Automatic Assume Guarantee Analysis for
Assertion-Based Formal Verification

Dong Wang Jeremy Levitt
Synopsys Inc. Mentor Graphics Corp.
dongw@synopsys.com jeremylevitt@mentorg.com

Abstract— Assertion based verification encourages the inser- assertions to reduce the number of indeterminate assertions
tion of many assertions into a design. Typically, not all assertions that require manual analysis. An assume guarantee relation
can be proven (or falsified). The indeterminate assertions require states that an assertion is implied (guaranteed) if a set of

manual analysis in order to determine design correctness — med rtion re valid. Since th rrectn f th
a time-consuming and error-prone process. This paper shows assumed assertions are vald. ce the correciness o e

how automatic assume guarantee reasoning can be used to@ssertion is implied by a set of assumed assertions, only the
reduce the amount of manual analysis. We present algorithms to assumed assertions need to be analyzed manually. We present
automatically compute the assume guarantee relations between g practical and simple method to organize this information so

assertions. We extend circular assume guarantee reasoning Othat fewer assertions need be manually analyzed
compute more proofs. And, we show how automatic assume)

guarantee reasoning can be used in practice to reduce the
number of indeterminate assertions requiring manual analysis. A. Related work
We present the results of applying our algorithms to large

industrial designs. The assume guarantee algorithms we present in this paper

are different in important respects from those proposed by
|. INTRODUCTION previous research. Most existing assume guarantee algorithms
) o . are manual [10] [9] [7]. Users are required to identify the
Assertion based verification (ABV) is a methodology f0Lgq me guarantee relations between properties, and the al-
verifying correct design implementation. Assertions, in g ithms then check the validity of the given relations and
form of safety properties, are added to the design as it|iSe them to generate proof obligations. In contrast, our al-
being coded. These assertions check for the correct behaygfithms automatically compute assume guarantee relations
of the Io_glc being coded as We_II as for corr_e_ct b_ehawor on trpﬁ:/ enhancing existing SAT based temporal induction and
design interfaces. As the design and verification evolve, thfgraction refinement algorithms. Recently there has been
number of assertions can become very large. Itis typical forggme interesting research on automating assume guarantee,
design block to have hundreds of assertions. It is also typm&lch as [1] [4]. [1] [4] focus on automatically synthesizing
that a considerable number of assertions are too difficult to hey iiaple environment to guarantee a property, but this syn-
formally proven or falsified within the given resource limits,acis can be prohibitively expensive to perform. In contrast,

For crucial assertions, such as bus mutual exclusion (mutex), algorithms are designed for ABV where the number of
properties and logic equivalence checking (LEC) constrainigqertions is usually large. Instead of constructing completely

etc., manual inspection of each indeterminate assertion is, assumptions, our algorithms efficiently identify useful

frequently mandated. The consequence of these assertigng,mntions within the set of user specified assertions.
failing is likely to be a completely non-functional chip. Manual Most previous research on assume guarantee is directed at

inspection is clearly a tedious, time-consuming and error-proagnerating more proofs. In this paper, the assume guarantee

process. Therefore,_|t is desirable o reduce the number Qi iions are also used to reduce the manual verification
assertions that require manual analysis.

,) ; _effort involved when assertions can not be formally proven or
This paper describes automatic assume guarantee algor'tl?grl"ﬁfied. Other previous research uses dependencies between

designed to exploit the high assertion density of ABV. OUWlsertions to avoid redundant error reporting when design
algorithms automatically compute the assume guarantee reﬂags are found. Our approach on the other hand, uses assume

tions between given sets of assertions. We exploit the aufg;,antee relations to help users verify their design even when
matically computed assume guarantee relations in two ways; design bugs have been found yet

Firstly, we use the assume guarantee relations to generate
additional proofs. T(_) increase the number of proofs obtaineéi_, Contributions
we present an algorithm that extends circular assume guarantee
reasoning to compute additional proofs. Secondly, we useWWe have designed several new assume guarantee algorithms
the assume guarantee relations between the indetermirigt&0t only compute proofs, but just as importantly to reduce
the manual verification effort required for indeterminate asser-
TThis work was done while the authors were at 0-In Design Automatiotions.

With ABV, it is impractical for users to specify the assumé and only if M = Op, i.e. p holds in all reachable states
guarantee relations between assertions. Designers and verifidad/. In bounded model checking [2] (BMC) and temporal
tion engineers have neither the knowledge nor the inclinatiamduction [11], machine\/ is unrolled to different times. Let
to perform such analysis. Thus, we show how to enhané® and X* be the unrolled input and register variables at
existing SAT based temporal induction and abstraction refingme k. Given a set of propertie§' C P, a single property
ment algorithms to automatically compute assume guarantee an unrollk, the BMC and temporal induction fgr under
relations. Our algorithms are based on SAT unsatisfiabiliponstraintsC' are defined as:

proofs and abstragt counterexar_nple simulation. Similar ?’ICk(Gp) —I(X9) A R(XO, FO, X1 A
the use of constraints, assumptions are used to strengthen
induction hypothesis for temporal induction, and to generate C(XY)AR(X, FHL X)) A A
smaller abstractions for abstraction refinement. C(X*F) ARXEL FRL XF) A
We present an algorithm, call€guarantee , that uses the C(XF) A —pP 1)

(
automatically computed assume guarantee relations to ded (
y comp N . Wh.c.p) = CXO)Ap° ARXO,FO, XYY A A

guaranteed assertions from a given arbitrary set of assume
assertions. The traditional application of the circular assume CXM AP I ARXTE FEL XF) A
guarantee rule [9] (described in Section 1I-B) is a special C(X*) A —p* (2)
case of our algorithm, specifically when (1) the given set g
assumed assertions is empty and (2) each property is implied
by a single set of assumptions. Our algorithm allows a non-Given a machinel/, a propertyp € P and two disjoint
empty set of assumed assertions, enabling the deductionSefs of propertiesd) C P and A} C (P \ {p}), circular
general dependencies between assertions (in addition to pré$fgume guarantee reasoning [9] deals with triples of the form
deduced from the empty set of assumed assertions). Qlfy+Ap), M, p), which asserts that in machine, assuming
algorithm handles multiple sets of assumptions per properfy UP to timet—1 and A} up to timet can deduce up to time
and this enables proofs to be deduced in the presence of zérg!; is called the unit-delay assumptions fgrand A is the
delay cycles (described in Section I1-B). set of zero-delay assumptions farWe will use A4, = A;UAQ,

We also present an algorithm, call@uide , that distills to denote all the assumptions forand (A, M, p) to denote
the information represented by all the automatically computdge triple. We sayp is implied by assumptionsA,. With
assume guarantee relations into an organized and actionZ§iE0 delay assumptions, care must be taken to avoid false
format, thereby reducing the manual effort required to analyz&foofs”. For example if two false assertions are equivalent,
the indeterminate assertions. This is of practical importan&@ach assertion is implied by the other, yet neither is true.
since a direct presentation of all the assume guarantee relatigff§ular assume guarantee reasoning requires non-zero-delay
is more complicated than most designers and verificatik€- Unit-delay) cycles to generate proofs.
engineers are prepared to accept: the number of propertie§ormally, M = O(Apep pi), if
having assumptions can be large, an assumption of a property every property p; is implied by assumptions, i.e.
can itself have assumptions, the assume guarantee relations ((A;, AY), M, p;),
may contain loops, and there are different assumption types and there exists a well founded orderon P, such that
(zero-delay or unit-delay) to keep track of. Vg e AY (q < ps).
o For formal hardware verification of safety properties without
C. Organization fairness constraints, provin@A;, Agi), M, p;) is reduced to

The remainder of the paper is organized as follows. Segn induction problem or a reachability problem (see Section IlI
tion Il introduces notation and the circular assume guarantgg details).

rule. Section Il describes automatic algorithms to compute During verification, each property € P can be in one
assume guarantee relations. Section IV describesGimg- of four possible states representing the current verification
antee algorithm to compute guarantees for an arbitrary sgésult: unknown true, false or implied Initially all properties
of assertions. Section V describes tGeiide algorithm to are unknown. A property becomes true or false when we find
generate organized and actionable assume guarantee repgittser a proof or counterexample respectively for it. A property
Section VI presents experimental results. Finally, Section Mlecomes implied when we find a set of assumptions that
contains conclusions. imply it. We USe Puknoun, Prrues Pralse, Pimpia O represent
the corresponding set of assertions. As discussed, we allow
] a single property to have more than one set of assumptions
A. Notations A, ;, wherel < j <k, and (A, ;, M,p) A (Apj N Prre =

In this paper, the design under verification is modeled by@g A (A, ; N Pra1se = 0). We useA, to denote any of the
machineM = (F, X,I, R, P), whereF is the set of primary valid set of assumptions fags. Whenever a property € 4,
inputs, X is the set of registers/(X) is the initial state is proven, it is removed fromy,. If this makesA, empty,p
predicate, R(X, F, X') is the next state predicate, aldC X is proven to be true. On the other handgifs shown to be
is the set of assertions. An assertipre P is true under)d/ false, A, is no longer a valid set of assumptions foand the

Circular Assume Guarantee Reasoning

Il. BACKGROUND

entire set is removed. If it is the only set of assumptions fand property registers;, w,. The initial state and next state
p, thenp becomes unknown. Our algorithms may also directlfignctions are:

prove or falsifyp. A property isindeterminateif it is either I(entr)) = 17
unknown or implied. I(entry) = 13
For a set of properties’ C P, we useM = OC as a Rlentr)) = wy==ws? cntri+3—ini*2 :
shorthand forM = O(Acec ¢i). We sayp is guaranteed entry + ing
by C if and only if M | (OC — Op). Intuitively, if C Rlentrs) = wy==ws? cntraxh—ing*2
is true underM then any guaranteed property must be true entry + ing
under)/. It is informative to note tha{C, M, p) is a stronger I(w)) = 1
statement than/ = (OC — Op). For example, letM = I(wy) = 1
<®’ {pa Q}> 17 R7 {p’ Q}>1 such that: R(wl) = cnir [0]
I(p)=I(q) =1 R(ws) = entra]0]
R(p)=0 It is easy to see that the two assertians wy are true since
R(g)=p values incntr; and entro, are always odd numbers. But,
It is easy to see that the only trace bf is: algqrithm _Bmclnd fails to provew, and w- regardless _of
i the induction depth. The inductio@ND (C, p), can be easily
Iﬂﬁl falsified because it ignores the initial state of the machine.
t=01]1|1 For example, Table | shows a failed induction for with 4
t=1]0]1 unrolls. However, if bothw; andw, at timet—1 and timet
t>2]101]0
[time | wi [cntry [ing | wp | cntry [ing |
Thus, M = Og — Op holds because there is no path where 0 1 1 21 0 0 0
q holds globally.((0, {¢}), M,p) on the other hand does not T T 3] 2] 0O 0 O
hold, because at time= 1, propertyq is 1, butp is 0 and so g i 2 é g 8 8
q cannot implyp. a 0 5T 01 0 oo
[1l. 1 DENTIFY ASSUMPTIONS TABLE |
In this section, we show how to enhance existing formal INDUCTION COUNTEREXAMPLE FORw]

verification algorithms to compute assumptions automatically.

A. Temporal Induction are assumed, we can easily praveat time¢+1 and similarly
SAT based temporal induction [11] [5] complements BMGor w,. Based on the circular rule in Section 11-B, bath and

by establishing an upper bound on the length of the shortest are proven.

counterexample. This bound is typically much smaller than Figure 2 shows the modifications of Liné to Line 6

other bounds, such as diameter or recurrence diameter. HimvFigure 1. For each unrolk, when provingp we use as

ever, as is well known, temporal induction often fails due

to inadequate induction hypotheses. We use the followidgfor £k =1,...,m
simple SAT based verification algorithm as the basis of o@r if INDx(Psaise,p) IS Unsatisfiable
enhancement. 3 if no assumptions are required for unsat
4 return true
/l m is the given bound 5 else
Algorithm Bmc_Ind(M, p, m) 6 add properties in unsat proof as assumptions for p

1for k=0,....m—1
2 if BMC,(0, p) is satisfiable

3 return false Fig. 2. Temporal induction with assumptions
4fork=1,...,m
5 if INDg(Pirue,p) is unsatisfiable constraints all the properties not known to be false. In the
6 return true case of unsatisfiability, we extract the unsatisfiable core [3]
7 return unknown from the SAT solver (Line2). LetU = {p! | (p; #p) A (p] €
unsatcore) Ap; € (Punknown U Pimp1a) } D€ @ subset of property
Fig. 1. Bounded model checking and temporal induction variables that appear in the unsatisfiable céfes the set of

assumed assertions responsible for the success of the inductive
Let Pra1se = P\ Praise- Next we show how to us@:.;s. to hypothesis. IfU is empty (Line 3), p is proven without
strengthen induction without sacrificing soundness. The fassumptions and the algorithm terminates with a proof (Line
lowing example is used to motivate our approach. Let machidg Otherwise, an assume guarantee relatioty;, A%), M, p),
M have 8-bit inputsin,,iny, 8-bit registersentry,cntry, where A = {p; | pf e U} and A} = {p; | pi € AS A Jj <

k (p{ € U)} has been computed. Even jif is implied by problemsBMC,(0,p) and BMCy(Pra1se,p) a@re equivalent in
assumptions at unroll (Line 6), it may be possible to prove that they are both unsatisfiable. However, the size of the
at a larger unroll using fewer or no assumptions because largesatisfiability core for the latter can be much smaller than
unrolls will apply constraints in more time frames. In generathe former. A trivial example i8MCy ({p}, p), which does not
proofs from SAT solvers are highly affected by the state afse any circuit information to determine unsatisfiability.

the SAT_ d_atabase_ and SAT heuristics used. We pu_rposel_y vary IV. COMPUTE GUARANTEES
the decision heuristics. As a result, assumptions identified in))

different unrolls may not subsume each other. We record everyn this section, we show how to compute guaranteed as-

set of assumptions for each propeftyunless it contains an sértions for a given arbitrary set of assumptions using the
existing set of assumptions piis proven without assumptions.c0mputed assume guarantee relations. Our new algorithm is
based on a proof graph similar to an AND-OR graph:

B. Abstraction Refinement Definition 4.1: A proof graphg is a directed cyclic graph

Existential abstraction refinement is an effective techniqy¥th 5-tuple (7', A, 0, €,£7), where
for combating the state explosion problem associated withe 7 is the set of terminal vertices. Each propeftye
model checking. The objective of abstraction-refinement algo- Punknown U Pinpra has a corresponding terminal vertex
rithms is to generate a small abstraction that both preserves the 7» € 7
validity of a property and is amiable to direct model checking. * A is @ set of AND vertices. Each set of assumptighs;
We show how assumptions can be used to help reduce the size for p € Pinp1a cOrresponds to an AND vertezxg, For
of these abstractions. each assumption € 4, ;, there is an edgéry, aj) € £.
We first introduce a BDD based reachability algorithm ¢ O is a set of OR vertices. Each implied PrOPe_ﬁYE
which computes(4,, M, p) and separates the unit-delay as- Finpra has a corresponding OR vertex. There is an

sumptions in 4, from the zero-delay assumptions i,. edge(o,, 7,) € &. If p hask, sets of assumptions, there
The algorithm is based on the standard forward reachabmty arek, edges(aj,0,) € &, for j € {1,... ky}.
algorithm: o« &7 = {(1gy > | q € AJr it represents the unit-delay
. edges in. AII the other edges i have zero-delay.
Algontr}lm Reach{/, Ap, p) We also lety = {T U AU O}.
reach =1

For example, Figure 3 shows a proof graph. In this graph, there
new = reach

while new # ()
to = img[M](new) A A,
new = to A —reach
reach = reach V to
return reach

Essentially, reachability is restricted to the set of states that sat-
isfy all properties inA,,. (A,, M, p) holds when the reachable
states do not violate. Zero-delay assumptions are identified
during reachability wherp is violated in a states that is
excluded because also violatesq € A,. All the other
assumptions are unit-delay assumptions.

We have enhanced the counterexample guided localization Fig. 3. An example proof graph
reduction algorithm in [12], and the proof-based without coun-
terexample algorithm in [8], [6] to identify useful assumptiongare5 implied propertieg, to p;. The dashed line betweegn
The refinement algorithm in [12] is based on simulating th@d p2 represents a unit-delay edge; all the other edges have
abstraction counterexamples on the concrete machines ugiffp-delay.p: is guaranteed assuming either or ps. Thus
3-value simulation. Our enhancement of this algorithm is vepy has two sets of assumptions; is guaranteed if; and
simple. A propertyq € Prase is added to the abstraction,pPs both assumed. Based on model checking results, we know
whenever the 3-value simulation value fobecomes). There- there is az, such that all five properties hold from tinteto
fore by assuming, the abstract counterexample is invalidatedime ¢ — 1. From Figure 3, we have

Abstraction without counterexamples [8] [6] uses unsat- pit = ph—=>pl > pl
isfiable BMC instances to construct abstraction. The circuit
nodes that appear in the unsatisfiable coreMd, (0, p) are pL—ph,

extracted and model checked to see whether they are also

valid for an unbounded proof. Our enhancement is to creatberefore, by induction all five properties are true. Although
a smaller abstraction based on the unsatisfiability proof tifere is a zero-delay cyclg;, ps, p3, due to the existence
BMCy (Pra1se, p)- Assuming that the properties IR:.;s. are of more than one set of assumptions farit is possible to
impossible to violate in time frames 1 tb, the two SAT generate real proofs.

Figure 4 shows the pseudo-code fBuarantee . For a is {p | p € (Pigpra \ C) A doo (1) == 1}.

Il G is the proof graph V. GENERATE ASSUME GUARANTEE REPORT
/I C is a given set of assumed properties
Algorithm Guarantee (G, C)

1 d)o(v) =1LYvey

For the remaining indeterminate properties, we generate a
report that restricts the manual analysis of these properties
to a potentially much smaller set of properties. An example

2 w=0 . - - e

3 while (1) of such a report is shown in Figure 5. In this figure, there
4 w=w+1

5 ¢uv)=X,YveV Implied Properties (4)

6 push every vertex into event queue

7 while the event queue is not empty Assume: custom zi_pci_io.slv_mon.BS13

8 pop vertexv out of the event queue Prove (2)

9 if vis 1,, wherep € C custom checker_control.ps01110_1100

10 Pu(v) =1 custom checker_control.ps01110_0110

11 elsif v is 7,, wherep € Pyninown Assume: custom checker_control.ts0010

12 bu(v) =0 Prove (+1)

13 elsif v is 7,, wherep € Pippia custom ¢s3232.zi_pci_io.mas_mon.BS04

14 let ¢, (v) have its inputo,’s value Assume: custom zi_pci_io.slv_mon.BS12

15 elsif v is an OR vertex Assume: custom zi_pci_io.slv_mon.BS10

16 let ¢, (v) be the OR of its inputs’ values Prove (+1)

17 else custom ¢s3232.zi_pci_io.slv_mon.BS04

18 v must be an AND vertex

19 Su(v) =1

20 foreach input edgee = (7, v) Fig. 5. An assume guarantee report

21 if ec&F

22 buw(v) &= Pu_1(7y) are four implied properties listed under “Prove”. To guarantee
23 else these implied properties, there are four assumptions whose
24 O (V) &= P (7q) correctness need to be established. If the first of the four
25 if ¢, (v) has changed assumptions is proven, two (i.B.in Figure 5) implied prop-

26 push all its fanout vertices into event queue erties are guaranteed to be correct. If the second assumption
27 endwhile is proven, one more (i.e. the firstl in Figure 5) implied
28 if ¢y == b1 property is guaranteed to be correct. Finally, if the last two
29 return {p | p € (Pigpra \ C) A ¢ (1) == 1} assumptions are proven, one more (i.e. the4asin Figure 5)
30 endwhile implied property is guaranteed to be correct. Note that the last

property requires all the four assumptions in the table. Using
such a report, users can follow the suggested order to discharge
all the required assumptions. For users who wish to see the
assumptions for each implied property listed separately, we
given proof graphG and a subse€ C (Pumown U Pinp1a), @ls0O provide the detailed assume guarantee relations.

it can be shown that/ = OC — OGuarantee(G,C). Figure 6 shows the pseudo-code féuide to generate an
Guarantee(G, () generates real proofs without assumptiongissume guarantee report. In this figureis the set of selected

In this algorithm, the possible truth values for a graph verteassumptions and' is the set of implied assertions that can be
are 0,1, X, where 0 representsfalse, 1 representstrue, guaranteed by'. Between Line and Line9, assumptions are
and X could be eithertrue or false. We define function identified and propagated usirtrarantee until all implied

ow : V — {0,1, X} as a mapping from vertices in iterationproperties are guaranteell. associates each assumption with
w (of the code block starting on Lin@) to truth values. At the number of properties that become guaranteed. At Line
iteration0, ¢o(v) is 1 for every vertexv. From Line7 to Line R is sorted so that assumptions with more guaranteed proper-
27, ¢y, is calculated using event driven simulation. The codges are ordered first. The assumptions and their guarantees are
between Line20 to Line 24 warrants detailed explanation.then printed between Lin& and Linel7. TheDFS algorithm

For a unit-delay assumption, values for the previous iterati@h Line4 finds an assertioq in the transitive fanin of,, that is

are used; otherwise, values from the current iteration ametin CUG. Itis easy to see that by addiggnto C, p is closer
used. Using latticel = X > 0, it is possible to prove that to being guaranteed. can include both unknown properties
this algorithm performs a greatest fixed point computaticand implied properties. Note that it is also possible to improve
(1,...,1) = ¢9g = ¢1 = -+ = ¢s. When the fixed the ordering of assumptions by iterating this algorithm more
point is reached (Line8), the set of guaranteed propertieshan once.

Fig. 4. Calculate the guarantees from assumptions

/I G is the proof graph

>) assume guarantee algorithms, despite the amount of analysis
Algorithm Guide (G)

they perform.

1C0=G=0

2 while ((CUQG) 2 Pinp1a) Design | Reg | Prop | Remaining | Time (secs) | Proof

3 pick anyp € Pimpld \ (C U G) With T W/O [With T W/O

4 1,=DFSG, 7, (CUG)) D1 2k | 363 35 [150 56 52 14

5 C=CuU D2 50k | 219 50 74| 795 | 532 0

4 D3 68k | 739 93 | 126 | 2472 | 2296 46

6 N = Guarantee (G,C) D4 55k | 6476 40 54 | 1475 1407 | 1/96

7 R=RU{(qg|N|—|G)} D5 65k | 375 | 215 | 245| 571 | 367 273

8 - N D6 17k | 132 79 87 71 43 1
. D7 135k | 418 | 101 | 109 | 1212 | 1169 15

9 endwhile _ D8 600 | 82| 51| 54| 111 110 0

10 sortR in descending order of the second elements [Total | [8804 | 664 | 899 | 6763] 5976 | 3/175 |

11C=G=10

12 foreach ({q,n) € R) TABLE I

13 C=CU q EXPERIMENTS ON EIGHT INDUSTRIAL DESIGNS

14 N = Guarantegg, C)
15 print (¢, N\ G)

16 G=N VIlI. CONCLUSIONS

17 endfor . .
We have presented automatic assume guarantee algorithms

for assertion based formal verification. Our algorithms exploit

Fig. 6. Algorithm to generate an assume guarantee report the large number of assertions in an ABV methodology to
automatically compute the assume guarantee relations. Ex-
periments with industrial designs demonstrate that a signif-
icant number of assertions can be excluded from manual
analysis. Our approach is easily introduced into an existing
In this section, we report experimental results for eigl{By methodology. No manually supplied assume guarantee
industrial designs of various sizes and complexities. Thgjations are required. Users are provided with an ordered list

largest design has over 135k registers and 900k gates. B@ssertions to analyze. Users do not need to know the detailed
smallest _de5|gn has _600 registers and 2k gates. The n_umlggr@me guarantee relations.
of assertions per design range from 82 to 6k. Our experiments
were run on a 3.2Ghz Pentium4 with 3.4GB memory running REFERENCES
RedHat Linux 7.2. Table Il shows the results for designs DJ1] R. Alur, L. Alfaro, T. Henzinger, and F. Mang, “Automating modular
to D8. The second and third columns contain the number_ Verification,” in CONCUR 1999, pp. 82-97. _ _
f it d ti i h desi Col 4 A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
of register and assertion for each design. Columns 4 and oyt BDDs,” in TACAS 1999.
5 compare the number of assertions that remain for furthgs] p. Chauhan, E. Clarke, S. Sapra, J. Kukula, H. Veith, and D. Wang,
analysis (1) using and (2) without using our automatic assume “Automated abstraction refinement for model checking large state spaces
t | ith tivelv. Wh th | ith . using sat based conflict analysis,” W CAD, 2002.
glj'aran ee ago“_ ms respectively. en the algorthms '[l] J. Cobleigh, D. Giannakopoulou, and C. Pasareanu, “Learning assump-
this paper are disabled, we report the number of unknown tions for compsotional verification,” iTACAS 2003.
properties; otherwise, we report the sum of the unknown prog®] N- Een and N. Sorensson, “Temporal induction by incremental sat
. solving,” in First International Workshop on Bounded Model Checking
erties and the number of assumptions (identified by Algorithm 5454
Guide in Section V). Based on this table, automatic assumg] A. Gupta, M. Ganai, P. Ashar, and Z. Yang, “Iterative abstraction using
guarantee can reduce the number of assertions remaining for satbased bmc with proof analysis,” IGCAD, 2003.

. - 1 T. Henzinger, S. Qadeer, and S. Rajamani, “You assume, we guarantee:
manual analysis by(899 — 664)/899 = 26% on average. methodology and case studies,” @AV, 1998, pp. 440—451.

This represents a significant saving of users’ time and efforfg] K. McMillan and N. Amla, “Automatic abstraction without counterex-
Columns 6 and 7 compare the runtime (1) using and (2) 2amples’inTACAS 2003. ” . _ _

. . K. L. McMillan, “Circular compositional reasonining about liveness,” in
without using assume guarantee. The overhead of our assufe cyarmE 1999.
guarantee algorithms is pretty low. The average slowdovao] A. Pnueli, “In transition from global to modular temporal reasoning
is (6763 _ 5976)/5976 = 13%. The last column reports abotitzgr(ﬁrfms," inLogic and Models of Concurrent Systeni®984,

pp. 123-144.
the r?umbe.r of rgal proofs ComDUted by tBuarantee . [11] M. Sheeran, S. Singh, and G. Stalmarck, “Checking safety properties
algorithm in Section IV. Note that except for 1 proof in using induction and a sat-solver,” FMCAD, 2000.
design D4 and 2 proofs in design D5, these proofs are alddl D. Wang, P.-H. Ho, J. Long, J. Kukula, Y. Zhu, T. Ma, and R. Damiano,
ithout usina assume gquarantee. However. findin Formal Property Verification by Abstraction Refinement with Formal,

proven wi u 9 . g : v 9 Simulation and Hybrid Engines,” iDAC, 2001.
these proofs through direct brute force methods was typically
much more computationally expensive than using our assume
guarantee reasoning and leveraging proofs already found for

other properties. This in part explains the low overhead of our

VI. EXPERIMENTS

