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Abstract

We describe a methodology for verifying system-on-chip designs. In
our methodology, the problem of verifying system-on-chip designs is
decomposed into three tasks. First, we verify, once and for all, the
standard bus interconnecting IP Cores in the system . The next task
is to verify the glue logic, which connects the IP Cores to the buses.
Finally, using the verified bus protocols and the IP core designs, the
complete system is verified. To illustrate our methodology, we verify
the PCI Local Bus, a widely used bus protocol in system-on-chip de-
signs. We demonstrate various modeling and verification techniques
for buses by modeling the PCI Local Bus with the symbolic model
checker SMV. We have found two potential bugs in the PCI bus pro-
tocol specification that await confirmation of the PCI Special Interest
Group(PCI-SIG).

1 Introduction

Hardware designs have reached a mammoth scale today, with
over ten million transistors integrated on a single chip. This
breakthrough in technology has, in fact, reached the point,
where it is hard to design a complete system from scratch. In-
dustry has already started designing ASICs from a large reper-
toire of Intellectual Property Components or IP Cores sold by
many vendors. System-on-chip designs usually involve the
integration of heterogeneous components on a standard bus.
These components may require different protocols or have
different timing requirements. Moreover, designers often do
not have complete knowledge of the implementation details
of each component. For example, vendors may want to pro-
tect their IP Cores by only providing interface specifications.
Consequently, the validation of such designs is becoming more
and more challenging. In this paper, we outline a new method-
ology for formally verifying IP Core based, system-on-chip
designs.

An IP Core based system can be viewed as a collection of var-
ious IP cores, with interconnecting buses running among them
(see Figure 1). Since the cores are obtained from different
vendors, there is a need for standard buses to connect them.
We also envision some kind of interface logic, which we call
glue, to connect IP Cores to the standard buses. In some cases
IP Cores are designed to be compliant to a standard bus pro-
tocol and can be connected directly to the bus without glue.
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Bridges are used to extend such systems in a hierarchical fash-
ion by connecting buses.

IP Cores are often pre-validated. This increases the confidence
of system designer in third party IP Cores. The validation of
IP Cores must be part of the IP Core design itself. So in this
scenario, where we have a) pre-verified IP Cores with certain
guarantees and confidence, b) a standard bus protocol, and
c) IP Core specific glue to connect cores to the bus, we can
decompose the task of verifying system-on-chip designs into
three parts as follows.

IP Core IP Core

IP Core
IP Core

BridgeInterconnecting Buses

Glue Glue

Glue

Figure 1: A typical IP Core based System

1. Verify the interconnecting buses and bus bridges;

2. Verify the IP Core specific glue logic;

3. Given the verification guarantees of interconnecting
buses and IP Cores, verify the complete system.

Since the bus protocol is standard, it needs to be verified once
and for all. Glue logic is IP Core specific. If we have a collec-
tion of protocols for IP Cores, then we can design an abstrac-
tion of the glue between the standard bus and each IP Core pro-
tocol. This abstract model is designed once. Then, we intend
to check if the actual glue implementation refines the abstract
model of the glue [7]. Thus, we have reduced the complex-
ity of verifying the glue to checking refinement. When this is
completed for all IP Cores and their glues, we can proceed to
the third step.

Experience in industry with IP Core based ASIC designs
shows that most of the bugs are found in the bus or glue logic.
To our knowledge, there is still no agreement on a standard
bus protocol for system-on-chip designs. However, the PCI
Local Bus protocol [12, 13, 14] is widely accepted by many

1



microprocessor based systems (eg. Pentium and Alpha) and
IP Core companies. Therefore, we focus in this paper on ver-
ifying system-on-chip designs using the PCI Local Bus. This
will provide insight into questions like, what basic function-
ality is required of the buses, what kind of standard interfaces
are needed for IP Core based designs, and how glue logic may
be designed and verified for heterogeneous IP Cores. We have
formally verified the correctness of the PCI bus protocol using
symbolic model checking [5].

In many cases, bus protocols can be verified with current for-
mal verification techniques as demonstrated by [4] and [6]. We
concentrate more on the functional properties of the PCI lo-
cal bus and bridges rather than performance issues. A formal
treatment of PCI bus performance is given by Campos, et al.
in [4]. In a recent paper [11], theorem proving techniques have
been used to validate a proposed solution for a bug in the PCI
bus protocol, but this approach requires considerable expertise
in modeling the bus and is not easily automated.

The rest of the paper is organized as follows: In Section 2,
we introduce Computation Tree Logic and the symbolic model
checker SMV. In Section 3, we provide an overview of the PCI
local bus protocol and systems based on it. In Section 4, we
illustrate a systematic approach to verify the PCI bus and bus
bridges. We describe modeling and specification techniques,
which can be applied to verify other bus protocols as well.
In Section 5, we present our experimental results, notably the
description of two bugs we have found in this widely used bus
protocol. Finally in Section 6, we summarize our experience
and present a few thoughts on how to reach our ultimate goal
of verification of complete system-on-chip designs.

2 Symbolic Model Checking

Symbolic model checking is a powerful technique for formally
verifying finite state concurrent systems automatically [9].
The task of symbolic model checking can be broken down
in three phases Modelling, Specification and Verification. The
first task is to represent system under consideration in a precise
model that can be accepted by a model checking tool. Often
we need to use abstraction to eliminate irrelevant or unimpor-
tant details from the design due to limits on time and memory.
We used SMV [9], a temporal logic model checker based on
binary decision diagrams (BDDs) [1]. SMV has its own built-
in dataflow-oriented hardware description language for model-
ing and accepts specifications expressed in the CTL temporal
logic [5]. SMV extracts a finite-state model as a state transi-
tion graph from an SMV program. BDDs are used to represent
transition relations and to manipulate them. This representa-
tion has been the major contribution to the success of symbolic
model checking [2, 9].

In the specification phase, we write the properties in a
branching-time temporal logic called CTL (“Computation
Tree Logic”) [5]. Formulas in CTL are built from three com-
ponents: atomic propositions, boolean connectives, and tem-
poral operators. Atomic propositions refer to the values of

individual state variables. The boolean connectives are con-
junction, disjunction and negation (∧, ∨, ¬). Each temporal
operator consists of two parts: a path quantifier (A or E) and
a temporal modality (F, G, X or U). The quantifier indicates
whether the operator denotes a property that should be true of
all execution paths from a given state or whether the property
need only hold on some path. The modalities describe the or-
dering of events in time along an execution path and have the
following intuitive meanings:

1. Fϕ (“ϕ holds sometime in the future”) is true of a path if
there exists a state on the path for which the formula ϕ is
true.

2. Gϕ (“ϕ holds globally”) means that ϕ is true at every
state on the path.

3. Xϕ (“ϕ holds in the next state”) means that ϕ is true in
the second state on the path.

4. ϕ U ψ (“ϕ holds until ψ holds”) means that there exists
some state on the path for which ψ is true, and for all
states preceding this one, ϕ is true.

Each formula of the logic is either true or false in a given state.
An atomic proposition is true in a state if the state variable that
it refers to has the appropriate value. The truth of a formula
built from boolean connectives depends on the truth of its sub-
formulas in the usual way. A formula whose top level operator
is a temporal operator with a universal (existential) path quan-
tifier is true whenever all paths (some path) starting at the state
have the property required by the operator’s modality. A for-
mula is true of a system if it is true for all the initial states
of the system.The following examples illustrate the expressive
power of the logic.

1. AG(Req → AF Ack): it is always the case that if the
signal Req is true, then eventually Ack will also be true.

2. AG AF DeviceEnabled: DeviceEnabled holds infinitely
often on every computation path.

3. AG EF Restart: from any state, it is possible to get to the
Restart state.

4. AG
(
Send → A(Send U Recv)

)
: if Send holds, then even-

tually Recv is true, and until that time, Send remains true.

The final task of verification is an automatic process. Every
CTL formula has a fixed point characterization that can be
used to find the set of states satisfying the formula [3].

3 PCI Local Bus

The PCI Local Bus [12, 13, 14] is a high performance, syn-
chronous bus architecture that can transfer 32-bit or 64-bit
data. Its primary goal is to establish an industry standard and
optimize for direct silicon (component) interconnection with
minimum glue logic required. It supports most processor de-
signs and connects various types of devices on a chip. Bridges
are used to extend the PCI bus based systems.
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A typical PCI bus transaction is demonstrated in Figure 2. The
request for a transaction starts when a subsystem asserts its
request line REQ#. It then waits until being granted the bus
by the arbiter by asserting the corresponding GNT# line. This
phase is known as the arbitration phase. The transaction be-
gins when signal FRAME# is asserted. In the first clock after
asserting FRAME#, address is put on the data/address multi-
plexed lines in the address phase and the command lines carry
the transaction-type. All target devices listen to this address
and if the address maps to their address space, they assert their
DEVSEL# lines, indicating they are present on the bus. The
master then asserts the signal IRDY#, meaning that it is ready
for data transfer. The bus target asserts its TRDY# signal to
indicate that the target is ready for data transfer. Data trans-
fer occurs when both IRDY# and TRDY# are asserted, which
is known as one data phase. A transaction can have more
than one data phase, and wait cycles can be inserted between
data phases by the master (target) by deasserting the IRDY#
(TRDY#) signal. One clock cycle before the end of the data
transfer phase, the FRAME# signal is deasserted. In the next
cycle both IRDY# and TRDY# are deasserted, and the bus goes
back to the idle state.
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Figure 2: A typical PCI bus transaction

The PCI bus requires a fair central arbiter, which implies that
every master should be served. Note that apart from this re-
quirement, the arbitration algorithm is not part of the PCI bus
specification. The arbiter may park the bus at some selected
master or allow the bus to float. Since the PCI bus is a high per-
formance bus, there are strict timing requirements on various
events, like number of wait states, latency for a target asserting
its selection line, arbitration latency, etc.

PCI bridges are used to connect two PCI buses in a transparent
manner. PCI devices must follow certain allowable transaction
orderings in order to satisfy the Producer-Consumer model
discussed in the next section. Bridges can post certain transac-
tions in order to improve performance, meaning certain write
transactions can be buffered in the bridges without being com-
pleted at the target, but the master is not required to wait until it
completes. In order to observe the producer-consumer model,
there are certain restrictions on bridges regarding transaction-

posting. Bridges may also attempt to convert one or more
transactions into a large transaction for improved performance
by combining, merging or collapsing [12].

4 Verifying PCI-bus

We verified the PCI bus protocol in two steps. In the first
step, we looked at properties related to the protocol without
bridges. In the second step, we modeled a PCI bridge and
verified a producer-consumer model for bus transactions with
bridges. Figure 3 shows one configuration that we modeled
to verify some bus properties. The arbiter is safe and fair.
The dummy-master is an abstracted master which has very re-
stricted functionality and is used only for checking arbitration
properties. The master and the target are capable of carrying
out PCI sequences, e.g. fast back to back transactions, bus
parking, burst transactions, latency requirements, transaction
termination, etc. The state machines of PCI master and PCI
target are given in the PCI specification [12]. In order to han-

Arbiter
Dummy
Master Master Target

Figure 3: Configuration for verifying bus properties

dle multiple masters and targets on a single bus and avoid the
state explosion problem, we used some techniques including
abstraction, assume-guarantee reasoning, symmetry and case
analysis. We developed a single bus model in CBL SMV [10]
with 5 masters and 5 targets. In this model, there is symmetry
within the masters, as well as the targets. For a bus driving
property, we perform a case analysis on the actual master and
the target that are active on the bus, then use symmetry to re-
duce the number of proof obligations. In order to prove these
properties, we first proved the following non-interference lem-
mas.

• Inactive masters and targets can not drive the bus.

• Only one master and one target can be active at a time.

• An active master must stay active until one target be-
comes active.

• An inactive target can not become active until it has an
address hit.

• If a master and a target are active, then the master must
remain active until the target becomes inactive.

• If one master starts a transaction with address k, then it
will remain active until the target with address k becomes
active.

Using these lemmas, we have proved the following bus driving
properties:
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• Once STOP# is asserted, FRAME# should be deasserted
as soon as IRDY# is asserted.

• If not already deasserted, TRDY#, STOP#, and DE-
VSEL# must be deasserted the clock following the com-
pletion of the last data phase and must be tri-stated in the
next clock.

• The target cannot drive data on the bus in the cycle im-
mediately after a read transaction begins.

• A master or a target should drive the data bus correctly in
a data phase.

We verified properties about transaction termination, arbi-
tration, latency requirements, etc. These properties primar-
ily followed various must hold statements from the spec-
ification. For example consider the following property:
AG(bus.FRAME# → AX(¬bus.FRAME# → bus.IRDY#)). It
says that when FRAME# is first asserted (active low), IRDY#
should stay deasserted. SMV determined that this property is
true.

The configuration given in Figure 4 illustrates the Producer-
Consumer model. In this model, the Producer writes all data,
sets the flag and waits for completion status; while the Con-
sumer waits until it finds the flag set, then it resets the flag, con-
sumes the data, and writes the completion status code. When
the Producer finds the completion status code, it resets the code
and the sequence repeats. Since bridges can post write trans-
actions, it is important to see that this model is satisfied, i.e.
the Consumer never sees that the flag is set when the data is
not written. The bridge obeys all PCI ordering rules. We will
demonstrate that it satisfies the Producer-Consumer model as
well. We modeled a PCI bridge according to the PCI bridge

Consumer Data

PCI-PCI
Bridge

Flag StatusProducer

Figure 4: Producer-Consumer model

specs [13]. The state machine of PCI bridge essentially is a
composition of four state machines, the primary master and
target and the secondary master and target (each bridge has
a primary bus and a secondary bus). Since we have already
proved many properties about basic bus protocol, we have ab-
stracted away some of the functionality of the PCI masters and
targets in this configuration, e.g. bus parking, burst transac-
tions, target delay, etc. We need to represent only three distinct
values of data 0,1 and 2 for verifying this model [9], hence the

data bus should be at least 2 bits wide. The address bus is 2 bits
wide. Bridges also have finite data buffers for posting data.

We use a simple abstraction to establish the correctness of the
PCI bridge transaction ordering rules. We show that if a sym-
bolic data value x is generated by the producer, then a unique
copy of x will be received by the consumer. The variable flag
in the producer-consumer model indicates the status of the data
generated by the producer: flag = 0 means the producer has not
written new data; flag = 1 means that the producer has written
the data value x; flag = 2 means the producer has written a
value different from x. In our model, the producer only gener-
ates one instance of the data value x. The producer-consumer
model requires that whenever the consumer sees flag = 1, it
should then receive x. The following three properties capture
the correctness of this behavior (c denotes consumer).

1. AG((c.chkFlag ∧ flag=1) → A[(!c.statusFlag ∧
data 	= x)U(c.readData ∧ data=x)]): The consumer re-
ceives x after seeing flag = 1.

2. AF(c.chkFlag ∧ flag=1): The consumer eventually sees
flag = 1.

3. AG((c.chkFlag ∧ flag=1) → AX AG(c.chkFlag →
¬(flag=1))): The consumer sees flag = 1 at most once.

5 Experimental Results

We verified the PCI bus protocol in two steps a) a single PCI
bus without bridges and b) a bus with bridges. The single bus
model includes a master, a target, a dummy master and a bus
arbiter. The dummy master is used to check arbitration proper-
ties. Masters and targets are modeled based on the respective
state machines given in the Appendix of the PCI Specification
Revision 2.2 [12]. The model is about 1000 lines of SMV code
and 111 BDD variables. We verified twenty-three major prop-
erties using SMV for this setup, which took about three and
half hours on a Pentium-Pro 200MHz machine with 1G mem-
ory. During the process we discovered two potential bugs in
the PCI protocol specification and wait for confirmation from
the PCI SIG group. Both errors are due to the inconsisten-
cies between the specification and given state machines in the
Appendix.

The first error occurs because the target transition condition is
set incorrectly: in the target state machine, the target makes
a transition from B BUSY to IDLE when FRAME# is de-
asserted and D done is asserted. However, when the master
starts a transaction with single data phase, target goes from
B BUSY to IDLE instead of S DATA in all cases (see Fig-
ure 5). This error is caught by the following CTL formula:
AG((m.req∧m.data cnt=1) → A(m.req∧¬t.ackUm.timeout))
This formula means that whenever the master requests a trans-
action with single data phase, the target never acknowledges
before the master times out, i.e. the target never goes to the
S DATA state. We verified that this formula is true, which is
inconsistent with the standard. In the second error, the Spec-
ification requires that once a master has asserted IRDY#, it
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Figure 5: Illustration of the first bug

can’t change IRDY# or FRAME# until the current data phase
completes. But the implementation of FRAME# in the state
machine doesn’t satisfy this requirement in the following sce-
nario. Let us assume that IRDY#, FRAME# are asserted, and
GNT#, TRDY# are disasserted in the current cycle. If the mas-
ter timer expires in the next cycle, then FRAME# is always
deasserted , even though IRDY# is still asserted. This clearly
conflicts with the specification. SMV came up with a coun-
terexample trace to illustrate this inconsistency.

On an UltraSparc 248MHz machine, it took 46 minutes and
13M BDD nodes to verify all the lemmas and properties for
multiple masters/targets. As a comparison, after taking about
2Gb memory and 5 hours, the first property could not be veri-
fied without techniques mentioned in Section 4.

In the next step, we modeled a multiple bus system with
a bridge (see Figure 4) and verified the correctness of the
producer-consumer model by checking the three major prop-
erties described in Section 4. In Table 5, we show our various
statistics for two implementations of PCI bus with bridges that
have different numbers of buffers in bridge.

# Buffers BDD Var Time BDD Nodes

4 120 982 s 12,075,532

6 142 8.8 h 15,080,273

Table 1: Experimental results for verifying PCI bridge

6 Conclusions and Future Work

In this paper, we have proposed a new methodology for veri-
fying system-on-chip designs. As the first example, we have
verified the PCI Local Bus protocol using the symbolic model
checker SMV. Significantly, we have found two potential bugs
in the standard PCI bus specification. In our experience, for-
mally verifying the functionality of bus protocols is feasible
using current model checking techniques.

In order to achieve our ultimate goal of system-on-chip verifi-

cation, we will focus in the future on verifying the glue logic
involved in such designs. We also intend to verify more com-
plex industrial bus designs using the methodology we have
proposed in this paper. Finally, we are interested in high-level
specification of bus protocols for verification purposes.
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