PAGE

James: A Personal Mobile Universal Speech Interface for Electronic Devices
Thomas K Harris

October 31, 2002

Master of Science proposal

Carnegie Mellon University

School of Computer Science

James: A Personal Mobile Universal Speech Interface for Electronic Devices
Abstract

I propose to implement and study a personal mobile universal speech interface for human-device interaction, which I call James. James communicates with devices through a defined communication protocol, which allows it to be separated from the devices that it controls. This separation allows a mobile user to carry James as their personal speech interface around with them, using James to interact universally with any device adapted to communicate in the language. My colleagues and I have investigated many issues of human-device speech interaction and proposed certain interaction design decisions, which we refer to as interaction primitives. These primitives have been incorporated in a working prototype of James. I propose to measure the quality of the proposed interface. It is my belief that this investigation will demonstrate that a high quality and low cost human-device interface can be built that is largely device agnostic. This would begin to validate our interaction primitives, and provide a base-line for future study in this area.

Introduction

Scope. In the context of this thesis, an electronic device is defined in to be an entity with electronic control that serves a general purpose and a relatively coherent set of functions, in which the main interaction between device and user is that of user control over device state and behavior. This definition includes normal household devices and consumer electronics such as cell phones, dishwashers, televisions, and lights; office equipment such as copy machines and fax machines; and industrial machines such as looms and cranes. This definition also includes devices that could be implemented purely in software such as a chess game or a media player, as long as the main interaction of the device is to receive commands and respond to simple state information requests. Because this proposal employs devices that are generally common, and also because the need for the device motivates its use, I make the assumption that the general purpose of the device is known a priori by the user and that some aspects of its behavior are predictable by the user.

Completed Work. I have drawn upon the interaction language from the Universal Speech Interface (USI) project [1], and, with Roni Rosenfeld, have augmented the language from its original purpose of information access to that of electronic device control. Because James uses interaction primitives that are only slightly different from the interaction primitives of existing USI applications, it can be described as an augmented Universal Speech Interface. James inherits its device specification and device communication protocols from the Personal Universal Controller (PUC) project [2]. James is, in all respects, a Personal Universal Controller. The simultaneous control of two devices - a common shelf stereo, and a digital video camera - have been implemented. These devices were demonstrated at the August, 2002, Pittsburgh Digital Greenhouse (PDG) [3] Technical Advisory Board Meeting, at the 4th International Conference on Multimodal Interfaces (ICMI) [4], and the 15th Annual Symposium on User Interface Software and Technology (UIST) [5]. Two papers have been published that describing the work [2]

 REF _Ref23581493 \r \h
[6].
Related Work. Three systems have directly influenced the design of James [1]

 REF _Ref23580402 \r \h
[2][7], and several other systems elucidate alternative yet similar solutions for human-device speech interfaces [8][9]

 REF _Ref23583230 \r \h
[10].
James is continuing work of the Universal Speech Interface project, also known as Speech Graffiti [1]

 REF _Ref23582487 \r \h
[7]. The Universal Speech Interface is a paradigm for speech interfaces that began as an attempt to address the problems of the other two speech interface paradigms: Natural Language Interfaces (NLI), and Interactive Voice Response (IVR). The IVR systems offered menu-tree navigation, allowing for rapid development of robust systems, at the cost of flexibility and efficiency, while the NLI systems offered flexible and efficient systems at the severe cost of effort and reliability. It was surmised that an artificial language might be developed that would be both flexible and efficient, while also allowing applications to be robust and easily developed. Since the language would be developed specifically for speech interactions, it was also surmised that this language could have special mechanisms for dealing with interface issues particular to speech, such as error correction and list navigation, and that once these were learned by a user, they could be applied universally to all USI applications. These ideas resulted in a position paper and manifesto [11]

 REF _Ref23585488 \r \h
[12], and later to some working information access applications [1].
In an effort to make the production of USI applications easier, the USI project embarked on a study to determine if a toolkit could be built to help generate USI-compliant information-access speech interfaces. Remarkably, it was found was that not only could such a toolkit be built, but assuming only that the information to be accessed was contained in an ODBC database, the entire application could be defined declaratively. A web page was made from which one could enter the declarative parameters, and USI information access applications were built automatically from the information entered into the web page [7]. This result inspired the notion that declarative, automatic speech interfaces were also possible in the electronic device control domain.
James is a Personal Universal Controller [2]. The PUC project had engineered a system in which a declarative description of an electronic device, and an established communication protocol came together to enable them to automatically generate and use graphical user interfaces on handheld computers. A PUC would be universal and mobile, and would supply a consistent user interface across any adapted device. James was designed to be PUC client, in the same manner as their handheld computers. It would download device specifications from the adapted devices and create a user interface, except in this case the interface would be a spoken interface.
The XWeb project [8] addresses many of the same issues as the PUC project, and also includes a speech-based client. The XWeb project subscribes to the speech interaction paradigm of the USI manifesto [12], and as such uses an artificial subset language for device control. Much like James, the interaction offers tree traversal, list management, orientation, and help. They report that users found tree navigation and orientation difficult to conceptualize. James is designed in such a way that I expect the user will not need to understand the underlying tree structure in order to use the devices. Whereas the XWeb speech client uses explicit commands for moving focus, and only offers child, parent, and sibling motion around the interaction tree, James allows users to change focus to any node from and other node, and uses a sophisticated disambiguation strategy to accommodate this. Details on the disambiguation strategies are provided in Appendix B.
Researchers at Hewlett Packard [9] have applied some aspects of the USI paradigm to the acoustic domain, designing a system whereby the most acoustically distinguishable words are chosen through search for an application. These words are not related to the task, but are taken from some large dictionary. The potential users must learn exact and unrelated words to control devices. They concede that this approach required a great deal of linguistic accommodations from the user, and may only appeal to technophiles. I also believe that, with this approach, there is little to be gained. I have demonstrated in some previous studies that language models for USI applications can be built with word perplexities less than 3 bits per word, which can make for very robust speech recognition with modern ASR systems.
Sidner [10] has tested the learnability and usability of an artificial subset language for controlling a digital video recorder (DVR). She experimented with two groups, one with on-line help and another with off-line but readily available help. Later she brought both groups back to test for retention of the command language. She found that although there were limits to what the users could remember, they were almost all able to perform the assigned tasks successfully. Sidner’s system was much simpler than James, and would not allow a person to generalize their interaction to a new device. Regardless, this is an encouraging study for James, and for other USI-like interfaces.

Method & Design
Architecture. The System Architecture is rendered in Figure 1. The Controller manages all of James’ subunits, starts them, shuts them down when necessary, directs their input and output streams and performs logging services. This controller is the main process by which the command-line and general system configuration options are dealt with. Sphinx [13] is an automatic speech recognition system that captures the speaker’s speech and decodes it into its best hypothesis. Phoenix [14]

 REF _Ref23613851 \r \h
[15] is a parser for context-free grammars that parses the decoded utterance into a list of possible parse trees. Since we are using an artificial subset language, the parse tree is usually very close to an unambiguous semantic representation of the utterance. The Dialog Unit operates on the parsed utterance, communicating with the device Adapters to effect commands and answer queries, and then issues responses to Festival. Festival is a text-to-speech system that transforms written text into spoken words. The Dialog Unit polls the environment intermittently for new Adapters. When one is found, the Dialog Unit requests a Device Specification from the Adapter. The Dialog Unit takes the Device Specification, parses it, and uses that specification, along with all of the other current specification to generate a Grammar, Language Model, and Dictionary. In this way, everything from the speech recognition to the dialog management is aware of new devices as they come in range.

Sphinx, Phoenix, and Festival, are all three open-source free-software programs that are used in James without modification. The Controller is a Perl script and the Dialog Unit is written in C++. The Adapters are Java programs, and communicate with the Devices via a variety of means; Havi, X10, and custom interfaces have been built.

Specific Applications. To date, two Adapters have been built and are in working order: an adapter for an Audiophase shelf stereo and one for a Sony digital video camera. The actual XML specifications for these appliances are in Appendix A, but for the sake of illustration, refer to the functional specification diagram for the shelf stereo and digital video camera in Figure 2. A picture of the actual stereo and its custom adapter hardware are shown in Figures 3 and 4 respectfully. The custom adapter hardware for the stereo was designed and built by Maya Design, Inc. [16] to be controllable through a serial port interface, and the camera is controllable via a standard built-in IEEE 1394 FireWire [17] interface. The stereo has an AM and FM tuner and a 5-disc CD player. Although the digital video camera has many functions, only the DVR functions are exposed to the FireWire interface, primarily because the controls for other modes are generally passive physical switches.

These two devices make a good test bed for two reasons. One, they are both fairly common, with what seems like a fairly normal amount of complexity. Two, their functionality overlaps somewhat. Both offer play-pause-stop control, for example. This allows us to experiment with the ontological issues of the overlapping functional spaces of these devices, especially with respect to disambiguation and exploration.

Thesis

By combining elements of the Universal Speech Interface, and the Personal Universal Controller, and refining these methods, I have created a framework for device control speech interfaces that is both personal and universal. I believe that this is the first speech interface system for devices that is device agnostic, allowing easy adaptation of new devices. This achievement, which allows product engineers to integrate speech interfaces into their products with unprecedented ease, comes at a price, however. The interaction language is an artificial subset language that requires user training.

It is not clear, in learning this language, how much training is required, where the user’s learning curve will asymptote, how well learning the interaction transfers from one device to another, and how well the learned language is retained by the users. The answer to these questions is vital if the system is to be considered at all usable. The proposed experiments in this thesis are designed to answer these questions.

The use of an artificial subset language also provides the benefit of a system with obvious semantics and low input perplexity. These factors usually translate into a more robust system, with fewer errors than otherwise identical speech interfaces. System errors will be measured during these experiments. I will not directly compare these results to systems with other approaches, but I hope to show that in general, the system robustness is better than one might expect.

Experiments

In order to yield a large statistical power, the users will be divided into only two experimental groups. In one group, the stereo will be referred to as device A, and in the other group the digital camera will be referred to as device A. The other device for each group will be referred to as device B.

Training. Subjects will be trained in the interaction language on device A, with no reference to device B. The training will consist of one-on-one hands-on training, with examples on device A and exercises on device A. The training will continue until the users demonstrate minimal repeatable mastery of each of the interaction subtleties. No restrictions will be placed on the training, the users will be able ask questions, refer to documentation, etc.

Application. Once the users have mastered the interaction subtleties of the system, the supervised training will cease. Users will not be allowed to refer to any notes, nor will they be able to contact the trainer. Users will be presented with a number of tasks related to the use of a device A alone, which again may be the stereo or the digital video camera, depending on which experimental group they are in. A reward system will motivate them to complete tasks quickly.

Transfer. After completing several tasks on device A, the user will be asked to complete some other tasks on device B alone. No intervening training will be provided, so only transfer and unsupervised learning will be tested.

Unification. After completing the transfer task, both devices will be activated and the user will be asked to perform tasks that require joint device states. Such tasks might be to play both the fourth CD and the digital video, but have the digital video muted. This step will test how well the user is able to coordinate operations in the presence of multiple devices.

Retention. The application, transfer, and unification studies will be completed in a single session by the user. The user will return after a specific interval of time (a pilot study will be run to determine a reasonable amount of time, between 2 and 7 days). The user will again perform multiple unification-type tasks. Performance on both devices, regardless of trial group, will be measured for comparison against the previous trials.

Schedule
	Prepare input via IPAQ, push-to-talk
	November 4 – November 10

	Clean up speech recognition issues.
	November 11 – November 17

	Adapt two new devices.
	November 18 – December 8

	Rigorously test system.
	December 9 – December 15

	Develop training course.
	December 9 – December 15

	Do pilot studies.
	December 16 – January 5

	Run subjects.
	January 6 – March 2

	Analyze Data.
	February 10 – March 9

	Write Thesis
	February 17 – March 16

Analysis and Expected Results

Data. Demographic information about the participants will be collected. Both male and female participants who are native speakers of American English will be recruited. Information about experience with devices from computers to speech-interface devices will be collected in a pretest survey to examine how prior exposure to technology may affect these results. After each trial, the participants will complete a survey describing subjective assessments of usability, attribution for errors, and how well they liked the system.

Quantitative data collection will include the time used to perform tasks, the number of speaking turns, and the number of mistakes. Mistakes include errors in speech, out-of-grammar and out-of-vocabulary, and unnecessary steps to reach goal state. The system may also make recognition errors, and those errors are of interest.

Analysis. Learning, transfer and retention are the three primary variables being analyzed in this study. Performance on the transfer task (device B) will be compared to performance on device A.

System performance will be analyzed in terms of reliability and stability; that is, how consistently the system responds to a particular user as well as between users.

Expected Results. I expect to find increased speed and accuracy during habituation with device A, and another learning curve with device B. Initial performance on device B is expected to be lower than performance on the training device, but hopefully a sharper learning curve will be observed. Some decrease in performance is expected at the retention trial, and this may be significant. No difference between trial groups is expected for learning, transfer or retention.

Individual differences in habituation rates are to be expected, as well as subjective usability ratings. I do not expect performance to degrade at Unification, when both devices are activated, despite the potential for confusion by the user or the system.

Given the constrained nature of the interaction language, I expect system error to be quite low for speech systems in general. Even low error rates are uncommon in competing interfaces, however, and errors will further corrupt the learning process that the user must undertake to use the system. How the user and system deal with system errors will be of great interest.

Future Work

Since this is a relatively new system, the experiments which I have proposed test only the most basic and fundamental concerns regarding this approach to human-device speech interaction. There are many important questions that will not fall within the scope of this research in the time that is available for this thesis work.

Developer Experiments. James is a framework for operating and building speech interfaces for human-device communication. As such, the experiences of the developers who design the concrete systems matters to the design. Indeed, if it is very difficult to build device adapters for the system then the system is not very useful, since high-quality speech interfaces can be built without James. Although efforts were made to keep the device adapters simple to construct, it would be worth some experimentation and analysis to both verify this and further improve on it.

Learning Experiments. Crucial to the worth of this system is the ease with which users learn the interaction language that it employs. The experiments described in this proposal assume that learning has occurred at whatever cost, so that analysis of the system’s learnability is not conflated with its ultimate usability. A guide for future experiments to measure the learning rate is given in appendix C.

Interaction Parameter Studies. There are many design decisions that went into the design of the interaction style for James. The USI group has been calling these interaction primitives. Many of these primitives have a handful of reasonable options, and in general the working option is chosen with little or no experimental data, and little or no research, because neither data nor research on these primitives exists. These reasonable options would be ideal candidates for further study.

References
[1] S. Shriver, R. Rosenfeld, X. Zhu, A. Toth, A. Rudnicky, M. Flueckiger. Universalizing Speech: Notes from the USI Project. In Proc. Eurospeech 2001.
[2] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Harris, R. Rosenfeld, M. Pignol. "Generating Remote Control Interfaces for Complex Appliances." In CHI Letters: ACM Symposium on User Interface Software and Technology, UIST'02, 27-30 Oct. 2002, Paris, France.
[3] http://www.digitalgreenhouse.com/about.html
[4] http://www.is.cs.cmu.edu/icmi/
[5] http://www.acm.org/uist/
[6] J. Nichols, B. Myers, T. K. Harris, R. Rosenfeld, S. Shriver, M. Higgins, J. Hughes. "Requirements for Automatically Generating Multi-Modal Interfaces for Complex Appliances," IEEE Fourth International Conference on Multimodal Interfaces, Pittsburgh, PA. October 14-16, 2002. pp. 377-382.
[7] A. Toth, T. K. Harris, J. Sanders, S. Shriver, R. Rosenfeld. Towards Every-Citizen's Speech Interface: An Application Generator for Speech Interfaces to Databases. 7th International Conference on Spoken Language Processing
[8] D.R. Olsen Jr., S. Jefferies, T. Nielsen, W. Moyes, and P. Fredrickson. “Cross-modal Interaction using Xweb,” In Proceedings UIST’00: ACM SIGGRAPH Symposium on User Interface Software and Technology, 2000. pp. 191-200.

[9] S. Hinde and G. Belrose. “Computer Pidgin Language: A new language to talk to your computer?” HP Labs Technical Report HPL-2001-182. http://www.hpl.hp.com/techreports/2001/HPL-2001-182.html
[10] C.L. Sidner and C. Forlines. “Subset Languages for Conversing with Collaborative Interface Agents”, ICSLP 2002. 281-284.
[11] R. Rosenfeld, D.R. Olsen Jr., and A. Rudnicky. A Universal Human-Machine Speech Interface. Technical Report CMU-CS-00-114, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, March 2000.
[12] http://www-2.cs.cmu.edu/~usi/USI-manifesto.htm
[13] http://fife.speech.cs.cmu.edu/sphinx/index.html
[14] W. H. Ward. "The Phoenix System: Understanding Spontaneous Speech", IEEE ICASSP, April 1991.
[15] http://communicator.colorado.edu/phoenix/
[16] http://www.maya.com/web/index.mtml
[17] http://www.apple.com/firewire/

[image: image1] Figure 1. The System Architecture for James.

[image: image2]

Figure 3. Audiophase Shelf Stereo

[image: image3]
Figure 4. Custom Stereo Adapter Hardware

[image: image4]
Appendix A: The Audiophase Shelf Stereo and Sony Digital Video Camera Specifications

<?xml version="1.0" encoding="UTF-8"?>

<gadget>

<!--

List of States

PowerState: boolean {Off,On}

XBassState:
 boolean

ModeState: enumerated (4) {Tuner,Tape,CD,AUX}

RadioBandState:
 boolean {AM,FM}

AMStation:
 integer (530,1710,10)

AMPresets:
 enumerated (choose some values to put in here)

FMStation: fixedpt (1,88.5,108.0,0.1)

FMPresets: enumerated (choose some values to put in here)

CDPlayMode:
 enumerated (3) {Stopped,Playing,Paused}

CDDiscActive:
 enumerated (5) (1,2,3,4,5)

Disc1Avail: boolean (READONLY)

Disc2Avail:
 boolean (READONLY)

Disc3Avail:
 boolean (READONLY)

Disc4Avail: boolean (READONLY)

Disc5Avail:
 boolean (READONLY)

CDTrackState:
 string (READONLY)

CDRandomState:
 boolean

CDRepeatState:
 enumerated (4) {Off,One,One Disc,All Disc}

List of Commands

VolumeUp

VolumeDown

SeekForward

SeekReverse

CDNextTrack

CDPrevTrack

-->

 <node>

 <label>

 <canonical>stereo</canonical>

 <alias>audiophase stereo</alias>

 <alias>audiophase</alias>

 <response>stereo here</response>

 </label>

 <node>

 <action name="PowerState">

 <label>

 <canonical>off</canonical>

 </label>

 <var>false</var>

 </action>

 </node>

 <node>

 <label>

 <canonical>volume</canonical>

 <alias>gain</alias>

 </label>

 <node>

 <action name="VolumeUp">

 <label>

 <canonical>up</canonical>

 <alias>louder</alias>

 <alias>higher</alias>

 <response>turning the volume up</response>

 </label>

 </action>

 </node>

 <node>

 <action name="VolumeDn">

 <label>

 <canonical>down</canonical>

 <alias>softer</alias>

 <alias>lower</alias>

 <response>turning the volume down</response>

 </label>

 </action>

 </node>

 </node>

 <node>

 <label>

 <canonical>x base</canonical>

 </label>

 <node>

 <action name="XBassState">

 <label>

 <canonical>on</canonical>

 </label>

 <var>true</var>

 </action>

 </node>

 <node>

 <action name="XBassState">

 <label>

 <canonical>off</canonical>

 </label>

 <var>false</var>

 </action>

 </node>

 </node>

 <node>

 <action name="PowerState">

 <var>true</var>

 </action>

 <node>

 <action name="ModeState">

 <label>

 <canonical>tuner</canonical>

 <alias>radio</alias>

 </label>

 <var>4</var>

 </action>

 <node>

 <node>

 <action name="RadioBandState">

 <label>

 <canonical>a m</canonical>

 <alias>a m band</alias>

 <alias>amplitude modulation</alias>

 <alias>amplitude modulation band</alias>

 </label>

 <var>false</var>

 </action>

 <node>

 <node>

 <action name="AMStation">

 <basic type="read-only"/>

 </action>

 </node>

 </node>

 <node>

 <label>

 <canonical>station</canonical>

 </label>

 <node>

 <action name="AMPresetNumber">

 <label>

 <canonical>k d k a</canonical>

<alias>ten twenty</alias>

<alias>ten twenty a m</alias>

 </label>

 <var>1</var>

 </action>

 </node>

 <node>

 <action name="AMPresetNumber">

 <label>

 <canonical>k q v</canonical>

<alias>fourteen ten</alias>

<alias>fourteen ten a m</alias>

 </label>

 <var>2</var>

 </action>

 </node>

 <node>

 <action name="AMPresetNumber">

 <label>

 <canonical>w b g g</canonical>

<alias>nine seventy</alias>

<alias>nine seventy a m</alias>

 </label>

 <var>3</var>

 </action>

 </node>

 <node>

 <action name="AMPresetNumber">

 <label>

 <canonical>w e a e</canonical>

<alias>twelve fifty</alias>

<alias>twelve fifty a m</alias>

 </label>

 <var>4</var>

 </action>

 </node>

 <node>

 <action name="AMPresetNumber">

 <label>

 <canonical>w j a s</canonical>

<alias>thirteen twenty</alias>

<alias>thirteen twenty a m</alias>

 </label>

 <var>5</var>

 </action>

 </node>

 <node>

 <action name="AMPresetNumber">

 <label>

 <canonical>w p i t</canonical>

<alias>seven thirty</alias>

<alias>seven thirty a m</alias>

 </label>

 <var>7</var>

 </action>

 </node>

 </node> <!-- ampresets -->

 </node> <!-- am -->

 <node>

 <action name="RadioBandState">

 <label>

 <canonical>f m</canonical>

 <alias>f m band</alias>

 <alias>frequency modulation</alias>

 <alias>frequency modulation band</alias>

 </label>

 <var>true</var>

 </action>

 <node>

 <label>

 <canonical>frequency</canonical>

 </label>

 <node>

 <action name="FMStation">

 <basic type="read-only"/>

 </action>

 </node>

 </node>

 <node>

 <label>

 <canonical>station</canonical>

 </label>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w b z z</canonical>

<alias>ninety three point seven</alias>

<alias>ninety three point seven f m</alias>

 </label>

 <var>2</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w d s y</canonical>

<alias>one oh seven point nine</alias>

<alias>one oh seven point nine f m</alias>

<alias>y 1 oh 8</alias>

 </label>

 <var>3</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w d u q</canonical>

<alias>ninety point five</alias>

<alias>ninety point five f m</alias>

 </label>

 <var>4</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w d v e</canonical>

<alias>one oh two point five</alias>

<alias>one oh two point five f m</alias>

 </label>

 <var>5</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w j j j</canonical>

<alias>one oh four point seven</alias>

<alias>one oh four point seven f m</alias>

 </label>

 <var>6</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w k s t</canonical>

<alias>ninety six point one</alias>

<alias>ninety six point one f m</alias>

<alias>kiss f m</alias>

 </label>

 <var>8</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w l t j</canonical>

<alias>ninety two point nine</alias>

<alias>ninety two point nine f m</alias>

 </label>

 <var>9</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w o r d</canonical>

<alias>one oh one point five</alias>

<alias>one oh one point five f m</alias>

 </label>

 <var>10</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w q e d</canonical>

<alias>eighty nine point three</alias>

<alias>eighty nine point three f m</alias>

 </label>

 <var>11</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w r c t</canonical>

<alias>eighty eight point three</alias>

<alias>eighty eight point three f m</alias>

 </label>

 <var>12</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w w s w</canonical>

<alias>ninety four point five</alias>

<alias>ninety four point five f m</alias>

 </label>

 <var>15</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w x d x</canonical>

<alias>one oh five point nine</alias>

<alias>one oh five point nine f m</alias>

 </label>

 <var>16</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w y e p</canonical>

<alias>ninety one point three</alias>

<alias>ninety one point three f m</alias>

 </label>

 <var>17</var>

 </action>

 </node>

 <node>

 <action name="FMPresetNumber">

 <label>

 <canonical>w z p t</canonical>

<alias>one hundred point seven</alias>

<alias>one hundred point seven f m</alias>

 </label>

 <var>18</var>

 </action>

 </node>

 </node> <!-- station -->

 </node> <!-- fm -->

 </node> <!-- unlabled band node -->

 <node>

 <label>

 <canonical>seek</canonical>

 </label>

 <node>

 <label>

 <canonical>forward</canonical>

 <alias>forwards</alias>

 <response>seeking forward</response>

 </label>

 <action name="SeekForward"/>

 </node>

 <node>

 <label>

 <canonical>reverse</canonical>

 <alias>backward</alias>

 <alias>backwards</alias>

 <response>seeking backward</response>

 </label>

 <action name="SeekReverse"/>

 </node>

 </node>

 </node> <!-- tuner -->

 <node>

 <action name="ModeState">

 <label>

 <canonical>auxillary</canonical>

 </label>

 <var>3</var>

 </action>

 </node>

 <node>

 <action name="ModeState">

 <label>

 <canonical>c d</canonical>

 <alias>compact disc</alias>

 <alias>compact disc player</alias>

 </label>

 <var>2</var>

 </action>

 <node>

 <node>

 <action name="CDPlayMode">

 <label>

 <canonical>play</canonical>

 <response>playing c d</response>

 </label>

 <var>2</var>

 </action>

 </node> <!-- play -->

 <node>

 <action name="CDPlayMode">

 <label>

 <canonical>stop</canonical>

 <response>stopping c d</response>

 </label>

 <var>1</var>

 </action>

 </node>

 <node>

 <action name="CDPlayMode">

 <label>

 <canonical>pause</canonical>

 <response>pausing c d</response>

 </label>

 <var>3</var>

 </action>

 </node>

 </node> <!-- unlabeled play/stop/pause group -->

 <node>

 <label>

 <canonical>random</canonical>

 </label>

 <node>

 <action name="CDRandomState">

 <label>

 <canonical>on</canonical>

 </label>

 <var>true</var>

 </action>

 </node>

 <node>

 <action name="CDRandomState">

 <label>

 <canonical>off</canonical>

 </label>

 <var>false</var>

 </action>

 </node>

 </node>

 <node>

 <label>

 <canonical>repeat</canonical>

 </label>

 <node>

 <action name="CDRepeatState">

 <label>

 <canonical>off</canonical>

 </label>

 <var>1</var>

 </action>

 </node>

 <node>

 <action name="CDRepeatState">

 <label>

 <canonical>single track</canonical>

 </label>

 <var>2</var>

 </action>

 </node>

 <node>

 <action name="CDRepeatState">

 <label>

 <canonical>single disc</canonical>

 </label>

 <var>4</var>

 </action>

 </node>

 <node>

 <action name="CDRepeatState">

 <label>

 <canonical>all discs</canonical>

 </label>

 <var>5</var>

 </action>

 </node>

 </node> <!-- repeat -->

 <node>

 <label>

 <canonical>next track</canonical>

 <alias>skip track</alias>

 <response>skipping track</response>

 </label>

 <action name="CDNextTrack"/>

 </node>

 <node>

 <label>

 <canonical>last track</canonical>

 <alias>previous track</alias>

 <response>backtracking</response>

 </label>

 <action name="CDPrecTrack"/>

 </node>

 <node>

 <label>

 <canonical>track</canonical>

 </label>

 <node>

 <action name="CDTrackState">

 <basic type="read-only"/>

 </action>

 </node>

 </node>

 <node>

 <label>

 <canonical>disc</canonical>

 </label>

 <node>

 <action name="CDDiscActive">

 <label>

 <canonical>one</canonical>

 </label>

 <var>1</var>

 </action>

 </node>

 <node>

 <action name="CDDiscActive">

 <label>

 <canonical>two</canonical>

 </label>

 <var>2</var>

 </action>

 </node>

 <node>

 <action name="CDDiscActive">

 <label>

 <canonical>three</canonical>

 </label>

 <var>3</var>

 </action>

 </node>

 <node>

 <action name="CDDiscActive">

 <label>

 <canonical>four</canonical>

 </label>

 <var>4</var>

 </action>

 </node>

 <node>

 <action name="CDDiscActive">

 <label>

 <canonical>five</canonical>

 </label>

 <var>5</var>

 </action>

 </node>

 </node> <!-- disc -->

 </node> <!-- cd -->

 </node> <!-- unlabeled stereo on -->

 </node> <!-- audiophase -->

</gadget>

<?xml version="1.0" encoding="UTF-8"?>

<gadget>

<!--

THIS IS THE INTERIM SPEECH FORMAT, incompatible with the PUC SPEC

List of States

READ ONLY STATES

PowerState:

boolean {Off,On}

DeviceModeState:
enumerated (2) {Camera, VCR}

MediaState:

enumerated (4) {VHS, DV, Unknown, NoMedia}

AVCVersionState:
string

CaptureFrameRateState:
fixedpt

PortState:

string

TimecodeState:

string

READ-WRITE STATE

TransportModeState:
enumerated (6) {Play, Stop, Pause, FF, Rew, Record}

List of Commands

StepForward

StepBack

-->

 <node>

 <label>

 <canonical>digital video</canonical>

 <alias>d v</alias>

 <alias>digital video device</alias>

 <alias>d v device</alias>

 </label>

 <node>

 <action name="ActivePageState">

 <label>

 <canonical>control</canonical>

 </label>

<var>1</var>

 </action>

 <node>

 <label>

 <canonical>play mode</canonical>

 <alias>mode</alias>

</label>

<node>

 <action name="TransportModeState">

 <label>

 <canonical>play</canonical>

 </label>

 <var>1</var>

 </action>

</node>

<node>

 <action name="TransportModeState">

 <label>

 <canonical>stop</canonical>

 </label>

 <var>2</var>

 </action>

</node>

<node>

 <action name="TransportModeState">

 <label>

 <canonical>pause</canonical>

 </label>

 <var>3</var>

 </action>

</node>

<node>

 <action name="TransportModeState">

 <label>

 <canonical>fast forward</canonical>

 <alias>fast forwards</alias>

 </label>

 <var>4</var>

 </action>

</node>

<node>

 <action name="TransportModeState">

 <label>

 <canonical>rewind</canonical>

 </label>

 <var>5</var>

 </action>

</node>

<node>

 <action name="TransportModeState">

 <label>

 <canonical>record</canonical>

 </label>

 <var>6</var>

 </action>

</node>

 </node> <!--transportmode-->

 <node>

 <action name="StepForward">

 <label>

 <canonical>step forward</canonical>

 <alias>step forwards</alias>

 <alias>forward</alias>

 <alias>forwards</alias>

 </label>

</action>

 </node>

 <node>

 <action name="StepBack">

 <label>

 <canonical>step backward</canonical>

 <alias>step backwards</alias>

 <alias>backward</alias>

 <alias>backwards</alias>

 <alias>back</alias>

 </label>

</action>

 </node>

 <node>

 <action name="Refresh">

 <label>

 <canonical>refresh</canonical>

 </label>

</action>

 </node>

 </node> <!--control-->

 <node>

 <action name="ActivePageState">

 <label>

 <canonical>info</canonical>

 </label>

<var>2</var>

 </action>

 <node>

 <label>

 <canonical>device mode</canonical>

</label>

<node>

 <action name="DeviceModeState">

 <label>

 <canonical>camera</canonical>

 </label>

 <var>false</var>

 </action>

</node>

<node>

 <action name="DeviceModeState">

 <label>

 <canonical>v c r</canonical>

 </label>

 <var>true</var>

 </action>

</node>

 </node> <!--device mode-->

 <node>

 <label>

 <canonical>media type</canonical>

 <alias>media</alias>

</label>

<node>

 <action name="MediaState">

 <label>

 <canonical>v h s</canonical>

 </label>

 <var>1</var>

 </action>

</node>

<node>

 <action name="MediaState">

 <label>

 <canonical>digital video</canonical>

 </label>

 <var>2</var>

 </action>

</node>

<node>

 <action name="MediaState">

 <label>

 <canonical>unknown</canonical>

 </label>

 <var>3</var>

 </action>

</node>

<node>

 <action name="MediaState">

 <label>

 <canonical>none</canonical>

 </label>

 <var>4</var>

 </action>

</node>

 </node> <!--media state-->

 </node> <!--info-->

 </node> <!--dv-->

</gadget>
Appendix B: System Details
The Device Specification Language.
The Device Specification Document is a rooted tree describing a particular device. The document can be specified by a speech interface designer, or it can be automatically derived from a PUC Device Specification Document. The specification, like the PUC specification, is a document in a language defined by an XML DTD. The definition of the specification document defines the terms from which the rest of the device behavior is defined. A node in the tree may be actionable. If it is, then there is some associated action that is invoked in the device when the node itself is invoked.

node

Contains:

· zero or more nodes
· and either

· value space, or

· zero or one of

· state variable
· command
· value
· and zero or one labels
state variable

text string corresponding to PUC state variable

command

text string corresponding to PUC command

value

text string corresponding to PUC value

value space

name of a built-in value space such as integers, time-of-day, etc...

labels

Contains: canonical label and zero or one aliases

label

Contains: a text string, one or more pronunciations, zero or more recordings

aliases

Contains: one or more labels.

Relationship with PUC Specification Language

The relationship between the Application Specification Document and the PUC Application Specification Document.

· PUC groups become nodes.

· PUC commands become leaves of their group nodes.

· PUC state variables become nodes of their group nodes.

· The values (or value spaces) of state variables become nodes of their state variable nodes.

· For state variable nodes that are discovered to be modes, those nodes are moved to be placed under the variable node, in place of the value that they depend on. A mode is defined thus: If, for each value of a state variable, exactly one node has a dependency on that variable being exactly that value, then all of those nodes are mode nodes of that state variable.

· For siblings that share a common initial word string, a new node is created with the common substring as its label and all of the siblings are made children of this new node.
The Interface Language.
Turn-taking
Since there is one user per interface, the interface expects a single utterance at a time. James may confirm what it heard. If the utterance was a query, James will answer the query. In other cases James may itself ask a question of the user. In the case of commands and requested state variable changes, James may confirm what it heard, but it will execute the command simultaneously with and regardless of the confirmation. In all of these cases, the user is not obliged to listen to the entire response, and may barge-in with the next utterance. When James has detected a barge-in, it terminates the current response (but not the corresponding actions).
Focus
There is always a current node, which is always an internal node, and which we call the focus. Initially the focus is the root of the tree. The focus moves to the lowest valid node on the path to the last path used.
Keywords
9 keywords (with aliases) are defined:
1. hello-james

2. options

3. where-am-i, where-was-i

4. go-ahead, ok

5. status

6. goodbye

7. what-is, what-is-the

8. how-do-i

9. more

Path

A path is a list of nodes, where each node in the list is the ancestor of the following node. In a user utterance, also called an utterance path, the head is the first thing said in the path and the tail is the last thing said in the path. For example, in stereo cd stop, stereo is the head and stop is the tail. The focus also has an implicit path, which is called the focus path. The focus path is always the path from the root to the focus. For example, if the focus were volume-down, the focus path would be James, stereo, volume, volume-down.
Understood utterances
User utterances fall into 6 categories, where path is a list of one or more nodes where each node is the ancestor of the next node in the path.
1. session management (hello-james/goodbye)

2. query (what-is path/status)

3. help/exploration/implicit navigation (how-do-i.../options/path options)

4. invocation/specification/implicit exploration/navigation (path)

5. list navigation (more)

6. orientation (where-am-i)

Session Management
A session is an interfaces span of time over a device. It is initiated by invoking a path that resolves within an device’s specification. The session is terminated either with the goodbye keyword, or by invoking another session, or by a session timeout. For a single interface, sessions are non-overlapping. During the time in which no session is active, the interface will quietly wait for the hello-james keyword. The control keyword may be replaced with a button in a push-to-talk setup.
User: blah blah blah...
System: ignoring user
User: hello-james
System: stereo, digital camera
User: stereo
System: stereo here
User: goodbye
System: goodbye
User: blah blah blah...
System: ignoring user
Query
Nodes may be queried by specifying the keyword what-is followed by the node name or alias. An appropriate response is given. Responses can be categorized based on whether the node is associated with a state variable, command, value, value space, or none of these. what-is-the is a synonym for what-is.
state variable

If the node is associated with a state variable, the response to its query is the value of the state variable.
User: what-is-the am frequency
System: the am frequency is five hundred thirty
User: what-is random
System: random is off
User: what-is-the stereo
System: the stereo is tuner
command
If the node is associated with a command, the response to its query is a description of what the command is/does.

User: what-is next-track
System: next track skips to the next track
User: what is kabc
System: kabc is a country western station

value

There are several reasonable options in this case. Four are described below.
Option 1: If the node is a value, the response to its query is "node is a value of {the node's parent}".
Option 2: If the node is a value, the response to its query indicates whether it is the current value of its parent (e.g. "node is selected/unselected").
Option 3: One cannot query nodes, i.e. its just not in the grammar.
Option 4: Some kind of null response like just repeating the canonical name of the node.

User: what is unset
System: option 1: unset is a value of alarm
System: option 2: unset is selected
System: option 3: i'm sorry, i didn't understand what is up sleep
System: option 4: unset

value space

If the node is a value space, such as time of day or integers, it seems highly unlikely that a user will even ever phrase such a question (e.g. "what is 12:30" and "what is three"), so it seems best to just not include those phrases in the grammar.
none

If the node is not associated with any of the above, a query returns a description of the node, which can be inherited from the PUC group description.

User: what is x10
System: assuming there's no description here: no information available
User: what is alarm clock radio
System: alarm clock radio is an am fm radio with a clock and wake up alarm system with ten programmable alarms
User: what is radio volume
System: radio volume control the volume of the radio but not the alarm buzzer
Status is equivalent to walking the tree from the root to the focus, and executing a query on that node.
focus is mode
User: status
System: cd, track is one, pause
or, given a different set of states
System: am, frequency is eighty eight point five
Help/Exploration/Implicit Navigation

The how-do-i keyword can be used, followed by a natural language description of what the user wishes to do with the device. The system may uses keyword spotting and shallow statistical techniques to classify the utterance as belonging to one of a short list of nodes. If system cannot confidently classify the utterance, then some appropriate response is returned, e.g. "I'm sorry, I don't know how to ..., I can do x, y, and z". If the system can classify the utterance, then it lists the appropriate nodes, and the user may pick from them.
User: how do i copy a tape
System: this system doesn't support tapes
User: how do i pick a bale of cotton
System: i'm sorry, i didn't understand that
User: how do i set the station
System: to set an alarm, say alarm, to listen to the am band, say stereo am, to listen to the fm band, say stereo fm

The options keyword may follow a path, or it may be invoked on its own. If following a path, the focus moves to the ancestor of the path before the options are enumerated. The options keyword will list the children of the focus, followed by the siblings of the focus, followed by the uncles of the focus, followed by the great-uncles of the focus, and so on, until all of the immediate children of the entire path from the root to the focus are included. This is returned as a list with soft breaks between each generation.

User: control alarm clock radio options
System: alarm, clock, radio, sleep...
User: more
System: x10, stereo
User: stereo options
System: while turning stereo on: off, am, fm, auxiliary, cd...
User: am
System: while switching to am: am
User: options
System: frequency, kabc, k123...
User: more
System: off, fm, auxiliary, cd...

Invocation/Specification/Implicit Exploration/Navigation

Paths are processed thus:

1. The head of the path is disambiguated. If the head is ambiguous with respect to the focus, then each unambiguous path from the focus path is returned.

focus is currently James
User: play
System: you can say, stereo cd play, digital camera play mode play
User: station
System: you can say, stereo tuner am station, stereo tuner fm station
2. If the head is not a child of the focus, the child of the path of the focus becomes the focus and is invoked.

	focus
	path head
	new focus and invoked node

	James
	am
	stereo

	James
	play mode
	digital camera

	cd
	play
	(status)

	repeat
	single track
	single track

	tuner
	station
	(radioband)

3. This step is repeated until the head is the child of the focus.

4. If the head is the child of the focus, it becomes the new focus, is invoked, and popped off of the list so that the next node in the list becomes the head. The entire process repeats until the list is empty. When the list is empty, the last node popped off of the list is the result of the path, and if the path is being used in a query or exploration option, it is the node that is supplied there.

Invoking a path is equivalent to invoking the nodes of the path in successive order, with two exceptions: one, if a node in the path is not active when it is invoked, the path get truncated after that node; and two, all responses to node invocation except for the terminal node are suppressed.

System behavior is determined by the association of the node.

state variable

The system responds by listing the node's children, and paraphrasing the node each time.
command

The system executes the command and paraphrases the command name. If the command cannot be executed or fails for some reason, a failure earcon is returned along with an explanation. An earcon is a short, possibly nonverbal sound meant to convey some information and analogous to an icon in a graphical user interface.
User: next
System: while switching to next track: next
User: next
System: already on last track: sorry couldn't complete next action
value

The system sets the node's parent to the value invoked, and returns "parent is node".

User: stereo auxiliary
System: while turning the stereo on and switching to auxiliary: auxiliary
User: cd
System: while switching to cd mode: cd
User: play
System: while playing a cd: play

value space

The system sets the node's parent to the value invoked, and returns "parent is value".

User: fm eighty eight point five
System: while switching to fm and setting the frequency to 88.5: frequency is eighty eight point five

none

If the node is not associated with any of the above, the system lists the children, paraphrasing the node name each time.

List Navigation

Many of the system responses will be lists of items. The system will get a list of items, potentially with embedded soft-breaks. Then it must take that list and calculate actual list breaks from the soft-breaks and some general listing constraints. One possible constraint is that list lines must be no less than three items, and no more than six items. The system will make actual breaks in the list that try to accommodate the general constraints while also trying to make as many soft-breaks, actual breaks and as few newly introduced breaks as possible.

Once the list of items is grouped into a list of lines. The first line is returned to the user followed by an earcon that indicates there are more items to items to listen to. We call this earcon the ellipsis earcon, and it follows every response in which more information is available. The user at this point may ignore the rest of the list, or she may say the keyword more to hear the next line. If more is said when there are no more lines, some kind of error is returned (e.g. "no more items").

User: radio band am options
System: bracketed list [frequency, kabc, k001, k002, k003, k004, k005][fm][off, volume][alarm, clock, sleep][x10, stereo] rendered: frequency, kabc, k001, k002...
User: more
System: k003, k004, k005...
User: more
System: fm, off, volume...
User: more
System: stereo, digital camera, james
Orientation

The keyword where-am-i is used to discover where in the virtual device space the interaction is. It returns "focus {soft-break} {path from root to focus}".

User: what is the disc
System: the disc is three
User: where am i
System: stereo cd disc
Recognition Error Handling

If the system receives an utterance that cannot be fully parsed, it prepends it's response with the confusion earcon. If there was no partial parse, the system responds with sorry, I didn't understand {what it heard}. If the system receives a partial parse, then it paraphrases what it heard after emitting the confusion earcon. It will not, however, perform the action specified unless the next utterance is the go-ahead keyword.

Appendix C: Learning Experiments

An experiment to determine the parameters of the learning curve would be similar to the one proposed in the experiments section of this proposal, except that instead of offering unlimited and personal training to the users, training would be regulated and measured via the documents described below.

The Task Document. The task document will be a serial document. An introductory section will be first. Embedded in the introductory section will be two links, one to the first task and one to the training document. An explanation will be provided in the introductory section that once one of these links is chosen, a timer will start, and that the speed with which the user completes the tasks in the task document will determine the amount of the payment for completing the tasks. The user will be told that he or she will be able to freely navigate between the remainder of the task document and the training document, and that there is no penalty for viewing the training document, with the caveat that any interaction with the system will be put on hold while the training document is displayed. That is, the system will simply not listen to the user if the interaction document is being displayed (the console will be in a kiosk browser mode to enforce this condition). Thus training will be an off-line but readily available resource.

The Training Document. The training document will be a hypertext document. The main page will consist of only a list of keywords, and one sentence summaries of a few interaction rules and system behavior comments. Each keyword, and each rule and comment will contain a hyperlink to more detail or perhaps some other related information, and those documents may also have links to yet even more detailed information. The user will be told that he or she is not necessarily expected to read the entire hypertext training book, but should feel free to read as much as necessary. The user will be able to navigate freely among the training documents. Each page of the training document will have a link to the main page, and also a special link that takes them back to wherever they last left off from the task document. This link will also allow the user to proceed with the interaction. The time and duration spent on each page will be recorded for analysis.
JAMES

Device

Specification

Adapter

Adapter

Device

Device

Festival

Dialog Unit

Sphinx

Phoenix

Controller

Device

Specification

Grammar

Language Model

Dictionary

James

Stereo

Digital camera

(mode)

<turns stereo on>

x-bass

volume

off

on

off

volume up

volume down

tuner

auxiliary

CD

(radioband)

seek

AM

FM

frequency

station

#

WXXX

frequency

station

#

WXXX

forward

backward

(status)

repeat

disc

track

next track

last track

random

play

stop

pause

off

single track

single disc

all discs

#

#

on

off

control

info

Play mode

play

stop

fast fwd

rewind

record

pause

Other devices…

Device mode

Media type

camera

VCR

Digital video

unknown

VHS

none

(mode)

step

forward

backward

Figure 2. functional specification diagram for two devices.

KEY: Dark gray boxes: unlabeled nodes

 Heavy borders: action nodes

 White boxes: read-only nodes

PAGE

[image: image5.jpg]

[image: image6.jpg]=z ?
S CrII BT
j]
e,gc«ﬂéﬂf @&

56 GNETT 15

