Executable Protocol Specification in ESL*

E. Clarke! S. German? Y. Lu! H. Veith!-3 D. Wang!

! Carnegie Mellon University 2 IBM T. J. Watson Research Center 3 TU Vienna

Abstract. Hardware specifications in English are frequently ambiguous and of -
ten self-contradictory. We propose anew logic ESL which facilitates formal spec-
ification of hardware protocols. Our logicisclosely related to LTL but can express
al regular safety properties. We have developed a protocol synthesis methodol-
ogy which generates Mealy machines from ESL specifications. The Mealy ma-
chines can be automatically trandated into executable code either in Verilog or
SMV. Our methodology exploits the observation that protocols are naturally com-
posed of many semantically distinct components. This structure is reflected in
the syntax of ESL specifications. We use amodified LTL tableau construction to
build a Mealy machine for each component. The Mealy machines are connected
together in a Verilog or SMV framework. In many cases this makes it possible
to circumvent the state explosion problem during code generation and to identify
conflicts between components during simulation or model checking. We haveim-
plemented atool based on the logic and used it to specify and verify a significant
part of the PCI bus protocol.

1 Introduction

Motivation. The verification of bus protocols, i.e., of communication protocols be-
tween hardware devices, as in the case of the well-known PCI bus, is a central problem
in hardware verification. Although bus protocol design and verification have become
increasingly important due to the integration of diverse componentsin IP Core-based
designs, even standard bus protocols are usually described in English which makes
specifications often ambiguous, contradictory, and certainly non-executable.

Example 1. It is often the case that English documentation attaches different meaningsto asin-
gle name in different situations, as in the following definition for “data phase completion” from
PCI 2.2 [19], page 10: A data phase is completed on any clock both IRDY# and TRDY# are as-
serted. On Page 27, however, there is a different definition: A data phase completes when IRDY#
and [TRDY# or STOP#] are asserted. The obvious problem with these definitions is whether data
phase completion should include the case when both IRDY # and STOP# are asserted.

By carefully reading the English documentation, one can also find many contradictory state-
ments, as in the following example from PCI 2.2 [19], page 50: Once the master has detected
the missing DEVSEL#, FRAME# is deasserted and IRDY# is deasserted. On Page 51, however,

* This research is sponsored by the Gigascale Research Center (GSRC), the National Science
Foundation (NSF) under Grant No. CCR-9505472, and the Max Kade Foundation. One of the
authorsis also supported by Austrian Science Fund Project N Z29-INF. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of GSRC, NSF, or the United States Government.

it is said that Once a master has asserted IRDY#, it can not change IRDY# or FRAME# until
the current data phase completes. The reason why these two are contradictory is that the first
sentence allows FRAME# to be deasserted without the current data phase being complete, while
the second one disallows this.

Traditional hardware description languages are usually not well-suited for pro-
tocol specification because they are based on existing concrete designs (or abstrac-
tions thereof) instead of specifications, and their execution model therefore focuses
on single-cycle transitions. With protocols, the specification is naturally represented by
constraints on signals which may connect relatively distant time points.

Another problem of transition-system based approaches is that naive composition
of participants in the protocol may cover up important protocol inconsistencies due
to synchronization faults or write conflicts among non-cooperative participants. It is
important that the specification language be executable, i.e., that a machine model can
be computed from the specification. Thisis atrivia property for hardware description
languages, but not for protocol specifications.

Protocol Specification Verilog Program Verilog Simulation
Protocol Module S
Module wpnn
e | -
Master Module -
\ Module —— —— s
eg Slave wrnm
Slave Module =k
pnm
| Module i) | .
! @ H 1 Module \
| 0 s s |
'

B \
\

EEe——

'

I

Additional Functionalities
; s Generation of SMV
Module CombinerMachine o
Verilog Module
_— e [s SMV Model Checking

Script — Submodule | | Submodule | | Submodule
Script Construction Mealy Machine

[_2 Consistency Checking

Script Mealy Machine

Fig. 1. System Overview

The ESL logic. We propose the new logical language ESL which facilitates speci-
fication, verification, and simulation of protocols. ESL is based on a variant of linear
temporal logic (LTL) where atomic propositions are constraints on signals in the pro-
tocol, eg. REQ € {0,2}. The core of ESL are ESL scripts, i.e., finite collections of
executable temporal formulas. More precisely, a script is a finite collection of axioms
ép = &x where $p isatempora formulainvolving only the temporal operator
P (immediate past-time), and ¢x is atemporal formulainvolving only the temporal
operator X ,e0.Pa = bV X X a. Atomsin &p areinterpreted as tests of previous
signals, while #x asserts constraints in the future. Scripts may contain local variables
which are not visible in the traces (i.e., models) of the script.

An ESL module € isafinite collection Sy || . . . ||S,, of ESL scripts. The intended se-
manticsisthat ESL scripts describe Mealy Machines and that the ESL module specifies

the synchronous composition of the Mealy machines. Different scripts of a module po-
tentially conflict if they employ common output signals. Note that in general two scripts
S1||S» describe two different Mealy machines, while the conjunction S; A S» of two
scriptsisitself a script which describes a single Mealy machine.

A finite collection P of ESL moduleswith pairwise disoint output signalsis called
an ESL protocol. The semantics of an ESL protocol is the synchronous composition of
its modules. ESL modules cannot directly conflict with each other, but they may have
receptiveness failures (see Section 5).

In real protocols, ESL scripts describe distinct functionalities and features of hard-
ware devices, while ESL modules correspond to the devices themselves. Note that dif-
ferent scripts can constrain the same signal, which isimportant when transl ating natural
language specifications.

Experiments and Results. We show that semantically ESL expresses exactly the reg-
ular safety properties. This property is crucial for synthesizing executable models of
the protocol, and distinguishes it from other executablelogics, e.g. [12]. A fragment of
L USTRE has been shown to capture the same expressive power [14] in the context of
synchronousdata-flow languagesfor real-time systems. We present efficient tableau and
synthesis algorithms to obtain executable models of hardware protocols, cf. Figure 1.
The tricky aspect of synthesizing hardware protocols is to group the signals occuring
in the specification into output signals and input signals. To this aim, we introduce a
marked tableau construction which preserves the distinction between past observations
and future assertions. Since each script is converted into a Mealy machine separately,
thereis no state explosion during the transl ation phase.

The execution of ESL in Verilog and SMV makes it possible to use the power of
well-known and highly devel oped verification paradigms; in particular, it is possible to
verify important features about the ESL protocol, such as synchronization contradic-
tions between different scripts and receptiveness [2] of the ESL modules.

Another important debugging method is property checking, i.e., existing Verilog
monitors and model checking tools can be easily used to debug ESL protocols. To
improve coverage of the Verilog simulation, a dynamically biased random simulation
test bench [20] can also be written directly in ESL scripts.

In a case study, we have used ESL to specify the PCI bus protocol Rev 2.2 [19].
Several errors were identified, including some errors from the English specification.
Verilog monitors and temporal formulasfrom [23] have been checked against the gen-
erated Verilog and SMV models.

Related Work. Algorithmsfor synthesizing concurrent and distributed programsfrom
temporal logic specifications have been developed for CTL by Clarke and Emerson [7,
8] and for LTL by Manna and Wolper [16]. Both methods synthesize global state tran-
sition systems based on an interleaved asynchronous model of computation and then
use projection to obtain controllers for individual processes. Neither of these methods
has been very successful because of the computational complexity of the decision pro-
cedures involved. Protocol synthesis, especially synthesis of bus protocols, is easier,
since many implementation details are aready given. Our methodology automatically
exploits thisinformation by incorporating it into the synthesis process.

Various formalisms have been used in hardware specification and synthesis[11, 15,
18, 21]. Recently, Shen and Arvind used term rewriting systems to specify and verify
I SA and out-of-order implementations of processors[22].

Gabbay has developed an executable logic [12] for Al applications in which pro-
grams are written using rules of the form “If A holds in the past then do B”. Since
liveness properties can be expressed in hislogic, it is not suitable for Verilog simula-
tion.

Originally, our work was motivated by the approach of Shimizu, Dill and Hu [23].
They use monitorsto specify bus protocolsformally, based on rules of the form " predi-
cate on past states = predicate on current state”. A coding styleis defined that promotes
readability, discourages errors, and guarantees receptiveness. We use a similar defini-
tion of receptiveness (see Section 5). Although our paper is a so concerned with formal
specification of bus protocols, there are several important distinctions between the two
papers. First, our formalization is a declarative formalism based on temporal logic.
Second, their monitors are restricted to interface signals. Consequently, constructing
appropriate monitors can be tricky. For example, identification of “master abort” in the
PCI bus protocol involves observing the bus for several cycles. Third, both Verilog and
SMV models can be obtained from our specifications. Our Verilog model can directly
generate valid simulation patterns and can, therefore, be simulated with part of the real
design. In the monitor approach, the Verilog versions of the monitors are only applica-
ble to a complete design, because monitors can not be used to generate valid patterns.

Consistency problemsarise at different levels of specifications. Bryant et al [4] have
developed a notion of consistency by identifying combinational dependencies. They
show how to derive the consistency model from amodular specification where individ-
ual modulesare specified as Kripke structures and give an algorithm to check the system
for consistency. Very recently, the system FoCs has been developed at IBM Haifa [1].
FoCs automatically generates simulation checkers from RCTL specifications.

A more detailed exposition of the related work and proofs will be given in the full
version of this paper.

Structure of the Paper In Section 2, we describe the logical framework of ESL. Sec-
tion 3 contains the protocol description language which is used as input to our tool. In
Section 4, the translation algorithms are presented. Section 5 shows how to debug and
verify protocols. Finally, Section 6 contains our practical experiments with the PCI bus
protocol. In Section 7, we briefly summarize our work, and outline future work.

2 TheESL logic

In this section we describe the linear time logic which underlies the implementation of
the ESL system. A more user-friendly input language for ESL will be described in the
following section.

2.1 Temporal Logic on Signal Traces

LetV = {v,...,v,} beaset of variables (signals) where each v; has finite domain
D,,. A varigble v; is Boolean, if its domain D,, is {0,1}. An atom is an expression

v; = d, whered € D,,. Thefinite set of atomsis denoted by Atoms. If v; is Boolean,
then v; abbreviatesv; = 1. Literals are atoms and negated atoms. For aset A of atoms,
var(A) = {v : forsomevaued € D;,v = d € A} isthe set of variables appearing in
A. A typeisaconsistent conjunction A\, _,.,, «; of literals. Asis commonin logic, we
shall oftenwritetypesassets {1, . . ., a,, }. A completetypeis atype which determines
thevalues of all variables. Note that each complete type can be assumed to contain only
(unnegated) atoms.

Example 2. Supposethat V' = {REQ, COM}, where Dygq = {1, 2,3}, and Deow = {0,1}. Then
Atoms = {REQ = 1,REQ = 2,REQ = 3,COM = 0,COM = 1}. Examples of two types o1, o2
are:

1. o1 = {REQ = 1,COM # 0}, or asaconjunction, o1 becomesREQ = 1 A COM # 0.
2. 02 = {REQ # 2,C0M = 1}, or asaconjunction REQ # 2 A COM = 1.

o1 isacomplete type, because it determines the values of both REQ and COM. o, is equivalent to
the type {REQ = 1,COM = 1}. o> does not determine the value of REQ, because both REQ = 1
and REQ = 3 are consistent with o». Therefore, o2 isnot complete.

ESL is based on a discrete time model, where time points are given by natural
numbers from N = {1,2,...}. A signal trace is an infinite sequence S = s1s5-- -,
where each s; determines the values of all variables at time ¢. .S can be viewed as an
infinite string, where the alphabet consists of complete types. Following the previous
example,

S ={REQ=1,C0M = 0}{REQ = 1,COM = 1}{REQ = 3,COM = 1} ...
isasignal trace. Thus, the alphabet of signal tracesis given by
¥ = {0 € 24%°™s . 5 jsacomplete type without negation} .

The set of signal tracesis given by X'«.

Traces which do not determine the values of all signals are important for us as well
(see Section 4.1). For this purpose, we use the alphabet @ which consists of al types,
i.e., partial assignments to the signals. Note that © is a superset of the signal trace
alphabet X. Formally, we define

6 = {9 : Jisatype}.
The set of tracesis given by <.

Remark. To keep the presentation simple, we tacitly identify two elements of O, if they
arelogically equivalent, e.g., COM = 1 and COM # 0. Thus, arigid formal definition of ©
would require that the alphabet @ is given by the finite number of equival ence classes of
types. For example, we may use the |exicographically minimal types as representatives
of their equivalence classes.

Since ¥ C O, every signal traceis atrace, and al definitions about tracesin prin-
ciple also apply to signa traces. The main difference between X' and © is that each

element of X' determines the values of all signals, while ©® may contain partial infor-
mation. On the other hand, with each element ¥ of © we can associate all elements of
X which are consistent with ¢J. To this end, we define the function comp : @ — 2+ by

comp(¥) ={o € ¥:0 =9}

comp is called the completion function, because it maps a type ¢ to the set of al com-
plete types consistent with «. In other words, comp maps a partial assignment to the set
of possible complete assignments. Let T' = t1t» - -- € ©¥ be atrace. Then the set of
signal traces described by 7' is given by

comp(T) = {S = s1s2--- € X :forall i, s; € comp(t;)}.

For aset L of tracescomp(L) = {comp(T') : T € L}. Giventwo sets L, L, of traces,
we define Ly & Ly iff comp(L1) = comp(L-), i.e., L1 and L, describe the same set
of signal traces.

Example 3. Let REQ and COM be as in Example 2. Then the trace T = ({COM =
1,REQ = 1}{coM = O,REQ # 2})* does not determine REQ in &l po-
sitions. It is easy to see that comp(T) is given by the w-regular expression
({coM = 1,REQ = 1}{COM = 0,REQ = 1}|{COM = 1,REQ = 1}{COM = 0,REQ = 3}))“ .

A trace property L is a set of signal traces. L,, denotes the set of finite prefixes of
lengthn of wordsin L. A safety property isatrace property L, such that for eacht ¢ L,
there exists afinite prefix r of ¢, suchthat ~ ¢ L,|. In other words, traces not in L are
recognized by finite prefixes.

For aset S of atomsand aset X C V of variables, let S x denote the restriction
of S to atoms containing variables from X only. Similarly, X' x denotes the al phabet of
complete typesfor the set of variables X .

V' is partitioned into two sets Vi and V;, of global and local variables. The dis-
tinction between global and local variables will be justified in Section 2.2. Thus, Sy,
denotestherestriction of .S to global atoms, i.e., atoms using global variables. Similarly,
XYy, denotes the alphabet of complete types for the set of variables V. Let global be
the projection function which maps X' to X'y, by

global(c) = 0 N Atomsyy.

Intuitively, the function global removes all local atoms from the aphabet. With
each signal trace S = s;s2--- we associate the globa signal trace global(S) =
global(s;)global(ss) - - - over 2Atomsvg

Example4. Let S = ({R = 1,a = 2}{R = 0,a = 3})* beasignal trace where a is aloca
variable. Then global(S) = ({R = 1}{R = 0})“.

Given two sets Ly, L, of traces, we define L1 =g Lo iff global(comp(L1)) =
global(comp(L-)), i.e., L; and L, describe the same set of global signal traces.

Lemmal. If L isa safety property, then global(L) is a safety property.

We consider alinear time logic with temporal operators X , P ,and G . Let T' =
ti1ts ... be atrace. We inductively define the semantics for atomic formulas f and
temporal operatorsX , P , G asfollows:

T,iE fifft;=f (Here, we use the fact that ¢; is atype, and thus aformula)

T,iEXpiffTi+1E¢

T,iEPyiffi >2,andT,i— 1= ¢

TilEGoiffVj>iT,jl=¢
The semantics of the Boolean operators is defined as usual. Existential quantification
over traces is defined as follows: Let v be avariable, and let ' = ¢1t» - - - be atrace
over X'y _y,}, i.€, atrace which does not assign valuesto v. Then we define

T,i |= Ju.p iff there exists an infinite sequence ajas . .. of values for v such that
thetrace S = (t1 U{v = a1 })(t2 U{v = az})... sdtisfiesp attimei,i.e, S,i = ¢.
Given aformulap, Traces(y) denotesthe set of signal traces 7" suchthat 7', 1 |= .

Traces can be combined in a very natural manner:

Definition 1. Let T = tit2--- and S = s1ss - -+ betraces. Then the combined trace
T X S isgiven by the infinite sequence u us - - - where

U; =

{ti As; ift; and s; are consistent

{false} otherwise

We say that 7" and S are compatible if thereis no ¢ such that u; = {false}. Otherwise
we say that 7' and S contradict. Let L; and L, be sets of traces. Then L; X L, =
{Tl MTy:T) € Ly, Ty € Lz}

The above definitions easily generalize to more than two traces. Note that the operation
X introducesthe new symbol false in the alphabet of traces.
The following important example demonstrates why the operator X is different
from conjunction, and why we need it to analyze traces.

Example 5. Consider the two formulas G (¢ = X b) and G (¢ = X —b). When
viewed as specifications of different devices, the two formulasare intuitively contradic-
tory when the input signal a becomestrue. In fact, in the set of combined traces

Traces(G (a = X b)) X Traces(G (a = X -b)) ~ ({a}{false}|{—a})*

the contradi ctions become visibleimmediately after a becomestrue. On the other hand,
the naive conjunction G (a = X b) A G (a = X —b) of the formulasis equivalent to
G —a, their set of tracesis given by Traces(G —a) = ({—a, b}|{—a,—b})“, and thus
the potential contradiction vanishes.

2.2 ESL scripts

The following definition describes the fragment of linear timelogic used in ESL.

Definition 2. ESL scripts

(i) A retrospective formula is a formula which contains no temporal operators ex-

ceptP.

(ii) A prospective formulaisaformulawhich contains no temporal operators except
X.

(iii) A script axiom @ isaformulaof theform®p = &x where p isaretro-
spective formula, and #x is a prospective formula.

(iv) AnESL script S isaconjunction /\1gjgk &; of script axioms @ ;.

(v) With each script S, we associate theformulaG (S) = G A<, @;-

Intuitively, atomsin ¢p are interpreted as tests of previous signals, while #x asserts
constraintsin the future. For simplicity, we assume that no local variable appearsin two
different ESL scripts.

Example 6. Consider the ESL script P a Aa = (X a V X X a). The script saysthat if a held
true in two subsequent cycles, then a must hold true in one of the two following cycles.

Thefollowing lemma says that the temporal operator P is redundant.

Lemma2. Let S bean ESL script. Then G(S) is equivalent to a formula of the form
G (va) A pmit, Where o and ¢, are temporal logic formulas which contain no
temporal operators except X .

Thefollowing theorem states that the projection operator global achieves the same
effect as existential quantification.

Proposition 1. Let S be an ESL script, and [4,...,[, its local variables. Then
global(Traces(G S)) = Traces(3l; - - - 1,,G(S)).

Thus, projection amounts to akind of implicit existential quantification. The effect
of this quantification is characterized by the following theorem.

Theorem 1. On global signals, ESL scripts capture the regular safety properties. For-
mally, for each regular safety property L over X'y, there exists an ESL script S such
that global(Traces(G(S))) = L, and vice versa.

We conclude from Theorem 1 that projection extends the expressive power of the
logic to capture all regular safety properties on global variables. We will show in the
next section that in praxis the complexity of our logic does not increase significantly.
Thus, the addition of local variables appears to be a good choice which balances ex-
pressive power and complexity.

Corollary 1. For global variables, all past time temporal operators, as well as the
weak until operator W are expressible by ESL scripts.

2.3 Regular tableaus

The tableau of an LTL formula ¢ is a labeled generalized Biichi automaton 7' that
accepts exactly the sequences over (24toms:)« that satisfy ¢ [13]. (Here, Atoms,,
denotesthe set of atomic propositionsappearingin ¢.) In this section, we define regul ar
tableaus by adapting LTL tableausto ESL.

Definition 3. Regular Tableau
A regular tableau 7 isatuple (S7, 87, A7, L7, RT) where

— ST isafinite set of states, S] C S7 isaset of initial states, and A7 is afinite set
of atoms.

— L7 : ST — O isalabeling function which labels states by types, where © isthe
set of typesover A7

— R7T C ST x ST isthetransition relation of the tableau.

Since by Theorem 1, ESL defines only safety properties, tableaus for ESL do not
need all the expressive power of w-automata. Moreover, the states of regular tableaus
are labeled only by sets of atoms (and not by temporal formulas). Intuitively, temporal
formulas can be omitted from tableaus because we have local variables which carry the
information that is usually carried by the temporal formulas.

Definition 4. Regular Tableau Acceptance
AtraceT = t;t, --- € O“ isaccepted by 7 if thereexistsasequence s sy - - - € (S7)“
such that

(i) s1 € SJ
(i) sysy--- isaninfinite path in the graph given by the transition relation R 7.
(iii) Forali,t; = L7 (s;).

Thelanguage £(7) isthe set of traces T" accepted by tableau 7. Let S bean ESL script,
and 7 atableau. 7 is acorrect tableau for S, if L(T) ~ Traces(G(S)), i.e, if the
traces generated by the tableau define exactly the signal traces which satisfy S.

3 ESL Protocols

ESL facilitates modular specification of protocols, in particular hardware protocols.
ESL protocols consist of modules which in turn consist of scripts. Under the intended
semantics of ESL, modules correspond to distinct devices (e.g. a master and a Slave
device), while scripts describe independent functionalities of the devices.

Formally, an ESL module € is afinite collection Sy, ..., S, of scripts. Each script
S, is given by a finite conjunction A ¢, of specifications. The intended semantics is
that ESL scripts describe Mealy Machines and that the ESL modul e specifies the syn-
chronous composition of the Mealy machines. Therefore, we shall write S1||Ss . . . [|Sx
to denote £. Different scripts for the same module potentialy conflict if they employ
common output signals, i.e.,, common global variables which model output signals.
Scripts may contain local variables which are not visible to other scripts.

Our aimisto build amachine M ¢ such that the language accepted by M ¢ coincides
with the combined traces of the scripts on global variables, i.e.,

L(Mg) ~g Traces(S;) X --- X Traces(S,).

As shown in Example 5, trace combination will enable us to identify contradictions
between scripts.

A finite collection P of ESL moduleswith pairwise digjoint output signalsis called
an ESL protocol. The semantics of protocols is given by the semantics of the scripts
of its constituent modules. ESL modules of a protocol have fewer sources of conflict
among each other than ESL scripts because they do not have common output signals.

3.1 Input Languagefor ESL Protocols

An ESL protocol must contain exactly one protocol module which starts with the key-
word protocol. Each module can have three types of variables: input, output and local
variables. Each script can include more than one specification, which start with the
keyword spec.

To fecilitate easy description of properties and protocol s, we augment the basic ESL
language with syntactic sugar, such as default val ues, additional temporal operators, and
parametrized macros. In particular, we use the weak until operator W and the operator
keep(a) which asserts that the current value of signal a is the same as in the previous
step. Note that by Lemma 2, we can add all the past tempora operators to the lan-
guage because they only define regular safety properties. Parameters are used to adapt
specifications to hardware configurations of varying size.

Dueto space restrictions, we describe the input language by example. Thefollowing
example is a fragment of the specification of the PCI bus in ESL. It consists of one
master and one arbiter.

module pci_master

input clock, GNT: bool;

output REQ = 0: bool;

local status : {COMP, MABORT, MTO};

local retry_req,last_cycle, addr_phase: bool;

script spec retry.req = X (retry_req W addr_phase);

Spec last_cycle = —retry_req,

script spec GNT = X(keep(REQ)) W status = COMP;

endmodule

module pci_arbiter
parameter N;

input RST, REQ[1 to N]: bool;
output GNT[1 to N]: bool;
local tok[1to N]: bool;
script spec

RST A tok[i] = X (tok[(i+ 1) Mod N] =1 A tok[i] =0) fori=1toN;
endmodule

protocol pci_bus
constant N=2;

modules
master[1toN]: pci_master,
arbiter(N): pci_arbiter;
connection
master[t].GNT = arbiter.GNT[¢] for ¢ = 1 to IV,
arbiter REQ[{] = master[i].REQ[¢] for i = 1 to NV,
endprotocol

This example includes two modules and one protocol module. Each module in-
cludes one or two scripts. Inthe module pci master, REQ hasBoolean type andisinitial-
izedto 0. Thelocal variable status denoteswhether the PCI master abortsthe transaction
or the time out happens. In the module pci _arbiter, we define a parameter NV which will
be instantiated when the module gets instantiated. A formula (i) for i = 1 to N is
equivalentto (1) Ap(2)A.. . Ap(N). For example, the script of the modulepci arbiter
isinstantiated as a conjunction of two formulas:

(RST A token[2] = X (token[l] :=1 A token[2] :=0)) A
(RST A token[l] = X (token[2] :=1 A token[l] := 0))

The protocol module explicitly connects the modules pci _master and pci aribter by
matching the corresponding inputs and outputs.

4 Synthesis of Executable Models

Given an ESL protocol, our procedure comprises three main steps to transform exe-
cutable modelsinto either Verilog or SMV programs.

1. Preprocessing. In this step, the ESL protocol is parsed and type checked to make
sure each variable is declared and each axiom is well typed. For example, for a
Boolean variable z, an atom 2 = 3 isnot allowed. Furthermore, the parameters are
instantiated and the macros are expanded.

2. Module Synthesis. This step converts each ESL module separately into a Verilog or
SMV module. An overview of the algorithm M oduleSynthesis given in Figure 2.
In the algorithm, we first generate a regular tableau for each script and trandate
the tableau into a nondetermini stic automaton. Then we determinize the automaton
and trandate it into a Mealy machine which can be easily implemented in Verilog
or SMV. The combiner connects each Mealy machine. Details of each step will be
described in the following three subsections.

3. Module Connection. In this final step, the inputs and outputs from different ESL
modul es are connected. In the synchronous bus protocol design, combinational de-
pendency loops between the signals are not allowed. This step identifies all com-
binational dependencies within individual modules or between modules. A short
outline of this step isgivenin Section 4.4.

Algorithm ModuleSynthesis(S1|| - - - ||Sx) Algorithm MTableau(S)

foreach S; mark S
Ts; = MTableau(S;) Ts := Tableau(S)
Ns; = Automaton(Ts;) for all statess € S7s
N§ = Powerset(Ns;) if clean(L7$) isinconsistent
Ms;, = GenMealy(N§)) then remove s from 7s
return Combine(Ms, , ..., Ms,) return 7s
Fig. 2. Algorithm to synthesize scripts Fig. 3. Tableau Construction.

4.1 Tableau construction

Given an ESL script S, our am is to generate a Mealy machine whose operational
behavior is specified by the script. Consider the two smple scriptsa = 1 = b =1
andb = 0 = a = 0, where a and b are Boolean variables. Logically, these scripts
are equivalent (since a = b is equivaent to -b = —a.) However, as specifications
for Mealy machines they should intuitively describe different machines: the formula
a =1 = b =1 describesaMeay machinewhich assertsb = 1 if it observesa = 1,
whileb = 0 = a = 0 describes a Mealy machine which asserts a = 0 if it observes
b = 0. We conclude from this example that for the operational behavior of the Mealy
machinesit isimportant to know for each occurrence of avariablewhether it belongsto
the retrospective or the prospective part of ascript. Variables from the retrospective part
eventually will become inputs of Mealy machines, and variables from the prospective
part will become outputs of Mealy machines.

In our methodology, we first build a tableau for S, and then trandate it further to
a Mealy machine. As argued above, it is important for our tableau construction not to
lose the information which variableswill be used as outputs of the Mealy machine later
on. Therefore, we distinguish such variables by marking them with a symbol e.

Definition 5. Given a set of variables V' = {vy,...,v,}, V*isaset {v],...,v0} of
new variables called marked variables.

Given an ESL axiom ¢ = &p = &x and the corresponding alphabet @, the
marked axiome,, isgivenby p = &% whered% isobtainedfrom®x by replacing
each occurrence of avariable v by the marked variable v *. ESL scripts are marked by
marking all their axioms.

Let X be a set of variables or atoms etc. Then umk(X') denotes the subset of X
where no element containsamarked variable, and mkd(X) denotes X —umk(X). The
function clean(X') removesall markersfromtheelementsof X, eg. clean(V*) = V.

In Figure 3, we outline the tableau algorithm M Tableau(S) for ESL scripts. In
the first step, the algorithm marks the script as described above. In the second step we
use the standard LTL tableau algorithm described in [13] to generate a tableau for the
marked script. Note that from the point of view of the tableau construction algorithm, a
variablev andits marked version v ® are different. In the third step, however, we exclude
those states from the tabl eau where the assertions are inconsi stent with the observations,

i.e., those states whose labelling would becomeinconsistent if the marks were removed.
Thus, the resulting marked tableau is a correct tableau for S if the markers are ignored.

Lemma3. Let S be a script. Let L be the set of traces accepted by the tableau
MTableau(S). Then clean(L) =~ Traces(S), i.e, after unmarking, the traces of
the tableau are the same as the traces of the script.

Our actua implementation of the algorithm M Tableau removes inconsistent states
on-the-fly during constructing tableaus. Thus, fewer intermediate states are created, and
less memory is used. In principle, other tableau algorithms[9] could be used, too.

Note that local and global variables are not distinguished by the tableau algorithm.
The tableau traces in general contain local variables.

Fig.4. An example tableau. Boxes denote initial Fig. 5. The corresponding automaton
states.

The following example highlights the construction of tableaus for marked scripts.
We will use this example as a running exampl e throughout the paper.

Example 7. Consider the following axiom: (a = bV X a) The meaning of the axiom is:
whenever a is asserted, then either b is asserted at the same time point or a is asserted in the next
time point. The corresponding marked axiom is: (a = b* V X a*) The tableau for thisaxiom is
shown in Figure 4.

Before describing how to trandl ate tableaus into automata, we first give aformal defini-
tion of automata.

Definition 6. A nondeterministic ESL automaton N is a 4-tuple (S, Sy, ©,d), where
S is afinite set of states, Sp C S is aset of initial states, @ is the set of types, and
0 C S x O x Sisthetransitionrelation. A traceT = t1ts --- € O¥ isaccepted by N if
thereexistsasequences; ss - - - € S¥ suchthat s; € Sy, s1s2 - - - isaninfinite sequence
of states, and for all 4, thereexistsatyped € © suchthat t; = ¢, and (s;, 9, s;+1) € 9.
Thelanguage £(V) isthe set of traces accepted by V.

Given atableau 7 = (S7,S],A7,L7 RT), the dgorithm Automaton(7)
computes the automaton N = (S,S5,,0,6) where S = S7, S, = SJ, and
§={(s,9,8) | 9 € ©,(s,s') € RT,L7 (s) = 9}. Then the following lenma holds
trivialy.

Lemma 4. Thetableau 7 and the ESL automaton Automaton(7) accept the same
languages. Formally, £(7) = L(Automaton(7)).

4.2 Mealy machine synthesis

Since ESL automata are nondeterministic, we cannot trandate them directly into Ver-
ilog. In this section, we describe how to synthesize automata into deterministic Mealy
machines which can then be easily trand ated into Verilog programs. We proceed in two
steps. First, we use a powerset algorithm to determinize the automata. Then, we use
the variable markers to determine the inputs and outputs for each state of the Mealy
machines.

Since ESL automata do not have Biichi constraints, we use the traditional method
for automata determinization by powersets which is described in many textbooks[25].

Although the algorithm Power set is potentially exponential, the resulting automata
in our experiments are often much smaller than the original automata. In Figure 6, re-
sults for 62 scripts in our PCI protocol specification are shown, where for each script,
the ratio of the size of the deterministic automaton compared with that of the origi-
nal non-deterministic automaton is shown. It can be seen that, in our experiments, the
deterministic automata are always smaller than the nondeterministic automata. On av-
erage, the automata can be compressed to about 25% of their original size. Theintuitive
explanation for this behavior is that the powerset algorithm clusters related states into
one state. For the examplein Figure 5, the automaton after determinizationis shownin
Figure 7. Since the deterministic automaton accepts the same language as the original

0.5

W e

a®, b®

1 20 40 60

Fig. 6. Compression obtained by determinization Fig. 7. Automaton after determinization

automaton does, the behavior of the original scriptsis maintained after determinization.

Finally, we describe how to generate Mealy machines from deterministic automata.
The Mealy machine model presented in the following definition takes into account the
type concept which we use for traces.

Definition 7. Mealy machine
A Mealy machine M isatuple (S, Sy, I, 0, A\, R) where S isafinite set of states, Sy C
S isthe set of initia states, I isafinite set of input variables, O is afinite set of output

variables(INO = P), A : S x X1 — Yo istheoutput function,and R C S x Xy x S
isthetransition relation. M isdeterministic if for every input o every state has a unique
successor i.e, foral s,s' € Sando € Xy, R(s,0,8") A R(s,0,s8") = s =s". M
acceptsatrace T = t1t- - - - over alphabet X' U Xy if there exists an infinite sequence
S = s159--- Of statessuchthat (i) s; € So; (ii) for dl indicesi, R(s;, umk(t;), si+1);
(iii) for al indices i, A(s;, umk(t;)) = mkd(t;). The set of traces accepted by M is
denoted by £(M).

Given a deterministic automaton N = (S, Sy, (2,4, F'), we generate a Mealy machine
M = (S,S0,I,0,\ R) such that N and M have the same sets of states and initial
states. Let MAX be the smallest number such that no state in V has more than MAX
immedi ate successors.

The input variables I of the Mealy Machine M are the unmarked variables of the
automaton N, and the new variablend, D .4 = {1, ...,MAX}. Intuitively, the new vari-
able nd will be used to determine the successor state among the MAX possible successor
states. The output variables O of M arethe marked variablesof NV, i.e., O = mkd(£2).
The output function A and the transition relation R are defined by the algorithm Gen-
M ealy shown in Figure 8.

Algorithm GenMealy (V))
foreachs € S _ nd=0Aa/b®
P = {umk(a) | 3’ € S,4(s,a,s)} nd*OVﬁaC nd=1V-a/—

for eacha € P
Q = {b | umk(b) = a,3s’ € S,0(s,b,s")}
i=1
for eachb € Q nd:l
A=AU{(s,a And =i,mkd(b))}
if 0(s,b,s'") = true then
R=RU{(s,aAnd=1,s")}

nd=1Aa {nd:
!

nd = 0/{a®,b°}

i=i+1
choose someb € Q Fig. 9. A deterministic Mealy machine
for j=i to MAX

A=AU{(s,a And =j mkd(b))}
R=RU{(s,aAnd=j,s)}

Fig. 8. Pseudo-code for GenM ealy

Example 8. The Mealy machine obtained from the automaton in Figure 5 is shown in Figure 9.
nd is the new unconstrained internal signal. The labelling in state s, denotes the input/output
function, for example nd = 1/a® representsinput nd = 1 and output isa® = 1.

Theorem 2. Let S be an ESL script. Then the language of the synthesized Mealy ma-
chine coincides with Traces(S) on global variables. Formally,

clean(Traces(ModuleSynthesis(S))) ~, Traces(S).

r=9-"=-171r=-=-9°- - |

M, Mo .)
Medly Mealy imeout@pci_master
Machine Machine

v U2 vy U

FRAME_@pci_master

combine forfcombine for

U1 v2 Timer_count

L___¥9099”9_¥___4
Fig.11. Identified Combinational dependency
Fig. 10. Combiners for aModule loops

The obtained Mealy machine can be translated into a Verilog program easily. Details
are omitted due to the space restrictions.

4.3 Combiner generation

Recall that each ESL script S is trandlated into a Mealy machine, and that different
scripts can assign values to the same signal. In Section 2 we defined the operation X
to combine two traces. As exemplified in Example 5, the operation X on tracesis not
the same as conjunction of scripts.

Onthelevel of Mealy machines, we introduce combiners which perform the opera-
tion X ontraces. A combiner machineis defined as follows.

Definition 8. Givenasequence My, . . ., M,,, of Mealy machineswith possibly nondis-
joint a phabets, the combiner C'(M,, ..., M,,) isaMealy machine whose input alpha
bet is the union of the input al phabets of the M ; and whose output al phabet is obtained
from the union of the output alphabets of the M ; by removing the marks. On input of
asymbol o, C(Mjy, ..., M,,) simulates each of the Mealy machines, collects the out-
puts oq, - . . , o, Of the Mealy machines, and nondeterministically outputs one element
of clean(comp(o; Moz M ... X 0,,)).

Thus, if the output of the Mealy machinesis consistent, the combiner will output it;
if itisinconsistent, then the combiner will output { false}; if the output does not deter-
minethe values of al signals, the combiner will nondeterministically choose consistent
values for the unspecified or under-constrained signals.

The agorithm Combine generates Verilog code for the combiner. In the Verilog
trandlation, each Mealy machineistranslated into a Verilog module. The combiner itself
is amodulewhich uses the Mealy machine modul es as subprogramsand combinestheir
outputs.

In the traditional approach (i.e., synthesizing the conjunction of all scripts), the
number of tableau states for the conjunction of the scripts can become exponentialy

larger. In fact, our techniques are tailored to find inconsistencies between scripts; in
conjoined formulas, inconsistent behaviors would be eliminated.
Finally, we can formally state the correctness of our algorithms, cf. Section 3.

Theorem 3. Let £ = S| - - -||S,, bean ESL module. Then

L(ModuleSynthesis(£)) ~g Traces(S;) M --- X Traces(S,).

4.4 Module Connection

In Verilog, connecting the inputs and outputs of modules can be done hierarchically.
For synchronous bus designs, combinational loops are not allowed. Therefore, in the
variable dependency graph, we use standard algorithms for strongly-connected compo-
nents [6] to identify combinational loops. Our tool will report combinational loops to
the users. Figure 11 shows an example combinational loop identified during PCI bus
protocol debugging. In the Figure, T'imeout, IFRAME , and Timer are signasin
module pci_master, and FRAM E deassert, Timer count and Timeout are names
of scripts in this module. Each edge represents a dependency between the two sig-
nals introduced by the script, e.g., signal [FFRAM E _ depends on Timeout in script
FRAME deassert.

5 Debugging Protocolsin ESL

For a protocol specified in ESL, it is essential to have debugging capabilities which
verify that the specified protocol is indeed what the designers want to specify. In this
section, we describe special properties of the generated Verilog and SMV code which
facilitate debugging. Due to space restrictions, we describe only some of the debugging
capabilities which we implemented. The code generator for Verilog and SMV can be
extended easily to handle other capabilities.
Synchronization Contradiction. In ESL, two scripts can potentially assert contradic-
tory valuesto signals, cf. Example 5. To detect such cases, aflag OC is defined in the
Verilog code for the combiner. As soon as the combiner computes {false}, the flag is
automatically set to 1. According to Theorem 3, the flag OC is set to 1 if and only if
the traces of the scripts contradict. Therefore, to verify the absence of synchronization
contradictions (i.e., consistency) it suffices to check for unreachability of OC = 1.
Receptiveness. A machineisreceptive[2] in an environment, if starting from any state,
for al possible inputs from the environment, the machine can produce valid output and
transit to a valid next state. Receptiveness is among the most important properties of
protocols. In ESL, receptiveness questions arise on the level of modules. Receptiveness
isinteresting for a module in connection with the whole protocol, but also for asingle
module with unconstrained inputs. For each module M, a special flag BI j; is defined
in the Verilog code for M. If a Mealy machine belonging to M gets stuck, i.e., has no
valid transition for the given input, then the flag BI 5, issetto 1.

The absence of synchronization contradictions and the unreachability of BI ,; for
each M guarantees the receptiveness of the ESL protocol. Deadend checks for recep-
tiveness have been proposed previously for Moore machinesin [23].

Property Checking. The specification of protocols often can be partitioned into speci-
fications of afundamental and operational character, and another set of additional spec-
ifications which werelogically redundant for a correct protocol, but are aimed at finding
out if the protocaol is correctly specified.

In ESL, we build Verilog and SMV models based on the operational specifications,
and then use a Verilog simulator and the SMV model checker to verify the additional
specifications.

6 Experimental Results

We have built a prototype system in Standard ML, which includes about 13,000 lines
of code. To test the capability of our tool, we have specified a subset of PCI bus pro-
tocol [19]. The specification consists of 118 formulas and 1028 lines including English
comments for each formula. The specification includes five module types: master se-
quencer, master backend, target sequencer, target backend, and arbiter. One master se-
guencer and one master backend form a PCl master; conversely, one target sequencer
and onetarget backend form a PCI target. We have specified a biased random test bench
[20] in the master backend, because in PCI, the test bench involves transaction request
generation, which is an integral part of the behavior of the master backend. Using the
parameter concept in ESL, the number of modules on the bus can be easily modified.
Independently, [23] developed a specification methodology for the PCI protocol, in
which explicitly declared signals are used for monitoring protocol violation.

The specified subset of the PCI protocol includes burst transaction, master-initiated
fast-back-to-back transaction, master and target termination conditions, initial and sub-
sequent data latencies, target decode latency, master reissue of retried request. We are
currently working on configuration cycles, bus parking and parity checking. We plan to
specify the complete PCI bus protocol in future work.

Our agorithm is very efficient, and it only takes about 15 seconds to generate the
SMV or Verilog model from 62 ESL scripts on a 550MHz Pentium ITI machine with
256 MB memory. The generated Verilog is about 7000 lines of code whilethe generated
SMV isabout 6100 lines of code. Using the Cadence Verilog-XL simulator, we are able
to simulate the generated Verilog model. Many easy errors have been identified by
checking synchronization contradiction in Verilog simulation, including some errorsin
the protocol. For example, the following two statements from [19] can be contradictory
when a PCl target can perform fast decode.

1. Inpage 26, A PCl targetisrequired to assert its TRDY # signal in aread transaction
unconditionally when the datais valid.

2. In page 47, The first data phase on a read transaction requires a turnaround-cycle
(enforced by the target via TRDY #).

The sixty nine Verilog monitors from [24] are used to characterize correctness of
the PCI bus protocol. In order to verify that our Verilog model is correct, we connect
the monitors with our model to check whether our model violates the monitors.

Model checking can formally verify the correctness of a given formula. However, it
islimited by the size of the model. We use it on alimited configuration of the protocol,

namely one master, one target, one dummy arbiter. After abstracting the data path, e.g.,
the width of the bus, we have successfully model checked 70 temporal propertieswhich
are derived from the temporal properties given by [24]. The verification takes 450M B
memory and 2 minutes on a 360M Hz Sun 6500 Enterprise server.

7 Conclusions

We have proposed anew logic ESL for formal specification of hardware protocols. Our
synthesis methodology generates executable code in Verilog or SMV from ESL speci-
fications. A significant part of the PCI bus protocol has been specified, simulated, and
verified using our tool. Our experimental results clearly demonstrate that our synthesis
methodology is feasible for systems of realistic complexity.

In the future, we plan to complete the PCI bus specification and to experiment with
other industrial bus protocols such as the IBM CoreConnect bus and the Intel P6 bus.
To achieve this goal, we are investigating various extensions of ESL. In particular, we
believeit is possibleto incorporate our logic into Verilog without significantly changing
the syntax of the language. Such an extension should also make our tool easier for
engineersto use.

Finally, we believe that game theoretic notions of consistency [10, 3] are necessary
under certain circumstances. We intend to investigate various notions of consistency for
our logic and devise agorithms for verifying them.

Acknowledgment

We are grateful to David Dill and Kanna Shimizu for discussions and comments on our
paper, and for providing the PCI properties24].

References

1. Y.Abarbanel, . Beer, L. Gluhovsky, S. Keidar and Y. Wolfsthal,“ FoCs - Automatic Generation
of Simulation Checkers from Formal Specifications’, CAV 00: Computer-Aided \erification,
Lecture Notes in Computer Science 1855, 538-542. Springer-Verlag, 2000.

2. R. Alur and T.A. Henzinger. Reactive Modules, Proceedings of the 11th Annual Symposium
on Logic in Computer Science, 207-218. |EEE Computer Society Press, 1996.

3. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proc. 38th
|EEE Symposium on Foundations of Computer Science, 100-109, 1997.

4. R. E. Bryant, P. Chauhan, E. M. Clarke, A. Goel. A Theory of Consistency for Modular Syn-
chronous Systems. Formal Methods in Computer-Aided Design, 2000

5. P. Chauhan, E. Clarke, Y. Lu, and D. Wang. Verifying IP-Core based System-On-Chip De-
signs. In Proceedings of the IEEE ASIC Conference, 27-31, 1999.

6. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithm. MIT Press, 1990.

7. E. Clarke and E. Emerson. Synthesis of synchronization skeletons for branching time tempo-
ra logic. Logic of Programs: Workshop, Yorktown Heights, NY, May 1981 Lecture Notes in
Computer Science, Vol. 131, Springer-Verlag. 1981.

8. E. Emerson and E. Clarke. Using branching time temporal logic to synthesize synchronization
skeletons. In Science of Computer Programming, Vol 2, 241-266. 1982.

9. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Publishers, 1999.

10. David Dill. Trace Theory for Automatic Hierarchical Verification of Speed-independent Cir-
cuits. MIT Press, 1989.

11. M. Fujitaand S. Kono. Synthesis of Controllersfrom Interval Temporal Logic Specification.
International Workshop on Logic Synthesis, May, 1993.

12. D. Gabbay. The Declarative Past and Imperative Future: Executable Temporal Logic for
Interactive Systems. In B. Baniegbal, B. Barringer, and A. Pnueli, editors, Temporal Logic in
Soecification, Vol. 398, 409-448. Springer Verlag, LNCS 398, 1989.

13. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification
of linear temporal logic. In Proc. 15th Work. Protocol Specification, Testing, and Verification,
Warsaw, June 1995. North-Holland.

14. N. Halbwachs, J.-C. Fernandez, and A. Bougjjanni. An executable temporal logic to express
safety properties and its connection with the language Lustre. In Sxth International Symp. on
Lucid and Intensional Programming, ISLIP’ 93, Quebec City, Canada, April 1993. Universit'e
Laval.

15. L. Lamport. The temporal logic of actions. ACM TOPLAS, 16(3):872-923, March 1994.

16. Z. Manna, P. Wolper: Synthesis of Communicating Processes from Temporal Logic Specifi-
cations, ACM TOPLAS, Vol .6, N.1, Jan. 1984, 68-93.

17. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

18. B. Moszkowski. Executing temporal logic programs. Cambridge University Press, 1986.

19. PCI Specid Interest Group. PCI Local Bus Specification Rev 2.2. Dec. 1998.

20. J. Yuan, K. Shultz, C. Pixley, and H. Miller. Modeling Design Constraints and Biasing in
Simulation Using BDDs. In International Conference on Computer-Aided Design. 584-589,
November 7-11, 1999

21. A. Seawright, and F. Brewer. Synthesis from Production-Based Specifications. In Proceed-
ings of the 29th ACM/IEEE Design Automation Conference, 194-199, 1992.

22. X. Shen, and Arvind. Design and Verification of Speculative Processors. In Proceedings of
the Workshop on Formal Techniques for Hardware and Hardware-like Systems, June 1998,
Marstrand, Sweden.

23. K. Shimizu, D. Dill, and A. Hu. Monitor Based Formal Specification of PCI. Formal Methods
in Computer-Aided Design, 2000.

24. K. Shimizu. http://radish.stanford.edu/pci.

25. M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company. 1997.

