation can be state transition systems, which

describe behaviors at different level of abstraction. Typically, specification machine can be used

as part of implementation machine when checking more abstract specifications. Model checking

in this framework consists of checking the implementation relation between models, denoted by

P � Q, where P is the implementation machine and Q is the specification machine. There are two

definitions of implementation[11], the first one is trace-based implementation or refinement, where

every computation of the implementation is correlated to some computation of the specification. The

second one is tree-based implementation or simulation, where every computation tree embodied in

the implementation is correlated to some computation tree embodied in the specification. Simulation

is a sufficient condition for refinement.

As far as temporal logic is concerned, refinement preserves LTL; while simulation preserves

ACTL�[13]. Refinement-checking problem is PSPACE-hard in the size of the implementation de-

7

scription and in the state space of the specification[10]. By adding witness module to make all the

local variables of Q appear in P , the refinement checking problem can be reduced to transition-

invariant checking, which is linear on the state spaces of both P andQ. Although simulation can be

reduced to the problem of finding a simulation relation, with complexity linear in the state spaces

of both P and Q, the simulation with fairness defined in [13] can not be checked efficiently(it is

complete for PSPACE).

0.3 PCI Local Bus

The PCI Local Bus [18, 19, 20] is a high performance, synchronous bus architecture that can transfer

32-bit or 64-bit data. Its primary goal is to establish an industry standard and optimize for direct

silicon (component) interconnection with minimum glue logic required. It supports most processor

designs and connects various types of devices on a chip. Bridges are used to extend the PCI bus

based systems.

0.3.1 PCI Signals and Transactions

PCI bus signals(Figure 0-2)can be divided into the following categories according to their func-

tionality. Address and Data lines are multiplexed and can be either 32 bit or 64 bit wide, and they

also have a parity line for error correction. Command lines carry four bit commands at the start of

each transaction, identifying the transaction type. Interface Control lines are used for handshaking

between devices, device signalling, exclusive access and transaction termination. Arbitration lines

are traditional request- and-grant type point-to-point lines between each device and an arbiter. PCI

bus also supports four Interrupt lines and IEEE JTAG lines. Error indicator lines and system wide

lines clock and reset are also required.

The following pins are important signals in PCI [21]:

8

C/BE[3::0]#

CLK

RST#

REQ#

GNT#

SERR#

PERR

TRDY#

FRAME#

IRDY#

STOP#

DEVSEL#

IDSEL

Compliant

Device

PCI

AD[31::00]

PAR

AD[63::32]

C/BE[7::4]#

PAR64

ACK64#

REQ64#

LOCK#

INTA#

INTB#

INTC#

INTD#

SBO#

SDONE

TDI

TDO

TCK

TMS

TRST#

Address
and Data

Interface
Control

Error
Reporting

Arbitration

System

64-Bit
Extension

Interface
Control

Interrupts

Cache
Support

JTAG

Figure 0-2: PCI signals

� FRAME# (Frame): This active-low signal identifies the beginning of a valid bus cycle. It

identifies the address phase of the transfer and indicates that the AD and C/BE# signal lines

contain valid address and command information. Once deasserted, the cycle is in the final

data phase and completes when TRDY# and IRDY# are asserted in the same clock cycle to

latch the final data transfer.

� TRDY# (Target Rdy): This active-low signal indicates that the accessed PCI resource (target)

is ready to complete the bus cycle. This signal is used in conjunction with IRDY# such that

when both are deasserted, the data phase is complete. For a read cycle, it indicates that valid

9

data is present on the bus. During a write cycle, it indicates that the target is ready to accept

data.

� IRDY# (Initiator Rdy): This active-low signal indicates that, for write cycles, active data is

valid on the bus driven by the bus master. During a read, it signifies that the master is ready

to accept data.

� STOP# (Stop): This active-low signal indicates that the accessed PCI resource (target) wants

to end the bus cycle without the bus master completing any or all accesses. The signal can be

used if the target cannot accept or return more data or in the event of an error. Refer to the

discussion on RETRY, DISCONNECT and TARGET ABORT.

� DEVSEL# (Device Select): This active-low signal indicates that a PCI resource (target) has

decoded the address on the AD signal lines and claims the bus cycle. It is also used by other

PCI resources to indicate another device has claimed ownership of the current transaction.

� AD[31::00] (Address/Data): These are 32-bit (AD31 is MSB) multiplexed lines used to con-

vey address and data. They are valid on the rising edge of clock and are active-high lines. A

typical bus cycle consists of one address phase and one or more data phases for burst reads

and writes.

� C/BE[3::0]# (Command/Byte Enable): These active-low lines contain the command type for

the bus cycle as well as the valid byte lanes of the AD signal lines. These lines are always

valid.

� REQx# (Request): Each bus master has an individual and unique request line to the system

arbiter. The master uses this line for output only, although the line is defined as bidirectional,

to take advantage of a standard PCI buffer that has attributes of being in the 3-state mode. It

10

is an active-low line from master to arbiter and is used to ask for bus ownership.

� GNTx# (Grant): Each individual master has an individual and unique signal line allowing the

system arbiter to communicate to a PCI resource that the master now owns the bus. Used only

as an input by bus masters, Grant also is defined as bidirectional for the same reasons as for

the Request signal.

A typical PCI bus transaction is demonstrated in Figure 0-3. The request for a transaction starts

when a subsystem asserts its request line REQ#. It then waits until being granted the bus by the

arbiter by asserting the corresponding GNT# line. This phase is known as the arbitration phase.

The transaction begins when signal FRAME# is asserted. In the first clock after asserting FRAME#,

address is put on the data/address multiplexed lines in the address phase and the command lines

carry the transaction-type. All target devices listen to this address and if the address maps to their

address space, they assert their DEVSEL# lines, indicating they are present on the bus. The master

then asserts the signal IRDY#, meaning that it is ready for data transfer. The bus target asserts its

TRDY# signal to indicate that the target is ready for data transfer. Data transfer occurs when both

IRDY# and TRDY# are asserted, which is known as one data phase. A transaction can have more

than one data phase, and wait cycles can be inserted between data phases by the master (target) by

deasserting the IRDY# (TRDY#) signal. One clock cycle before the end of the data transfer phase,

the FRAME# signal is deasserted. In the next cycle both IRDY# and TRDY# are deasserted, and

the bus goes back to the idle state.

The PCI bus requires a fair central arbiter, which implies that every master should be served.

Note that apart from this requirement, the arbitration algorithm is not part of the PCI bus specifica-

tion. The arbiter may park the bus at some selected master or allow the bus to float. Since the PCI

bus is a high performance bus, there are strict timing requirements on various events, like number

of wait states, latency for a target asserting its selection line, arbitration latency, etc.

11

1 3 4 5 6 7 8 92

CLOCK

REQ#

GNT#

FRAME#

ADDRESS/DATA ADDRESS DATA 1

IRDY#

COMMAND/BE# BUS CMD BYTE ENABLE#s

DATA 2 DATA 3

D
A

TA
 T

RA
N

SF
ER

W
A

IT

D
A

TA
 T

RA
N

SF
ER

Arbitration
Phase

Address Phase Data Phase Data Phase Data Phase Data Phase Idle Bus

TRDY#

D
A

TA
 T

RA
N

SF
ER

W
A

IT

Figure 0-3: A typical PCI bus transaction

PCI local bus supports various kind of bus transactions, which are briefly described as follows.

Apart from simple memory and I/O read and writes, we also have transactions for reading and

writing configuration registers of devices on PCI bus. Memory read multiple command is intended to

be used for bulk sequential data transfers where the memory system and the requesting master might

gain some performance advantage by sequentially reading ahead one or more additional cache-

line(s). Memory read line command is intended for reading complete cache line. Memory write

and invalidate is used for master to write all bytes within the addressed cache-line in a single PCI

transaction, and additional data transfer is also in terms of full cache-lines. PCI bus also supports

fast back to back transaction (i.e. two transactions without idle states in between). All targets must

implement fast back to back transactions, while masters may or may not implement them.

Delayed transactions and posting [18] are two important mechanism to improve system perfor-

12

mance in PCI. A delayed transaction progresses to completion in the three steps:

1. Request by the master

2. Completion of the request by the target

3. Completion of the transaction by the master

During the first step, the master generates a transaction on the bus, the target decodes the access,

latches the information required to complete the access, and terminates the request with Retry. The

latched request information is referred to as a Delayed Request. The master of a Delayed Request

is required to reissue the retried request until the request completes. During the second step, the

target independently completes the request on the destination bus using the latched information

from the Delayed Request. If the Delayed Request is a read, the target obtains the requested data

and completion status. If the Delayed Request is a write, the target delivers the write data and

obtains the completion status. The target stores the Delayed Completion until the master repeats the

initial request. During the third step, the master successfully rearbitrates for the bus and reissues

the original request. The target decodes the request and gives the master the completion status(and

data if a read request). At this point, the Delayed Completion is retired and the transaction has

completed. There are two types of devices that will use Delayed Transactions: I/O controllers and

bridges.

Memory writes are allowed to be posted on the PCI bus. Posted transactions complete at the

originating device before they reach their ultimate destination. The master will often proceed with

other work, sometimes including other bus transactions, before the posted write reaches its ultimate

destination. In essence, the intermediate agent of the access (e.g., a bridge) accepts the data on

behalf of the actual target and assumes responsibility for ensuring that the access completes at the

final destination.

13

0.3.2 PCI Bridge

A PCI-to-PCI bridge [19] provides a connection path between two independent PCI buses. The pri-

mary function of the bridge is to allow transactions to occur between a master on one PCI bus and a

target on the other PCI bus. Thus a bridge has two PCI interfaces (Figure 0-4). The bridge functions

as a target on the originating bus on behalf of the target that actually resides on the destination bus.

Likewise, the bridge functions as a master on the destination bus on behalf of the originating master

that actually resides on the originating bus.

Optional
Data Buffers

Optional
Data Buffers

Config.
Registers

Primary
Target
Interface

Secondary
Master
Interface

Primary
Master
Interface

Secondary
Traget
Interface

Control Control

Data pathData path

Primary
Interface

Secondary
Interface

Figure 0-4: PCI Bridge Block Diagram

[19] requires a PCI bridge to support posting of memory write transactions and delayed trans-

actions for non-posted transactions. Posting and delayed transaction can reduced the time for a

master to hold the bus, but greatly increase the verification complexity. Transactions on PCI bus

must satisfy the producer-consumer model. In this model, the producer produces the data and the

14

consumer consumes the data. The producer and consumer communicate between each other via a

flag and a status element. The producer sets the flag when all the data has been written and then

waits for a completion status code. The consumer waits until it finds the flag set, then it resets

the flag, consumes the data, and writes the completion status code. When the producer finds the

completion status, it clears it and the sequence repeats. If some of the producer ’s data writes were

posted, then without buffer-flushing rules it might be possible for the consumer to see the flag set

before the data writes had completed. The PCI ordering rules are written such that no matter which

writes are posted, the consumer can never see the flag set and read the data until the data writes are

finished. This model allows the data, the flag, the status element, the producer, and the consumer

to reside anywhere in the system. Each of these can reside on different buses and the ordering rules

maintain a consistent view of the data. Below are the requirements of PCI ordering rules:

1. Posted memory writes moving in the same direction through a bridge will complete on the

destination bus in the same order they complete on the originating bus.

2. Write transactions crossing a bridge in opposite directions have no ordering relationship.

3. A read transaction must push ahead of it through the bridge any posted writes originating on

the same side of the bridge and posted before the read. Before the read transaction can com-

plete on its originating bus, it must pull out of the bridge any posted writes that originated on

the opposite side and were posted before the read command completes on the read-destination

bus.

4. A bridge can never make the acceptance(posting) of a memory write transaction as a target

contingent on the prior completion of a non-locked transaction as a master on the same bus.

Otherwise, a deadlock may occur.

5. A master must repeat any transaction terminated with Retry since the target may be using a

15

Delayed Transaction.

6. Once a Delayed Request has been attempted on the destination bus, it must continue to be

repeated until it completes on the destination bus. Before it is attempted on the destination

bus, it is only a request and may be discarded at any time.

7. Delayed Requests and Delayed Completion are not required to be kept in their original order

with respect to themselves or each other.

8. Only a Delayed Write Completion can pass a Posted Memory Write. A Posted Memory Write

must be given an opportunity to pass everything except another Posted Memory Write.

9. A single master may have any number of outstanding requests terminated with Retry. How-

ever, if a master requires one transaction to be completed before the another, it cannot attempt

the second one on PCI until the first one has completed.

PCI devices must follow certain allowable transaction orderings rules in order to satisfy the

Producer-Consumer model. Table 0.1 summaries the PCI bridge transaction ordering rules.

PMW DRR DWR DRC DWC

Row pass Col.? (Col 2) (Col 3) (Col 4) (Col 5) (Col 6)

PMW (Row 1) No Yes Yes Yes Yes

DRR (Row 2) No Yes/No Yes/No Yes/No Yes/No

DWR (Row 3) No Yes/No Yes/No Yes/No Yes/No

DRC (Row 4) No Yes Yes Yes/No Yes/No

DWC (Row 4) Yes/No Yes Yes Yes/No Yes/No

Table 0.1: Ordering rules for a bridge

16

PMW - Posted Memory Write is a transaction that has completed on the originating bus before

completing on the destination bus and can only occur for Memory Write and Memory Write and

Invalidate commands.

DRR - Delayed Read Request is a transaction that must complete on the destination bus before

completing on the originating bus and can be an I/O Read, Configuration Read, Memory Read,

Memory Read Line, or Memory Read Multiple commands.

DWR - Delayed Write Request is a transaction that must complete on the destination bus before

completing on the originating bus and can be an I/O Write or Configuration Write command.

DRC - Delayed Read Completion is a transaction that has completed on the destination bus and

is now moving toward the originating bus to complete. The DRC contains the data requested by the

master and the status of the target(normal, Master-Abort, Target-Abort, parity error, etc.).

DWC - Delayed Write Completion is a transaction that has completed on the destination bus

and is now moving toward the originating bus. The DWC does not contain the data of the access,

but only status of how it completed. The write data has been written to the specified target.

No - indicates that the subsequent transaction is not allowed to complete before the previous

transaction to preserve ordering in the system. The four No boxes found in column 2 prevent PMW

data from being passed by other accesses and thereby maintain a consistent view of data in the

system.

Yes - indicates that the subsequent transaction must be allowed to complete before the previous

one or a deadlock occurs.

Yes/No - indicates that the bridge designer may choose to allow the subsequent transaction

to complete before the previous transaction or not. This is allowed since there are no ordering

requirements to meet or deadlocks to avoid.

Noted that there is no posted memory write completion, because the master completes its write

17

transaction before the data actually being written. Each entry in the table stands for whether the

transaction in the row can bypass an earlier transaction in the column moving in the same direction.

Rule 1 - A subsequent PMW cannot pass a previously accepted PMW.(Col 2, Row 1)

Rule 2 - A read transaction must push posted write data to maintain ordering.(Col 2, Row 2)

Rule 3 - A non-postable write transaction must push posted write data to maintain ordering.(Col

2, Row 3)

Rule 4 - A read transaction must pull write data back to the originating bus of the read transac-

tion.(Col 2, Row 4)

Rule 5 - A Posted Memory Write must be allowed to pass a Delayed Request(read or write) to

avoid deadlocks.(Col 3 and Col 4, Row 1)

Rule 6 - A Delayed Completion(read or write) must be allowed to pass a Delayed Request(read

or write) to avoid deadlocks.(Cols 3 and 4, Rows 4 and 5)

Rule 7 - A Posted Memory Write must be allowed to pass a Delayed Completion(read or write)

to avoid deadlocks.(Col 5 and Col 6, Row 1).

0.4 Verifying PCI Bus

The PCI bus protocol is verified in three steps. In the first step, we looked at properties related to the

protocol without bridges. In the second step we verified properties for a single PCI bus with multiple

masters and targets. In the last step, we modeled a PCI bridge and verified the producer-consumer

model for bus transactions with bridges.

0.4.1 Single PCI Bus

Figure 0-5 shows the configuration that we modeled to verify PCI bus properties. The arbiter is safe

and fair. Masters and targets are modeled based on the Appendix of the PCI Specification Revision

2.2 [18]. The dummy-master is an abstracted master which has very restricted functionality and

18

is used only for checking arbitration properties. The master and the target are capable of carrying

out PCI sequences, e.g. fast back to back transactions, bus parking, burst transactions, latency

requirements, transaction termination, etc.

Arbiter
Dummy
Master Master Target

Figure 0-5: Configuration for verifying bus properties

The PCI master state machine (Figure 0-6) and PCI target state machine (Figure 0-7) are given

in the PCI specification [18]. States in the master state machine are:

Master Sequencer Machine

IDLE

DR_BUS

ADDR

M_DATA

S_TAR

TURN_AR

Figure 0-6: PCI Master State Machine

� IDLE : waiting for transactions

� ADDR : address phase

19

� M DATA : data transaction phase

� TURN AR : turn around delay

� DR BUS : bus parking(master)

� S TAR : master termination

Target Sequencer Machine

IDLE

BACKOFF

S_DATA

B_BUSY

TURN_AR

Figure 0-7: PCI Target State Machine

States in the target state machine are:

� IDLE : waiting for transactions

� B BUSY : address decoding phase

� S DATA : data transaction phase

� TURN AR : turn around delay

20

� BACKOFF : target termination

We modeled the following PCI bus features:

� Bus Arbitration

� Burst Read and Write Transactions.

� Fast Back to Back Transaction.

� Master and Target Termination

– Master Completion

– Master Timeout

– Target Retry

– Target Disconnect

– Target Abort

� Exclusive Access(LOCK)

� Parity Generation and Detection

� Latency

– Target Decode Latency

– Master Target Data Ready

Some abstraction is implemented in this model. We use 4-bits for the address line and 1-bit for

data line. Initial data latency timer, subsequent data latency timer and master time out timer are all 8

cycles. Number of bus data phases is modeled by a counter, which controls the assertion of master

termination. Target termination is modeled by the data latency timer and the counter for read/write

21

address, whenever the data latency timer exceeds 8 cycles or read/write address exceeds its address

limit, target termination is asserted.

We verified properties about transaction termination, arbitration, latency requirements, etc.

These properties primarily followed various must hold statements from the specification. For exam-

ple consider the following property: AG(bus :FRAME#! AX(:bus :FRAME#! bus :IRDY#)).

It says that when FRAME# is first asserted (active low), IRDY# should stay deasserted. SMV de-

termined that this property is true. Following are some interesting properties we verified.

� Bus Arbitration is safe and fair.

� Bus Driving

– AD can’t be driven in the cycle following a read command.

– Once asserted, STOP# can’t be deasserted until FRAME# is deasserted.

– Master must driven FRAME# until transaction finished.

– FRAME# can only be deasserted with the assertion of IRDY#.

– FRAME# will eventually be deasserted.

– Once STOP# is asserted, FRAME# should be deasserted as soon as IRDY# is asserted

– Once a target has asserted TRDY# or STOP#, it can’t change DEVSEL#, TRDY#, or

STOP# until the current data phase completes.

� Data Transfered

– It is possible that Transaction succeeds.

– When both master and target are ready, their read/write addresses are the same.

– A successful read transaction transfer data correctly from target to master.

22

0.4.2 PCI Bus with Multiple Masters and Targets

In order to handle multiple masters and targets on a single bus and avoid the state explosion problem,

we used some techniques including abstraction, assume-guarantee reasoning, symmetry and case

analysis.

Assume-Guarantee Reasoning

[13] defined a preorder between models which preserves ACTL and developed a framework to

do compositional reasoning. The capability of the proposed framework is demonstrated by the

following typical proof:

P; � j=

Q j= �

P k Q j=

One major limitation in [13] is that usually the environment assumptions needed to verify inter-

acting processes are interdependent. It can’t handle the following proof rule:

PkQ
0
j= P

0

P
0kQ j= Q

0

PkQ j= P
0
kQ

0

[15] established a framework capable of doing circular composition reasoning, where circularity

is resolve by induction over time. Define <M ,the dependency relation of machine M , be the set of

pairs (
; �) such that M� is a gate(has zero delay) and
 is an input of M� .

Theorem[15]: Let P and Q be machines. For all � 2 S, let "� be a machine such that:

� for all �0 2 signals: "�
�0 = P�0 or "�

�0 = Q�0 , and

� "
�

�
= Q�:

23

Let <� be the relation (<P [<Q)
�. If <� is irreflexive then the following inference rule is

sound:

for all � : "� j= P�

Q j= P

Temporal Case Splitting

Although there may be large data structures in the model, but for a particular transaction, only part

of the components are affected. By considering individually every path that a data item might take,

we cut down the state space considerably. for example:

layer spec:

if(out.valid) out.data := bytes[out.idx]

forall (i in INDEX)

subcase spec case[i] of out.data//spec for out.idx = i;

In this example, specification spec requires that when out.valid is true, our:data should equals

to the value bytes[out:idx], where bytes is an array, out:idx is an index to that array. The spec case[i]

represents the spec when out:idx = i. Although the array bytes can be very big, but when veri-

fying spec case[i] only one entry of it is needed, while all the other entries are unspecified. The

correctness of case splitting is captured by the following theorem:

Theorem[16]: If for all i in the range of variable v, j= G(v = i!), then j= G .

Symmetry Reduction

Symmetry is captured by scalarsets in SMV and the only operation within a scalarset is comparison

for equality and index to an array.

� scalarset TAG 0..15

24

� typedef word array TAG of boolean

The overall program semantics is not changed by exchanging any pair of elements of a scalarset

type. Given a parameterized class of assertions to prove, SMV chooses a representative set of

instances of the class, such that any instance can be reduced to one in the set by permuting scalarset

values.

Verification Using CBL-SMV

We developed a single bus model in CBL SMV [15] with 5 masters and 5 targets. In this model,

there is symmetry within the masters, as well as the targets(An abstraction is done to abstract the

address range of each target to be the index of the target in order to preserver symmetry). For a

bus driving property, we perform a case analysis on the actual master and the target that are active

on the bus, then use symmetry to reduce the number of proof obligations. The problem of this

approach using symmetry and case analysis is the mismatch of the master and target, some of the

bad behaviors when the inactive masters and targets are unconstrained are:

� A target can delay its active until the next transaction happens, so that two targets become

active at the same time.

� An active target can remain active when a new transaction begins.

� The active master can assert and deassert its FRAME# signal multiple time during one trans-

action, so that other targets will get address hit.

In order to prove bus driving properties, we have to prove the following non-interference lemmas

using the cyclic assume-guarantee rule:

� Inactive masters and targets can not drive the bus.

25

� Only one master and one target can be active at a time.

� Local properties about FRAME#, DEVSEL#, STOP#.

� An active master must stay active until one target becomes active.

� An inactive target can not become active until it has an address hit.

� If a master and a target are active, then the master must remain active until the target becomes

inactive.

� If one master starts a transaction with address k, then it will remain active until the target with

address k becomes active.

Using these lemmas, we have proved the following bus driving properties exerted from PCI

specification [18]:

� Once STOP# is asserted, FRAME# should be deasserted as soon as IRDY# is asserted.

� If not already deasserted, TRDY#, STOP#, and DEVSEL# must be deasserted the clock fol-

lowing the completion of the last data phase and must be tri-stated in the next clock.

� The target cannot drive data on the bus in the cycle immediately after a read transaction

begins.

� A master or a target should drive the data bus correctly in a data phase.

0.4.3 Verifying PCI Bridge

PCI bridge transaction ordering rules are modeled based on the configuration given in Figure 0-

8. We modeled the PCI bridge according to the PCI bridge specs [19]. The state machine of PCI

bridge essentially is a composition of four state machines, the primary master and target and the

26

Consumer Data

PCI-PCI
Bridge

Flag StatusProducer

Figure 0-8: Producer-Consumer model

secondary master and target (each bridge has a primary bus and a secondary bus). Since we have

already proved many properties about basic bus protocol, we have abstracted away some of the

functionality of the PCI masters and targets in this configuration, e.g. bus parking, fast back to back

transaction etc. We need to represent only three distinct values of data 0,1 and 2 for verifying this

model [14], hence the data bus should be at least 2 bits wide. We abstracted the address range of

each target to only one address, we changed the address decoding logic in each target and on both

sides of the bridge. Since there are only 3 targets in our configuration, the address bus is 2 bits wide.

Bridges also have finite data buffers for posting and delayed data.

We use a simple abstraction to establish the correctness of the PCI bridge transaction ordering

rules. We show that if a symbolic data value x is generated by the producer, then a unique copy

of x will be received by the consumer. The variable flag in the producer-consumer model indicates

the status of the data generated by the producer: flag = 0 means the producer has not written new

data; flag = 1 means that the producer has written the data value x; flag = 2 means the producer has

27

written a value different from x. In our model, the producer only generates one instance of the data

value x. The producer-consumer model requires that whenever the consumer sees flag = 1, it should

then receive x. The following three properties capture the correctness of this behavior (c denotes

consumer).

1. AG((c.chkFlag ^ flag=1)! A[(!c.statusFlag^

data 6= x)U(c.readData ^ data=x)]): The consumer receives x after seeing flag = 1.

2. AF(c.chkFlag ^ flag=1): The consumer eventually sees flag = 1.

3. AG((c.chkFlag ^ flag=1) ! AX AG(c.chkFlag ! :(flag=1))): The consumer sees flag = 1

at most once.

0.5 Experimental Results

We developed the single PCI bus model with one master, one target, and one dummy master and a

bus arbiter in CMU SMV. The model is about 1000 lines of SMV code and 111 BDD variables. We

verified twenty-three major properties using SMV for this setup, which took about three and half

hours on a Pentium-Pro 200MHz machine with 1G memory. During the process we discovered two

potential bugs in the PCI Bus Specification [18] and wait for confirmation from the PCI SIG group.

Both errors are due to the inconsistencies between the specification and given state machines in the

Appendix.

The first error occurs because the target transition condition is set incorrectly. The following

equation from the target state machine in PCI specification [18] is the condition for the target to

make a transition from B BUSY to IDLE(Figure 0-7):

FRAME# �D done + FRAME#�!D done�!DEVSEL#

According to this condition, the target makes a transition from B BUSY to IDLE when FRAME#

is deasserted and D done (the signal driven by the decoding logic in each target to represent the

28

address decoding is finished) is asserted. However, when the master starts a transaction with

single data phase, target goes from B BUSY to IDLE instead of S DATA in all cases (see Fig-

ure 0-9). This error is caught by the following CTL formula: AG((m:req ^m:data cnt = 1) !

A(m:req^:t :ack Um:timeout)) This formula means that whenever the master requests a transac-

tion with single data phase, the target never acknowledges before the master times out, i.e. the target

never goes to the S DATA state. We verified that this formula is true, which is inconsistent with the

standard. In the second error, the Specification requires that once a master has asserted IRDY#, it

1 3 4 5 62

FRAME#

CLOCK

IRDY#

TRDY#

STOP#

DEVSEL#

Target State IDLE B_BUSY IDLE

M_DATA

TI
M

E
O

U
T

Figure 0-9: Illustration of the first bug

can’t change IRDY# or FRAME# until the current data phase completes. But the implementation

of FRAME# in the state machine doesn’t satisfy this requirement.

FRAME# =!(ADDR+M DATA�!Dev to�f[!Comp�(!To+!GNT#)�STOP#]+!Readyg)[18].

Let us assume that IRDY#, FRAME# are asserted, and GNT#, TRDY# are deasserted in the

29

current cycle. If the master timer expires in the next cycle, then FRAME# is always deasserted ,

even though IRDY# is still asserted. This clearly conflicts with the specification. SMV came up

with a counterexample trace to illustrate this inconsistency.

For the PCI bus model with multiple masters and targets, on an UltraSparc 248MHz machine, it

took 46 minutes and 13M BDD nodes to verify all the lemmas and properties. As a comparison, after

taking about 2Gb memory and 5 hours, the first property could not be verified without techniques

mentioned in Section 0.4.

We modeled a multiple bus system with a bridge (see Figure 0-8) and verified the correctness of

the producer-consumer model by checking the three major properties described in Section 0.4. In

Table 0.2, we show our various statistics for two implementations of PCI bridges that have different

numbers of data buffers.

Buffers BDD Var Time BDD Nodes

4 120 982 s 12,075,532

6 142 8.8 h 15,080,273

Table 0.2: Experimental results for verifying PCI bridge

Although we haven’t found any incident of the violation of the producer-consumer model be-

cause of the transaction ordering rules in this simple configuration. We indeed encountered some

design errors by ourselves:

1. Since the DRC(Section 0.3) and DWC are moving in the opposite direction compared with

the original DRR and DWR, so that they participate in the transaction ordering rule in the

other direction through the bridge. An early design decision was to keep the DRR and DWR

in the buffer until they become completed, then request to the other direction in the same

bridge so that the completed delayed request can be placed in the buffers of the other direction,

then when the original request is arrived again, it can be matched by the completed request in

30

the buffers of the other direction. The problem of this design is that it could be the case where

there is no entry available in the other buffer unless the completed request finishes. Thus a

deadlock happened. We fixed this problem by allowing the DRC and DWC to quit without

having to be moved to the buffers in the other direction after checking the observance of the

transaction ordering rules.

2. Another problem is due to the use of bursting for the consumer to set the completion status.

The scenario is: consumer has read the newly written data by the producer, then it uses burst,

post transaction to set the completion status. While consumer are posting to the bridge, bridge

starts to write the latched data to status, so that the completion status is being set. Before the

consumer finishes the posting, burst writing to the status by the bridge is being disconnected,

then bridge reports to the consumer that posting to the bridge should be disconnected as well.

Thus although the status is already being set, but the consumer consider it haven’t set the

status because of disconnection. Later, the producer checks the status and finds out that the

consumer has set it to one. So it clears the status, writes the new data, sets the flag and waits

for the status being set again. The consumer will resume its disconnected posting to the status,

and successfully set the status. Then the producer sees the status is being set, then it will

generate a new data, although the last data haven’t been read by consumer. In reality, using

burst and repeating from the original address of request after being disconnected is rare, thus

the scenario may not happen. But it reveals some tricky aspects of the bridge transactions.

We expanded our bridge model by adding another bridge and bus. The model becomes very big.

After more than 40 hours and 800Mb, none of the three major properties has been proven using a

new version of SMV [22]. More techniques to avoid state explosion problem are needed to handle

this model in the future.

31

0.6 Conclusions and Future Work

We have proposed a new methodology for verifying system-on-chip designs, which takes advantage

of the modularity of the design and correlates the design process by using refinement checking. As

the first example, we have verified the PCI Local Bus protocol using the symbolic model checker

SMV. Two potential bugs in the standard PCI bus specification are presented. In our experience,

formally verifying the functionality of bus protocols is feasible using current model checking tech-

niques.

In order to achieve our ultimate goal of system-on-chip verification, we will focus in the future

on verifying the glue logic involved in such designs. We also intend to verify more complex indus-

trial bus designs using the methodology we have proposed in this paper. Finally, we are interested

in high-level specification of bus protocols for verification purposes.

32

Bibliography

[1] R. E. Bryant. “Graph-based algorithms for boolean function manipulation”, IEEE Transactions on Com-

puters, C-35(8), 1986.

[2] K. Brace, R. Rudell, R. E. Bryant. ”Efficient Implementation of a BDD Package”, 27th ACM/IEEE

Design Automation Conference, 1990.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, J. Hwang. “Symbolic model checking: 1020 states

and beyond”, Proc. 5th Ann. Symp. on Logic in Compu. Sci., June 1990.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, “Sequential circuit verification using symbolic

model checking”, Proc. 27th ACM/IEEE Design Automation Conf., June 1990.

[5] S. Campos, E. Clarke, W. Marrero, M. Minea. “Verifying the performance of the PCI Local Bus using

Symbolic Techniques”, IEEE Intl. Conf. in Comp. Design, Oct. 1995.

[6] E. M. Clarke, E. A. Emerson, A. P. Sistla. “Automatic verification of finite-state concurrent systems using

temporal logic specifications”, ACM Transactions on Programming Languages and Systems, 8(2):244-

263, 1986.

[7] E. M. Clarke, O. Grumberg, H. Hiraishi. “Another Look at LTL Model Checking”, Formal Methods in

System Design, 10,47-71(1997).

[8] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, L. A. Ness. “Verification of

the Futurebus+ Cache Coherence Protocol”, Carnegie Mellon University Technical Report no. CMU-CS-

92-206, Oct. 1992.

[9] Robert Allen, David Garlan. ”A Formal Basis for Architectural Connection”, ACM Transactions on

Software Engineering and Methodology July 1997.

[10] T. Henzinger, S. Qadeer, S. Rajamani. ”You Assume, We Guarantee: Methodology and Case Studies”,

CAV 1998, Lecture Notes in Computer Science 1427, Springer-Verlag, 1998.

33

[11] Orna Kupferman, Moshe Y. Vardi. ”Verification of Fair Transition Systems”, CAV 1996.

[12] R. Kurshan. Computer Aided Verification of Coordinating Processes, Princeton, 1994.

[13] D. E. Long. “Model Checking, Abstraction and Compositional Verification”, Carnegie Mellon Univer-

sity publication CMU-CS-93-178, July 1993.

[14] K. L. McMillan. “Symbolic Model Checking: An Approach to the State Explosion Problem”, Carnegie

Mellon University publication CMU-CS-92-131, May 1992.

[15] K.L. McMillan. “A compositional rule for hardware design refinement“, Computer Aided Verification,

pp 24-35, June 1997.

[16] K.L. McMillan. ”Verification of Infinite State Systems by Compositional Model Checking”, Cadence

Berkeley Labs Technical Report, 1999.

[17] A. Mokkedem, R. Hosabettu, and G. Gopalakrishnan. “Formalization and Proof of a Solution to the PCI

2.1 Bus Transaction Ordering Problem”,FMCAD, Nov. 98.

[18] PCI Special Interest Group. PCI Local Bus Specification Rev 2.2, Dec. 1998.

[19] PCI Special Interest Group. PCI to PCI Bridge Architecture Specification Rev 1.1, Dec. 1998.

[20] E. Solari, G. Willse. PCI Hardware and Software - Architecture and Design, Annabooks, 1998.

[21] http://www.ti.com/sc/docs/asic/srga013/s1.htm, Texas Instruments Incorporated.

[22] B. Yang, R. Simmons, R. Bryant, and D. O’Hallaron. ”Optimizing Symbolic Model Checking for

Constraint-Rich Models”, CAV 1999 1999.

34

