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We present RFN, a formal property verification tool based on 
abstraction refinement. Abstraction refinement is a strategy for 
property verification. It iteratively refines an abstract model to 
better approximate the behavior of the original design in the 
hope that the abstract model alone will provide enough evidence 
to prove or disprove the property. 

However, previous work on abstraction refinement was only 
demonstrated on designs with up to 500 registers. We developed 
RFN to verify real-world designs that may contain thousands of 
registers. RFN differs from the previous work in several ways. 
First, instead of relying on a single engine, RFN employs 
multiple formal verification engines, including a BDD-ATPG 
hybrid engine and a conventional BDD-based fixpoint engine, 
for finding error traces or proving properties on the abstract 
model. Second, RFN uses a novel two-phase process involving 
3-valued simulation and sequential ATPG to determine how to 
refine the abstract model. Third, RFN avoids the weakness of 
other abstraction-refinement algorithms --- finding error traces 
on the original design, by utilizing the error trace of the abstract 
model to guide sequential ATPG to find an error trace on the 
original design. 

We implemented and applied a prototype of RFN to verify 
various properties of real-world RTL designs containing 
approximately 5,000 registers, which represents an order of 
magnitude improvement over previous results. On these designs, 
we successfully proved a few properties and discovered a design 
violation. 

1. INTRODUCTION 
ATPG techniques [1] have been widely used for manufacturing 
tests. Recently [3][9] shows that ATPG can also be used for 
functional verification, especially for finding error traces for 
safety properties. 

BDD-based symbolic model checking [4][11] is still the most 
widely used technology for formal property verification. 
However, the capacity of symbolic model checking is restricted 
to designs that contain a couple of hundred sequential cells (flops 
or latches). To verify real-world designs, the user must obtain 
from the RTL design an abstract model that is within the 
capacity of the symbolic model checker.  

Abstraction refinement [2][6][7][10][12] is a strategy that 
automates this process. Starting from a simple abstract model of 
the design, abstraction refinement incrementally refines the 
abstract model by including more and more details from the 
original design until the underlying formal verification engine 
verifies or falsifies the property. More precisely, the abstraction 
refinement strategy consists of the following four major steps: 

1. Generate the abstract model, 
2. Prove the property or search for an error trace on the 

abstract model, 
3. Search for an error trace on the original design, and 
4. Analyze the error trace of the abstract model to identify a 

refinement scheme. 
 
RFN is an abstraction-refinement algorithm developed to 
formally verify unreachability properties of real-world RTL 
designs. Informally, unreachability properties specify that some 
“bad” states are NOT reachable from the initial states through 
any traces. An error trace of the design for an unreachability 
property is a trace that reaches a bad state from an initial state. It 
is well known that all safety properties, the most commonly used 
properties, can be modeled as unreachability properties. 

Most formal verification engines today operate on gate-level 
designs. Therefore, RFN also operates on gate-level designs that 
can be obtained from RTL designs through logic synthesis. 
Informally, a gate-level design N is a subcircuit of a gate-level 
design M if N is a subset of M. If an unreachability property is 
True for a subcircuit, then the property must also be True for the 
original design (See Section 2). 

We now provide an overview of the four major steps of RFN. In 
Step 1, the abstract models used by RFN are subcircuits of the 
original design. In the very first iteration, the abstract model is 
the subcircuit that contains the transitive fanins (up to register 
outputs) of the signals that were mentioned in the property. In 
Step 2 we often see abstract models containing thousands of 
inputs, which would make pre-image computation almost 
impossible to find an error trace on the subcircuit. To resolve this 
issue, RFN applies a hybrid method that combines both ATPG 
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and BDD-based symbolic image computation to find an error 
trace on the subcircuit. RFN also computes a forward fixpoint 
using post-image computation to verify the unreachability 
property on the subcircuit. If the property is True for the 
subcircuit, RFN reports that the property is True for the original 
design and terminates. Otherwise it proceeds to Step 3.  

In Step 3 we want to find error traces on real-world designs. 
RFN utilizes the error trace found on the subcircuit to guide 
sequential ATPG to search for an error trace on the original 
design. If an error trace of the original design is found, RFN 
reports that the property is False, prints out the error trace and 
terminates. Otherwise RFN proceeds to Step 4.  

In Step 4 we select a set E of registers that are in the original 
model but not in the abstract model to refine the abstract model. 
The refined abstract model will be the current abstract model 
augmented with the set E of registers plus their transitive fanins 
up to register outputs. We want to select the registers that can 
enable the proof of the property on an abstract model that is as 
small as possible. To achieve this objective, RFN first performs 
3-valued simulation on the original design to identify a 
preliminary set of registers that can potentially help invalidate 
the error trace of the abstract model. Second, RFN removes some 
of the registers in the preliminary set using an ATPG-based 
greedy minimization algorithm. RFN repeats Step 1 to Step 4 
until either it terminates at Step 2 (verified) or Step 3 (falsified), 
or exceeds some memory or time limits. 

We implemented the algorithm and applied the prototype to 
verify various real-world designs containing approximately 
5,000 registers, which represents a 10x capacity improvement 
over previous results. On these designs, we successfully proved a 
few properties and discovered a design violation. We also 
compared the abstract models generated by RFN with the 
abstract models generated by the BFS method [8]. 

The rest of the paper is organized as follows. In Section 2 we 
describe the details of the RFN algorithm. In Section 3 we 
present the experimental results. We discuss related work in 
Section 4 and conclude the paper in Section 5.  

2. RFN ALGORITHM 
We explain in details the four major steps of RFN in the 
following four subsections. Before that, we need to define some 
terminology. 

A gate-level design M=(G,L) is an ordered pair where G is a set 
of gates and L a set of registers. A gate-level design N=(G’,L’) 
is a subcircuit of M if G’ is a subset of G and L’ a subset of L. A 
cell of a gate-level design M is a gate or a register. Each cell 
contains at least one input and at least one output. A cell x drives 
a cell y if an output of x is an input of y. A signal is an input or 
output of a cell. The transitive fanin of a signal s is the set of 
gates that transitively drives the signal s through some other 
gates (not registers). Conversely, the transitive fanout of a signal 
s is the set of gates that are transitively driven by the signal s 
through some gates. The primary inputs of a gate-level design is 
the set of inputs that are not the outputs of any other cells of the 
design. 

A cube of a gate-level design M is a valuation of some signals of 
M.  A state of a gate-level design M is a valuation of all registers 

of M.  An input vector is a valuation of all primary inputs of M. 
A gate-level design M determines a transition function TM that 
maps a state a and an input vector v to a state b of M.  In that 
case, we say that the state b is the next state of the state a with 
the input vector v. A sequence t=a1,v1,a2,v2,…,ak is a trace of M 
if for each i, the state ai+1 is the next state of the state ai with the 
input vector vi. If there is some trace t=a1,v1,a2,v2,…,ak of M 
such that a=a1 and b=ak, then we say that the state b is 
reachable from the state a. An unreachability property P 
specifies a set A of initial states and a set B of target states (or 
“bad states”) of the gate-level design M. An unreachability 
property is True for M if no target state is reachable from any 
initial states. Otherwise the unreachability property is False. An 
error trace t=a1,v1,a2,v2,…,ak of M is a trace such that a1 is an 
initial state and ak is a target state. It is clear that if an 
unreachability property is True for a subcircuit, then the property 
must also be True for the original design. 

For the simplicity of the explanation of the algorithm, we assume 
that the input constraints have been modeled as part of the gate-
level design. Thus all input vectors are considered valid to the 
gate-level design under verification. 

Given a gate-level design M, a cycle number k, a sequence of 
cubes C1, C2, …, Ck at cycles 1, 2, …, k, and some resource 
limits, the ATPG engine may report that either: (1) all cubes can 
be satisfied by a k-cycle trace of the design M, (2) the cubes 
cannot be satisfied, or (3) some resource limits are exceeded. If 
the answer is (1), the ATPG engine also produces a trace that 
satisfies all cubes. An ATPG run is combinational if the cycle 
number is one. Otherwise, the ATPG run is sequential. 

Given a gate-level design M and a set Q of states of M, the post-
image computation computes the set R of all the states that are 
reachable from a state in Q in one cycle. Conversely, the pre-
image computation computes the set S of all the states that can 
reach a state in Q in one cycle. A forward fixpoint from a set Q 
of states is the set of all the states that can be reached from a 
state in Q through any traces. 

2.1 Generating abstract model 
The abstract models of RFN are subcircuits of the original 
design. In the very first iteration, the abstract model is the 
subcircuit that contains the transitive fanins of the signals that 
were mentioned in the property. In the subsequent iterations, the 
refined abstract model is obtained from the previous subcircuit 
by including some extra registers and their transitive fanins (to 
be selected at Step 4). 

2.2 Proving the property or searching for 
an error trace on the abstract model  

Given an unreachability property P and an abstract model N, we 
first perform BDD-based post-image computation from the set of 
initial states A to compute a forward fixpoint. We also check on-
the-fly whether any target state of B has been included in the 
post-images. If the fixpoint is reached and none of the target 
states is included in the fixpoint, we can conclude that the 
unreachability property is True for the abstract model N and also 
for the original design M. RFN will report that the property is 
True and terminate. 



Otherwise some target states have been included in the reachable 
states computed by the post-image computation. We want to 
compute an error trace that shows why the abstract model N can 
go from an initial state to a target state. The standard method of 
computing this error trace involves BDD-based pre-image 
computation. But in our experience, a subcircuit containing 50 
registers might contain 1,000 inputs. As a result, the pre-image 
computation cannot complete. Note that the post-image 
computation can usually handle abstract models with lots of 
primary inputs because most of the primary inputs will be 
quantified out early during the image computation. 

One may suggest that BDD sub-setting [13] can be used to 
under-approximate the BDD during the pre-image computations. 
But in our experience, BDD sub-setting is usually too drastic to 
produce any useful results. Our solution to the problem is a novel 
BDD-ATPG hybrid method for finding an error trace on the 
abstract model.  

To use this method, we need to compute a min-cut subcircuit MC 
of the abstract model N. The details of the algorithm for 
computing the min-cut design can be found in [8]. A high-level 
description of the algorithm is as follows. We first compute a 
free-cut design FC that contains the registers of the abstract 
model N plus the gates in the intersection of the transitive fanin 
and transitive fanout of the registers. We then compute from the 
abstract model N a subcircuit MC, called the min-cut design, 
which includes the free-cut design FC and has the smallest 
number of primary inputs. The min-cut design MC usually 
contains fewer primary inputs than the abstract model. For 
example, the min-cut subcircuits of abstract models that contain 
thousands of primary inputs tend to contain less than a couple 
hundred primary inputs. 

Also notice that when the forward fixpoint computation on the 
abstract model N intersects with the target states B, we would 
have accumulated a sequence of BDDs that represent the sets S1, 
S2, …, Sk of states that are reachable from the initial states after 
1, 2, …, k cycles, respectively.  

The BDD-ATPG hybrid method works as follows. First we 
select a fattest cube T (with least number of assignments) in the 
intersection of the sets B and Sk of states. Second, we compute 
the intersection of the set Sk-1 of states and the pre-image of the 
cube T on the min-cut subcircuit MC. Since the pre-image 
computation is carried out on the min-cut subcircuit MC, the 
number of primary inputs is less likely to be an issue. Let R be 
the result of the above computation. 

If a cube of R contains only the variables corresponding to the 
registers or primary inputs of N, then we call such a cube a no-
cut cube. Otherwise it is called a min-cut cube. Figure 1 depicts 
the abstract model N, the min-cut design MC, and the signals that 
would appear in no-cut and min-cut cubes. A no-cut cube can be 
partitioned into two cubes --- an input cube that is an assignment 
to the primary inputs of N  (including the primary inputs of M 
and the outputs of the registers of M-N) and a state cube that is 
an assignment to the registers of N.  Both the input cube and the 
state cube become part of the error trace that we are computing. 
The state cube also replaces the cube T in the next pre-image 
computation. The computation repeats until a complete error 
trace is computed. 

Otherwise, R only contains min-cut cubes; that is, each cube of R 
contains some primary inputs of MC that correspond to some 
internal signals of the abstract model N.  In that case we apply 
combinational ATPG to find on the abstract model N a no-cut 
cube that is consistent with a min-cut cube of R. We use each 
min-cut cube of R, one at a time, as the target for combinational 
ATPG, until a consistent no-cut cube is found. Notice that such a 
no-cut cube must exist for some min-cut cubes of R, so this 
process will terminate. Once we find such a no-cut cube, we 
continue the next pre-image computation as before. 

When we find an error trace on the abstract model, RFN will 
proceed to Step 3. During Step 2, we allow automatic dynamic 
BDD variable reordering. At the end of Step 2, we save the 
current BDD variable ordering to use as the initial BDD variable 
ordering for the next iteration of RFN. 

 

 

 

 

 

 

 

Figure 1. No-cut cubes and min-cut cubes 

2.3 Searching for an error trace on the 
original design 

In Step 3 we check to see if the error trace created on the abstract 
model N corresponds to an error trace of the original design. If 
the error trace contains only assignments to the primary inputs of 
the original design M, then we know that the error trace is also 
an error trace for the original design M. 

If it is not the case, we still want to find an error trace for the 
original design. Since RFN aims at real-world designs, it is not 
practical to expect any BDD-based image computation method 
to effectively find a trace on the original design. On the other 
hand, if the error trace is relatively short, sequential ATPG has a 
very good chance to find an error trace. But the shortest error 
trace can still be too long to be found by sequential ATPG.  

We resolve this problem by guiding the sequential ATPG search 
with the error trace found on the abstract model. First of all, we 
know that the shortest error trace on the original design M is 
equal to or longer than the error trace found on the abstract 
model N.  We can therefore use the length of the error trace 
found on the abstract model as the depth for our ATPG search. 
Furthermore, the error trace found on the abstract model N can 
be used as the constraint cubes of the ATPG search on the 
original design M. These constraint cubes can provide cycle-by-
cycle “guidance” to the ATPG search process. In some of our 
experiments, sequential ATPG with guidance can search for an 
order of magnitude more cycles. It is clear that the closer the 
abstract model approximates the behavior of the original design 
the better guidance the error trace found on the abstract model 
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provides. If an error trace is found in this step, RFN reports the 
error trace and terminates. Otherwise RFN proceeds to Step 4. 

2.4 Analyzing the error trace of the abstract 
model to identify a refinement scheme 

In Step 4 we want to find a set E of registers to refine the 
abstract model. The refined abstract model is the current abstract 
model augmented with the set E of registers and their transitive 
fanins. We call the set E of registers the crucial registers.  

We want to find the set of registers whose addition to the 
abstract model are necessary for invalidating the error trace of 
the abstract model, and make this set of registers the crucial 
registers. The intuition is simple --- if we do not include those 
registers in the abstract model, we cannot verify the property on 
the abstract model. We made the key observation that a register 
whose output is a primary input of the abstract model and 
appears in the error trace makes a good candidate. The 
appearance of the register output in the error trace tends to 
indicate that the value of the register at certain cycles needs to be 
of certain value for violating the property. The register would 
make an even better candidate if the inclusion of the transitive 
fanin of the register into the abstract model would force the 
value of the register to disagree with its value shown in the error 
trace. This observation actually leads to the first phase of the 
crucial-register identification algorithm of RFN --- we simulate 
step-by-step on the original gate-level design the error trace of 
the abstract model to find out which register would disagree with 
the error trace of the abstract model. 

Each step of the error trace involves (1) a beginning state, (2) an 
ending state and (3) an input vector of the abstract model. We 
initialize the original design with the beginning state of the 
abstract model and drive the primary inputs of the original 
design with the input vector of the abstract model. Since not all 
registers or primary inputs of the original design are assigned 
with concrete binary values in the error trace, we perform the 
gate-level simulation with a third value, the unknown value X.  
The registers and primary inputs not assigned in the error trace 
are assigned with the unknown value. If the value of a register 
conflicts with the value in the error trace at a certain cycle, the 
register is added to a crucial-register candidate list. We consider 
the unknown value X not conflicting with 0 or 1. If there was a 
conflict, the value from the error trace will be used for the next 
step of 3-valued simulation. Since 3-valued simulation is very 
fast compared to most formal engines, this phase of the 
identification algorithm is very efficient. If there was not any 
conflict, which is rare in our experience, the registers that appear 
most frequently in the error trace are added to the crucial-register 
candidate list. 

In our experience, the crucial-register candidate list may still 
contain registers whose removal does not impact the invalidation 
of the error trace. Thus we developed a greedy minimization 
algorithm to filter out some redundant candidates as the second 
phase of this process.  

The greedy algorithm works as follows. For each register in the 
crucial-register candidate list, we first add the register and its 
transitive fanin to the current abstract model (that contains all the 
candidate registers and their transitive fanins that have been 
added so far). Second, we apply sequential ATPG to the new 

abstract model to verify if the error trace is still satisfiable. We 
add the candidate registers one-by-one into the abstract model 
until sequential ATPG concludes that the error trace is no longer 
satisfiable on the refined abstract model. At this point, all the 
registers in the candidate list that have not been added to the 
abstract model can be safely discarded. If sequential ATPG 
cannot produce a definitive satisfiability result for the abstract 
model within the resource limit (has never happened to us), all 
registers in the crucial-register candidate list are included in the 
abstract model. 

The algorithm proceeds to remove more registers. We start to try 
to remove the previously added registers (not the very last one 
that made the error trace invalid) one at a time. If sequential 
ATPG concludes that the error trace becomes satisfiable again 
after the removal of a register, we put the register back and try to 
remove the next register down the list, until we have tested all of 
the previously added registers. The abstract model at the end of 
this process becomes the refined abstract model that will be used 
in the next iteration of the RFN algorithm. 

The RFN algorithm continues until the property is verified, 
falsified or some memory or time limit is exceeded. 

Table 1. Property Verification Results 

Properties No. registers 
in COI 

No. gates 
in COI 

Time 
(sec) 

Result No. registers 
in abstract 
model 

mutex 4,982 111,151 9,795 T 57 

error flag 4,986 111,203 5,830 F 55 

psh_hf 135 3,770 480 T 49 

psh_af 135 3,771 1,075 T 42 

psh_full 135 3,765 180 T 42 

 

3. EXPERIMENTAL RESULTS 
We have implemented the RFN algorithm in C. The prototype 
system includes a symbolic model checker implemented using 
the BDD package in [14], an ATPG program and a 3-valued 
simulation program.  

We performed two types of experiments on some real-world 
RTL designs. The first type of experiments is property 
verification, in which we verify that none of the target states 
specified by the unreachability property can be reached from an 
initial state. The purpose of this type of experiments is obvious --
- we would like to compare the property verification (and 
falsification) capability of RFN against plain symbolic model 
checking. To be fair, we perform symbolic model checking with 
cone-of-influence (COI) reduction.  

We verified five properties against two real-world Verilog 
designs. The gate-level designs were obtained from logic 
synthesis. The first two properties “mutex” and “error_flag” 
were verified against a module of a processor design. The next 
three properties “push_hf”, “push_af” and “push_full” were 
verified against a FIFO controller design. All properties are 
interesting safety properties that the designers wanted to verify. 
Each safety property was modeled as an unreachability property 
with a watchdog module that asserts its output when the property 
is violated. In Table 1, the first column shows the names of the 



properties. The second and the third columns respectively show 
the number of registers and the number of gates in the COI of the 
properties. The fourth column shows the CPU time that RFN 
took to verify or falsify the properties. The fifth column shows 
the verification results (T=True and F=False). The last column 
shows the number of registers in the abstract model when RFN 
terminates. 

We also applied our symbolic model checker to verify these 
properties with the COI reduction. Our symbolic model checker 
failed to verify any of the above five properties. Therefore, RFN 
enabled the formal verification of these properties that cannot be 
verified by our symbolic model checker. The violated property 
“error_flag” indicated a violation to the specification of the 
design. The generated error trace was 30-cycle long. 

The second type of experiments is unreachable-coverage-state 
analysis. The unreachable-coverage-state analysis problem is as 
follows. We are given a set of signals, called the coverage 
signals, of the gate-level design. A coverage state is a 
combination of the values of the coverage signals. The objective 
is to identify as many unreachable coverage states (on the 
original design, not the subcircuit containing only the coverage 
signals) as possible. The application of unreachable-coverage-
state analysis to coverage analysis is described in [8].  

RFN can be used to perform unreachable-coverage-state analysis 
as follows. In Step 2, we project the forward fixpoint to the set of 
coverage signals and identify the coverage states that are not in 
the projected fixpoint as unreachable. In Step 4, we mark the 
reached coverage states by projecting the reached states of the 
original design to the coverage signals. At the end of an iteration, 
the coverage states that have not been identified as unreachable 
or marked as reachable become the target states for the next 
iteration of RFN.  

An alternative method for generating abstract models is the BFS 
method introduced in [8]. The BFS method relies on topological 
information of the gate-level design to generate abstract models. 
Given a size k, the BFS method first computes from the original 
design a min-cut subcircuit that contains the closest k registers to 
the coverage signals. Then it performs forward fixpoint 
computation on the min-cut subcircuit to identify unreachable 
coverage states. 

The purpose of this type of experiments is to compare the quality 
of the abstract models generated by RFN against the quality of 
the abstract models generated by BFS, in terms of the number of 
unreachable coverage states that they identify. We performed 
unreachable-coverage-state analysis for seven sets of coverage 
signals selected from two real-world Verilog designs. The first 
five sets of coverage signals are selected from the Integer Unit 
(IU) of the Sun picoJava microprocessor [15]. The next two sets 
of coverage signals are selected from a USB bus controller 
design. Each of the first five sets of coverage signals contain 10 
distinct coverage signals that introduce 1024 coverage states. 
The last two sets contain 6 and 21 coverage signals, respectively. 
The coverage signals were selected among the registers that 
encode control state machines. 

The results of the experiments are summarized in Table 2. The 
BFS abstract models contain exactly 60 registers in each 
experiment. We picked the number 60 based on our experience 

that the forward fixpoint computation almost always completes 
on an abstract model with 60 registers. We applied a time limit 
of 1,800 CPU seconds to each RFN experiment. 

In table 2, the first column shows the code names of the sets of 
coverage signals. The second and third columns respectively 
show the number of registers and gates in the COIs of the 
coverage signals. We were a little bit surprised when we saw that 
the sizes of the COIs of the first five sets of coverage signals are 
exactly the same. The coverage signals are likely to be in a 
strongly connected component of the gate-level design. The 
fourth column shows the number of unreachable coverage states 
identified by RFN. The fifth column shows the number of 
registers in the abstract model before the time out. The sixth and 
seventh columns respectively show the number of unreachable 
coverage states identified by BFS and the time taken by BFS. 

From Table 2 we can see that RFN uniformly beats or matches 
the BFS results. In addition, the time taken by BFS is more 
unpredictable (10,000 seconds for IU5) than RFN. 

Table 2. Unreachable-coverage-state analysis results 

Cov. 
signals 

No. 
registers 
in COI 

No. gates 
in COI 

No. 
unreach by 

RFN 

No. 
registers 
in RFN 

No. 
unreach by 

BFS 

BFS 
time 
(sec) 

IU1 4,458 74,258 448 40 256 5,006 

IU2 4,458 74,258 736 43 256 767 

IU3 4,458 74,258 880 48 880 867 

IU4 4,458 74,258 448 36 256 2,667 

IU5 4,458 74,258 784 42 664 10K 

PE1 6,747 252,935 42 30 32 183 

PE2 4,460 173,924 2,076,160 50 2,067,136 562 

 

4. RELATED WORK 
RFN was inspired by the general abstraction refinement strategy 
introduced by Kurshan in [10]. Kurshan proposed the high-level 
strategy called localization reduction for the language 
containment problem between a system of L-processes and a 
specification of the system in terms of L-automata. The abstract 
models are subsets of the L-processes. Refinement is based on 
adding L-processes to invalidate the error trace, which is guided 
by the dependency graph among L-processes. However, the 
description of the algorithm in [10] does not provide enough 
detail to implement a practical tool.  

Balarin et al [2] reported a similar iterative algorithm for 
checking language emptiness of networks of communicating 
automata. The abstract models are subsets of the communicating 
automata. Refinement is based on adding some extra 
communicating automata to the abstract model. The choice is 
based on the degree of common support between the current 
abstract model and the automata that have not been included in 
the abstract model. The verification result of a collection of 
dining philosophers using BDD-based image computation 
method is reported. We believe that refinement schemes based 
on error traces are more effective than refinement schemes based 
on support information. 



Rather than building abstract models explicitly and relying on 
counter examples to guide the refinement, Pardo and Hachtel 
[12] used BDD sub-setting to perform on-the-fly abstraction and 
refinement. Based on the polarity of a CTL subformula, under or 
over approximation is used. In our experience, the behavior of 
subsetting-based abstraction methods is very unpredictable and 
too drastic to prove properties. The scalability problem of BDD-
based methods also makes finding error traces on original 
designs with thousands of registers almost impossible.  

More recently Govindaraju and Dill proposed in [7] an 
abstraction refinement algorithm for verifying safety properties. 
The abstract models are collections of state machines that form 
an overlapping partition of the original design. Post-image and 
pre-image computation methods are used to prove the property 
or generate an error trace on the partitioned design. Refinement 
is based on enlarging individual state machines in the 
overlapping partition of the original design, guided by heuristics 
based on the Hamming distance. An experiment on the 
verification of a PCI chip with 429 latches is reported. We 
believe that this method also suffers from the scalability issue of 
BDD-based methods, which will have difficulties in handling big 
original designs even when they are partitioned. 

Clarke et al [6] proposed a counter-example-guided abstraction-
refinement algorithm for ACTL* model checking. Abstract 
models are constructed in the form of abstract transition 
relations, based on syntactical information of the RTL design. 
Refinement is based on adding more distinguishing details back 
to the abstract transition relation. The algorithm was successfully 
applied to verify an industry design with 500 registers with some 
manual guidance to the tool. But the capacity of this method is 
essentially limited by the capacity of BDD-based image 
computation, since the algorithm relies on using BDD-based 
image computation to check on the original design if the error 
trace is spurious. In addition, the reliance on the syntactical 
information at the RTL level prevents this algorithm from 
working on gate-level designs. 

5. CONCLUSIONS AND FUTURE WORK  
We have presented RFN, a formal property verification tool for 
verifying safety properties of RTL designs. This novel 
technology combines multiple verification techniques including 
symbolic model checking, ATPG and 3-valued simulation to 
implement the abstraction refinement strategy. As a result, it can 
handle designs of more than 5,000 registers, an order of 
magnitude bigger than published results on formal property 
verification. 

RFN uses abstract models that can be easily constructed at the 
gate level. RFN employs a hybrid BDD-ATPG method and an 
abstract-error-trace-guided ATPG method to find error traces on 
the abstract model and the original design, respectively. Both 
methods can be used for property falsification in general. To 
effectively identify a minimal set of registers whose addition to 
the abstract model can invalidate the error trace, RFN applies a 
novel 2-phase algorithm using 3-valued simulation and 
sequential ATPG to identify the most crucial registers to refine 
the abstract model. RFN never performs any form of symbolic 
image computation on the original design, which greatly 
improves the scalability of RFN.  

We plan to extend this work in two directions. First, to prove the 
property on abstract models containing hundreds of registers, we 
plan to use the overlapping partition technique from [5][7]. 
Second, to enhance the capability of finding error traces on the 
original design, we plan to develop techniques of guiding ATPG 
with a set of error traces rather than a single error trace. 
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