
Automated Abstraction Refinement for Model
Checking Large State Spaces using SAT based

Conflict Analysis�

Pankaj Chauhan1 Edmund Clarke1 James Kukula3

Samir Sapra1 Helmut Veith2 Dong Wang1

1 Carnegie Mellon University 2 TU Vienna, Austria
3 Synopsys Inc., Beaverton, OR

Abstract. We introduce a SAT based automatic abstraction refinement frame-
work for model checking systems with several thousand state variables in the
cone of influence of the specification. The abstract model is constructed by
designating a large number of state variables as invisible. In contrast to pre-
vious work where invisible variables were treated as free inputs we describe
a computationally more advantageous approach in which the abstract transi-
tion relation is approximated by pre-quantifying invisible variables during im-
age computation. The abstract counterexamples obtained from model-checking
the abstract model are symbolically simulated on the concrete system using a
state-of-the-art SAT checker. If no concrete counterexample is found, a sub-
set of the invisible variables is reintroduced into the system and the process
is repeated. The main contribution of this paper are two new algorithms for
identifying the relevant variables to be reintroduced. These algorithms monitor
the SAT checking phase in order to analyze the impact of individual variables.
Our method is complete for safety properties (AG p) in the sense that – per-
formance permitting – a property is either verified or disproved by a concrete
counterexample. Experimental results are given to demonstrate the power of
our method on real-world designs.

1 Introduction

Symbolic model checking has been successful at automatically verifying temporal
specifications on small to medium sized designs. However, the inability of BDD based
model checking to handle large state spaces of “real world” designs hinders the wide
scale acceptance of these techniques. There have been advances on various fronts to
push the limits of automatic verification. On the one hand, improving BDD based
algorithms improves the ability to handle large state machines, while on the other
hand, various abstraction algorithms reduce the size of the design by focusing only on
� This research is sponsored by the Semiconductor Research Corporation (SRC) under con-
tract no. 99-TJ-684, the Gigascale Silicon Research Center (GSRC), the National Science
Foundation (NSF) under Grant No. CCR-9803774, and the Max Kade Foundation. One of
the authors is also supported by Austrian Science Fund Project N Z29-INF. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of SRC, GSRC, NSF, or the United States
Government.

relevant portions of the design. It is important to make improvements on both fronts
for successful verification.

A conservative abstraction is one which preserves all behaviors of a concrete sys-
tem. Conservative abstractions benefit from a preservation theorem which states that
the correctness of any universal (e.g. ACTL∗) formulae on an abstract system auto-
matically implies the correctness of the formula on the concrete system. However, a
counterexample on an abstract system may not correspond to any real path, in which
case it is called a spurious counterexample. To get rid of a spurious counterexample,
the abstraction needs to be made more precise via refinement. It is obviously desirable
to automate this procedure.

This paper focuses on automating the abstraction process for handling large de-
signs containing up to a few thousand latches. This means that using any computation
on concrete systems based on BDDs will be too expensive. Abstraction refinement
[1, 6, 8, 11, 13, 17] is a general strategy for automatic abstraction. Abstraction refine-
ment usually involves the following process.

1. Generation of Initial Abstraction. It is desirable to derive the initial abstrac-
tion automatically.

2. Model checking of abstract system. If this results in a conclusive answer
for the abstract system, then the process is terminated. For example, in case of
existential abstraction, a “yes” answer for an ACTL∗ property in this step means
that the concrete system also satisfies the property, and we can stop. However,
if the property is false on the abstract system, an abstract counterexample is
generated.

3. Checking whether the counterexample holds on the concrete system.
If the counterexample is valid, then we have actually found a bug. Otherwise,
the counterexample is spurious and the abstraction needs to be refined. Usually,
refinement of abstraction is based on the analysis of counterexample(s) generated.

Our abstraction function is based on hiding irrelevant parts of the circuit by make
a set of variables invisible. This simple abstraction function yields an efficient way
to generate minimal abstractions, a source of difficulty in previous approaches. We
describe two techniques to produce abstract systems by removing invisible variables.
The first is simply to make the invisible variables into input variables. This is shown to
be a minimal abstraction. However, this leaves a large number of input variables in the
abstract system and, consequently, BDD based model checking even on this abstract
system becomes very difficult [19]. We propose an efficient method to pre-quantify
these variables on the fly during image computation. The resulting abstract systems
are usually small enough to be handled by standard BDD based model checkers. We
use an enhanced version [3, 4] of NuSMV [5] for this. If a counterexample is produced
for the abstract system, we try to simulate it on the concrete system symbolically
using a fast SAT checker (Chaff [16, 21] in our case).

The refinement is done by identifying a small set of invisible variables to be made
visible. We call these variables the refinement variables. Identification of refinement
variables is the main focus of this paper. Our techniques for identifying important
variables are based on analysis of effective boolean constraint propagation (BCP) and
conflicts [16] during the SAT checking run of the counterexample simulation. Recently,
propositional SAT checkers have demonstrated tremendous success on various classes

of SAT formulas. The key to the effectiveness of SAT checkers like Chaff [16], GRASP
[18] and SATO [20] is non-chronological backtracking, efficient conflict driven learning
of conflict clauses, and improved decision heuristics.

SAT checkers have been successfully used for Bounded Model Checking (BMC)
[2], where the design under consideration is unrolled and the property is symbolically
verified using SAT procedures. BMC is effective for showing the presence of errors.
However, BMC is not at all effective for showing that a specification is true unless
the diameter of the state space is known. Moreover, BMC performance degrades
when searching for deep counterexamples. Our technique can be used to show that a
specification is true and is able to search for deeper concrete counterexamples because
of the guidance derived from abstract counterexamples.

The efficiency of SAT procedures has made it possible to handle circuits with a
few thousand of variables, much larger than any BDD based model checker is able
to do at present. Our approach is similar to BMC, except that the propositional
formula for simulation is constrained by assignments to visible variables. This formula
is unsatisfiable for a spurious counterexample. We propose heuristic scores based on
backtracking and conflict clause information, similar to VSIDS heuristics in Chaff,
and conflict dependency analysis algorithm to extract the reason for unsatisfiability.
Our techniques are able to identify those variables that are critical for unsatisfiability
of the formula and are, therefore, prime candidates for refinement. The main strength
of our approach is that we use the SAT procedure itself for refinement. We do not
need to invoke multiple SAT instances or solve separation problems as in [8].

Thus the main contributions of our work are, (a) use of SAT for counterexam-
ple validation, (b) refinement procedures based on SAT conflict analysis, and, (c)
a method to remove invisible variables from the abstract system for computational
efficiency.

Outline of the Paper

The rest of the paper is organized as follows. Section 2 briefly reviews how abstraction
is used in model checking and introduces notation that is used in the following sections.
In Section 3, we describe in detail, our abstraction technique and how we check an
abstract counterexample on the concrete model. The most important part of the paper
is Section 4, where we discuss our refinement algorithms based on scoring heuristics
for variables and conflict dependency analysis. In section 5, we present experimental
evidence to show the ability of our approach to handle large state systems. In Section
6, we describe related work in detail. Finally, we conclude in Section 7 with directions
for future research.

2 Abstraction in Model Checking

We give a brief summary of the use of abstraction in model checking and introduce
notation that we will use in the remainder of the paper (refer to [7] for a full treat-
ment). A transition system is modeled by a tuple M = (S, I,R,L, L) where S is the
set of states, I ⊆ S is the set of initial states, R is the set of transitions, L is the set of
atomic propositions that label each state in S with the labeling function L : S → 2L.
The set I is also used as a predicate I(s), meaning the state s is in I. Similarly, the

transition relation R is also used as a predicate R(s1, s2), meaning there exists a tran-
sition between states s1 and s2. Each program variable vi ranges over its non-empty
domain Dvi

. The state space of a program with a set of variables V = {v1, v2, . . . , vn}
is defined by the Cartesian product Dv1 × Dv2 × . . . × Dvn

.
In existential abstraction [7] a surjection h : S → Ŝ maps a concrete state si ∈ S

to an abstract state ŝi = h(si) ∈ Ŝ. We denote the set of concrete states that map to
an abstract state ŝi by h−1(ŝi).

Definition 1. The minimal existential abstraction M̂ = (Ŝ, Î, R̂, L̂, L̂) corre-
sponding to a transition system M = (S, I,R,L, L) and an abstraction function h is
defined by:

1. Ŝ = {ŝ|∃s.s ∈ S ∧ h(s) = ŝ}.
2. Î = {ŝ|∃s.I(s) ∧ h(s) = ŝ}.
3. R̂ = {(ŝ1, ŝ2)|∃s1.∃s2.R(s1, s2) ∧ h(s1) = ŝ1 ∧ h(s2) = ŝ2}.
4. L̂ = L.
5. L̂(ŝ) =

⋃
h(s)=ŝ L(s).

Condition 3 can be stated equivalently as

∃s1, s2(R(s1, s2) ∧ h(s1) = ŝ1 ∧ h(s2) = ŝ2) ⇔ R̂(ŝ1, ŝ2) (1)

An atomic formula f respects h if for all s ∈ S, h(s) |= f ⇒ s |= f . Labeling L̂(ŝ) is
consistent, if for all s ∈ h−1(ŝ) it holds that s |=

∧
f∈L̂(ŝ) f . The following theorem

from [6, 15] is stated without proof.

Theorem 1. Let h be an abstraction function and φ an ACTL∗ specification where
the atomic sub-formulae respect h. Then the following holds: (i) For all ŝ ∈ Ŝ, L̂(ŝ)
is consistent, and (ii) M̂ |= φ ⇒ M |= φ.

This theorem is the core of all abstraction refinement frameworks. However, the con-
verse may not hold, i.e., even if M̂
|= φ, the concrete model M may still satisfy φ. In
this case, the counterexample on M̂ is said to be spurious, and we need to refine the
abstraction function. Note that the theorem holds even if only the right implication
holds in Equation 1. In other words, even if we add more transitions to the minimal
transition relation R̂, the validity of an ACTL∗ formula on M̂ implies its validity on
M .

Definition 2. An abstraction function h′ is a refinement for the abstraction func-
tion h and the transition system M = (S, I,R,L, L) if for all s1, s2 ∈ S, h′(s1) =
h′(s2) implies h(s1) = h(s2). Moreover, h′ is a proper refinement of h if there exist
s1, s2 ∈ S such that h(s1) = h(s2) and h′(s1)
= h′(s2).

In general, ACTL∗ formulae can have tree-like counterexamples [9]. In this pa-
per, we focus only on safety properties, which have finite path counterexamples. It
is possible to generalize our approach to full ACTL∗ as done in [9]. The following
iterative abstraction refinement procedure for a system M and a safety formula φ
follows immediately.

1. Generate an initial abstraction function h.
2. Model check M̂ . If M̂ |= φ, return TRUE.

3. If M̂
|= φ, check the generated counterexample T̂ on M . If the counterexample is
real, return FALSE.

4. Refine h, and goto step 2.

Since each refinement step partitions at least one abstract state, the above pro-
cedure is complete for finite state systems for ACTL* formulae that have path coun-
terexamples. Thus the number of iterations is bounded by the number of concrete
states. However, as we will show in the next two sections, the number of refinement
steps can be at most equal to the number of program variables.

We would like to emphasize that we model check abstract system in step 2 using
BDD based symbolic model checking, while steps 3 and 4 are carried out with the
help of SAT checkers.

3 Generating Abstract State Machine

We consider a special type of abstraction for our methodology, wherein, we hide a set
of variables that we call invisible variables, denoted by I. The set of variables that we
retain in our abstract machine are called visible variables, denoted by V. The visible
variables are considered to be important for the property and hence are retained in
the abstraction, while the invisible variables are considered irrelevant for the property.
The initial abstraction and the refinement in steps 1 and 4 respectively correspond
to different partitions of V . Typically, we would want |V| � |I|. Formally, the value
of a variable v ∈ V in state s ∈ S is denoted by s(v). Given a set of variables
U = {u1, u2, . . . , up}, U ⊆ V , let sU denote the portion of s that corresponds to
the variables in U , i.e., sU = (s(u1)s(u2) . . . s(up)). Let V = {v1, v2, . . . , vk}. This
partitioning of variables defines our abstraction function h : S → Ŝ. The set of
abstract states is Ŝ = Dv1 × Dv2 . . . × Dvk

and h(s) = sV .
In our approach, the initial abstraction is to take the set of variables mentioned

in the property as visible variables. Another option is to make the variables in the
cone of influence (COI) of the property visible. However, the COI of a property may
be too large and we may end with a large number of visible variables. The idea is to
begin with a small set of visible variables and then let the refinement procedure come
up with a small set of invisible variables to make visible.

We also assume that the transition relation is described not as a single predicate,
but as a conjunction of bit relations Rj of each individual variable vj . More formally,
we consider a sequential circuit with registers V = {v1, v2, . . . , vm} and inputs I =
{i1, i2, . . . , iq}. Let s = (v1, v2, . . . , vm), i = (i1, i2, . . . , iq) and s′ = (v′

1, v
′
2, . . . , v′m).

The primed variables denote the next state versions of unprimed variables as usual.
Thus the bit relation for vj becomes Rj(s, i, v′j) = (v′

j ↔ fvj
(s, i)).

R(s, s′) = ∃i

m∧
j=1

Rj(s, i, v′j) (2)

3.1 Abstraction by Making Invisible Variables as Input Variables

As shown in [8], the minimal transition relation R̂ corresponding to R and h described
above is obtained by removing the logic defining invisible variables and treating them
as free input variables of the circuit. Hence, R̂ looks like:

R̂(ŝ, ŝ′) = ∃sI∃i
∧

vj∈V
Rj(sV , sI , i, v′j) (3)

The quantifications in Equation 3 are performed during each image computation in
symbolic model checking of the abstract system. This is done so as not to build a
monolithic BDD for R̂ and enjoy the benefits of early quantification.

We call this type of abstraction an input abstraction. We write s as sV , sI to stress
the fact that we are leaving invisible variables as input variables in R̂. When dealing
with systems with a large number of registers, quantifying so many variables for each
image computation is expensive (e.g. [19]). An invisible variable can in the support
of multiple partitions of the transition relation. In input abstraction, each occurence
of an invisible variable has the same value in different partitions of the abstract
transition relation. Thus, we say input abstraction preserves correlations between
different occurrences of an invisible variable. In the next type of abstraction, we pre-
quantify most of the invisible variables, to reduce the number of variables during image
computation. This means that different occurrences of an invisible variable get de-
coupled when we push the quantifications inside Equation 3, making the abstraction
more approximate.

3.2 Abstraction by Pre-quantifying Invisible Variables

Input abstraction leaves a large number of variables to quantify during the image
computation process. We can however, quantify these variables a priori, leaving only
visible variables in R̂. The transition relation that we get by quantifying invisible
variables from R̂ in the beginning is denoted by R̃. We can even quantify some of
the input variables a priori in this fashion to control the total number of variables
appearing in R̃. Let Q ⊆ I ∪ I denote the set of variables to be pre-quantified and let
W = (I ∪ I) \ Q, the set of variable that are not pre-quantified.

Quantification of a large number of invisible variables in Equation 3 is computa-
tionally expensive [15]. To alleviate this difficulty, it is customary to approximate this
abstraction by pushing the quantification inside conjunctions as follows.

R̃(ŝ, ŝ′) = ∃sW
∧

vj∈V
∃sQRj(sV , sI , i, v′j) (4)

Since the BDDs for state sets do not contain input variables in the support, this is
a safe step to do. This does not violate the soundness of the approximation, i.e., for
each concrete transition in R, there will be a corresponding transition in R̂, as stated
below.

Theorem 2. ∃s1, s2(R(s1, s2) ∧ h(s1) = ŝ1 ∧ h(s2) = ŝ2) ⇒ R̃(ŝ1, ŝ2).

The other direction of this implication does not hold because of the approximations
introduced.

Preserving Correlations We can see in Equation 4 that by existentially quantifying
each invisible variable separately for each conjunct of the transition relation, we lose
the correlation between different occurrences of a variable. For example, consider the
trivial bit relations x′

1 = x3, x
′
2 = ¬x3 and x3 = x1 ⊕ x2. Suppose x3 is made an

invisible variable. Then quantifying x3 from the bit relations of x1 and x2 will result
in the transition relation being always evaluated 1, meaning the state graph is a clique.
However, we can see that in any reachable state, x1 and x2 are always opposite of
each other. To solve this problem partially without having to resort to equation 4, we
propose to cluster those bit relations that share many common variables. Since this
problem is very similar to the quantification scheduling problem (which occurs during
image computations), we propose to use a modification of VarScore algorithms [3] for
evaluating this quantification. This algorithm can be viewed as producing clusters of
bit relations. We use it to produce clusters with controlled approximations. The idea
is to delay variable quantifications as much as possible, without letting the conjoined
BDDs grow too large. When a BDD grows larger than some threshold, we quantify
away a variable. We can of course quantify a variable that no longer appears in the
support of other BDDs. Effective quantification scheduling algorithms put closely
related occurrences of a variable in the same cluster. Figure 1 shows the VarScore
algorithm for approximating existential abstraction.

Given a set of conjuncts RV and variables sQ to pre-quantify
Repeat until all sQ variables are quantified

1. Quantify away sQ variables appearing in only one BDD
2. Score the variables by summing up the sizes of BDDs in which a variable occurs
3. Pick two smallest BDDs for the variable with the smallest score
4. If any BDD is larger then the size threshold, quantify the variable from BDD(s) and
go back to step 2.

5. If the BDDs are smaller than threshold, do BDDAnd or BDDAndExists depending
upon the case

Fig. 1. VarScore algorithm for approximating existential abstraction

A static circuit minimum cut based structural method to reduce the number of in-
visible variables was proposed in [12] and used in [19]. Our method introduces approx-
imations as needed based on actual image computation, while there method removes
the variables statically. Our algorithms achieves a balance between performance and
accuracy. This means that the approximations introduced by our algorithm are more
accurate as the parts of the circuits statically removed in [12] could be important.

3.3 Checking the Validity of an Abstract Counterexamples

Given an abstract model M̂ and a safety formula φ, we run the usual BDD based
symbolic model checking algorithm to determine if M̂ |= φ. Suppose that the model
checker produces an abstract path counterexample s̄m = 〈ŝ0, ŝ1, . . . , ŝm〉. To check
whether this counterexample holds on the concrete model M or not, we symbolically

simulate M beginning with the initial state I(s0) using a fast SAT checker. At each
stage of the symbolic simulation, we constrain the values of visible variables only
according to the counterexample produced. The equation for symbolic simulation is:

(I(s0) ∧ (h(s0) = ŝ0)) ∧ (R(s0, s1) ∧ (h(s1) = ŝ1)) ∧ . . .

∧(R(sm−1, sm) ∧ (h(sm) = ŝm)) (5)

Each h(si) is just a projection of the state si onto visible variables. If this propositional
formula is satisfiable, then we can successfully simulate the counterexample on the
concrete machine to conclude that M
|= φ. The satisfiable assignments to invisible
variables along with assignments to visible variables produced by model checking give
a valid counterexample on the concrete machine.

If this formula is not satisfiable, the counterexample is spurious and the abstrac-
tion needs refinement. Assume that the counterexample can be simulated up to the
abstract state ŝf , but not up to ŝf+1 ([6, 8]). Thus formula 6 is satisfiable while
formula 7 is not satisfiable, as shown in Figure 2.

(I(s0) ∧ (h(s0) = ŝ0)) ∧ (R(s0, s1) ∧ (h(s1) = ŝ1)) ∧ . . .

∧(R(sf−1, sf) ∧ (h(sf) = ŝf)) (6)

(I(s0) ∧ (h(s0) = ŝ0)) ∧ (R(s0, s1) ∧ (h(s1) = ŝ1)) ∧ . . .

∧(R(sf , sf+1) ∧ (h(sf+1) = ŝf+1)) (7)

Concrete
Trace

Abstract
Trace

dead−end
states

bad states

0ŝ

0ŝ ŝ1 ŝ2 fŝ ŝ f+1

0ŝ)
−1

h ()
−1

h ()
−1

h ()
−1

h (

−1
h (ŝ

fŝ2ŝ1ŝ
f+1)

failure
state

Fig. 2. A spurious counterexample showing failure state [8]. No concrete path can be ex-
tended beyond failure state.

Using the terminology introduced in [6], we call the abstract state ŝf a failure state.
The abstract state ŝf contains many concrete states given by all possible combinations
of invisible variables, keeping the same values for visible variables as given by ŝf .
The concrete states in ŝf reachable from the initial states following the spurious
counterexample are called the dead-end states. The concrete states in ŝf that have a
reachable set in ŝf+1 are called bad states. Because the dead-end states and the bad

states are part of the same abstract state, we get the spurious counterexample. The
refinement step then is to separate dead-end states and bad states by making a small
subset of invisible variables visible. It is easy to see that the set of dead-end states
are given by the values of state variables in the f th step for all satisfying solutions to
Equation 6. Note that in symbolic simulation formulas, we have a copy of each state
variable for each time frame.

We do this symbolic simulation using the SAT checker Chaff [16]. We assume that
there are concrete transitions which correspond to each abstract transition from ŝi to
ŝi+1, where 0 < i ≤ f . It is fairly straightforward to extend our algorithm to handle
spurious abstract transitions. In this case, the set of bad states is not empty. Since s̄f

is the shortest prefix that is unsatisfiable, there must be information passed through
the invisible registers at time frame f in order for the SAT solver to prove the coun-
terexample is spurious. Specifically, the SAT solver implicitly generates constraints
on the invisible registers at time frame f based on either the last abstract transition
or the prefix s̄f . Obviously the intersection of these two constraints on those invisible
registers is empty. Thus the set of invisible registers that are constrained in time frame
f during the SAT process is sufficient to separate deadend states and bad states after
refinement. Therefore, our algorithm limits the refinement candidates to the registers
that are constrained in time frame f .

Equation 5 is exactly like symbolic simulation with Bounded Model Checking. The
only difference is that the values of visible state variables at each step are constrained
to the counterexample values. Since the original input variables to the system are un-
constrained, we also constrain their values according to the abstract counterexample.
This puts many constraints on the SAT formula. Hence, the SAT checker is able to
prune the search space significantly. We rely on the ability of Chaff to identify impor-
tant variables in this SAT check to separate dead-end and bad states, as described in
the next section.

4 SAT Based Refinement Heuristics

The basic framework for these SAT procedures is Davis-Putnam-Logeman-Loveland
backtracking search, shown in Figure 3. The function decide_next_branch() chooses
the branching variable at current decision level. The function deduce() does Boolean
constraint propagation to deduce further assignments. While doing so, it might in-
fer that the present set of assignments to variables do not lead to any satisfying
solution, leading to a conflict. In case of a conflict, new clauses are learned by
analyse_conflict() that hopefully prevent the same unsuccessful search in the fu-
ture. The conflict analysis also returns a variable for which another value should
be tried. This variable may not be the most recent variable decided, leading to a
non-chronological backtrack. If all variables have been decided, then we have found a
satisfying assignment and the procedure returns. The strength of various SAT check-
ers lies in their implementation of constraint propagation, decision heuristics, and
learning.

Modern SAT checkers work by introducing conflict clauses in the learning phase
and by non-chronological backtracking. Implication graphs are used for Boolean con-
straint propagation. The vertices of this graph are literals, and each edge is labeled
with the clause that forces the assignment. When a clause becomes unsatisfiable as a

while(1) {

if (decide_next_branch()) { // Branching

while (deduce() == conflict) { // Propagate implications

blevel = analyse_conflict(); // Learning

if (blevel == 0)

return UNSAT;

else

backtrack(blevel); // Non-chronological

// backtrack

}

}

else // no branch means all vars

// have been assigned

return SAT;

}

Fig. 3. Basic DPLL backtracking search (used from [16] for illustration purpose)

result of the current set of assignments (decision assignments or implied assignments),
a conflict clause is introduced to record the cause of the conflict, so that the same
futile search is never repeated. The conflict clause is learned from the structure of
the implication graph. When the search backtracks, it backtracks to the most recent
variable in the conflict clause just added, not to the variable that was assigned last.
For our purposes, note that Equation 7 is unsatisfiable, and hence there will be much
backtracking. Hence, many conflict clauses will be introduced before the SAT checker
concludes that the formula is unsatisfiable. A conflict clause records a reason for the
formula being unsatisfiable. The variables in a conflict clause are thus important for
distinguishing between dead-end and bad states. The decision variable to which the
search backtracks is responsible for the current conflict and hence is an important vari-
able. We call the implication graph associated with each conflict a conflict graph.The
source nodes of this graph are the variable decisions, the sink node of this graph is the
conflicting assignment to one of the variables. At least one conflict clause is generated
from a conflict graph. We propose the following two algorithms to identify important
variables from conflict analysis and backtracking.

4.1 Refinement Based on Scoring Invisible Variables

We score invisible variables based on two factors, first, the number of times a variable
gets backtracked to and, second, the number of times a variable appears in a conflict
clause. Note that we have adjust the first score by an exponential factor based on
the decision level a variable is at, as the variable at the root node can potentially get
just two back tracks, while a variable at the decision level dl can get 2dl backtracks
globally. Every time the SAT procedure backtracks to an invisible variable at decision
level dl, we add the following number to the backtrack score.

2
|I|−dl

c

We use c as a normalizing constant. For computing the second score, we just keep
a global counter conflict score for each variable and increment the counter for each
variable appearing in any conflict clause. The method used for identifying conflict
clauses from conflict graphs greatly affects SAT performance. As shown in [21], we
use the most effective method called the first unique implication point (1UIP) for
identifying conflict clauses. We then use weighted average of these two scores to derive
the final score as follows.

w1 · backtrack score + w2 · conflict score (8)

Note that the second factor is very similar to the decision heuristic VSIDS used
in Chaff. The difference is that Chaff uses these per variable global scores to arrive
at local decisions (of the next branching variable), while we use them to derive global
information about important variables. Therefore, we do not periodically divide the
variable scores as Chaff does.

We also have to be careful to guide Chaff not to decide on the intermediate vari-
ables introduced while converting various formulae to CNF form, which is the required
input format for SAT checkers. This is done automatically in our method.

4.2 Refinement Based on Conflict Dependency Graph

The choice of which invisible registers to make visible is the key to the success of the
refinement algorithm. Ideally, we want this set of registers to be small and still be
able to prevent the spurious trace. Obviously, the set of registers appearing in the
conflict graphs during the checking of the counterexample could prevent the spurious
trace. However, this set can be very large. We will show here that it is unnecessary
to consider all conflict graphs.

Dependencies Between Conflict Graphs We call the implication graph associ-
ated with a conflict a conflict graph. At least one conflict clause is generated from a
conflict graph.

Definition 3. Given two conflict graphs A and B, if at least one of the conflict clauses
generated from A labels one of the edges in B, then we say that conflict B directly
depends on conflict A.

For example, consider the conflicts depicted in the conflict graphs of Figure 4.
Suppose that at a certain stage of the SAT checking, conflict graph A is generated.
This produces the conflict clause ω9 = (¬x9 +x11 +¬x15). We are using the first UIP
(1UIP) learning strategy [21] to identify the conflict clause here. This conflict clause
can be rewritten as x9 ∧¬x11 → ¬x15. In the other conflict graph B, clause ω9 labels
one of the edges, and forces variable x15 to be 0. Hence, we say that conflict graph B
directly depends on conflict graph A.

Given the set of conflict graphs generated during satisfiability checking, we con-
struct the unpruned conflict dependency graph as follows:

– Vertices of the unpruned dependency graph are all conflict graphs created by
the SAT algorithm.

directly
depends

x2(5)

x14(5)

−x12(3)

conflict

x16(5)

−x18(5)

x17(4)

x9(1)

−x11(2)

Using conflict clause

Conflict graph B

conflict

Conflict graph A

−x11(2)

ω1
ω3

x10(5)

ω4

ω4

ω6

ω5

ω6

ω5

ω9

ω9

ω3

−x15(2)
x15(5) ω2

x9(1)

ω2

ω1

1UIP cut

Fig. 4. Two dependent conflict graphs. Conflict B depends on conflict A, as the conflict
clause ω9 derived from the conflict graph A produces conflict B.

– Edges of the unpruned dependency graph are direct dependencies.

Figure 5 shows an unpruned conflict dependency graph with five conflict graphs.
A conflict graph B depends on another conflict graph A, if vertex A is reachable from
vertex B in the unpruned dependency graph. In Figure 5, conflict graph E depends
on conflict graph A. When the SAT algorithm detects unsatisfiability, it terminates
with the last conflict graph corresponding to the last conflict. The subgraph of the
unpruned conflict dependency graph on which the last conflict graph depends is called
the conflict dependency graph. Formally,

Definition 4. The conflict dependency graph is a subgraph of the unpruned de-
pendency graph. It includes the last conflict graph and all the conflict graphs on which
the last one depends.

conflict
graph E

conflict
graph C

conflict
graph A

conflict
graph B

last
conflict
graph

graph D
conflict

Fig. 5. The unpruned dependency graph and the dependency graph (within dotted lines)

In Figure 5, conflict graph E is the last conflict graph, hence the conflict depen-
dency graph includes conflict graphs A,C,D,E. Thus, the conflict dependency graph
can be constructed from the unpruned dependency graph by any directed graph

traversal algorithm for reachability. Typically, many conflict graphs can be pruned
away in this traversal, so that the dependency graph becomes much smaller than
the unpruned dependency graph. Intuitively, all SAT decision strategies are based on
heuristics. For a given SAT problem, the initial set of decisions/conflicts a SAT solver
comes up with may not be related to the final unsatisfiability result. Our dependency
analysis helps to remove that irrelevant reasoning.

Generating Conflict Dependency Graph Based on Zchaff We have imple-
mented the conflict dependency analysis algorithm on top of zchaff [21], which has
a powerful learning strategy called first UIP (1UIP). Experimental results from [21]
show that 1UIP is the best known learning strategy. In 1UIP, only one conflict clause
is generated from each conflict graph, and it only includes those implications that are
closer to the conflict. Refer to [21] for the details. We have built our algorithms on top
of 1UIP, and we restrict the following discussions to the case that only one conflict
clause is generated from a conflict graph. Note here that the algorithms can be easily
adapted to other learning strategies.

After SAT terminates with unsatisfiability, our pruning algorithm starts from the
last conflict graph. Based on the clauses contained in this conflict graph, the algorithm
traverses other conflict graphs that this one depends on. The result of this traversal
is the pruned dependency graph.

Identifying Important Variables The dependency graph records the reasons for
unsatisfiability. Therefore, only the variables appearing in the dependency graph are
important. Instead of collecting all the variables appearing in any conflict graph, those
in the dependency graph are sufficient to disable the spurious counterexample.

Suppose s̄f+1 = 〈ŝ0, ŝ1, . . . , ŝf+1〉 is the shortest prefix of a spurious counterex-
ample that can not be simulated on the concrete machine. Recall that ŝf is the failure
state. During the satisfiability checking of s̄f+1, we generate an unpruned conflict de-
pendency graph. When Chaff terminates with unsatisfiability, we collect the clauses
from the pruned conflict dependency graph. Some of the literals in these clauses
correspond to invisible registers at time frame f . Only those portions of the circuit
that correspond to the clauses contained in the pruned conflict dependency graph
are necessary for the unsatisfiability. Therefore, the candidates for refinement are the
invisible registers that appear at time frame f in the conflict dependency graph.

Refinement Minimization The set of refinement candidates identified from con-
flict analysis is usually not minimal, i.e., not all registers in this set are required to
invalidate the current spurious abstract counterexample. To remove those that are
unnecessary, we have adapted the greedy refinement minimization algorithm in [19].
The algorithm in [19] has two phases. The first phase is the addition phase, where a
set of invisible registers that it suffices to disable the spurious abstract counterexam-
ple is identified. In the second phase, a minimal subset of registers that is necessary to
disable the counterexample is identifed. Their algorithm tries to see whether removing
a newly added register from the abstract model still disables the abstract counterex-
ample. If that is the case, this register is unnecessary and is no longer considered for
refinement. In our case, we only need the second phase of the algorithm. The set of

refinement candidates provided by our conflict dependency analysis algorithm already
suffices to disable the current spurious abstract counterexample. Since the first phase
of their algorithm takes at least as long as the second phase, this should speed up our
minimization algorithm considerably.

5 Experimental Results

We have implemented our abstraction refinement framework on top of NuSMV model
checker [5]. We modified the SAT checker Chaff to compute heuristic scores, to produce
conflict dependency graphs and to do incremental SAT. The IU-p1 benchmark was
verified by conflict analysis based refinement on a SunFire 280R machine with two
750Mhz UltraSparc III CPUs and 8GB of RAM running Solaris. All other experiments
were performed on a dual 1.5GHz Athlon machine with 3GB of RAM running Linux.

The experiments were performed on two sets of benchmarks. The first set of bench-
marks in Table 1 are industrial benchmarks obtained from various sources. The bench-
marks IU-p1 and IU-p2 refer to the same circuit, IU, but different properties are
checked in each case. This circuit is an integer unit of a picoJava microprocessor from
Sun. The D series benchmarks are from a processor design. The properties verified
were simple AG properties. The property for IU-p2 has 7 registers, while IU-p1 and
D series circuits have only one register in the property. The circuits in Table 2 are
various abstractions of the IU circuit. The property being verified has 17 registers.
They are smaller circuits that are easily handled by our methods but they have been
shown to be difficult to handle by Cadence SMV [8]. We include these results here
to compare our methods with the results reported in [8] for property 2. We do not
report the results for property 1 in [8] because it is too trivial (all counterexamples
can be found in 1 iteration). It is interesting to note that all benchmarks but IU-p1
and IU-p2 have a valid counterexample.

circuit # regs ctrex CSMV Heuristic Score Dependency
length time time iters # regs time iters # regs

D2 105 15 152 105 10 51 79 11 39

D5 350 32 1,192 29 3 16 38.2 8 10

D6 177 20 45,596 784 24 121 833 48 90

D18 745 28 >4 hrs 12,086 69 346 9,995 142 253

D20 562 14 >7 hrs 1,493 56 281 1,947 74 265

D24 270 10 7,850 14 1 6 8 1 4

IU-p1 4855 true - 9,138 22 107 3,350∗ 13 19

IU-p2 4855 true - 2,820 7 36 712 6 13

Table 1. Comparison between Candence SMV (CSMV), heuristic score based refinement
and dependency analysis based refinement for larger circuits. The experiment marked with a
∗ was performed on the SunFire machine with more memory because of a length 72 abstract
counterexample encountered.

In Table 1, we compare our methods against the BDD based model checker Ca-
dence SMV (CSMV). We enabled cone of influence reduction and dynamic variable
reordering in Cadence SMV. The performance of “vanilla” NuSMV was worse than

Cadence SMV, hence we do not report those numbers. We report total running time,
number of iterations and the number of registers in the final abstraction. The columns
labeled with “Heuristic Score” report the results with our heuristic variable scoring
method. We introduce 5 latches at a time in this method. The columns labeled with
“Dependency” report the results of our dependency analysis based refinement. This
method employs pruning of candidate refinement sets. A “-” in a cell indicates that
the model checker ran out of memory.

Table 2 compares our methods against those reported in [8] on IU series bench-
marks for verifying property 2.

circuit # regs ctrex [8] Heuristic Score Dependency
length time time iters # regs time iters # regs

IU30 30 11 6.5 2.3 2 27 1.9 4 20

IU35 35 20 11 8.9 2 27 10.4 5 21

IU40 40 20 16.1 28.4 3 32 13.3 6 22

IU45 45 20 22.1 32.9 3 32 25 6 22

IU50 50 20 85.1 36 3 32 32.8 6 22

IU55 55 11 - 43 2 27 61.9 4 20

IU60 60 11 - 52.8 2 27 65.5 4 20

IU65 65 11 - 50.3 2 27 67.5 4 20

IU70 70 11 - 55.6 2 27 71.4 4 20

IU75 75 11 130.5 38.5 4 37 15.7 5 21

IU80 80 11 153.4 47.1 4 37 21.1 5 21

IU85 85 11 167.7 44.7 4 37 24.6 5 21

IU90 90 11 167.1 49.9 4 37 24.3 5 21

Table 2. Comparison between [8], heuristic score based refinement and dependency analysis
based refinement for smaller circuits.

We can see that our conflict dependency analysis based method outperforms a
standard BDD based model checker, the method reported in [8] and the heuristic
score based method. We also conclude that the computational overhead of our de-
pendency analysis based method is well justified by the smaller abstractions that it
produces. The variable scoring based method does not enjoy the benefits of reduced
candidate refinement sets obtained through dependency analysis. Therefore, it results
in a coarser abstraction in general. The heuristic based refinement method adds 5
registers at a time, resulting in some uniformity in the final number of registers, espe-
cially evident in Table 2. Due to the smaller number of refinement steps it performs,
the total time it has to spend in model checking abstract machines may be smaller
(as for D5, D6, D20, IU60, IU65, IU70).

6 Related Work

Our work compares most closely to that presented in [6] and more recently [8]. There
are three major differences between our work and [6]. First, their initial abstraction
is based on predicate abstraction, where new set of program variables are generated
representing various predicates. They symbolically generate and manipulate these ab-
stractions with BDDs. Our abstraction is based on hiding certain parts of the circuit.

This yields an easier way to generate abstractions. Secondly, the biggest bottleneck
in their method is the use of BDD based image computations on concrete systems
for validating counterexamples. We use symbolic simulation based on SAT accomplish
this task, as in [8]. Finally, their refinement is based on splitting the variable domains.
The problem of finding the coarsest refinement is shown to be NP-hard in [6]. Because
our abstraction functions are simpler, we can identify refinement variables during the
SAT checking phase. We do not need to solve any other problem for refinement.

We differ from [8] in three aspects. First, we propose to remove invisible variables
from abstract systems on the fly by quantification. This reduces the complexity of
BDD based model checking of abstract systems. Leaving a large number of input
variables in the system makes it very difficult to model check even an abstract system
[19]. Secondly, computation overhead for our separation heuristics is minimal. In their
approach, refinement is done by separating dead-end and bad states (sets of concrete
states contained in the failure state) with ILP solvers or machine learning. This re-
quires enumerating all dead-end and bad states or producing samples of these states
and separating them. We avoid this step altogether and cheaply identify refinement
variables from the analysis of a single SAT check that is already done. We do not
claim any optimality on the number of variables, however, this is a small price to pay
for efficiency. We have been able to handle a circuit with about 5000 variables in cone
of influence of the specification. Finally, we believe our method can identify a bet-
ter set of invisible registers for refinement. Although [8] uses optimization algorithms
to minimize the number of registers to refine, their algorithm relies on sampling to
provide the candidate separation sets. When the size of the problem becomes large,
there could be many possible separation sets. Our method is based on SAT conflict
analysis. The Boolean constraint propagation (BCP) algorithm in a SAT solver nat-
urally limits the number of candidates that we will need to consider. We use conflict
dependency analysis to reduce further the number of candidates for refinement.

The work of [10] focuses on algorithms to refine an approximate abstract transition
relation. Given a spurious abstract transition, they combine a theorem prover with a
greedy strategy to enumerate the part of the abstract transition that does not have
corresponding concrete transitions. The identified bad transition is removed from
the current abstract model for refinement. Their enumeration technique is potentially
expensive. More importantly, they do not address the problem of how to refine abstract
predicates.

Previous work on abstraction by making variables invisible includes the local-
ization reduction of Kurshan [13] and other techniques (e.g. [1, 14]). Localization
reduction begins with the set of variables in the property as visible variables. The set
of variables adjacent to the present set of visible variables in the variable dependency
graph are chosen as the candidates for refinement. Counterexamples are analyzed in
order to choose variables among these candidates.

The work presented in [19] combines three different engines (BDD, ATPG and
simulation) to handle large circuits using abstraction and refinement. The main dif-
ference between our method and that in [19] is the strategy for refinement. In [19],
candidates for refinement are based on those invisible registers that get assigned in the
abstract counterexample. In our approach, we intentionally throw away invisible reg-
isters in the abstract counterexample, and rely on our SAT conflict analysis to select
the candidates. We believe there are two advantages to disallowing invisible registers

in the abstract counterexample. First of all, generating an abstract counterexample
is computationally expensive, when the number of invisible registers is large. In fact,
for efficiency reasons, a BDD/ATPG hybrid engine is used in [19] to model check the
abstract model. By quantifying the invisible variables early, we avoid this bottleneck.
More importantly, in [19], invisible registers are free inputs in the abstract model,
their values are totally unconstrained. When checking such an abstract counterexam-
ple on the concrete machine, it is more likely to be spurious. In our case, the abstract
counterexample only includes assignments to the visible registers and hence a real
counterexample can be found more cheaply.

7 Conclusions

We have presented an effective and practical automatic abstraction refinement frame-
work based on our novel SAT based conflict analysis. We have described a simple
variable scoring heuristic as well as an elaborate conflict dependency analysis for
identifying important variables. Our schemes are able to handle large industrial scale
designs. Our work highlights the importance of using SAT based methods for handling
large circuits. We believe these techniques complement bounded model checking in
that they enable us to handle true specifications effeciently.

An obvious extension of our framework is to handle all ACTL* formulae. We
believe this can be done as in [9]. Further experimental evaluation will help us fine tune
our procedures. We can also use circuit structure information to accelerate the SAT
based simulation of counterexamples, for example, by identifying replicated clauses.
We are investigating the use of the techniques described in this paper for software
verification. We already have a tool for extracting a Boolean program from an ANSI
C program by using predicate abstraction.

8 Acknowledgements

We would like to thank Ofer Strichman for providing us some of the larger benchmark
circuits. We would also like to acknowledge the anonymous reviewers for carefully
reading the paper and making useful suggestions.

References

[1] Felice Balarin and Alberto L. Sangiovanni-Vincentelli. An iterative approach to lan-
guage containment. In Proceedings of CAV’93, pages 29–40, 1993.

[2] Armin Biere, Alexandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In Proceedings of Tools and Algorithms for the Analysis
and Construction of Systems (TACAS’99), number 1579 in LNCS, 1999.

[3] Pankaj Chauhan, Edmund M. Clarke, Somesh Jha, Jim Kukula, Tom Shiple, Helmut
Veith, and Dong Wang. Non-linear quantification scheduling in image computation. In
Proceedings of ICCAD’01, pages 293–298, November 2001.

[4] Pankaj Chauhan, Edmund M. Clarke, Somesh Jha, Jim Kukula, Helmut Veith, and
Dong Wang. Using combinatorial optimization methods for quantification scheduling.
In Tiziana Margaria and Tom Melham, editors, Proceedings of CHARME’01, volume
2144 of LNCS, pages 293–309, September 2001.

[5] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new Symbolic
Model Verifier. In N. Halbwachs and D. Peled, editors, Proceedings of the International
Conference on Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes
in Computer Science, pages 495–499. Springer, July 1999.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In E. A. Emerson and A. P. Sistla, editors, Proceedings of CAV,
volume 1855 of LNCS, pages 154–169, July 2000.

[7] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[8] Edmund Clarke, Anubhav Gupta, James Kukula, and Ofer Strichman. SAT based
abstraction-refinement using ILP and machine learning techniques. In Proceedings of
CAV’02, 2002. To appear.

[9] Edmund Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Tree-like counterexamples
in model checking. In Proceedings of the 17th Annual IEEE Symposium on Logic in
Computer Science (LICS’02), 2002. To appear.

[10] Satyaki Das and David Dill. Successive approximation of abstract transition relations.
In Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science
(LICS’01), 2001.

[11] Shankar G. Govindaraju and David L. Dill. Counterexample-guided choice of projec-
tions in approximate symbolic model checking. In Proceedings of ICCAD’00, San Jose,
CA, November 2000.

[12] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco, J. Taylor, and
J. Long. Smart simulation using collaborative formal and simulation engines. In Pro-
ceedings of ICCAD’00, November 2000.

[13] R. Kurshan. Computer-Aided Verification of Co-ordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, 1994.

[14] J. Lind-Nielsen and H. Andersen. Stepwise CTL model checking of state/event systems.
In N. Halbwachs and D. Peled, editors, Proceedings of the International Conference on
Computer Aided Verification (CAV’99), 1999.

[15] David E. Long. Model checking, abstraction and compositional verification. PhD thesis,
Carnegie Mellon University, 1993. CMU-CS-93-178.

[16] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Ma-
lik. Chaff: Engineering an efficient SAT solver. In Proceedings of the Design Automation
Conference (DAC’01), pages 530–535, 2001.

[17] Abelardo Pardo and Gary D. Hachtel. Incremental CTL model checking using BDD
subsetting. In Proceedings of the Design Automation Conference (DAC’98), pages 457–
462, June 1998.

[18] J. P. Marques Silva and K. A. Sakallah. GRASP: A new search algorithm for satisfia-
bility. Technical Report CSE-TR-292-96, Computer Science and Engineering Division,
Department of EECS, Univ. of Michigan, April 1996.

[19] Dong Wang, Pei-Hsin Ho, Jiang Long, James Kukula, Yunshan Zhu, Tony Ma, and
Robert Damiano. Formal property verification by abstraction refinement with formal,
simulation and hybrid engines. In Proceedings of the DAC, pages 35–40, 2001.

[20] Hantao Zhang. SATO: An efficient propositional prover. In Proceedings of the Confer-
ence on Automated Deduction (CADE’97), pages 272–275, 1997.

[21] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik. Efficient
conflict driven learning in a Boolean satisfiability solver. In Proceedings of ICCAD’01,
November 2001.

