
Automatic Assume Guarantee Analysis for
Assertion-Based Formal Verification

Dong Wang†
Synopsys Inc.

dongw@synopsys.com

Jeremy Levitt†
Mentor Graphics Corp.

jeremy levitt@mentorg.com

Abstract— Assertion based verification encourages the inser-
tion of many assertions into a design. Typically, not all assertions
can be proven (or falsified). The indeterminate assertions require
manual analysis in order to determine design correctness –
a time-consuming and error-prone process. This paper shows
how automatic assume guarantee reasoning can be used to
reduce the amount of manual analysis. We present algorithms to
automatically compute the assume guarantee relations between
assertions. We extend circular assume guarantee reasoning to
compute more proofs. And, we show how automatic assume
guarantee reasoning can be used in practice to reduce the
number of indeterminate assertions requiring manual analysis.
We present the results of applying our algorithms to large
industrial designs.

I. I NTRODUCTION

Assertion based verification (ABV) is a methodology for
verifying correct design implementation. Assertions, in the
form of safety properties, are added to the design as it is
being coded. These assertions check for the correct behavior
of the logic being coded as well as for correct behavior on the
design interfaces. As the design and verification evolve, the
number of assertions can become very large. It is typical for a
design block to have hundreds of assertions. It is also typical
that a considerable number of assertions are too difficult to be
formally proven or falsified within the given resource limits.
For crucial assertions, such as bus mutual exclusion (mutex)
properties and logic equivalence checking (LEC) constraints,
etc., manual inspection of each indeterminate assertion is
frequently mandated. The consequence of these assertions
failing is likely to be a completely non-functional chip. Manual
inspection is clearly a tedious, time-consuming and error-prone
process. Therefore, it is desirable to reduce the number of
assertions that require manual analysis.

This paper describes automatic assume guarantee algorithms
designed to exploit the high assertion density of ABV. Our
algorithms automatically compute the assume guarantee rela-
tions between given sets of assertions. We exploit the auto-
matically computed assume guarantee relations in two ways.
Firstly, we use the assume guarantee relations to generate
additional proofs. To increase the number of proofs obtained,
we present an algorithm that extends circular assume guarantee
reasoning to compute additional proofs. Secondly, we use
the assume guarantee relations between the indeterminate

†This work was done while the authors were at 0-In Design Automation.

assertions to reduce the number of indeterminate assertions
that require manual analysis. An assume guarantee relation
states that an assertion is implied (guaranteed) if a set of
assumed assertions are valid. Since the correctness of the
assertion is implied by a set of assumed assertions, only the
assumed assertions need to be analyzed manually. We present
a practical and simple method to organize this information so
that fewer assertions need be manually analyzed.

A. Related work

The assume guarantee algorithms we present in this paper
are different in important respects from those proposed by
previous research. Most existing assume guarantee algorithms
are manual [10] [9] [7]. Users are required to identify the
assume guarantee relations between properties, and the al-
gorithms then check the validity of the given relations and
use them to generate proof obligations. In contrast, our al-
gorithms automatically compute assume guarantee relations
by enhancing existing SAT based temporal induction and
abstraction refinement algorithms. Recently there has been
some interesting research on automating assume guarantee,
such as [1] [4]. [1] [4] focus on automatically synthesizing
a suitable environment to guarantee a property, but this syn-
thesis can be prohibitively expensive to perform. In contrast,
our algorithms are designed for ABV where the number of
assertions is usually large. Instead of constructing completely
new assumptions, our algorithms efficiently identify useful
assumptions within the set of user specified assertions.

Most previous research on assume guarantee is directed at
generating more proofs. In this paper, the assume guarantee
relations are also used to reduce the manual verification
effort involved when assertions can not be formally proven or
falsified. Other previous research uses dependencies between
assertions to avoid redundant error reporting when design
bugs are found. Our approach on the other hand, uses assume
guarantee relations to help users verify their design even when
no design bugs have been found yet.

B. Contributions

We have designed several new assume guarantee algorithms
to not only compute proofs, but just as importantly to reduce
the manual verification effort required for indeterminate asser-
tions.

With ABV, it is impractical for users to specify the assume
guarantee relations between assertions. Designers and verifica-
tion engineers have neither the knowledge nor the inclination
to perform such analysis. Thus, we show how to enhance
existing SAT based temporal induction and abstraction refine-
ment algorithms to automatically compute assume guarantee
relations. Our algorithms are based on SAT unsatisfiability
proofs and abstract counterexample simulation. Similar to
the use of constraints, assumptions are used to strengthen
induction hypothesis for temporal induction, and to generate
smaller abstractions for abstraction refinement.

We present an algorithm, calledGuarantee , that uses the
automatically computed assume guarantee relations to deduce
guaranteed assertions from a given arbitrary set of assumed
assertions. The traditional application of the circular assume
guarantee rule [9] (described in Section II-B) is a special
case of our algorithm, specifically when (1) the given set of
assumed assertions is empty and (2) each property is implied
by a single set of assumptions. Our algorithm allows a non-
empty set of assumed assertions, enabling the deduction of
general dependencies between assertions (in addition to proofs
deduced from the empty set of assumed assertions). Our
algorithm handles multiple sets of assumptions per property
and this enables proofs to be deduced in the presence of zero-
delay cycles (described in Section II-B).

We also present an algorithm, calledGuide , that distills
the information represented by all the automatically computed
assume guarantee relations into an organized and actionable
format, thereby reducing the manual effort required to analyze
the indeterminate assertions. This is of practical importance,
since a direct presentation of all the assume guarantee relations
is more complicated than most designers and verification
engineers are prepared to accept: the number of properties
having assumptions can be large, an assumption of a property
can itself have assumptions, the assume guarantee relations
may contain loops, and there are different assumption types
(zero-delay or unit-delay) to keep track of.

C. Organization

The remainder of the paper is organized as follows. Sec-
tion II introduces notation and the circular assume guarantee
rule. Section III describes automatic algorithms to compute
assume guarantee relations. Section IV describes theGuar-
antee algorithm to compute guarantees for an arbitrary set
of assertions. Section V describes theGuide algorithm to
generate organized and actionable assume guarantee reports.
Section VI presents experimental results. Finally, Section VII
contains conclusions.

II. BACKGROUND

A. Notations

In this paper, the design under verification is modeled by a
machineM = 〈F,X, I, R, P 〉, whereF is the set of primary
inputs, X is the set of registers,I(X) is the initial state
predicate,R(X, F, X ′) is the next state predicate, andP ⊆ X
is the set of assertions. An assertionp ∈ P is true underM

if and only if M |= �p, i.e. p holds in all reachable states
of M . In bounded model checking [2] (BMC) and temporal
induction [11], machineM is unrolled to different times. Let
F k and Xk be the unrolled input and register variables at
time k. Given a set of propertiesC ⊆ P , a single propertyp
and an unrollk, the BMC and temporal induction forp under
constraintsC are defined as:

BMCk(C, p) = I(X0) ∧R(X0, F 0, X1) ∧
C(X1) ∧R(X1, F 1, X2) ∧ · · · ∧
C(Xk−1) ∧R(Xk−1, F k−1, Xk) ∧
C(Xk) ∧ ¬pk (1)

INDk(C, p) = C(X0) ∧ p0 ∧R(X0, F 0, X1) ∧ · · · ∧
C(Xk−1) ∧ pk−1 ∧R(Xk−1, F k−1, Xk) ∧
C(Xk) ∧ ¬pk (2)

B. Circular Assume Guarantee Reasoning

Given a machineM , a propertyp ∈ P and two disjoint
sets of propertiesA+

p ⊆ P and A0
p ⊆ (P \ {p}), circular

assume guarantee reasoning [9] deals with triples of the form
〈〈A+

p , A0
p〉,M, p〉, which asserts that in machineM , assuming

A+
p up to timet−1 andA0

p up to timet can deducep up to time
t. A+

p is called the unit-delay assumptions forp, andA0
p is the

set of zero-delay assumptions forp. We will useAp = A+
p ∪A0

p

to denote all the assumptions forp, and〈Ap,M, p〉 to denote
the triple. We sayp is implied by assumptionsAp. With
zero delay assumptions, care must be taken to avoid false
“proofs”. For example if two false assertions are equivalent,
each assertion is implied by the other, yet neither is true.
Circular assume guarantee reasoning requires non-zero-delay
(i.e. unit-delay) cycles to generate proofs.

Formally, M |= �(∧pi∈P pi), if
• every property pi is implied by assumptions, i.e.
〈〈A+

pi
, A0

pi
〉,M, pi〉,

• and there exists a well founded order¹ on P , such that
∀q ∈ A0

pi
(q ¹ pi).

For formal hardware verification of safety properties without
fairness constraints, proving〈〈A+

pi
, A0

pi
〉,M, pi〉 is reduced to

an induction problem or a reachability problem (see Section III
for details).

During verification, each propertyp ∈ P can be in one
of four possible states representing the current verification
result:unknown, true, falseor implied. Initially all properties
are unknown. A property becomes true or false when we find
either a proof or counterexample respectively for it. A property
becomes implied when we find a set of assumptions that
imply it. We usePunknown, Ptrue, Pfalse, Pimpld to represent
the corresponding set of assertions. As discussed, we allow
a single propertyp to have more than one set of assumptions
Ap,j , where1 ≤ j ≤ kp and 〈Ap,j ,M, p〉 ∧ (Ap,j ∩ Ptrue =
∅) ∧ (Ap,j ∩ Pfalse = ∅). We useAp to denote any of the
valid set of assumptions forp. Whenever a propertyq ∈ Ap

is proven, it is removed fromAp. If this makesAp empty,p
is proven to be true. On the other hand, ifq is shown to be
false,Ap is no longer a valid set of assumptions forp and the

entire set is removed. If it is the only set of assumptions for
p, thenp becomes unknown. Our algorithms may also directly
prove or falsifyp. A property is indeterminateif it is either
unknown or implied.

For a set of propertiesC ⊆ P , we useM |= �C as a
shorthand forM |= �(∧ci∈C ci). We sayp is guaranteed
by C if and only if M |= (�C → �p). Intuitively, if C
is true underM then any guaranteed property must be true
underM . It is informative to note that〈C, M, p〉 is a stronger
statement thanM |= (�C → �p). For example, letM =
〈∅, {p, q}, I, R, {p, q}〉, such that:

I(p) = I(q) = 1
R(p) = 0
R(q) = p

It is easy to see that the only trace ofM is:

time p q

t = 0 1 1
t = 1 0 1
t ≥ 2 0 0

Thus,M |= �q → �p holds because there is no path where
q holds globally.〈〈∅, {q}〉,M, p〉 on the other hand does not
hold, because at timet = 1, propertyq is 1, butp is 0 and so
q cannot implyp.

III. I DENTIFY ASSUMPTIONS

In this section, we show how to enhance existing formal
verification algorithms to compute assumptions automatically.

A. Temporal Induction

SAT based temporal induction [11] [5] complements BMC
by establishing an upper bound on the length of the shortest
counterexample. This bound is typically much smaller than
other bounds, such as diameter or recurrence diameter. How-
ever, as is well known, temporal induction often fails due
to inadequate induction hypotheses. We use the following
simple SAT based verification algorithm as the basis of our
enhancement.

// m is the given bound
Algorithm Bmc Ind(M , p, m)
1 for k = 0, . . . , m− 1
2 if BMCk(∅, p) is satisfiable
3 return false
4 for k = 1, . . . , m
5 if INDk(Ptrue, p) is unsatisfiable
6 return true
7 return unknown

Fig. 1. Bounded model checking and temporal induction

Let Pfalse = P \ Pfalse. Next we show how to usePfalse to
strengthen induction without sacrificing soundness. The fol-
lowing example is used to motivate our approach. Let machine
M have 8-bit inputsin1, in2, 8-bit registerscntr1, cntr2,

and property registersw1, w2. The initial state and next state
functions are:

I(cntr1) = 17
I(cntr2) = 13
R(cntr1) = w1 == w2 ? cntr1 ∗3− in1 ∗2 :

cntr1 + in1

R(cntr2) = w1 == w2 ? cntr2 ∗5− in2 ∗2 :
cntr2 + in2

I(w1) = 1
I(w2) = 1
R(w1) = cntr1[0]
R(w2) = cntr2[0]

It is easy to see that the two assertionsw1, w2 are true since
values in cntr1 and cntr2 are always odd numbers. But,
algorithm BmcInd fails to provew1 and w2 regardless of
the induction depth. The induction,INDk(C, p), can be easily
falsified because it ignores the initial state of the machine.
For example, Table I shows a failed induction forw1 with 4
unrolls. However, if bothw1 andw2 at time t−1 and timet

time w1 cntr1 in1 w2 cntr2 in2

0 1 1 2 0 0 0
1 1 3 2 0 0 0
2 1 5 1 0 0 0
3 1 6 0 0 0 0
4 0 6 0 0 0 0

TABLE I

INDUCTION COUNTEREXAMPLE FORw1

are assumed, we can easily provew1 at timet+1 and similarly
for w2. Based on the circular rule in Section II-B, bothw1 and
w2 are proven.

Figure 2 shows the modifications of Line4 to Line 6
in Figure 1. For each unrollk, when provingp we use as

1 for k = 1, . . . , m
2 if INDk(Pfalse, p) is unsatisfiable
3 if no assumptions are required for unsat
4 return true
5 else
6 add properties in unsat proof as assumptions for p

Fig. 2. Temporal induction with assumptions

constraints all the properties not known to be false. In the
case of unsatisfiability, we extract the unsatisfiable core [3]
from the SAT solver (Line2). Let U = {pj

i | (pi 6= p)∧ (pj
i ∈

unsatcore)∧pi ∈ (Punknown∪Pimpld)} be a subset of property
variables that appear in the unsatisfiable core.U is the set of
assumed assertions responsible for the success of the inductive
hypothesis. If U is empty (Line 3), p is proven without
assumptions and the algorithm terminates with a proof (Line
4). Otherwise, an assume guarantee relation〈〈A+

p , A0
p〉,M, p〉,

whereA0
p = {pi | pk

i ∈ U} andA+
p = {pi | pi 6∈ A0

p ∧ ∃j <

k (pj
i ∈ U)} has been computed. Even ifp is implied by

assumptions at unrollk (Line 6), it may be possible to provep
at a larger unroll using fewer or no assumptions because larger
unrolls will apply constraints in more time frames. In general,
proofs from SAT solvers are highly affected by the state of
the SAT database and SAT heuristics used. We purposely vary
the decision heuristics. As a result, assumptions identified in
different unrolls may not subsume each other. We record every
set of assumptions for each propertyp, unless it contains an
existing set of assumptions orp is proven without assumptions.

B. Abstraction Refinement

Existential abstraction refinement is an effective technique
for combating the state explosion problem associated with
model checking. The objective of abstraction-refinement algo-
rithms is to generate a small abstraction that both preserves the
validity of a property and is amiable to direct model checking.
We show how assumptions can be used to help reduce the size
of these abstractions.

We first introduce a BDD based reachability algorithm
which computes〈Ap,M, p〉 and separates the unit-delay as-
sumptions inAp from the zero-delay assumptions inAp.
The algorithm is based on the standard forward reachability
algorithm:

Algorithm Reach(M , Ap, p)
reach = I
new = reach
while new 6= ∅

to = img[M](new) ∧Ap

new = to ∧ ¬reach
reach = reach ∨ to

return reach

Essentially, reachability is restricted to the set of states that sat-
isfy all properties inAp. 〈Ap, M, p〉 holds when the reachable
states do not violatep. Zero-delay assumptions are identified
during reachability whenp is violated in a states that is
excluded becauses also violatesq ∈ Ap. All the other
assumptions are unit-delay assumptions.

We have enhanced the counterexample guided localization
reduction algorithm in [12], and the proof-based without coun-
terexample algorithm in [8], [6] to identify useful assumptions.
The refinement algorithm in [12] is based on simulating the
abstraction counterexamples on the concrete machines using
3-value simulation. Our enhancement of this algorithm is very
simple. A propertyq ∈ Pfalse is added to the abstraction,
whenever the 3-value simulation value forq becomes0. There-
fore by assumingq, the abstract counterexample is invalidated.

Abstraction without counterexamples [8] [6] uses unsat-
isfiable BMC instances to construct abstraction. The circuit
nodes that appear in the unsatisfiable core ofBMCk(∅, p) are
extracted and model checked to see whether they are also
valid for an unbounded proof. Our enhancement is to create
a smaller abstraction based on the unsatisfiability proof of
BMCk(Pfalse, p). Assuming that the properties inPfalse are
impossible to violate in time frames 1 tok, the two SAT

problemsBMCk(∅, p) and BMCk(Pfalse, p) are equivalent in
that they are both unsatisfiable. However, the size of the
unsatisfiability core for the latter can be much smaller than
the former. A trivial example isBMCk({p}, p), which does not
use any circuit information to determine unsatisfiability.

IV. COMPUTE GUARANTEES

In this section, we show how to compute guaranteed as-
sertions for a given arbitrary set of assumptions using the
computed assume guarantee relations. Our new algorithm is
based on a proof graph similar to an AND-OR graph:

Definition 4.1: A proof graphG is a directed cyclic graph
with 5-tuple 〈T ,A,O, E , E+〉, where
• T is the set of terminal vertices. Each propertyp ∈

Punknown ∪ Pimpld has a corresponding terminal vertex
τp ∈ T .

• A is a set of AND vertices. Each set of assumptionsAp,j

for p ∈ Pimpld corresponds to an AND vertexαj
p. For

each assumptionq ∈ Ap,j , there is an edge〈τq, α
j
p〉 ∈ E .

• O is a set of OR vertices. Each implied propertyp ∈
Pimpld has a corresponding OR vertexop. There is an
edge〈op, τp〉 ∈ E . If p haskp sets of assumptions, there
arekp edges〈αj

p, op〉 ∈ E , for j ∈ {1, . . . , kp}.
• E+ = {〈τq, α

j
p〉 | q ∈ A+

p,j} represents the unit-delay
edges inE . All the other edges inE have zero-delay.

We also letV = {T ∪ A ∪ O}.
For example, Figure 3 shows a proof graph. In this graph, there

p3

p1

p4p2

p5

Fig. 3. An example proof graph

are5 implied propertiesp1 to p5. The dashed line betweenp4

andp2 represents a unit-delay edge; all the other edges have
zero-delay.p1 is guaranteed assuming eitherp2 or p3. Thus
p1 has two sets of assumptions.p5 is guaranteed ifp1 and
p4 both assumed. Based on model checking results, we know
there is at, such that all five properties hold from time0 to
time t− 1. From Figure 3, we have

pt
2 pt

1

pt
5 pt

3

pt
4pt−1

4

Therefore, by induction all five properties are true. Although
there is a zero-delay cyclep1, p5, p3, due to the existence
of more than one set of assumptions forp1 it is possible to
generate real proofs.

Figure 4 shows the pseudo-code forGuarantee . For a

// G is the proof graph
// C is a given set of assumed properties
Algorithm Guarantee (G, C)
1 φ0(v) = 1, ∀v ∈ V
2 w = 0
3 while (1)
4 w = w + 1
5 φw(v) = X, ∀v ∈ V
6 push every vertex into event queue
7 while the event queue is not empty
8 pop vertexv out of the event queue
9 if v is τp, wherep ∈ C

10 φw(v) = 1
11 elsif v is τp, wherep ∈ Punknown

12 φw(v) = 0
13 elsif v is τp, wherep ∈ Pimpld

14 let φw(v) have its inputop’s value
15 elsif v is an OR vertex
16 let φw(v) be the OR of its inputs’ values
17 else
18 v must be an AND vertex
19 φw(v) = 1
20 foreach input edgee = 〈τq, v〉
21 if e ∈ E+

22 φw(v) &= φw−1(τq)
23 else
24 φw(v) &= φw(τq)
25 if φw(v) has changed
26 push all its fanout vertices into event queue
27 endwhile
28 if φw == φw−1

29 return {p | p ∈ (Pimpld \ C) ∧ φw(τp) == 1}
30 endwhile

Fig. 4. Calculate the guarantees from assumptions

given proof graphG and a subsetC ⊆ (Punknown ∪ Pimpld),
it can be shown thatM |= �C → �Guarantee(G, C).
Guarantee(G, ∅) generates real proofs without assumptions.
In this algorithm, the possible truth values for a graph vertex
are 0, 1, X, where 0 representsfalse, 1 representstrue,
and X could be eithertrue or false. We define function
φw : V → {0, 1, X} as a mapping from vertices in iteration
w (of the code block starting on Line7) to truth values. At
iteration0, φ0(v) is 1 for every vertexv. From Line7 to Line
27, φw is calculated using event driven simulation. The code
between Line20 to Line 24 warrants detailed explanation.
For a unit-delay assumption, values for the previous iteration
are used; otherwise, values from the current iteration are
used. Using lattice1 º X º 0, it is possible to prove that
this algorithm performs a greatest fixed point computation
〈1, . . . , 1〉 = φ0 º φ1 º · · · º φ∞. When the fixed
point is reached (Line28), the set of guaranteed properties

is {p | p ∈ (Pimpld \ C) ∧ φ∞(τp) == 1}.

V. GENERATE ASSUMEGUARANTEE REPORT

For the remaining indeterminate properties, we generate a
report that restricts the manual analysis of these properties
to a potentially much smaller set of properties. An example
of such a report is shown in Figure 5. In this figure, there

--
Implied Properties (4)
--
Assume: custom zi_pci_io.slv_mon.BS13
Prove (2)

custom checker_control.ps01110_1100
custom checker_control.ps01110_0110

Assume: custom checker_control.ts0010
Prove (+1)

custom cs3232.zi_pci_io.mas_mon.BS04
Assume: custom zi_pci_io.slv_mon.BS12
Assume: custom zi_pci_io.slv_mon.BS10
Prove (+1)

custom cs3232.zi_pci_io.slv_mon.BS04
--

Fig. 5. An assume guarantee report

are four implied properties listed under “Prove”. To guarantee
these implied properties, there are four assumptions whose
correctness need to be established. If the first of the four
assumptions is proven, two (i.e.2 in Figure 5) implied prop-
erties are guaranteed to be correct. If the second assumption
is proven, one more (i.e. the first+1 in Figure 5) implied
property is guaranteed to be correct. Finally, if the last two
assumptions are proven, one more (i.e. the last+1 in Figure 5)
implied property is guaranteed to be correct. Note that the last
property requires all the four assumptions in the table. Using
such a report, users can follow the suggested order to discharge
all the required assumptions. For users who wish to see the
assumptions for each implied property listed separately, we
also provide the detailed assume guarantee relations.

Figure 6 shows the pseudo-code forGuide to generate an
assume guarantee report. In this figure,C is the set of selected
assumptions andG is the set of implied assertions that can be
guaranteed byC. Between Line2 and Line9, assumptions are
identified and propagated usingGuarantee until all implied
properties are guaranteed.R associates each assumption with
the number of properties that become guaranteed. At Line10,
R is sorted so that assumptions with more guaranteed proper-
ties are ordered first. The assumptions and their guarantees are
then printed between Line12 and Line17. TheDFS algorithm
at Line4 finds an assertionq in the transitive fanin ofτp that is
not inC∪G. It is easy to see that by addingq into C, p is closer
to being guaranteed.C can include both unknown properties
and implied properties. Note that it is also possible to improve
the ordering of assumptions by iterating this algorithm more
than once.

// G is the proof graph
Algorithm Guide (G)
1 C = G = ∅
2 while ((C ∪G) 6⊇ Pimpld)
3 pick anyp ∈ Pimpld \ (C ∪G)
4 τq = DFS(G, τp, (C ∪G))
5 C = C ∪ q
6 N = Guarantee (G, C)
7 R = R ∪ {〈q, |N | − |G|〉}
8 G = N
9 endwhile

10 sortR in descending order of the second elements
11 C = G = ∅
12 foreach (〈q, n〉 ∈ R)
13 C = C ∪ q
14 N = Guarantee(G, C)
15 print (q, N \G)
16 G = N
17 endfor

Fig. 6. Algorithm to generate an assume guarantee report

VI. EXPERIMENTS

In this section, we report experimental results for eight
industrial designs of various sizes and complexities. The
largest design has over 135k registers and 900k gates. The
smallest design has 600 registers and 2k gates. The numbers
of assertions per design range from 82 to 6k. Our experiments
were run on a 3.2Ghz Pentium4 with 3.4GB memory running
RedHat Linux 7.2. Table II shows the results for designs D1
to D8. The second and third columns contain the number
of register and assertion for each design. Columns 4 and
5 compare the number of assertions that remain for further
analysis (1) using and (2) without using our automatic assume
guarantee algorithms respectively. When the algorithms in
this paper are disabled, we report the number of unknown
properties; otherwise, we report the sum of the unknown prop-
erties and the number of assumptions (identified by Algorithm
Guide in Section V). Based on this table, automatic assume
guarantee can reduce the number of assertions remaining for
manual analysis by(899 − 664)/899 = 26% on average.
This represents a significant saving of users’ time and effort.
Columns 6 and 7 compare the runtime (1) using and (2)
without using assume guarantee. The overhead of our assume
guarantee algorithms is pretty low. The average slowdown
is (6763 − 5976)/5976 = 13%. The last column reports
the number of real proofs computed by theGuarantee
algorithm in Section IV. Note that except for 1 proof in
design D4 and 2 proofs in design D5, these proofs are also
proven without using assume guarantee. However, finding
these proofs through direct brute force methods was typically
much more computationally expensive than using our assume
guarantee reasoning and leveraging proofs already found for
other properties. This in part explains the low overhead of our

assume guarantee algorithms, despite the amount of analysis
they perform.

Design Reg Prop Remaining Time (secs) Proof
With W/O With W/O

D1 2k 363 35 150 56 52 14
D2 50k 219 50 74 795 532 0
D3 68k 739 93 126 2472 2296 46
D4 55k 6476 40 54 1475 1407 1/96
D5 65k 375 215 245 571 367 2/3
D6 17k 132 79 87 71 43 1
D7 135k 418 101 109 1212 1169 15
D8 600 82 51 54 111 110 0

Total 8804 664 899 6763 5976 3/175

TABLE II

EXPERIMENTS ON EIGHT INDUSTRIAL DESIGNS.

VII. C ONCLUSIONS

We have presented automatic assume guarantee algorithms
for assertion based formal verification. Our algorithms exploit
the large number of assertions in an ABV methodology to
automatically compute the assume guarantee relations. Ex-
periments with industrial designs demonstrate that a signif-
icant number of assertions can be excluded from manual
analysis. Our approach is easily introduced into an existing
ABV methodology. No manually supplied assume guarantee
relations are required. Users are provided with an ordered list
of assertions to analyze. Users do not need to know the detailed
assume guarantee relations.

REFERENCES

[1] R. Alur, L. Alfaro, T. Henzinger, and F. Mang, “Automating modular
verification,” in CONCUR, 1999, pp. 82–97.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in TACAS, 1999.

[3] P. Chauhan, E. Clarke, S. Sapra, J. Kukula, H. Veith, and D. Wang,
“Automated abstraction refinement for model checking large state spaces
using sat based conflict analysis,” inFMCAD, 2002.

[4] J. Cobleigh, D. Giannakopoulou, and C. Pasareanu, “Learning assump-
tions for compsotional verification,” inTACAS, 2003.

[5] N. Een and N. Sorensson, “Temporal induction by incremental sat
solving,” in First International Workshop on Bounded Model Checking,
2003.

[6] A. Gupta, M. Ganai, P. Ashar, and Z. Yang, “Iterative abstraction using
sat-based bmc with proof analysis,” inICCAD, 2003.

[7] T. Henzinger, S. Qadeer, and S. Rajamani, “You assume, we guarantee:
methodology and case studies,” inCAV, 1998, pp. 440–451.

[8] K. McMillan and N. Amla, “Automatic abstraction without counterex-
amples,” inTACAS, 2003.

[9] K. L. McMillan, “Circular compositional reasonining about liveness,” in
CHARME, 1999.

[10] A. Pnueli, “In transition from global to modular temporal reasoning
about programs,” inLogic and Models of Concurrent Systems, 1984,
pp. 123–144.

[11] M. Sheeran, S. Singh, and G. Stalmarck, “Checking safety properties
using induction and a sat-solver,” inFMCAD, 2000.

[12] D. Wang, P.-H. Ho, J. Long, J. Kukula, Y. Zhu, T. Ma, and R. Damiano,
“Formal Property Verification by Abstraction Refinement with Formal,
Simulation and Hybrid Engines,” inDAC, 2001.

