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ABSTRACT
The last decade has witnessed the emergence of a new
breed of human computer interfaces that combines sev-
eral human language technologies to enable information
access and transactional processing using spoken dialogue.
In this paper, I discuss my view on the research issues
involved in the development of such interfaces, describe
the recent work done in this area at the MIT Laboratory
for Computer Science, and outline some of the unmet re-
search challenges, including the need to work in real do-
mains, spoken language generation, and portability across
domains and languages.

1. INTRODUCTION

Computers are fast becoming a ubiquitous part of
our lives, brought on by their rapid increase in per-
formance and decrease in cost. With their increased
availability comes the corresponding increase in our
appetite for information. Today, there are more than
600K web servers hosting in excess of 30M publicly
accessible homepages, and the growth is continuing at
an astronomical rate. One can now obtain a plethora
of online data, ranging from New York Times sto-
ries to Dilbert trivia, and services, such as purchasing
airline tickets and scheduling package pickups. Vast
amounts of useful information are being made widely
available, and people are utilizing it routinely for edu-
cation, decision-making, finance, and entertainment.

The advent of the information age places increasing
demands on technologists to provide “universal ac-
cess.” For information to be truly accessible to all
– especially the technologically naive – anytime, any-
where, one must seriously address the problem of user
interfaces. A promising solution to this problem is
to impart human-like capabilities onto machines, so
that they can speak and hear, just like the users with
whom they need to interact. Spoken language is at-
tractive because it is the most natural, efficient, flexi-
ble, and inexpensive means of communication among
humans.

When one thinks about a speech-based interface,
two technologies immediately come to mind: speech
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recognition and speech synthesis. There is no doubt
that these are important and as yet unsolved prob-
lems in their own right, with a clear set of appli-
cations that include document preparation and au-
dio indexing. However, many applications that lend
themselves to spoken input/output – inquiring about
weather or making travel arrangements – are in fact
exercises in information access and/or interactive
problem solving. The solution is often built up in-
crementally, with both the user and the computer
playing active roles in the “conversation.” Therefore,
several language-based input and output technologies
must be developed and integrated to reach this goal.
The resulting conversational interface is the subject
of this paper.

Many speech-based interfaces can be considered con-
versational, and they differ primarily in the degree
with which the system maintains an active role in
the conversation. In one extreme, the computer can
take complete control of the interaction by requiring
that the user answer a set of prescribed questions,
much like the touch-tone implementation of interac-
tive voice responses (IVR) systems. In the case of
air travel planning, for example, the system could
ask the user to “Please say just the departure city.”
Since the user’s options are severely restricted, suc-
cessful completion of such system-initiated transac-
tions is easier to attain, and indeed some successful
demonstration has been made [40]. But this may be
accomplished at the cost of user annoyance due to its
inflexibility. At the other extreme, the user can take
total control of the interaction (e.g., “I want to visit
my grandmother”) while the system remains passive.
In this case, the user may feel uncertain as to what
capabilities exist, and may, as a consequence, stray
quite far from the domain of competence of the sys-
tem, leading to great frustration because nothing is
understood. Instead, this paper is concerned with a
mixed-initiative goal-oriented dialogue, in which both
the user and the computer participate actively to
solve a problem interactively using a conversational
paradigm.

What is the nature of such mixed initiative interac-
tion? One way to answer the question is to exam-
ine human-human interactions during joint problem
solving. Figure 1 shows the transcript of a conver-
sation between an agent (A) and a client (C) over
the phone. As illustrated by this example, sponta-



C: Yeah, [umm] I’m looking for the Bu-
ford Cinema.

disfluency

A: OK, and you want to know what’s
showing there or ...

interruption

C: Yes, please. confirmation
A: Are you looking for a particular

movie?
C: [umm] What’s showing. clarification
A: OK, one moment. back channel
A: They’re showing A Troll In Central

Park.
C: No. inference
A: Frankenstein. ellipsis
C: What time is that on? co-reference
A: Seven twenty and nine fifty.
C: OK, and the others? fragment
A: Little Giant.
C: No.
A: ...
C: ...
A: That’s it.
C: Thank you.
A: Thanks for calling Movies Now.

Figure 1: Transcript of a conversation between an agent
(A) and a client (C) over the phone. Typical conversa-
tional phenomena are annotated on the right.

neous dialogue is replete with disfluencies, interrup-
tion, confirmation, clarification, ellipsis, co-reference,
and sentence fragments. Some of the utterances can-
not be understood properly without knowing the con-
text in which they appear. As we shall see, while
present systems cannot handle all these phenomena
satisfactorily, some of them are being dealt with in a
limited fashion.

Should one build conversational interfaces by mim-
icking human-human interactions? Opinion in this
regard is somewhat divided. Some researchers ar-
gue that human-human dialogues can be quite vari-
able, containing frequent interruptions, speech over-
laps, incomplete or unclear sentences, incoherent seg-
ments, and topic switches. Some of these variabilities
may not contribute directly to goal-directed problem
solving. However, one may argue that users could
feel more comfortable with an interface that posseses
some of the characteristics of a human agent. In our
case and to the extent possible, we have taken the
approach of developing a human-machine interface
based on analyses of human-human interactions when
solving the same tasks. Regardless of the approach,
we believe, as do others, that studying human-human
dialogue and comparing it to human-machine dia-
logue can provide valuable insights [2]. As an ex-
ample, consider the histograms of the lengths of the
utterances per turn for agents and clients shown in
Figure 2. The statistics were gathered from the tran-
scripts of over 100 hours of conversation, in more than
1000 interactions, between agents and clients over the
phone on a variety of information access tasks. Over
80% of the clients’ utterances are 12 words or less,
with a preponderance of very short utterances. Closer
examination of the data reveals that these short ut-

Figure 2: Histograms of utterance length for agents and
clients in tasks of information access over the phone.

terances are mostly back channel communications.

The last decade has witnessed the emergence of some
conversational systems with limited capabilities. De-
spite our moderate success, the ultimate deployment
of such interfaces will require continuing improve-
ment of the core human language technologies and
the exploration into many uncharted research territo-
ries. The purpose of this paper is to outline some of
these new research challenges. To set the stage, I will
first briefly introduce the components of a spoken lan-
guage system, and discuss some of the research issues.
I will then provide a thumb-nail sketch of the recent
landscape, drawing heavily from my own experience
in developing such systems at MIT over the past eight
years. Interested readers are referred to the recent
proceedings of the Eurospeech Conference, the Inter-
national Conference of Spoken Language Processing,
the International Conference of Acoustics, Speech,
and Signal Processing, the International Symposium
on Spoken Dialogue, and other relevant publications
(e.g., [8]).

2. RESEARCH ISSUES

2.1. System Architecture

Figure 3 shows the major components of a typical
conversational interface. The spoken input is first
processed through the speech recognition component.
The natural language component, working in concert
with the recognizer, produces a meaning represen-
tation. For information retrieval applications illus-
trated in this figure, the meaning representation can
be used to retrieve the appropriate information in
the form of text, tables and graphics. If the infor-
mation in the utterance is insufficient or ambiguous,
the system may choose to query the user for clar-
ification. Natural language generation and text-to-
speech synthesis are then used to produce spoken re-
sponses that may serve to clarify the tabular informa-
tion. Throughout the process, discourse information
is maintained and fed back to the speech recognition
and language understanding components, so that sen-
tences can be properly understood in context.

Figure 3 does not convey the notion that a conversa-
tional interface may include input and output modal-
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Figure 3: A generic block diagram for a typical conver-
sational interface.

ities other than speech. While speech may be the
interface of choice, as is the case with phone-based
transactions and hands-busy/eyes-busy settings, hu-
man communication is inherently multimodal, em-
ploying facial, gestural, and other cues to convey the
underlying linguistic message. In this view, speech
interfaces should be complemented by visual and
sensory motor channels. The user should be able
to choose among many modalities, including ges-
turing, pointing, writing, and typing on the input
side [26, 38], and graphics and a talking head on the
output side [22], to achieve the task in hand in the
most natural and efficient manner.

The development of conversational interfaces offers
a set of significant challenges to speech and natural
language researchers, and raises several important re-
search issues, three of which will be discussed in the
remainder of this section.

2.2. Spoken Language Understanding

Spoken language understanding involves the transfor-
mation of the speech signal into a meaning represen-
tation that can be used to interact with the specific
application back-end. This is typically accomplished
in two steps, the conversion of the signal to a set of
words (i.e., speech recognition), and the derivation of
the meaning from the word hypotheses (i.e., language
understanding).

2.2.1. Speech Recognition

Historically, speech recognition systems have long
been developed with the assumption that the speech
material is read from prepared text. Input to conver-
sational interfaces, however, is typically generated ex-
temporaneously, containing disfluencies (i.e., unfilled
and filled pauses such as “umm” and “aah,” as well
as word fragments) and words outside the system’s
working vocabulary. Thus far, some attempts have
been made to deal with these problems. For example,
researchers have improved their system’s recognition
performance by introducing explicit acoustic models
for the filled pauses [42, 5]. Similarly, “trash” models
have been introduced to detect the presence of un-
known words, and procedures have been devised to

learn the new words once they have been detected
[1].

An issue that is receiving increasing attention by the
research community is the recognition of telephone
quality speech. It is highly likely that the first sev-
eral conversational interfaces to become available to
the general public will be accessible via telephone, in
many cases replacing presently existing IVR systems.
Telephone quality speech is significantly more diffi-
cult to recognize than high quality recordings, both
because of the limited bandwidth and the noise and
distortions introduced in the channel.

2.2.2. Language Understanding

Speech recognition systems typically implement lin-
guistic constraints as a statistical grammar (i.e., n-
gram) that specifies the probability of a word given its
predecessors. While these language models have been
effective in reducing the search space and improving
performance, they do not begin to address the issue of
speech understanding. On the other hand, most nat-
ural language systems are developed with text input
in mind; it is usually assumed that the entire word
string is known with certainty. This assumption is
clearly false for speech input, where many words are
competing for the same time span (e.g., “euthana-
sia” and “youth in Asia,”) and some words may be
more reliable than others because of varying signal
robustness. Furthermore, spoken language is often
agrammatical, containing fragments, disfluencies and
partial words. Language understanding systems de-
signed for text input may have to be modified in fun-
damental ways to accommodate spoken input.

Natural language analysis has traditionally been pre-
dominantly syntax-driven – a complete syntactic
analysis is performed which attempts to account for
all words in an utterance. However, when working
with spoken material, researchers quickly came to re-
alize that such an approach [4, 34] can break down
dramatically in the presence of unknown words, novel
linguistic constructs, recognition errors, and sponta-
neous speech events such as false starts.

Due to these problems, many researchers have tended
to favor more semantic-driven approaches, at least
for spoken language tasks in limited domains. In
such approaches, a meaning representation is derived
by “spotting” key words and phrases in the utter-
ance [43]. While this approach loses the constraint
provided by syntax, and may not be able to ade-
quately interpret complex linguistic constructs, the
need to accommodate spontaneous speech input has
outweighed these potential shortcomings. At the
present time, almost all viable systems have aban-
doned the notion of achieving a complete �syntactic
analysis of every input sentence, favoring a more ro-
bust strategy that can still answer when a full parse
is not achieved [19, 35, 39]. This can be accom-
plished by identifying parsable phrases and clauses,
and providing a separate mechanism for gluing them



together to form a complete meaning analysis [35].
Ideally, the parser includes a probabilistic framework
with a smooth transition to parsing fragments when
full linguistic analysis is not achievable. Examples
of systems that incorporate such stochastic modelling
techniques can be found in [30, 24].

2.2.3. SR/NL Integration

How should the speech recognition component inter-
act with the natural language component in order
to obtain the correct meaning representation? At
present, the most popular strategy is the so-called
N -best interface [7], in which the recognizer proposes
its best N complete sentence hypotheses one by one,
stopping with the first sentence that is successfully
analyzed by the natural language component. In this
case, the natural language component acts as a filter
on whole sentence hypotheses.

In the N -best interface, many of the candidate sen-
tences may differ minimally in regions where the
acoustic information is not very robust. While con-
fusions such as “an” and “and” are acoustically rea-
sonable, one of them can often be eliminated on lin-
guistic grounds. In fact, many of the top N sentence
hypotheses could have been eliminated before reach-
ing the end if syntactic and semantic analyses had
taken place early on in the search. One possible solu-
tion, therefore, is for the speech recognition and nat-
ural language components to be tightly coupled, so
that only the acoustically promising hypotheses that
are linguistically meaningful are advanced. For ex-
ample, partial theories can be arranged on a stack,
prioritized by score. The most promising partial the-
ories are extended using the natural language com-
ponent as a predictor of all possible next-word candi-
dates; none of the other word hypotheses are allowed
to proceed. Therefore, any theory that completes is
guaranteed to parse. Researchers are beginning to
find that such a tightly coupled integration strategy
can achieve higher performance than an N -best in-
terface, often with a considerably smaller stack size
[15, 13, ?, 25]. The future is likely to see increasing
instances of systems making use of linguistic analysis
at early stages in the recognition process.

2.3. Spoken Language Generation

On the output side, a conversational interface must be
able to convey the information to the user in natural
sounding sentences. This is typically accomplished
in two steps: the information is converted into well
formed sentences, which are then fed through a text-
to-speech (TTS) system to generate the verbal re-
sponses.

Spoken language generation serves two important
roles: it provides a verbal response to the user’s
queries and it can also provide a paraphrase of the
user’s input, which can serve as a confirmation of the
system’s proper understanding of the input query.
Research in language generation for conversational

systems has not received nearly as much attention
as has language understanding, perhaps due to the
funding priorities set forth by the major government
sponsors. The language generation component of a
conversational system typically produces the response
one sentence at a time, without paragraph level plan-
ning. One effective approach for sentence generation
is to concatenate templates after filling slots by apply-
ing recursive rules along with appropriate constraints
(person, gender, number, etc.) [10].

Currently, the language generation and text-to-
speech components on the output side of conversa-
tional systems are not closely coupled; the same text
is generated whether it is to be read or spoken. Fur-
thermore, current systems typically expect the lan-
guage generation component to produce a textual
surface form of a sentence (throwing away valuable
linguistic and prosodic knowledge) and then require
the text-to-speech component to produce linguistic
analysis anew. Clearly, these two components would
benefit from a shared knowledge base.

2.4. Discourse and Dialogue

Human verbal communication is a two-way process
involving multiple, active participants. Mutual un-
derstanding is achieved through direct and indirect
speech acts, turn taking, clarification, and pragmatic
considerations. An effective conversational interface
for information retrieval and interactive transactions
must incorporate extensive and complex dialogue
modelling – initiating appropriate clarification sub di-
alogues based on partial understanding, and taking
an active role in directing the conversation towards
a valid conclusion. Although there has been some
theoretical work on the structure of human-human
dialogue [16], this has not yet led to effective insights
for building human-machine interactive systems.

It is essential that a system be able to interpret a
user’s queries in context. For instance, if the user
says, “I want to go from Boston to Denver,” followed
with, “show me only United flights,” they clearly
don’t want to see all United flights, but rather just
the ones that fly from Boston to Denver. The abil-
ity to inherit information from preceding sentences is
particularly helpful in the face of recognition errors.
The user may have asked a complex question involv-
ing several restrictions, and the recognizer may have
misunderstood a single word, such as a flight number
or an arrival time. If a good context model exists, the
user can now utter a very short correction phrase, and
the system will be able to replace just the misunder-
stood word, preventing the user from having to re-
utter the entire sentence, running the risk of further
recognition errors.

3. RECENT LANDSCAPE

3.1. Overview

Conversational systems are a relatively new technol-
ogy, having first come into existence in the late 1980’s



as a result of two major government-funded efforts on
both sides of the Atlantic: the DARPA Spoken Lan-
guage Systems (SLS) program in the United States
and the Esprit SUNDIAL (Speech UNderstanding
and DIALog) program in Europe [29]. These two
programs were remarkably parallel in that both in-
volved database access for travel planning, with the
European one including both flight and train sched-
ules, and the American one being restricted to air
travel. The European program was a multilingual
effort involving four languages (English, French, Ger-
man, and Italian), whereas the American effort was,
understandably, restricted to English. All of the sys-
tems focused within a narrowly defined area of ex-
pertise, and vocabulary sizes are generally limited to
several thousand words. Nowadays, these types of
systems can typically run in real-time on standard
workstations and PCs with no additional hardware.

The DARPA-SLS program cannot be considered con-
versational in that its attention focused entirely on
the input side. The Program adopted the approach of
developing the underlying input technologies within
a common domain called Air Travel Information Ser-
vice, or atis [31]. Atis permits users to verbally
query for air travel information, such as flight sched-
ules from one city to another, obtained from a small
relational database excised from the Official Airline
Guide. By requiring that all system developers use
the same database, it has been possible to compare
the performance of various spoken language systems
based on their ability to extract the correct informa-
tion from the database, using a set of prescribed train-
ing and test data, and a set of interpretation guide-
lines. Indeed, common evaluations have occurred at
regular intervals, and steady performance improve-
ments have been observed for all systems. At the
end of the Program in 1995, the best system achieved
a word error rate of 2.3% and a sentence error rate
of 15.2% [27]. Additionally, the best system achieved
an understanding error rate of 5.9% and 8.9% for text
and speech input, respectively.2

Whereas the DARPA-SLS program emphasized com-
petition through periodic common evaluations, the
European SUNDIAL program promoted cooperation
and plug compatibility by requiring different sites
to contribute distinct components to a single multi-
site system. More significantly, the Program desig-
nated dialogue modelling and spoken language gen-
eration as integral parts of the research program. As
a result, the emphasis on dialogue in Europe led to
some interesting advances in dialogue control mecha-
nisms. While the program terminated in 1993, some
of the systems it spawned have continued to flourish.
A notable example is the Philips Automatic Train
Timetable Information System [9], which is capable
of communicating with the user solely by voice over

2All the performance results quoted here are for the
so-called “evaluable” queries, i.e., those queries that are
within domain and for which an appropriate answer is
available from the database.

the telephone. The system has a vocabulary of about
1800 words, 1200 of which are distinct railway station
names. The dialogue relies heavily on confirmation
requests to permit correction of recognition errors,
but the overall success rate for usage is very high.

There are several conversational systems that fall out-
side the two government sponsored programs men-
tioned above. The Office Manager system devel-
oped at the Carnegie Mellon University is designed
to provide users with voice access to a set of ap-
plication programs for the office of the future [32].
The Berkeley Restaurant Project (BeRP) [20], de-
veloped at the University of California acts as a
restaurant guide in the Berkeley area. Another novel
system is waxholm, developed by researchers at
Royal Institute of Technology in Sweden [3]. Wax-
holm provides timetables for ferries in the Stockholm
archipelago, as well as port locations, hotels, camp-
ing sites, and restaurants that can be found on the
islands. The waxholm developers designed a flex-
ible, easily-controlled dialogue module, based on a
scripting language that describes dialogue flow [6].

3.2. The MIT Experience

3.2.1. Early Systems

Since 1989, our group has been conducting research
leading to the development of prototypical conver-
sational systems. The first such system, voyager,
can engage in verbal dialogues with users about a re-
stricted geographical region within Cambridge, Mas-
sachusetts, in the USA. The system can provide in-
formation about distances, travel times, or directions
between landmarks located within this area (e.g.,
restaurants, hotels, banks, libraries, etc.) as well as
handling specific requests for information such as ad-
dress, phone number or location on the map. Voy-
ager served as our primary platform for developing
multilingual systems, culminating in the demonstra-
tion of trilingual (in English, Italian, and Japanese)
capabilities in 1994 [11].

An interesting realistic system which grew out of the
ARPA atis effort is the pegasus system [45], which
is connected via a modem over the phone line to a real
flight reservation system. Pegasus has knowledge of
flights to and from some 220 cities worldwide. It has
a fairly extensive dialogue model to help cope with
difficult problems such as date restrictions imposed by
discount fares or aborted flight plans due to selections
being sold out. A subsequent displayless version of
pegasus enables users to make flight reservations by
speaking with a computer over the telephone [36].

3.2.2. Galaxy

In 1994, researchers at MIT started the develop-
ment of galaxy [14, 46], an architecture that en-
ables universal information access using spoken dia-
logue. Galaxy distinguishes itself from other con-
versational systems in several respects. First, it is
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Figure 4: Architecture of galaxy.

distributed and decentralized – galaxy uses a client-
server architecture to allow sharing of computation-
ally expensive processes (such as large vocabulary
speech recognition), as well as knowledge intensive
processes. Second, it is multi-domain, intended to
provide access to a wide variety of information sources
and services while insulating the user from the details
of database location and format. It is presently con-
nected to many real, on-line databases, including the
National Weather Services, the NYNEX Electronic
Yellow Pages, and the World Wide Web. Users can
query galaxy in natural English (e.g., “what is the
weather forecast for Miami tomorrow,” “how many
hotels are there in Boston,” and “do you have any
information on Switzerland,” etc.), and receive ver-
bal and visual responses. Third, it is extensible; new
knowledge domain servers can be added to the sys-
tem incrementally. Finally, galaxy is mobile; it can
be launched anywhere in the world using an ordinary
Web browser for display and a telephone for speech
input/output [21].

The Galaxy architecture has been used extensively
in our group as the testbed for developing conversa-
tional interfaces and the underlying human language
technology. For example, multilingual capabilities
have been developed for Spanish and for Mandarin
Chinese [41]. In addition, two other applications have
been developed; one is an interface to a database of
electronic automobile classified advertisements [23],
and the other is a restaurant guide for the Boston
area [37].

3.2.3. Jupiter

The most recent descendent of galaxy is a system
we call jupiter [47]. Jupiter is a telephone-only con-
versational interface for weather information for more
than 500 cities worldwide. The weather information
is obtained from four on-line sources on the Web,
and is updated several times daily. Jupiter employs
galaxy’s client-server architecture, except the client
is simply a telephone. It serves as a platform for in-
vestigating several research topics. First, by using
the telephone as a means of accessing the informa-
tion, we can empower a much larger population to
access the wide range of information that is becom-

ing available. In the scenario that we envision, a user
could conduct “virtual browsing” in the information
space without ever having to point or click. Sec-
ond, displayless information access poses new chal-
lenges to conversational interfaces. If the informa-
tion can only be conveyed verbally, the system must
rely on the dialogue component to reduce the infor-
mation to a digestible amount, the language genera-
tion component to express the information succinctly,
and the TTS component to generate highly natural
and intelligible speech. Third, channel distortions
place heavy demands on the system to achieve robust
speech recognition and understanding. Finally, by ap-
plying human language technologies to understanding
the “content,” in this case the weather forecast, we
can manipulate and deliver exactly the information
that the user wants, no more and no less.

For speech recognition, jupiter makes use of the
summit speech recognition system developed in our
group, modified for telephone input [12]. Tina [34], a
probabilistic language understanding system, parses
word hypotheses and eventually creates a semantic
frame representation which can be paraphrased into
an SQL query. Finally, genesis [10] is used for gener-
ating sentence responses from the database, and the
resulting sentences are played through a commercial
off-the-shelf TTS system. Currently, jupiter has a
vocabulary of nearly 1500 words.

Since May 1997, we have installed a toll free tele-
phone number, so that naive users can call jupiter
and inquire about the weather. Log-files are cre-
ated automatically, and the sentences are also tran-
scribed as they come in. Thus far, we have collected
over 8000 sentences from nearly 1500 calls. The data
have proved to be invaluable for system development,
training, and evaluation. Figure 5 is an example dia-
logue between a naive user and jupiter. A compari-
son of this dialogue with that shown in Figure 1 sug-
gests that jupiter possesses some of the same char-
acteristics as a helpful human agent.

While jupiter has only been in existence for two
months at this writing, we nevertheless have started
to monitor its performance longitudinally. A recent
evaluation made use of 502 sentences in 82 randomly
selected calls collected from naive users using land-
line, cellular, and speaker phones. Approximately
70% of the sentences contain words within the sys-
tem’s vocabulary. Approximately 11% of the sen-
tences contain out-of-vocabulary words, largely ut-
tered by curiosity seekers (e.g., “Do you have transis-
tors between your ears?”), and a similar percentage
contain no speech (laughters, hang-ups, etc.) Ap-
proximately 5% of the sentences were clipped, since
jupiter currently does not have barge-in capabil-
ity, and 3% of the sentences contain mis-pronounced
words. Table 1 summarizes jupiter’s performance
on the in-vocabulary sentences. While the system
recognizes less than 2/3 of the sentences correctly,
it nevertheless understood nearly 4 out of every five
sentences correctly.



U: WHAT IS THE WEATHER IN PASADENA CAL-
IFORNIA

J: I know of the following places in California: Bur-
bank, Fresno, Long Beach, Los Angeles, Oakland,
Sacramento, San Diego, San Francisco, and San
Jose. Please select one.

U: BURBANK
J: In Burbank today: areas of low clouds morning and

fog, otherwise sunny. Tonight: clear. Is there some-
thing else I can do for you?

U: IS IT GOING TO RAIN IN NEW JERSEY
J: To my knowledge, the forecast calls for no rain in

New Jersey today. What else would you like to
know?

U: WILL IT RAIN IN WASHINGTON D C THIS
WEEKEND

J: To my knowledge, the forecast calls for no rain
in Washington this weekend Saturday and Sunday.
What other information can I give you?

U: HOW ABOUT THE FORECAST FOR PARIS
J: I have no knowledge of the weather in Paris this

weekend Saturday and Sunday. Is there anything
else?

U: NO THANKS
J: Thanks for using Jupiter! Have a nice day!

Figure 5: Actual transcript of a conversation between a
user (U) and Jupiter (J) over the phone. Typical conver-
sational phenomena are annotated on the right.

CATEGORY ERROR RATE (%)
Word Recognition 16.1
Sentence Recognition 37.0
Understanding (from text) 5.4
Understanding (from speech) 22.0

Table 1: Performance evaluation of jupiter for the
in-vocabulary sentences collected from naive users.

4. FUTURE CHALLENGES

As we can see, considerable progress has been made
over the past decade in research and development of
systems that can understand and respond to spoken
language. To meet the challenges of developing a
language-based interface to help users solve real prob-
lems, however, we must continue to improve the core
technologies while expanding the scope of the under-
lying human language technology base. In this sec-
tion, we outline some of the new research challenges
that I believe have heretofore received insufficient at-
tention.

4.1. Working in Real Domains

The rapid technological progress that we are witness-
ing raises several timely questions. When will this
technology be available for productive use? What
technological barriers still exist that will prevent
large-scale deployment? An effective strategy for an-
swering these questions is to develop the underlying
technologies within real applications, rather than re-
lying on mock-ups, however realistic they might be.
Such a strategy will force us to confront some of the

critical technical issues that may otherwise elude our
attention. Consider, for example, the task of access-
ing information in the Yellow Pages of a medium-sized
metropolitan area. The vocabulary size of such a task
could easily exceed 100,000, considering the names of
the establishments, street and city names, and listing
headings. A task involving such a huge vocabulary
presents a set of new technical challenges. Among
them are:

• How can adequate acoustic and language mod-
els be determined when there is little hope of
obtaining a sufficient amount of domain-specific
data for training?
• What search strategy would be appropriate for

very large vocabulary tasks? How can natural
language constraints be utilized to reduce the
search space while providing adequate coverage?
• How can the application be adapted and/or cus-

tomized to the specific needs of a given user?
• How can the system be efficiently ported to a

different task in the same domain (e.g., changing
the geographical area from one city to another),
or to an entirely different domain (e.g., library
information access)?

There are many other research issues that will surface
when one is confronted with the need to make hu-
man language technology truly useful for solving real
problems. Consider, for example, the unknown word
problem. The traditional approach to spoken lan-
guage recognition and understanding research and de-
velopment is to define the working vocabulary based
on domain-specific corpora. However, experience has
shown that, no matter how large the size of the train-
ing corpora, the system will invariably encounter pre-
viously unseen words [17]. This is illustrated in Fig-
ure 6. For the atis task, for example, a 100,000-word
training corpus will yield a vocabulary of about 1,000
words. However, the probability of the system en-
countering an unknown word, is about 0.002. Assum-
ing that an average sentence contains 10 words, this
would mean that approximately one in 50 sentences
will contain an unknown word.

In a real domain such as Jupiter or the Electronic
Yellow Pages, a much larger fraction of the words ut-
tered by users will not be in the system’s working
vocabulary. This is unavoidable partly because it is
not possible to anticipate all the words that all users
are likely to use, and partly because the database
is usually changing with time (e.g., new restaurants
opening up). In the past, we have not paid much
attention to the unknown word problem because the
tasks we have chosen assume a closed vocabulary. In
the limited cases where the vocabulary has been open,
unknown words have accounted for a small fraction of
the word tokens in the test corpus. Thus researchers
could either construct generic “trash word” models
and hope for the best, or ignore the unknown word
problem altogether and accept a small penalty on
word error rate. In real applications, however, the
system must be able to cope with unknown words
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Figure 6: (a) The number of unique words (i.e.,
task vocabulary) as a function of the size of the train-
ing corpora, for several spoken language tasks, and
(b) The percentage of unknown words in previously
unseen data as a function of the size of the train-
ing corpora used to determine the vocabulary empiri-
cally. The sources of the data are: F-ATIS=French
ATIS; I-VOYAGER=Italian VOYAGER; BREF=French
La Monde; NYT=New York Times; WSJ=Wall Street
Journal; and CITRON=Directory Assistance.

simply because they will always be present, and ig-
noring them will not satisfy the user’s needs – if a
person wants to know how to go from the train sta-
tion to Lucia’s restaurant, they will not settle for a
response such as, “I am sorry I don’t understand you.
Please rephrase the question.” The system must be
able not only to detect new words, taking into ac-
count acoustic, phonological, and linguistic evidence,
but also to adaptively acquire them, both in terms of
their orthography and linguistic properties. In some
cases, fundamental changes in the problem formula-
tion and search strategy may be necessary.

Aside from providing the technological impetus, how-
ever, working within real domains also has some prac-
tical benefits. While years may pass before we can
develop unconstrained spoken language systems, we
are fast approaching a time when systems with lim-
ited capabilities can help users interact with comput-
ers with greater ease and efficiency. Working on real
applications thus has the potential benefit of short-
ening the interval between technology demonstration

Figure 7: Averaged number of dialogue turns for several
application domains.

and its ultimate use. Besides, applications that can
help people solve problems will be used by real users,
thus providing us with a rich and continuing source of
useful data, as we have discovered in our experience
with jupiter development.

How do we select the applications that are well
matched to our present capabilities? Again, I be-
lieve the answer may lie in examining human-human
data. Figure 7 displays the average number of di-
alogue turns per transaction for several application
domains. The data are obtained from the same tran-
scription of the 100 hours of real human-human inter-
actions described earlier. As the data clearly show,
helping a user select a movie or a restaurant is con-
siderably less complex than helping a user to look for
employment.

4.2. Spoken Language Generation

With few exceptions [11, 45, 28], current research
in spoken language systems has focused on the in-
put side, i.e., the understanding of the input queries,
rather than the conveyance of the information.

Spoken language generation is an extremely impor-
tant aspect of the human-computer interface prob-
lem, especially if the transactions are to be conducted
over a telephone. Models and methods must be de-
veloped that will generate natural sentences appropri-
ate for spoken output, across many domains and lan-
guages. In many cases, particular attention must be
paid to the interaction between language generation
and dialogue management – the system may have to
initiate clarification dialogue to reduce the amount of
information returned from the back-end, in order not
to generate unwieldy verbal responses. On the speech
side, recent work in synthesis based on non-uniform
units has resulted in much improved synthetic speech
quality [33, 18]. However, we must continue to im-
prove speech synthesis capabilities, particularly with
regard to the encoding of prosodic and paralinguistic
information such as emotion. As is the case on the in-
put side, we must also develop integration strategies
for language generation and speech synthesis. Finally,
evaluation methodologies for spoken language gener-
ation technology must be developed, and comparative
evaluation performed.



4.3. Portability

Currently, the development of speech recognition and
language understanding technologies has been do-
main specific, requiring a large amount of annotated
training data. However, it may be costly, or even im-
possible, to collect a large amount of training data
for certain applications, such as Yellow Pages.

Therefore, we must address the problems of produc-
ing a spoken language system in a new domain given
at most a small amount of domain-specific training
data. To achieve this goal, we must strive to cleanly
separate the algorithmic aspects of the system from
the application-specific aspects. We must also de-
velop automatic or semi-automatic methods for ac-
quiring the acoustic models, language models, gram-
mars, semantic structures for language understand-
ing, and dialogue models required by a new appli-
cation. The issue of portability spans across differ-
ent acoustic environments, databases, knowledge do-
mains, and languages. Real deployment of spoken
language technology cannot take place without ade-
quately addressing this issue.

5. CONCLUDING REMARKS

In this paper, I have attempted to outline some of
the important research challenges that must be ad-
dressed before spoken language technologies can be
put to productive use. The timing for the develop-
ment of human language technology is particularly
opportune, since the world is mobilizing to develop
the information highway that will be the backbone
of future economic growth. Human language tech-
nology will play a central role in providing an inter-
face that will drastically change the human-machine
communication paradigm from programming to con-
versation. It will enable users to efficiently access,
process, manipulate, and absorb a vast amount of in-
formation. While much work needs to be done, the
progress made collectively by the community thus far
gives us every reason to be optimistic about fielding
such systems, albeit with limited capabilities, in the
near future.
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