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Abstract

This paper introduces an engineering-oriented approach towards dialogue modelling. While
dialogue models in existing dialogue systems usually are manually coded, or at least the
data on which they are based is manually labeled, we investigate the possibility of
learning dialogue models from a large set of example dialogues using real data in a spoken
dialogue system. We assume the dialogue system to be front end to a knowledge based
system (kbs) . In this scenario, different modules like the kbs itself, lexicon, word
recogniser, parser etc. provide information that may contribute to the recognition of
dialogue acts and to the generation of system's reaction. Information in our scenario may
be ambiguous, probalistic or have a complex structure, and our learning algorithm must
be able to process it. Implications on the learning algorithm from these demands are
discussed.

Unlike other approaches that use machine learning for learning classification rules for a
set of predefined classes from some discourse theory, we want to learn an application
specific classification schema from speech data using conceptual clustering. The reason
for this is that all theories have their strengths and weaknesses, and combining all of
them seems to be overkill for the limited variability of dialogues in a specific application
(the engineering viewpoint). Additionally, we expect some new insight to the importance
of different discourse phenomena and perhaps results impose some changes to existing
theories.

1 . Introduction
In this introduction we motivate our approach, define a learning task and choose an
appropriate learning algorithm. Section 2 investigates different knowledge sources in an
spoken dialogue system and section 3 points out their implications on the learning
algorithm. Finally there are some concluding remarks.

Dialogue modelling for natuaral language interfaces has become a topic of substantial
interest during the last decade. It combines work on discourse analysis and speech acts
with domain tasks and human computer interaction. All of the work on dialogue presumes
the existence of a set of units, often called dialogue acts which are building blocks for a
dialogue model.
Some work tries to define a set of dialoue acts from a theory of action, contributing to
models of mutual knowledge [Coh87, Coh90, Faw89]. Bunt [Bun94] distinguishes
dialogue acts contributing to different dimensions of context, like linguistic, semantic,
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physical, social and cognitive context. Others dealing with dialogues pay more attention to
exchange structures [Wac86, Jön91], whereas some theories made for text structuring, like
the rhetorical structure theory (RST) [Man88] do not cover interaction [Moo92]. Many
researchers argued that the domain and task structure has an important impact on the
discourse structure and thus integrated them into their theories and systems [e.g. Woo84,
Gro86,  Lam91]. There is some work on integrating different structures into a unique
framework [Faw92, Dar94]. The recognition of discourse structures from linguistic
structures again is a proper subject of research [Hir93, Lit94, Kno91].
Two approaches for representing dialogue or discourse structure are competing: plan-based
models [All82, Lit85, Car91, LaMöl91, Ram91a, You94, Chu94] and discourse grammars
[Bil91, Faw89, Bun89, Ste93].
Our prior work has contributed to the engineering of dialogue structures starting out from a
knowledge based system [Möl90, Möl92a, Möl95a]. Other engineering-oriented work
contributes to dialogue acquisition techniques [Jön93].

1 . 1 . Some problems
When modelling a dialogue for the use in an application's natural language interface, we
have experienced, that all these theories provide some means for structuring a dialogue, but
none of them well fits to what is needed in a specific application environment [c.f. Jön93].
All theories fail to explain some phenomena, and we have shown in prior work, that there
are even domain-specific structures constituting these kinds of domain-specific dialogues
[Möl92b, Ram91b]. Most existing dialogue system engineers thus develop their own set of
dialogue acts [c.f. Mai94].
Additionally, labeling dialogues is a very time-consuming work, it requires substantial
expertise in linguistics and domain knowledge and it usually does not provide
reproduceable results, because the classification of a dialogue into units offered by those
theories is sometimes ambiguous [c.f. Hir92] and depends on understanding and
interpretation by the labeling person.
A further throw-back for the integration of NL frontends into application systems is that the
acquisition of appropriate dialogues itself is a complex and long lasting task. Either natural
occuring dialogues have to be recorded, transcribed (lots of work!) and afterwards be
restricted to a set of possible interactions which are supported by the application system.
Alternatively, one may adopt some Wizard-of-Oz experiments to acquire dialogues
[Jön93], but this work is restricted to written language. Transcriptions of phonetic and
prosodic data are far beyond the possible effort in a dialogue engineering task, thus there is
a loss of certain information in analysing transcribed dialogues.

1 . 2 . Steps towards a solution
Notably when thinking about modelling a dialogue for a spoken dialog frontend, we should
consider all those information sources which are present in speech processing system.
As a first test environment we used data from the VERBMOBIL project and ascribed
rhetorical relations to textual transcriptions. It turned out, that they are not always
applicable, notably for interaction phenomena, e.g. when motivating turn shift etc. We
compared applicable  relations with prosodic transcriptions and discovered correlations
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between RST relations and prosodic events and topic shifts, thus supporting the results
given in [Hir92].
The question raised, whether it makes sense to develop a new theory that integrates
different structures. Our previous work, where we have been confronted with domain-
specific structures were one objection to this idea.
Another objection to a new theory was our goal of making dialogue modeling engineerable,
i.e. to minimise the effort to build a dialogue model. Litman has successfully shown, that
machine learning makes it easy to induce classification rules for cue words. Thus, easy use
allows to process larger amount of data which raises accuracy compared to manually
abstraction of rules [Lit94, c.f. also Sie94]. Similar results have been reported on discourse
level information extraction [Leh94]. One possible approach for building a dialogue model
under the objective of efficiency is to use similar supervised machine learning techniques to
classify data from dialogues into classes each of which corresponds to some previously
known unit from one of the dialogue or discourse structuring theories.
Even if supervised learning would lead to good recognition of units from existing discourse
or dialogue theories, we would be confronted with the problem of combining different
theories in a way, that we are able to build up a dialogue model which considers interaction
aspects as well as discourse structure. As we are directly interested in classes of these
combinations1, we persue another approach.
We will try to abstract new domain and task specific classes of dialogue units directly from
data, that are available in a speech processing system. To do this, we need some conceptual
clustering algorithm that does unsupervised learning of dialogue units. First tests with the
COBWEB algorithm [Fis87] applied to the above mentioned transcribed data from
VERBMOBIL were promising and resulted in some clusters according to RST relations.
However the learning environment, i.e. the analysis of available data and their preparation
as well as their integration into the learning algorithm was not well designed. The design of
the learning task and related problems for the learning algorithm will be the topic of this
paper.

1 . 3 . Definition of the learning task
From spoken dialogues we would like to learn dialogue models. A first not very striking
idea is to present entire dialogues as cases to a learning algorithm. But being able to classify
entire dialogues will not help us building a dialogue system, in which we have to decide,
what to answer to a question etc. We should look for smaller units, that might correspond
in some way to dialogue acts. A very natural smaller unit is the dialogue turn, i.e. the
utterance of one speaker before the turn changes to the dialogue partner. Our task is
therefore to learn dialogue acts from turns and to assemble them to a dialogue model later
on. For the reasons pointed out above, we do not want to use dialogue acts or some other
units from an existing structuring theory and use them for learning a classification tree.
Instead we would like to use learning algorithm for inventing new classes of dialogue
structuring units and how these classes could be characterised in terms of data that are
available in a spoken dialogue system.

1 We intend to follow the suggestion of Litman: "Another advantage of the machine learning approach is
that the ease of inducing ruleset from many different sets of features supports an exploration of comparative
utility of different knowledge sources"
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1 . 4 . Requirements to and choice of a learning algorithm
A very nice overview to classify learning algorithm has been given by Fisher[Fis85].
Supervised learning – as it is done by most learning algorithm – is out of the question,
because – again – we deliberately will not rely on an existing theory of dialogue structure.
Our learning problem is that of aggregating turns or with other words, we do concept
formation for new classes of dialogue structuring units.
As we know from many parts of natural language processing different information
channels (like topicalisation (syntax) and accent (prosody)) are often combined to express
things. This pleads against using monothetic learning algorithms, because they would
classify along a single attribute. Instead, we have to use one of the rare polythetic learning
algorithms.
Another classifying feature for learning algorithms is the kind of the result, that we achieve.
Does learning result in a set of mutually exclusive clusters, a classification tree or a set of
clusters which might overlap? At a first glance, we would prefer a learning algorithm that
produces a hierarchy, because we will get information about the most important classifying
attributes. This may lead to some new insight in dialogue modelling. On a second glance,
when thinking about different dialogue structuring factors, it might be useful to have
multiple hierarchies with overlapping clusters.
There are not many unsupervised learning algorithms working polythetic. The demand for
a hierarchy and directly inspectable classifying attributes rules out some neural network
algorithms that do unsupervised learning like Kohonen networks [Rit89, Koh84],
competitive learning [Rum80, Gro87] or ART [Car88, Car90]. One of the best known
symbolic machine learning algorithm, that fulfills our criteria is COBWEB [Fis87] or its
decendent CLASSIT [Gen89], respectively. Thus a COBWEB-like algorithm is the basis
for our further work. There are some improvements concerning overlapping clusters and
multiple hierarchies, which will be considered [Mar94]. We shall now have a look at the
data from which we want to learn.

2 . Available data in a speech dialogue system
This sections introduces different data sources in a speech dialogue system that might
provide useful information for our task. All data that are available from other modules like
syntax, semantics, prosody, word recognizer, lexical semantics and domain knowledge
should be considered and their possible contribution will be investigated.

2 . 1 . Using domain knowledge
The structure of the task and of the domain knowledge are major coherence creating factors
in goal-oriented dialogue [Möl90, Ram91b, Möl95a]. Knowing these structures is useful
for the recognition of a dialogue act as it strictly reduces the search space.
In contrast to the dialogue models that we persue, domain-independent approaches to
dialogue modelling tend to be less specific and therefore their recognition guarantees less
accuracy. Domain-independent dialogue act recogniser can exclusively be based on
linguistic phenomena and do not consider the specificity of a domain-specific sublanguage
[Gri86, Leh86].
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A domain and task model is an integral part of most kbs. No additional modelling has to be
done to use knowledge about the domain and the task for the dialogue module, because it is
already available in the system environment.
Task knowledge is typically represented using goals and plans, domain knowledge in
natural language systems as well as in some other knowledge based systems is represented
by terminological logics. A system that clearly distinguishes different knowledge level and
allows different well investigated representations is KARL [Ang91, see also Fen94].

2 . 2 . Data from the word recogniser
A first step in processing written language is to extract words from character strings and to
access a lexicon. When processing speech, a word recogniser analyses a signal using
pattern recognition techniques and provides word hypotheses or graphs of word
hypotheses. Word hypotheses are probalistic and may be ambiguous, but they are certainly
one of the basic information source even for recognising dialogue acts. Figure 1 shows the
'best path'-output of a word recogniser system [Alt95] with a logarithmic acoustic score
and time intervals that are retrained by forced alignment.

310 460 ja -76.611984

460 800 prima -82.753677

800 1010 dann -87.347595

1010 1230 lassen -78.228905

1230 1380 Sie -74.399940

1380 1470 uns -83.025497

1470 1590 doch -80.284233

1590 1650 noch -87.236458

1650 1780 einen -75.157867

1780 2060 Termin -83.896736

2060 2580 ausmachen -80.108749

2580 2760 wann -81.232422

2760 2860 w"are -87.095200

2860 2970 es -78.521584

2970 3210 Ihnen -74.976280

3210 3330 denn -84.806023

3330 3700 recht -70.472916

Figure 1: Output of a word recogniser

2 . 3 . Prosodic data
Besides word recognition, prosodic features like accent or pause can be deduced from the
speech signal, too [Nöt91]. Prosody also yields a sentence melody, but this is of less
importance in our context. By intonation accents are set and thus important information is
stressed and less important things are put to background [Bat93]. Semantic units are often
marked by pauses at the beginning and at the end (see Figure 2). These properties are
supposed to be clues to understanding of spoken language, whereas in written language
properties like correct syntax and more elaborate formultion have to compensate the
function of prosody.
In Figure 2 you see the result of a manual prosodic transcription following [Pie80, Uhm91,
Sil92, Fér93, Rey94]. In contrast to those certain symbolic data, the output of a accent
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recognising system (see Figure 3, [Str94]) provides time intervalls in which an accent
occurs with some confidence value.

<P> ja prima     dann lassen Sie uns   doch noch einen Termin

        L+H* H-H%       H*           L-                  H*

             B3                      B2

        PA              NA                               PA

ausmachen     <P> wann w"ar's Ihnen denn recht     <P> <#Klicken> <P>

          L-L%                  H*         L*  H-H%

          B3                                   B3

                                NA         PA  ?

Figure 2: Result of a manual prosodic transcription

  590  --    690 ms accent, length  100 ms, confidence 0.471084

 1010  --   1130 ms accent, length  120 ms, confidence 0.650081

 1330  --   1430 ms accent, length  100 ms, confidence 0.561492

 1690  --   1780 ms accent, length   90 ms, confidence 0.330556

 1840  --   2070 ms accent, length  230 ms, confidence 0.477964

 2300  --   2470 ms accent, length  170 ms, confidence 0.400369

 2650  --   2750 ms accent, length  100 ms, confidence 0.442033

 2780  --   2890 ms accent, length  110 ms, confidence 0.551336

 2960  --   3490 ms accent, length  530 ms, confidence 0.410003

Figure 3: Output of an accent recognizer2.

2 . 4 . Lexical semantics
As most natural language processing systems, we assume having a lexicon. Of course it
should include phonological and syntactical properties for word recognition as well as for a
syntactical parser. Additionally our lexicon contains lexical semantics (like in [Sow92]) and
it makes sense to suppose that there is a consistent correspondence between lexical
semantics and concepts in the domain model. Lexical semantics is an important information
source for recognising dialogue acts. Figure 4 shows a canonical graph which is a
conceptual graph contraining the structure of a concept, here appointment. Different
relations connect concepts like time, date and place to the appointment concept. The agents
of an appointment are at least two persons, expressed as a set of persons with a quantity of
at least two.

[APPOINTMENT]-

(AGNT)->[PERSON: {*}]->(QTY)->[NUMBER:@>=2]

(PTIM)->[TIME]

(PDAY)->[DATE]

(LOC)->[PLACE]

Figure 4: A canonical graph for an appointment

2 H* is a high level accent, L* is a low level accent, % marks the end of a phrase, B3 are phrase
boundaries, PA are phrase accents and NA are secondary accents
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2 . 5 . Syntax
Spoken language usually does not consist of well formed sentences [Web95], thus a
speech dialogue system cannot rely on syntactically sound sentences. Nevertheless, smaller
units like nominal phrase may contribute a little. Compared to dialogue systems processing
written natural language, syntax is less important for spoken dialogue systems [Sch92,
Sch93].

2 . 6 . Semantics
As far as parts of a sentence have been syntactically analysed, lexical semantics could be
joined to larger units (c.f. [Sow88]). By joining more and more units we approach to
understanding an utterance.

3 . Complex data and their treatment within a machine
learning environment
Most machine learning work contributes to algorithms that work with simple nominal
attributes to characterise a case or event. Every attribute may have exactly one value out of a
countable and finite set. Some work contributes to numerical attributes [Mer93]. As we
have seen above, data in a speech dialogue system are more complex and current
algorithms will have to be modified to deal with that complexity. In this section we will
address data characteristics that are problematic to deal within machine learning and indicate
their integration into a learning algorithm.
If we look at the list of useful data, we have to realise, that especially those data stemming
from signal processing modules do not provide certain values but probalistic information
and these data describe some events that are assigned to time intervals. Sometimes data are
not only probalistic but they also allow ambiguity, i.e. different possible solutions at the
same time.
Data stemming from higher processing modules usually have a complex structure, like
parse trees for syntax or semantic networks for semantics.

3 . 1 . Learning from nominal attributes
This is the well known case in most machine learning algorithm. COBWEB incrementally
builds a classification tree and the distiction between subnodes are made from a function
over all attributes (polythetic). COBWEB might use some pruning function and we may
assume a past-performance prediction.

3 . 2 . Learning from probalistic data
In a spoken dialogue system we do not deal with certain data as we have shown in Section
2. We will now address the question, what it means for a learning algorithm if we present a
case which has an associated confidence level. I would supply the idea, that a case or event
presented to a machine learning algorithm with one attribute having a probability value
should not be treated as an entire case, that has to be classified, but depending on the
probability value a half or a quarter case, or whatever value is given. This has some
influence on the classification function as well as on the past-performance prediction.
Within COBWEB's past-performance prediction "for each attribute and node, a count is
maintained of the number of times the attribute was correctly predicted at the node (i.e.,
correct-at-node counts) during training."[Fis89] We have to change the number of times to
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the sum of the confidence values for all those cases, where the attribute was correctly
predicted.

3 . 3 . Learning with ambiguous data
Ambiguous data means, that one case's attribute may have any yet unknown value out of a
set of values. Classification of such a case may end up in different pathes through the
classification tree, depending on the value. If the ambiguity is expressed with some
probabilites for each value, we could just compile out the ambiguity creating a set of more
or less probable cases and present them to the learning algorithm.
Proceeding this way raises the question, whether ambiguous data should be split all over
the classification tree. Ambiguity stems from some regular processing of speech, and the
same rules will always produce the same ambiguity from the same data. Thus splitting them
up to different branches will not improve our classification system, as it reduces prediction.
A more promising approach is that propagated in the system OLOC [Mar94] supplying
multiple overlapping hierarchies.

3 . 4 . Learning from attribute streams
A further very important feature of processing speech data is, that the discription of a turn
consist of a list of events (words, prosodic events etc.) which are ordered by time. Before
investigating simultaneous events and time intervals, we will look at the consequences of
having an open ended list of equal attributes (e.g. words) and an order over these
attributes. At this point we are not interested in learning from streams and predicting a
future event, but we have to face the task to transform these data to a representation usable
by the learning algorithm. Multiple entries of one attribute can be handled by COBWEB, as
it yet stores probabilities of different attribute values in the same way. The order of the
events in a data stream could be represeted by a binary relation successor, which might be
associative or show some degrading associativity. To keep the attribute space tiny, we will
first try to get along with exclusively adding a successor relation between two subsequent
events of an attribute stream.

3 . 5 . Learning from data with associated time intervals
Having data that are true only in an interval of time is very common in linear tasks like
speech processing. If we would like to be able to consider correlations between
simultaneous events as some information to learn, we need some kind of time logic, e. g.
like that for time intervals [All83]. The problem here again is, that when introducing the
whole set of time relations, the attribute space will grow enormously when all relations
between all attribute events will be compiled out. We would thus restrict ourself to regard
simultaneous, i.e. overlapping events, only.

3 . 6 . Learning from structured data
Structured data that we are confronted with from knowledge representation for domain
knowledge and semantics can be assumed being some kind of terminological logics, which
are widely used in natural language processing. Even inference steps can be declaratively
described using the same representation formalism [Möl95, Kes95]. We will rely on
Conceptual Graphs as a representation formalism, which do not make a distinction between
terminilogical and assertional knowledge. There is some work that addresses learning of
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terminological descriptions from case descriptions [Kie94, Coh94], but our problem is the
other way around. We have to deal with terminological descriptions as attributes and we
have to evaluate correlation on these descriptions. When using Conceptual Graphs, there
are fast algorithms to evaluate subsumption between two graphs [Ell93]. Subsumption
could be seen as a simple correlation criterion over structured data as it comprises
subsumption of individuals to classes as well as the subsumption of more specific
individual graph to more general ones. Up to now, we do not judge an exact measure of
correlation being useful, like having a function, that counts the number of different
concepts, because this would imply semantic correspondence being countable.

4 . Summary
Our approach to learning dialogue models is conducted by the idea of dialogue engineering
in the context of a spoken dialogue system. In contrast to all other recent applications of
machine learning to discourse or dialogue phenomena [Hir92, Lit94, Sie94, Leh94], we
will not rely on hand-labeled linguistic data, but only on data which can be automatically
generated in such a system. This has two positive effects, first to get rid of the enourmous
effort to label dialogues, and as a consequence of this second it is possible to use very large
amounts of data for learning. For domain and task knowledge we assume the existence of
an appropriate background knowledge based system.
A second difference to all other known approaches using machine learning for discourse or
dialogue modelling, is that we will not rely on some given discourse theory with a given set
of classes of dialogue acts or whatever units. Instead, we will use machine learning to
discover – may be domain-specific – classes from a set of example dialogues. These
classes are based on data that are available in a dialogue system environment, and thus our
dialogue model is directly applicable to this system. Additionally, we expect some insight
on the importance of different dialogue and discourse structures and their cooperation.
We first presented an analysis of requirements to the overall task and to the learning
algorithm, then we analysed available data and their implications and requirements on the
learning algorithm. From first tests there is some evidence for a success of this approach,
but an implementation and validation is subject of near-future work.
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