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Abstract. Hardware specifications in English are frequently ambiguous and of-
ten self-contradictory. We propose a new logic ESL which facilitates formal spec-
ification of hardware protocols. Our logic is closely related to LTL but can express
all regular safety properties. We have developed a protocol synthesis methodol-
ogy which generates Mealy machines from ESL specifications. The Mealy ma-
chines can be automatically translated into executable code either in Verilog or
SMV. Our methodology exploits the observation that protocols are naturally com-
posed of many semantically distinct components. This structure is reflected in
the syntax of ESL specifications. We use a modified LTL tableau construction to
build a Mealy machine for each component. The Mealy machines are connected
together in a Verilog or SMV framework. In many cases this makes it possible
to circumvent the state explosion problem during code generation and to identify
conflicts between components during simulation or model checking. We have im-
plemented a tool based on the logic and used it to specify and verify a significant
part of the PCI bus protocol.

1 Introduction

Motivation. The verification of bus protocols, i.e., of communication protocols be-
tween hardware devices, as in the case of the well-known PCI bus, is a central problem
in hardware verification. Although bus protocol design and verification have become
increasingly important due to the integration of diverse components in IP Core-based
designs, even standard bus protocols are usually described in English which makes
specifications often ambiguous, contradictory, and certainly non-executable.

Example 1. It is often the case that English documentation attaches different meanings to a sin-
gle name in different situations, as in the following definition for “data phase completion” from
PCI 2.2 [19], page 10: A data phase is completed on any clock both IRDY# and TRDY# are as-
serted. On Page 27, however, there is a different definition: A data phase completes when IRDY#
and [TRDY# or STOP#] are asserted. The obvious problem with these definitions is whether data
phase completion should include the case when both IRDY# and STOP# are asserted.

By carefully reading the English documentation, one can also find many contradictory state-
ments, as in the following example from PCI 2.2 [19], page 50: Once the master has detected
the missing DEVSEL#, FRAME# is deasserted and IRDY# is deasserted. On Page 51, however,
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it is said that Once a master has asserted IRDY#, it can not change IRDY# or FRAME# until
the current data phase completes. The reason why these two are contradictory is that the first
sentence allows FRAME# to be deasserted without the current data phase being complete, while
the second one disallows this.

Traditional hardware description languages are usually not well-suited for pro-
tocol specification because they are based on existing concrete designs (or abstrac-
tions thereof) instead of specifications, and their execution model therefore focuses
on single-cycle transitions. With protocols, the specification is naturally represented by
constraints on signals which may connect relatively distant time points.

Another problem of transition-system based approaches is that naive composition
of participants in the protocol may cover up important protocol inconsistencies due
to synchronization faults or write conflicts among non-cooperative participants. It is
important that the specification language be executable, i.e., that a machine model can
be computed from the specification. This is a trivial property for hardware description
languages, but not for protocol specifications.
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The ESL logic. We propose the new logical language ESL which facilitates speci-
fication, verification, and simulation of protocols. ESL is based on a variant of linear
temporal logic (LTL) where atomic propositions are constraints on signals in the pro-
tocol, e.g. REQ 2 f0; 2g. The core of ESL are ESL scripts, i.e., finite collections of
executable temporal formulas. More precisely, a script is a finite collection of axioms
�P ) �X where �P is a temporal formula involving only the temporal operator
P (immediate past-time), and �X is a temporal formula involving only the temporal
operator X , e.g. P a ) b _X X a. Atoms in �P are interpreted as tests of previous
signals, while �X asserts constraints in the future. Scripts may contain local variables
which are not visible in the traces (i.e., models) of the script.

An ESL module E is a finite collection S1k : : : kSn of ESL scripts. The intended se-
mantics is that ESL scripts describe Mealy Machines and that the ESL module specifies



the synchronous composition of the Mealy machines. Different scripts of a module po-
tentially conflict if they employ common output signals. Note that in general two scripts
S1kS2 describe two different Mealy machines, while the conjunction S 1 ^ S2 of two
scripts is itself a script which describes a single Mealy machine.

A finite collection P of ESL modules with pairwise disjoint output signals is called
an ESL protocol. The semantics of an ESL protocol is the synchronous composition of
its modules. ESL modules cannot directly conflict with each other, but they may have
receptiveness failures (see Section 5).

In real protocols, ESL scripts describe distinct functionalities and features of hard-
ware devices, while ESL modules correspond to the devices themselves. Note that dif-
ferent scripts can constrain the same signal, which is important when translating natural
language specifications.

Experiments and Results. We show that semantically ESL expresses exactly the reg-
ular safety properties. This property is crucial for synthesizing executable models of
the protocol, and distinguishes it from other executable logics, e.g. [12]. A fragment of
LUSTRE has been shown to capture the same expressive power [14] in the context of
synchronous data-flow languages for real-time systems. We present efficient tableau and
synthesis algorithms to obtain executable models of hardware protocols, cf. Figure 1.
The tricky aspect of synthesizing hardware protocols is to group the signals occuring
in the specification into output signals and input signals. To this aim, we introduce a
marked tableau construction which preserves the distinction between past observations
and future assertions. Since each script is converted into a Mealy machine separately,
there is no state explosion during the translation phase.

The execution of ESL in Verilog and SMV makes it possible to use the power of
well-known and highly developed verification paradigms; in particular, it is possible to
verify important features about the ESL protocol, such as synchronization contradic-
tions between different scripts and receptiveness [2] of the ESL modules.

Another important debugging method is property checking, i.e., existing Verilog
monitors and model checking tools can be easily used to debug ESL protocols. To
improve coverage of the Verilog simulation, a dynamically biased random simulation
test bench [20] can also be written directly in ESL scripts.

In a case study, we have used ESL to specify the PCI bus protocol Rev 2.2 [19].
Several errors were identified, including some errors from the English specification.
Verilog monitors and temporal formulas from [23] have been checked against the gen-
erated Verilog and SMV models.

Related Work. Algorithms for synthesizing concurrent and distributed programs from
temporal logic specifications have been developed for CTL by Clarke and Emerson [7,
8] and for LTL by Manna and Wolper [16]. Both methods synthesize global state tran-
sition systems based on an interleaved asynchronous model of computation and then
use projection to obtain controllers for individual processes. Neither of these methods
has been very successful because of the computational complexity of the decision pro-
cedures involved. Protocol synthesis, especially synthesis of bus protocols, is easier,
since many implementation details are already given. Our methodology automatically
exploits this information by incorporating it into the synthesis process.



Various formalisms have been used in hardware specification and synthesis [11, 15,
18, 21]. Recently, Shen and Arvind used term rewriting systems to specify and verify
ISA and out-of-order implementations of processors [22].

Gabbay has developed an executable logic [12] for AI applications in which pro-
grams are written using rules of the form “If A holds in the past then do B”. Since
liveness properties can be expressed in his logic, it is not suitable for Verilog simula-
tion.

Originally, our work was motivated by the approach of Shimizu, Dill and Hu [23].
They use monitors to specify bus protocols formally, based on rules of the form ”predi-
cate on past states) predicate on current state”. A coding style is defined that promotes
readability, discourages errors, and guarantees receptiveness. We use a similar defini-
tion of receptiveness (see Section 5). Although our paper is also concerned with formal
specification of bus protocols, there are several important distinctions between the two
papers. First, our formalization is a declarative formalism based on temporal logic.
Second, their monitors are restricted to interface signals. Consequently, constructing
appropriate monitors can be tricky. For example, identification of “master abort” in the
PCI bus protocol involves observing the bus for several cycles. Third, both Verilog and
SMV models can be obtained from our specifications. Our Verilog model can directly
generate valid simulation patterns and can, therefore, be simulated with part of the real
design. In the monitor approach, the Verilog versions of the monitors are only applica-
ble to a complete design, because monitors can not be used to generate valid patterns.

Consistency problems arise at different levels of specifications. Bryant et al [4] have
developed a notion of consistency by identifying combinational dependencies. They
show how to derive the consistency model from a modular specification where individ-
ual modules are specified as Kripke structures and give an algorithm to check the system
for consistency. Very recently, the system FoCs has been developed at IBM Haifa [1].
FoCs automatically generates simulation checkers from RCTL specifications.

A more detailed exposition of the related work and proofs will be given in the full
version of this paper.

Structure of the Paper In Section 2, we describe the logical framework of ESL. Sec-
tion 3 contains the protocol description language which is used as input to our tool. In
Section 4, the translation algorithms are presented. Section 5 shows how to debug and
verify protocols. Finally, Section 6 contains our practical experiments with the PCI bus
protocol. In Section 7, we briefly summarize our work, and outline future work.

2 The ESL logic

In this section we describe the linear time logic which underlies the implementation of
the ESL system. A more user-friendly input language for ESL will be described in the
following section.

2.1 Temporal Logic on Signal Traces

Let V = fv1; : : : ; vng be a set of variables (signals) where each v
i

has finite domain
D
vi

. A variable v
i

is Boolean, if its domain D
vi

is f0; 1g. An atom is an expression



v
i
= d, where d 2 D

vi
. The finite set of atoms is denoted by Atoms. If v

i
is Boolean,

then v
i

abbreviates v
i
= 1. Literals are atoms and negated atoms. For a set A of atoms,

var(A) = fv : for some value d 2 D
i
; v = d 2 Ag is the set of variables appearing in

A. A type is a consistent conjunction
V

1�i�n �i of literals. As is common in logic, we
shall often write types as sets f�1; : : : ; �ng. A complete type is a type which determines
the values of all variables. Note that each complete type can be assumed to contain only
(unnegated) atoms.

Example 2. Suppose that V = fREQ; COMg, where DREQ = f1; 2; 3g, and DCOM = f0; 1g. Then
Atoms = fREQ = 1; REQ = 2; REQ = 3; COM = 0; COM = 1g. Examples of two types �1; �2
are:

1. �1 = fREQ = 1; COM 6= 0g, or as a conjunction, �1 becomes REQ = 1 ^ COM 6= 0.
2. �2 = fREQ 6= 2; COM = 1g, or as a conjunction REQ 6= 2 ^ COM = 1.

�1 is a complete type, because it determines the values of both REQ and COM. �1 is equivalent to
the type fREQ = 1; COM = 1g. �2 does not determine the value of REQ, because both REQ = 1

and REQ = 3 are consistent with �2. Therefore, �2 is not complete.

ESL is based on a discrete time model, where time points are given by natural
numbers from N = f1; 2; : : :g. A signal trace is an infinite sequence S = s1s2 � � � ,
where each s

i
determines the values of all variables at time i. S can be viewed as an

infinite string, where the alphabet consists of complete types. Following the previous
example,

S = fREQ = 1; COM = 0gfREQ = 1; COM = 1gfREQ = 3; COM = 1g : : :

is a signal trace. Thus, the alphabet of signal traces is given by

� = f� 2 2Atoms : � is a complete type without negationg:

The set of signal traces is given by �!.
Traces which do not determine the values of all signals are important for us as well

(see Section 4.1). For this purpose, we use the alphabet � which consists of all types,
i.e., partial assignments to the signals. Note that � is a superset of the signal trace
alphabet �. Formally, we define

� = f# : # is a typeg:

The set of traces is given by �! .

Remark. To keep the presentation simple, we tacitly identify two elements of �, if they
are logically equivalent, e.g., COM = 1 and COM 6= 0. Thus, a rigid formal definition of�
would require that the alphabet� is given by the finite number of equivalence classes of
types. For example, we may use the lexicographically minimal types as representatives
of their equivalence classes.

Since � � �, every signal trace is a trace, and all definitions about traces in prin-
ciple also apply to signal traces. The main difference between � and � is that each



element of � determines the values of all signals, while � may contain partial infor-
mation. On the other hand, with each element # of � we can associate all elements of
� which are consistent with #. To this end, we define the function comp : � ! 2� by

comp(#) = f� 2 � : � ) #g:

comp is called the completion function, because it maps a type # to the set of all com-
plete types consistent with #. In other words, comp maps a partial assignment to the set
of possible complete assignments. Let T = t1t2 � � � 2 �

! be a trace. Then the set of
signal traces described by T is given by

comp(T ) = fS = s1s2 � � � 2 �

! : for all i, s
i
2 comp(t

i
)g:

For a set L of traces comp(L) = fcomp(T ) : T 2 Lg. Given two sets L1; L2 of traces,
we define L1 � L2 iff comp(L1) = comp(L2), i.e., L1 and L2 describe the same set
of signal traces.

Example 3. Let REQ and COM be as in Example 2. Then the trace T = (fCOM =

1; REQ = 1gfCOM = 0; REQ 6= 2g)! does not determine REQ in all po-
sitions. It is easy to see that comp(T ) is given by the !-regular expression
(fCOM = 1; REQ = 1gfCOM = 0; REQ = 1gjfCOM = 1; REQ = 1gfCOM = 0; REQ = 3g))! :

A trace property L is a set of signal traces. L
n

denotes the set of finite prefixes of
length n of words in L. A safety property is a trace propertyL, such that for each t 62 L,
there exists a finite prefix r of t, such that r 62 Ljrj. In other words, traces not in L are
recognized by finite prefixes.

For a set S of atoms and a set X � V of variables, let S
X

denote the restriction
of S to atoms containing variables from X only. Similarly, �

X
denotes the alphabet of

complete types for the set of variables X .
V is partitioned into two sets V

G
and V

L
of global and local variables. The dis-

tinction between global and local variables will be justified in Section 2.2. Thus, S
VG

denotes the restriction of S to global atoms, i.e., atoms using global variables. Similarly,
�
VG

denotes the alphabet of complete types for the set of variables V
G

. Let global be
the projection function which maps � to �

VG
by

global(�) = � \Atoms
VG
:

Intuitively, the function global removes all local atoms from the alphabet. With
each signal trace S = s1s2 � � � we associate the global signal trace global(S) =

global(s1)global(s2) � � � over 2AtomsVG .

Example 4. Let S = (fR = 1; a = 2gfR = 0; a = 3g)! be a signal trace where a is a local
variable. Then global(S) = (fR = 1gfR = 0g)! .

Given two sets L1; L2 of traces, we define L1 �gl L2 iff global(comp(L1)) =

global(comp(L2)), i.e., L1 and L2 describe the same set of global signal traces.

Lemma 1. If L is a safety property, then global(L) is a safety property.



We consider a linear time logic with temporal operators X , P , and G . Let T =

t1t2 : : : be a trace. We inductively define the semantics for atomic formulas f and
temporal operators X , P , G as follows:

T; i j= f iff t
i
) f (Here, we use the fact that t

i
is a type, and thus a formula.)

T; i j= X ' iff T; i+ 1 j= '

T; i j= P ' iff i � 2, and T; i� 1 j= '

T; i j=G ' iff 8j � i T; j j= '

The semantics of the Boolean operators is defined as usual. Existential quantification
over traces is defined as follows: Let v be a variable, and let T = t1t2 � � � be a trace
over �

V�fvg, i.e., a trace which does not assign values to v. Then we define
T; i j= 9v:' iff there exists an infinite sequence a1a2 : : : of values for v such that

the trace S = (t1 [ fv = a1g)(t2 [ fv = a2g) : : : satisfies ' at time i, i.e., S; i j= '.
Given a formula ', Traces(') denotes the set of signal traces T such that T; 1 j= '.

Traces can be combined in a very natural manner:

Definition 1. Let T = t1t2 � � � and S = s1s2 � � � be traces. Then the combined trace
T 1 S is given by the infinite sequence u1u2 � � � where

u
i
=

(
t
i
^ s

i
if t

i
and s

i
are consistent

ffalseg otherwise

We say that T and S are compatible if there is no i such that u
i
= ffalseg. Otherwise

we say that T and S contradict. Let L1 and L2 be sets of traces. Then L1 1 L2 =

fT1 1 T2 : T1 2 L1; T2 2 L2g.

The above definitions easily generalize to more than two traces. Note that the operation
1 introduces the new symbol false in the alphabet of traces.

The following important example demonstrates why the operator 1 is different
from conjunction, and why we need it to analyze traces.

Example 5. Consider the two formulas G (a ) X b) and G (a ) X :b). When
viewed as specifications of different devices, the two formulas are intuitively contradic-
tory when the input signal a becomes true. In fact, in the set of combined traces

Traces(G (a) X b)) 1 Traces(G (a) X :b)) � (fagffalsegjf:ag)!

the contradictions become visible immediately after a becomes true. On the other hand,
the naive conjunction G (a ) X b) ^G (a ) X :b) of the formulas is equivalent to
G :a, their set of traces is given by Traces(G :a) = (f:a; bgjf:a;:bg)!, and thus
the potential contradiction vanishes.

2.2 ESL scripts

The following definition describes the fragment of linear time logic used in ESL.

Definition 2. ESL scripts



(i) A retrospective formula is a formula which contains no temporal operators ex-
cept P .

(ii) A prospective formula is a formula which contains no temporal operators except
X .

(iii) A script axiom � is a formula of the form �P ) �X where �P is a retro-
spective formula, and �X is a prospective formula.

(iv) An ESL script S is a conjunction
V

1�j�k �j of script axioms �
j
.

(v) With each script S, we associate the formula G (S) = G
V

1�j�k �j .

Intuitively, atoms in �P are interpreted as tests of previous signals, while �X asserts
constraints in the future. For simplicity, we assume that no local variable appears in two
different ESL scripts.

Example 6. Consider the ESL script P a^ a) (X a_X X a). The script says that if a held
true in two subsequent cycles, then a must hold true in one of the two following cycles.

The following lemma says that the temporal operatorP is redundant.

Lemma 2. Let S be an ESL script. Then G(S) is equivalent to a formula of the form
G ('

G
) ^ 'Init, where '

G
and 'Init are temporal logic formulas which contain no

temporal operators except X .

The following theorem states that the projection operator global achieves the same
effect as existential quantification.

Proposition 1. Let S be an ESL script, and l1; : : : ; ln its local variables. Then
global(Traces(G S)) = Traces(9l1 � � � lnG(S)).

Thus, projection amounts to a kind of implicit existential quantification. The effect
of this quantification is characterized by the following theorem.

Theorem 1. On global signals, ESL scripts capture the regular safety properties. For-
mally, for each regular safety property L over �

VG
, there exists an ESL script S such

that global(Traces(G(S))) = L, and vice versa.

We conclude from Theorem 1 that projection extends the expressive power of the
logic to capture all regular safety properties on global variables. We will show in the
next section that in praxis the complexity of our logic does not increase significantly.
Thus, the addition of local variables appears to be a good choice which balances ex-
pressive power and complexity.

Corollary 1. For global variables, all past time temporal operators, as well as the
weak until operator W are expressible by ESL scripts.



2.3 Regular tableaus

The tableau of an LTL formula ' is a labeled generalized Büchi automaton T that
accepts exactly the sequences over (2Atoms')! that satisfy ' [13]. (Here, Atoms

'

denotes the set of atomic propositions appearing in '.) In this section, we define regular
tableaus by adapting LTL tableaus to ESL.

Definition 3. Regular Tableau
A regular tableau T is a tuple hS T

;ST
0
;AT

; L
T
;RT i where

– ST is a finite set of states, ST
0
� ST is a set of initial states, and AT is a finite set

of atoms.
– L

T : ST ! � is a labeling function which labels states by types, where � is the
set of types over AT .

– RT � ST � ST is the transition relation of the tableau.

Since by Theorem 1, ESL defines only safety properties, tableaus for ESL do not
need all the expressive power of !-automata. Moreover, the states of regular tableaus
are labeled only by sets of atoms (and not by temporal formulas). Intuitively, temporal
formulas can be omitted from tableaus because we have local variables which carry the
information that is usually carried by the temporal formulas.

Definition 4. Regular Tableau Acceptance
A trace T = t1t2 � � � 2 �

! is accepted by T if there exists a sequence s1s2 � � � 2 (ST )!

such that

(i) s1 2 S
T
0

(ii) s1s2 � � � is an infinite path in the graph given by the transition relation R T .
(iii) For all i, t

i
) L

T (s
i
).

The languageL(T ) is the set of traces T accepted by tableau T . Let S be an ESL script,
and T a tableau. T is a correct tableau for S, if L(T ) � Traces(G(S)); i.e., if the
traces generated by the tableau define exactly the signal traces which satisfy S.

3 ESL Protocols

ESL facilitates modular specification of protocols, in particular hardware protocols.
ESL protocols consist of modules which in turn consist of scripts. Under the intended
semantics of ESL, modules correspond to distinct devices (e.g. a master and a slave
device), while scripts describe independent functionalities of the devices.

Formally, an ESL module E is a finite collection S1; : : : ;Sn of scripts. Each script
S
i

is given by a finite conjunction
V
'
j

of specifications. The intended semantics is
that ESL scripts describe Mealy Machines and that the ESL module specifies the syn-
chronous composition of the Mealy machines. Therefore, we shall write S 1kS2 : : : kSn

to denote E . Different scripts for the same module potentially conflict if they employ
common output signals, i.e., common global variables which model output signals.
Scripts may contain local variables which are not visible to other scripts.



Our aim is to build a machineME such that the language accepted by ME coincides
with the combined traces of the scripts on global variables, i.e.,

L(ME) �gl Traces(S1) 1 � � � 1 Traces(S
n
):

As shown in Example 5, trace combination will enable us to identify contradictions
between scripts.

A finite collection P of ESL modules with pairwise disjoint output signals is called
an ESL protocol. The semantics of protocols is given by the semantics of the scripts
of its constituent modules. ESL modules of a protocol have fewer sources of conflict
among each other than ESL scripts because they do not have common output signals.

3.1 Input Language for ESL Protocols

An ESL protocol must contain exactly one protocol module which starts with the key-
word protocol. Each module can have three types of variables: input, output and local
variables. Each script can include more than one specification, which start with the
keyword spec.

To facilitate easy description of properties and protocols, we augment the basic ESL
language with syntactic sugar, such as default values, additional temporal operators, and
parametrized macros. In particular, we use the weak until operator W and the operator
keep(a) which asserts that the current value of signal a is the same as in the previous
step. Note that by Lemma 2, we can add all the past temporal operators to the lan-
guage because they only define regular safety properties. Parameters are used to adapt
specifications to hardware configurations of varying size.

Due to space restrictions, we describe the input language by example. The following
example is a fragment of the specification of the PCI bus in ESL. It consists of one
master and one arbiter.

module pci master
input clock; GNT: bool;
output REQ = 0: bool;
local status : fCOMP; MABORT; MTOg;
local retry req; last cycle; addr phase: bool;
script spec retry req ) X (retry reqW addr phase);

spec last cycle ) :retry req;
script spec GNT ) X(keep(REQ)) W status = COMP;

endmodule

module pci arbiter
parameter N;
input RST; REQ[1 to N]: bool;
output GNT[1 to N]: bool;
local tok[1 to N]: bool;
script spec

RST ^ tok[i] ) X (tok[(i+ 1) Mod N] = 1 ^ tok[i] = 0) for i = 1 to N;
endmodule



protocol pci bus
constant N = 2;
modules

master[1 to N]: pci master,
arbiter(N): pci arbiter;

connection
master[i]:GNT = arbiter:GNT[i] for i = 1 to N ;
arbiter:REQ[i] = master[i]:REQ[i] for i = 1 to N ;

endprotocol

This example includes two modules and one protocol module. Each module in-
cludes one or two scripts. In the module pci master, REQ has Boolean type and is initial-
ized to 0. The local variable status denotes whether the PCI master aborts the transaction
or the time out happens. In the module pci arbiter, we define a parameterN which will
be instantiated when the module gets instantiated. A formula '(i) for i = 1 to N is
equivalent to '(1)^'(2)^: : :^'(N). For example, the script of the module pci arbiter
is instantiated as a conjunction of two formulas:

(RST ^ token[2]) X (token[1] := 1 ^ token[2] := 0)) ^

(RST ^ token[1]) X (token[2] := 1 ^ token[1] := 0))

The protocol module explicitly connects the modules pci master and pci aribter by
matching the corresponding inputs and outputs.

4 Synthesis of Executable Models

Given an ESL protocol, our procedure comprises three main steps to transform exe-
cutable models into either Verilog or SMV programs.

1. Preprocessing. In this step, the ESL protocol is parsed and type checked to make
sure each variable is declared and each axiom is well typed. For example, for a
Boolean variable x, an atom x = 3 is not allowed. Furthermore, the parameters are
instantiated and the macros are expanded.

2. Module Synthesis. This step converts each ESL module separately into a Verilog or
SMV module. An overview of the algorithm ModuleSynthesis given in Figure 2.
In the algorithm, we first generate a regular tableau for each script and translate
the tableau into a nondeterministic automaton. Then we determinize the automaton
and translate it into a Mealy machine which can be easily implemented in Verilog
or SMV. The combiner connects each Mealy machine. Details of each step will be
described in the following three subsections.

3. Module Connection. In this final step, the inputs and outputs from different ESL
modules are connected. In the synchronous bus protocol design, combinational de-
pendency loops between the signals are not allowed. This step identifies all com-
binational dependencies within individual modules or between modules. A short
outline of this step is given in Section 4.4.



Algorithm ModuleSynthesis(S1k � � � kSn)
foreach Si

TSi =MTableau(Si)
NSi = Automaton(TSi)
ND

Si
= Powerset(NSi

)

MSi
= GenMealy(ND

Si
)

return Combine(MS1 ; : : : ;MSn)

Fig. 2. Algorithm to synthesize scripts

Algorithm MTableau(S)
mark S
TS := Tableau(S)
for all states s 2 STS

if clean(LTS ) is inconsistent
then remove s from TS

return TS

Fig. 3. Tableau Construction.

4.1 Tableau construction

Given an ESL script S, our aim is to generate a Mealy machine whose operational
behavior is specified by the script. Consider the two simple scripts a = 1 ) b = 1

and b = 0 ) a = 0, where a and b are Boolean variables. Logically, these scripts
are equivalent (since a ) b is equivalent to :b ) :a.) However, as specifications
for Mealy machines they should intuitively describe different machines: the formula
a = 1 ) b = 1 describes a Mealy machine which asserts b = 1 if it observes a = 1,
while b = 0 ) a = 0 describes a Mealy machine which asserts a = 0 if it observes
b = 0. We conclude from this example that for the operational behavior of the Mealy
machines it is important to know for each occurrence of a variable whether it belongs to
the retrospective or the prospective part of a script. Variables from the retrospective part
eventually will become inputs of Mealy machines, and variables from the prospective
part will become outputs of Mealy machines.

In our methodology, we first build a tableau for S, and then translate it further to
a Mealy machine. As argued above, it is important for our tableau construction not to
lose the information which variables will be used as outputs of the Mealy machine later
on. Therefore, we distinguish such variables by marking them with a symbol �.

Definition 5. Given a set of variables V = fv1; : : : ; vng, V � is a set fv�1 ; : : : ; v
�
n
g of

new variables called marked variables.
Given an ESL axiom ' = �P ) �X and the corresponding alphabet �, the

marked axiom'
m

is given by�P ) �
�
X

where��
X

is obtained from�X by replacing
each occurrence of a variable v by the marked variable v �. ESL scripts are marked by
marking all their axioms.

Let X be a set of variables or atoms etc. Then umk(X) denotes the subset of X
where no element contains a marked variable, andmkd(X) denotesX�umk(X). The
function clean(X) removes all markers from the elements ofX , e.g. clean(V �) = V .

In Figure 3, we outline the tableau algorithm MTableau(S) for ESL scripts. In
the first step, the algorithm marks the script as described above. In the second step we
use the standard LTL tableau algorithm described in [13] to generate a tableau for the
marked script. Note that from the point of view of the tableau construction algorithm, a
variable v and its marked version v� are different. In the third step, however, we exclude
those states from the tableau where the assertions are inconsistent with the observations,



i.e., those states whose labelling would become inconsistent if the marks were removed.
Thus, the resulting marked tableau is a correct tableau for S if the markers are ignored.

Lemma 3. Let S be a script. Let L be the set of traces accepted by the tableau
MTableau(S). Then clean(L) � Traces(S), i.e., after unmarking, the traces of
the tableau are the same as the traces of the script.

Our actual implementation of the algorithm MTableau removes inconsistent states
on-the-fly during constructing tableaus. Thus, fewer intermediate states are created, and
less memory is used. In principle, other tableau algorithms [9] could be used, too.

Note that local and global variables are not distinguished by the tableau algorithm.
The tableau traces in general contain local variables.

a :a
a

b
�
a
�

b�

a�

Fig. 4. An example tableau. Boxes denote initial
states.

a

a

�

a

�

:a

fa�; b�g
fa�; b�g

fa�; b�ga

:a
fa; b�g

:a

fa; b�g
fa; b�g

Fig. 5. The corresponding automaton

The following example highlights the construction of tableaus for marked scripts.
We will use this example as a running example throughout the paper.

Example 7. Consider the following axiom: (a ) b _ X a) The meaning of the axiom is:
whenever a is asserted, then either b is asserted at the same time point or a is asserted in the next
time point. The corresponding marked axiom is: (a) b� _ X a�) The tableau for this axiom is
shown in Figure 4.

Before describing how to translate tableaus into automata, we first give a formal defini-
tion of automata.

Definition 6. A nondeterministic ESL automaton N is a 4-tuple hS; S0; �; Æi, where
S is a finite set of states, S0 � S is a set of initial states, � is the set of types, and
Æ � S���S is the transition relation. A trace T = t1t2 � � � 2 �

! is accepted by N if
there exists a sequence s1s2 � � � 2 S

! such that s1 2 S0, s1s2 � � � is an infinite sequence
of states, and for all i, there exists a type # 2 � such that t

i
) #, and (s

i
; #; s

i+1) 2 Æ.
The language L(N) is the set of traces accepted by N .

Given a tableau T = hST
; S

T
0 ; A

T
; L

T
; R

T i, the algorithm Automaton(T )

computes the automaton NT = hS; S0; �; Æi where S = S
T , S0 = S

T
0 , and

Æ = f(s; #; s0) j # 2 �; (s; s0) 2 R
T
; L

T (s) = #g. Then the following lemma holds
trivially.



Lemma 4. The tableau T and the ESL automaton Automaton(T ) accept the same
languages. Formally, L(T ) = L(Automaton(T )):

4.2 Mealy machine synthesis

Since ESL automata are nondeterministic, we cannot translate them directly into Ver-
ilog. In this section, we describe how to synthesize automata into deterministic Mealy
machines which can then be easily translated into Verilog programs. We proceed in two
steps. First, we use a powerset algorithm to determinize the automata. Then, we use
the variable markers to determine the inputs and outputs for each state of the Mealy
machines.

Since ESL automata do not have Büchi constraints, we use the traditional method
for automata determinization by powersets which is described in many textbooks [25].

Although the algorithm Powerset is potentially exponential, the resulting automata
in our experiments are often much smaller than the original automata. In Figure 6, re-
sults for 62 scripts in our PCI protocol specification are shown, where for each script,
the ratio of the size of the deterministic automaton compared with that of the origi-
nal non-deterministic automaton is shown. It can be seen that, in our experiments, the
deterministic automata are always smaller than the nondeterministic automata. On av-
erage, the automata can be compressed to about 25% of their original size. The intuitive
explanation for this behavior is that the powerset algorithm clusters related states into
one state. For the example in Figure 5, the automaton after determinization is shown in
Figure 7. Since the deterministic automaton accepts the same language as the original
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Fig. 6. Compression obtained by determinization

a; b
�

a

:a

a
�
; b
�

a
�

Fig. 7. Automaton after determinization

automaton does, the behavior of the original scripts is maintained after determinization.
Finally, we describe how to generate Mealy machines from deterministic automata.

The Mealy machine model presented in the following definition takes into account the
type concept which we use for traces.

Definition 7. Mealy machine
A Mealy machineM is a tuple hS;S0 ; I; O; �;Ri where S is a finite set of states, S0 �

S is the set of initial states, I is a finite set of input variables, O is a finite set of output



variables (I \O = ;), � : S ��
I
! �

O
is the output function, and R � S ��

I
� S

is the transition relation.M is deterministic if for every input � every state has a unique
successor i.e., for all s; s0 2 S and � 2 �

I
, R(s; �; s0) ^ R(s; �; s00) ! s

0 = s
00. M

accepts a trace T = t1t2 � � � over alphabet �
I
[�

O
if there exists an infinite sequence

S = s1s2 � � � of states such that (i) s1 2 S0; (ii) for all indices i, R(s
i
;umk(t

i
); s

i+1);
(iii) for all indices i, �(s

i
;umk(t

i
)) = mkd(t

i
). The set of traces accepted by M is

denoted by L(M).

Given a deterministic automaton N = hS; S0; 
; Æ; F i, we generate a Mealy machine
M = hS; S0; I; O; �;Ri such that N and M have the same sets of states and initial
states. Let MAX be the smallest number such that no state in N has more than MAX

immediate successors.
The input variables I of the Mealy Machine M are the unmarked variables of the

automaton N , and the new variable nd, D
nd

= f1; : : : ; MAXg. Intuitively, the new vari-
able nd will be used to determine the successor state among the MAX possible successor
states. The output variables O of M are the marked variables of N , i.e., O =mkd(
).
The output function � and the transition relation R are defined by the algorithm Gen-
Mealy shown in Figure 8.

Algorithm GenMealy(N)

foreach s 2 S

P = fumk(a) j 9s0 2 S; Æ(s; a; s0)g
for each a 2 P

Q = fb j umk(b) = a; 9s0 2 S; Æ(s; b; s0)g
i = 1
for each b 2 Q

� = � [ f(s; a ^ nd = i;mkd(b))g
if Æ(s; b; s0) = true then

R = R [ f(s; a ^ nd = i; s0)g
i = i + 1

choose some b 2 Q

for j=i to MAX
� = � [ f(s; a ^ nd = j;mkd(b))g
R = R [ f(s; a ^ nd = j; s0)g

Fig. 8. Pseudo-code for GenMealy

nd = 0 _ :a

nd = 1 _ :a=�

nd = 1 ^ a nd = 0

s0
1

s
0
2

nd = 1=a�

nd = 0 ^ a=b�

nd = 0=fa�; b�g
nd = 1

Fig. 9. A deterministic Mealy machine

Example 8. The Mealy machine obtained from the automaton in Figure 5 is shown in Figure 9.
nd is the new unconstrained internal signal. The labelling in state s2 denotes the input/output
function, for example nd = 1=a� represents input nd = 1 and output is a� = 1.

Theorem 2. Let S be an ESL script. Then the language of the synthesized Mealy ma-
chine coincides with Traces(S) on global variables. Formally,

clean(Traces(ModuleSynthesis(S))) �gl Traces(S):
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Fig. 10. Combiners for a Module

Timeout@pci_master

lFRAME_@pci_master

FRAME_deassert 

Timer@pci_master

Timer_count 

Timeout 

Fig. 11. Identified Combinational dependency
loops

The obtained Mealy machine can be translated into a Verilog program easily. Details
are omitted due to the space restrictions.

4.3 Combiner generation

Recall that each ESL script S is translated into a Mealy machine, and that different
scripts can assign values to the same signal. In Section 2 we defined the operation 1

to combine two traces. As exemplified in Example 5, the operation 1 on traces is not
the same as conjunction of scripts.

On the level of Mealy machines, we introduce combiners which perform the opera-
tion 1 on traces. A combiner machine is defined as follows.

Definition 8. Given a sequenceM1; : : : ;Mm
of Mealy machines with possibly nondis-

joint alphabets, the combiner C(M1; : : : ;Mm
) is a Mealy machine whose input alpha-

bet is the union of the input alphabets of the M
i

and whose output alphabet is obtained
from the union of the output alphabets of the M

i
by removing the marks. On input of

a symbol �, C(M1; : : : ;Mm
) simulates each of the Mealy machines, collects the out-

puts o1; : : : ; om of the Mealy machines, and nondeterministically outputs one element
of clean(comp(o1 1 o2 1 : : : 1 o

m
)).

Thus, if the output of the Mealy machines is consistent, the combiner will output it;
if it is inconsistent, then the combiner will output ffalseg; if the output does not deter-
mine the values of all signals, the combiner will nondeterministically choose consistent
values for the unspecified or under-constrained signals.

The algorithm Combine generates Verilog code for the combiner. In the Verilog
translation, each Mealy machine is translated into a Verilog module. The combiner itself
is a module which uses the Mealy machine modules as subprograms and combines their
outputs.

In the traditional approach (i.e., synthesizing the conjunction of all scripts), the
number of tableau states for the conjunction of the scripts can become exponentially



larger. In fact, our techniques are tailored to find inconsistencies between scripts; in
conjoined formulas, inconsistent behaviors would be eliminated.

Finally, we can formally state the correctness of our algorithms, cf. Section 3.

Theorem 3. Let E = S1k � � � kSn be an ESL module. Then

L(ModuleSynthesis(E)) �gl Traces(S1) 1 � � � 1 Traces(S
n
):

4.4 Module Connection

In Verilog, connecting the inputs and outputs of modules can be done hierarchically.
For synchronous bus designs, combinational loops are not allowed. Therefore, in the
variable dependency graph, we use standard algorithms for strongly-connected compo-
nents [6] to identify combinational loops. Our tool will report combinational loops to
the users. Figure 11 shows an example combinational loop identified during PCI bus
protocol debugging. In the Figure, T imeout, lFRAME , and T imer are signals in
module pci master, and FRAME deassert, T imer count and T imeout are names
of scripts in this module. Each edge represents a dependency between the two sig-
nals introduced by the script, e.g., signal lFRAME depends on T imeout in script
FRAME deassert.

5 Debugging Protocols in ESL

For a protocol specified in ESL, it is essential to have debugging capabilities which
verify that the specified protocol is indeed what the designers want to specify. In this
section, we describe special properties of the generated Verilog and SMV code which
facilitate debugging. Due to space restrictions, we describe only some of the debugging
capabilities which we implemented. The code generator for Verilog and SMV can be
extended easily to handle other capabilities.
Synchronization Contradiction. In ESL, two scripts can potentially assert contradic-
tory values to signals, cf. Example 5. To detect such cases, a flag OC is defined in the
Verilog code for the combiner. As soon as the combiner computes ffalseg, the flag is
automatically set to 1. According to Theorem 3, the flag OC is set to 1 if and only if
the traces of the scripts contradict. Therefore, to verify the absence of synchronization
contradictions (i.e., consistency) it suffices to check for unreachability of OC = 1.
Receptiveness. A machine is receptive [2] in an environment, if starting from any state,
for all possible inputs from the environment, the machine can produce valid output and
transit to a valid next state. Receptiveness is among the most important properties of
protocols. In ESL, receptiveness questions arise on the level of modules. Receptiveness
is interesting for a module in connection with the whole protocol, but also for a single
module with unconstrained inputs. For each module M , a special flag BI

M
is defined

in the Verilog code for M . If a Mealy machine belonging to M gets stuck, i.e., has no
valid transition for the given input, then the flag BI

M
is set to 1.

The absence of synchronization contradictions and the unreachability of BI
M

for
each M guarantees the receptiveness of the ESL protocol. Deadend checks for recep-
tiveness have been proposed previously for Moore machines in [23].



Property Checking. The specification of protocols often can be partitioned into speci-
fications of a fundamental and operational character, and another set of additional spec-
ifications which were logically redundant for a correct protocol, but are aimed at finding
out if the protocol is correctly specified.

In ESL, we build Verilog and SMV models based on the operational specifications,
and then use a Verilog simulator and the SMV model checker to verify the additional
specifications.

6 Experimental Results

We have built a prototype system in Standard ML, which includes about 13,000 lines
of code. To test the capability of our tool, we have specified a subset of PCI bus pro-
tocol [19]. The specification consists of 118 formulas and 1028 lines including English
comments for each formula. The specification includes five module types: master se-
quencer, master backend, target sequencer, target backend, and arbiter. One master se-
quencer and one master backend form a PCI master; conversely, one target sequencer
and one target backend form a PCI target. We have specified a biased random test bench
[20] in the master backend, because in PCI, the test bench involves transaction request
generation, which is an integral part of the behavior of the master backend. Using the
parameter concept in ESL, the number of modules on the bus can be easily modified.
Independently, [23] developed a specification methodology for the PCI protocol, in
which explicitly declared signals are used for monitoring protocol violation.

The specified subset of the PCI protocol includes burst transaction, master-initiated
fast-back-to-back transaction, master and target termination conditions, initial and sub-
sequent data latencies, target decode latency, master reissue of retried request. We are
currently working on configuration cycles, bus parking and parity checking. We plan to
specify the complete PCI bus protocol in future work.

Our algorithm is very efficient, and it only takes about 15 seconds to generate the
SMV or Verilog model from 62 ESL scripts on a 550MHz Pentium III machine with
256 MB memory. The generated Verilog is about 7000 lines of code while the generated
SMV is about 6100 lines of code. Using the Cadence Verilog-XL simulator, we are able
to simulate the generated Verilog model. Many easy errors have been identified by
checking synchronization contradiction in Verilog simulation, including some errors in
the protocol. For example, the following two statements from [19] can be contradictory
when a PCI target can perform fast decode.

1. In page 26, A PCI target is required to assert its TRDY# signal in a read transaction
unconditionally when the data is valid.

2. In page 47, The first data phase on a read transaction requires a turnaround-cycle
(enforced by the target via TRDY#).

The sixty nine Verilog monitors from [24] are used to characterize correctness of
the PCI bus protocol. In order to verify that our Verilog model is correct, we connect
the monitors with our model to check whether our model violates the monitors.

Model checking can formally verify the correctness of a given formula. However, it
is limited by the size of the model. We use it on a limited configuration of the protocol,



namely one master, one target, one dummy arbiter. After abstracting the data path, e.g.,
the width of the bus, we have successfully model checked 70 temporal properties which
are derived from the temporal properties given by [24]. The verification takes 450MB
memory and 2 minutes on a 360MHz Sun 6500 Enterprise server.

7 Conclusions

We have proposed a new logic ESL for formal specification of hardware protocols. Our
synthesis methodology generates executable code in Verilog or SMV from ESL speci-
fications. A significant part of the PCI bus protocol has been specified, simulated, and
verified using our tool. Our experimental results clearly demonstrate that our synthesis
methodology is feasible for systems of realistic complexity.

In the future, we plan to complete the PCI bus specification and to experiment with
other industrial bus protocols such as the IBM CoreConnect bus and the Intel P6 bus.
To achieve this goal, we are investigating various extensions of ESL. In particular, we
believe it is possible to incorporate our logic into Verilog without significantly changing
the syntax of the language. Such an extension should also make our tool easier for
engineers to use.

Finally, we believe that game theoretic notions of consistency [10, 3] are necessary
under certain circumstances. We intend to investigate various notions of consistency for
our logic and devise algorithms for verifying them.
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