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1 Introduction

SALT (Speech Application Language Tags) is an extension of HTML and other markup languages (cHTML, XHTML, WML)
which adds a spoken dialog interface to web applications, for both voice only browsers (e.g. over the telephone) and
multimodal browsers.

This section introduces SALT and outlines the typical application scenarios in which it will be used, the principles which
underlie its design, and resources related to the specification.

1.1 Overview

SALT is a small set of XML elements, with associated attributes and DOM object properties, events and methods, which
may be used in conjunction with a source markup document to apply a speech interface to the source page. The SALT
formalism and semantics are independent of the nature of the source document, so SALT can be used equally effectively
within HTML and all its flavours, or with WML, or with any other SGML-derived markup.

The main top level elements of SALT are:

<prompt ...> for speech synthesis configuration and prompt playing

<listen ...> for speech recognizer configuration, recognition execution and post-processing, and recording
<dtmf ...> for configuration and control of DTMF collection
<smex ...> for general purpose communication with platform components

The input elements <listen> and <dtmf> also contain grammars and binding controls

<grammar ...> for specifying input grammar resources
<bind ...> for processing of recognition results

and <listen> also contains the facility to record audio input
<record ...>  for recording audio input
A call control object is also provided for control of telephony functionality.

There are several advantages to using SALT with a mature display language such as HTML. Most notably (i) the event and
scripting models supported by visual browsers can be used by SALT applications to implement dialog flow and other forms of
interaction processing without the need for extra markup, and (ii) the addition of speech capabilities to the visual page
provides a simple and intuitive means of creating multimodal applications. In this way, SALT is a lightweight specification
which adds a powerful speech interface to web pages, while maintaining and leveraging all the advantages of the web
application model.

SALT also provides DTMF and call control capabilities for telephony browsers running voice-only applications through a set of
DOM objects properties, methods and events.

1.2 Scenarios

Two major scenarios for the use of SALT are outlined below, with simple code samples. For a fuller description of the
elements used in these examples, please see the detailed definitions later in the document.

Multimodal

For multimodal applications, SALT can be added to a visual page to support speech input and/or output. This is a way to
speech-enable individual HTML controls for ‘push-to-talk’ form-filling scenarios, or to add more complex mixed initiative
capabilities if necessary.

A SALT recognition may be started by a browser event such as pen-down on a textbox, for example, which activates a
grammar relevant to the textbox, and binds the recognition result into the textbox:



<xhtm xm ns:salt="urn:schemas. sal tforum org/ 2002/ 02/ SALT" >
</l— HIM. -->

<i nput nanme="txtBoxCity" type="text" onpendown="listenCity.Start()"/>

<I— SALT -->
<salt:listen id="listenCity">
<sal t:granmmar nanme="granCity" src="./city.xm" />
<salt:bind targetel ement="txtBoxCity"
val ue="//city" />
</salt:listen>
</xhtm >

Telephony

For applications without a visual display, SALT manages the interactional flow of the dialog and the extent of user initiative by
using the HTML eventing and scripting model. In this way, the full programmatic control of client-side (or server-side) code is
available to application authors for the management of prompt playing and grammar activation. (Implementations of SALT are
expected to provide scriptlets which will make easier many common dialog processing tasks, eg generic forms of the
RunAsk script below or the RunSpeech script illustrated in section 8.1.2).

A simple system-initiative dialog might be authored in the following way, for example, where the RunAsk() function activates
prompts and recognitions until the values of the input fields are filled:

<xhtm xm ns:salt="urn: schemas. sal tforum org/ 2002/ 02/ SALT" >
</l— HIM. -->

<i nput name="txtBoxOriginCity" type="text" />
<i nput nanme="t xt BoxDestCity" type="text" />

<l— SALT -->
<sal t:pronpt id="askOriginCity"> Were fronf? </pronpt>
<salt:pronpt id="askDestCity"> Where to? </pronpt>

<salt:listen id="recoOriginCity" onreco="procOriginCity()">
<salt:grammar src="./city.xm" />
</salt:listen>

<salt:listen id="recoDestCity" onreco="procDestCity()">
<salt:grammar src="./city.xm" />
</salt:listen>

<I— HTML + script -->
<scri pt>
<! [ CDATA[
function RunAsk() {
if (txtboxOriginCity.value=="") {
askOriginCity. Start();
recoOriginCity. Start();
} else if (txtboxDestCity.value=="") {
askDestCity. Start();
recobDestCity. Start();



}
function procOriginCity () {

txt BoxOriginCity.value = recoOriginCity. val ue;
RunAsk() ;

}

function procDestCity () {
t xt BoxDest City.value = recoDestCity. val ue;

}

11>

</script>

<I— on page load -->
<scri pt ><! [ CDATA[
RunAsk() ;
]1></script>
</ xhtm >

1.3 Design principles

SALT is designed to be a lightweight markup layer which adds the power of a speech interface to existing markup
languages. As such it can remain independent (i) of the high-level page in which it is contained, eg HTML; (ii) of the low-level
formats which it uses to refer to linguistic resources, e.g. the text-to-speech and grammar formats; and (iii) of the individual
properties of the recognition and speech synthesis platforms used by a SALT interpreter. In order to promote interoperability
of SALT applications, the use of standard formats for external resources will be encourged wherever possible.

SALT elements are not intended to have a default visual representation on the browser, since for multimodal applications it is
assumed that SALT authors will signal the speech enablement of the various components of the page by using application-
specific graphical mechanisms in the source page.

1.3.1 Modes of execution

Since SALT uses to implement its execution model the browser environment of the page in which it is hosted, the level of
programmatic access afforded to the DOM interfaces of SALT elements will differ according to the capabilities of those
environments. This notion comes most clearly into perspective when browsers with and without event and scripting
capabilities are considered. These classes of browser are broadly labeled 'uplevel' and 'downlevel' respectively, and one can
think of SALT as running in a different 'mode’ in each class of browser.

Object mode, where the full interface of each SALT element is exposed by the host environment to programmatic access
by application code, is available for uplevel browsers such as those supporting HTML events and scripting modules. Object
mode offers SALT authors a finer control over element manipulation, since the capabilities of the browser are greater. (For the
most part this specification provides illustrations of the SALT objects in object mode. These illustrations typically assume
support of the XHTML Scripting and Intrinsic Event Modules, as defined in the W3C XHTML candidate recommendation.)

Declarative mode, where a more limited interface of each SALT element is directly exposed, but for which the key
functionality is still accessible declaratively, is available in downlevel browsers, such as those not supporting event and
scripting modules. Such browsers are likely to be smaller devices, without sufficient processing power to support a scripting
host, or more powerful classes of device for which full scripting support is not required or desired. In declarative mode,
manipulation of the DOM object of SALT elements is typically limited to attribute specification and simple method calling
from other elements. As will be seen, such manipulation can be performed through bind statements in the SALT messaging
or input modules, for example, or by other browser means if supported, e.g. the declarative multimedia synchronization and
coordination mechanisms in SMIL 2.0.

1.3.2 Dynamic manipulation of SALT elements

In object mode client-side scripts are able to access the elements of the SALT DOM. For this reason, it is important that
SALT implementations address the dynamic manipulation of SALT elements. For example, client-side script may be used to
change the value of an event handler:

<salt:listen id="listenl" onreco="regul arLi stenFuncti on">



</salt:listen>

<scri pt ><! [ CDATA[
i stenl. onreco="speci al Li stenFunction";
]1></script>

This is a well-known execution model with HTML and many other markup/script models. SALT implementations should
address the probability that advanced dialog authors may dynamically reconfigure the objects of SALT just before a call to
execute them.

1.3.3 Events and error handling

Each of the SALT elements and objects specified in this document defines a set of events associated with the functionality
of the element. For example, the onreco event is fired on a <listen> element when the speech recognition engine
successfully completes the recognition process. The asynchronous nature of eventing in this environment means that
applications will typically follow an event-driven programming model. A single textbox, for example, could be updated by
values at any time from speech or GUI events. Dialog flow can be authored by triggering dialog turn selection scripts on the
basis of such events.

Each SALT element also specifies an onerror event, which when fired signifies a serious or fatal platform exception. The
exception updates the element with an associated code in the status property that allows the application developer to decide
what the best course of action is for the platform error that is thrown.

The event handler examples in the document assume that object mode browsers support the HTML event mechanism as
implemented in Microsoft's Internet Explorer (v5+) browser. The SALT Forum is also monitoring W3C progress on defining
DOM Level 2 events. For an illustration of the IE event model and comparison with the emerging W3C DOM Level 2 event
model, see section 10.2.2.1.3.

1.4 Terms and definitions

Term Definition

Downlevel browser | A browser which does not support full eventing and scripting capabilities. This kind of SALT browser
will support the declarative aspects of a given SpeechTag (i.e. rednering of the core element and
attributes), but will not expose the DOM object properties, methods and events to direct
manipulation by the application. Downlevel browsers will typically be found on clients with limited
processing capabilities.

Event bubbling / This is the idea that an event can affect one object and a set of related objects. Any of the

Event propagation potentially affected objects can block the event or substitute a different one (upward event
propagation). The event is broadcast from the node at which it originates to every parent node.

Mixed Initiative A form of dialog interaction model, whereby the user is permitted to share the dialog initiative with

the system, eg by providing more answers than requested by a prompt, or by switching task when
not prompted to do so. (see also System Initiative.)

NLSML Natural Language Semantic Markup Language Language. W3C specification for representing the
meaning of a natural language utterance and associated information. At the time of writing, this
specification is at early Working Draft status. The latest version may be found at
http://lwww.w3.org/TR/nl-spec/. See also SAP| SML.

SAPI SML SAPI Semantic markup language. The XML document returned by SAPI 6.0 when an utterance is
determined to be in-grammar. (SAPI SML is a SAPI-specific return format. SALT interpreters are
agnostic to the actual content format of the returned document, provided it is an XML document).
SAPI SML contains semantic values, confidence scores and the words used by the speaker. (It is
generated by script or XSLT instructions contained within the grammar rules.) See also NLSML.

SRGS Speech Recognition Grammar Specification. W3C specification for representating speech
recognition grammars. The latest version may be found at http://www.w3.org/TR/speech-grammar/
SMIL Synchronized Multimedia Integration Language. A W3C proposed recommendation, SMIL

(pronounced "smile") enables simple authoring of interactive audiovisual presentations. See




Term Definition

http://iwww.w3.org/AudioVideo/.

SSML Speech Synthesis Markup Language. W3C XML specification for controlling the output of a prompt
engine. The latest version may be found at http://www.w3.0rg/TR/speech-synthesis.

System Initiative A form of dialog interaction model, whereby the system holds the initiative, and drives the dialog
with typically simple questions to which only a single answer is possible. (see also Mixed Initiative.)

Uplevel browser A browser which supports full event and scripting capabilities. This kind of SALT browser will

support programmatic manipulation of the attributes, properties, methods and events of every given
SALT element. Uplevel browsers will typically be found on ‘rich’ clients with full processing
capabilities.

XPath XML Path language, a W3C recommendation for addressing parts of an XML document. See
http://lwww.w3.0rg/TR/xpath.

1.5 Document structure

The next sections, chapters 2 - 5 describe the core elements of the SALT markup: <listen>, <prompt>, <dtmf> and <smex>.
Each section details the syntax and semantics of the SALT element, including default behavior, and outlines the element
and its associated attributes, properties, methods and events. Chapter 6 describes the CallControl object that may be
available in telephony profiles for the control of telephony functionality. Chapter 7 describes the logging function for the
recording of platform events and data. Chapter 8 contains a number of examples illustrating the use of SALT to accomplish a
variety of tasks. Chapter 9 holds the SALT DTD. Chapter 10 introduces modularization and profiling issues and outlines
SALT/HTML profiles for multimodal and voice-only scenarios.

2 Speech input: <listen>

The listen element is used to specify possible user inputs and a means for dealing with the input results. As such, its main
elements are <grammar> and <bind>, and it contains resources for configuring recognizer properties. listen can also be used
for recording speech input, and its <record> subelement is used to configure this process. The activation of listen elements
is controlled using Start, Stop and Cancel methods. <listen> elements used for speech recognition may also take a
particular mode - ‘automatic’, ‘single’ or ‘multiple’ — to distinguish the kind of recognition scenarios which they enable and the
behavior of the recognition platform.

The use of the listen element for speech recognition is defined in the following sections. The use of listen elements for
recording is described in detail in section 2.8.

2.1 listen content

The listen element contains one or more grammars and/or a record element, and (optionally) a set of bind elements which
inspect the results of the speech input and copy the relevant portions to values in the containing page. It also permits further
configuration using the param mechanism.

In uplevel browsers, listen supports the programmatic activation and deactivation of individual grammar rules. Note also that
all top-level rules in a grammar are active by default for a recognition context.

2.1.1 <grammar> element

The grammar element is used to specify grammars, either inline or referenced using the src attribute. grammar is a child
element of listen. At least one grammar (either inline or referenced) must be specified for speech recognition. Inline
grammars must be text-based grammar formats, while referenced grammars can be text-based or binary type. Multiple
grammar elements may be specified, in which case each grammar element is considered in a separate namespace for the
purpose of grammar compilation. All the top-level rules of a listen's grammars are treated as active unless explicitly
deactivated.

To enable interoperability of SALT applications, SALT browsers must support the XML form of the W3C Recommendation for
Speech Recognition Grammar Specification (SRGS), http://www.w3.org/TR/speech-grammar/. A SALT browser may support
any other grammar formats. Note: the W3C SRGS specification is currently a Working Draft and not yet a W3C
Recommendation.




Attribut

es:
name Optional. This value identifies the grammar for the purposes of activation and deactivation (see 2.3.4 and
2.3.5). Grammars within the same <listen> element should not be identically named. Note that the use of name
does not enable the referencing of the rules of one inline grammar from another.

src Optional. URI of the grammar to be included. Specification of the src attribute in addition to an inline grammar is
illegal and will result in an invalid document.

type Optional. For externally referenced grammars, the mime-type corresponding to the grammar format used. This
may refer to text or binary formats. Typical types may be the W3C XML grammar format, specified as
type="application/srgs+xml", or proprietary formats such as "application/x-sapibinary". The type attribute permits the
SALT author to signal the format of a grammar resource and determine compatibility before a potentially lengthy
download. However, note that it does not guarantee the format of the target (or inline resource), and platforms are
free to treat the attribute (or its absence) in their own way. If unspecified, the type will default to the common format
required for interoperability.

xmlns Optional. This is the standard XML namespacing mechanism and is used with inline XML grammars to
declare a namespace and identify the schema of the format. See http://www.w3.0rg/TR/REC-xmI-names/ for usage.
xml:lang Optional. String indicating which language the grammar refers to. The value of this attribute follows the
xml:lang definition in RFC3066 of the IETF'. For example, xml:lang="en-us" denotes US English. The attribute is
scoped, so if unspecified, a higher level element in the page may propagate the xml:lang value down to <grammar>
(eg <listen>Y2. If xml:lang is specified in multiple places then xml:lang follows a precedence order from the lowest
scope — remote grammar file (i.e xml:lang may be specified within the grammar file) followed by grammar element
followed by listen element, so for external grammars, it may even be overridden by xml:lang specified within the
target grammar. If xml:lang is completely unspecified, the platform is free to determine the language of choice.

Example referenced and inline grammars:

<salt:granmmar src="cities.xm" type="application/srgs+xm" />
or

<sal t:grammar xm ns="http://ww. w3. org/ 2001/ 06/ gr ammar ">

<gr ammar >
<rul e>
from
<rul eref nane="cities" />
</rul e>
<rul e nane="cities">
<oneof >
<itenr Canbridge </grxm:itenp
<item> Seattle </grxm:itenp
<i tenm London </grxm:itenp
</ oneof >
</rul e>

</ gr ammar >
</sal t: grammar >

The specification of both the src attribute and inline content in the same grammar element will result in an invalid document.

Grammar types

SALT g

rammars are expected to be either context-free grammars (CFGSs), as illustrated above and commonly used today in

command driven telephony voice applications, or N-Gram grammars, as used in larger vocabulary dication and "How can |
help you?"-style applications. Whereas listens of automatic and single mode can be used with CFG or N-gram grammars (or
both), listens of multiple mode will typically use N-Grams to accomplish dictation. (For the listen mode attribute, see section

2.6).

! For an explanation of RFC3066 in terms of HTML and XML, see http://www.w3.org/International/O-HTML-tags.html.
2 xml:lang is a 'global' XML attribute which when placed on an element, says that any human language used in that element
and all elements beneath it, is in the language referred to by xml:lang.




To enable interoperability of SALT applications, SALT browsers that support n-gram recognition must support the W3C
Recommendation for Stochastic Language Models (N-Gram) (http://www.w3.0rg/TR/ngram-spec). A SALT browser may
support any other stochastic grammar formats. Note: the W3C N-Gram specification is currently a Working Draft and not yet
a W3C Recommendation.

In terms of the recognition result, a <listen> using N-Grams will hold the recognized text or the n-best variants in its XML
result structure, which may take the form of a word graph.

2.1.2 <bind> element

The bind element is used to bind values from spoken input into the page, and/or to call methods on page elements. bind is a
child element of listen.

The input result processed by the bind element is an XML document containing a semantic markup language (e.g. W3C
Natural Language Semantic Markup Language or SAPI SML) for specifying recognition results. Its contents typically include
semantic values, actual words spoken, and confidence scores. The return format could also include alternate recognition
choices (as in an N-best recognition result).

To enable interoperability of SALT applications, SALT browsers must support the W3C Recommendation for Natural
Language Semantic Markup Language (NLSML) format (http://www.w3.org/TR/nl-spec/ ). A SALT browser may support any
other semantic markup language. Note: the W3C NLSML specification is currently a Working Draft and not yet a W3C
Recommendation.

Sample W3C NLSML and SAPI SML returns for the utterance "I'd like to travel from Seattle to Boston" are illustrated
respectively below:

<result grammar="http://flight" xm ns:xf="http://ww. w3. org/ 2000/ xforns">
<interpretation confidence="0.4">
<i nput node="speech">
I"d like to travel from Seattle to Boston
</input>
<xf:instance>
<airline>
<origin_city confidence="0.45">Seattl e</origin_city>
<dest city confi dence="0. 35" >Bost on</ dest _city>
<fairline>
</ xf:instance>
</interpretation>
</result>

<SML confi dence="0.4">
<travel text="I"d like to travel from Seattle to Boston">
<origin_city confidence="0.45"> Seattle </origin_city>
<dest city confi dence="0.35"> Boston </dest_city>
</travel >
</ SM.>

Since an in-grammar recognition is assumed to produce an XML document, the values to be bound from that document are
referenced using an XPath query. And since the elements in the page into which the values will be bound should be uniquely

identified (they are likely to be form controls), these target elements are referenced directly with the targetelement attribute.

The binding operation is executed on a successful recognition before the onreco event is thrown, and it raises no events
itself. If it fails to execute or contains errors in content, no operation is performed.

Attributes:



targetelement: Required. The name of the element to which the value content from the recognition XML will be
assigned (as in W3C SMIL 2.0).

targetattribute: Optional. The attribute of the target element to which the value content from the recognition XML
will be assigned (as with the attributeName attribute in SMIL 2.0). If unspecified, defaults to "value".
targetmethod: Optional. The method of the target element which will be called if the bind is executed. Such
methods are presently limited to functions that assume "void" for both the argument list and the return type.
Examples include the submit method of the HTML form object, the click method of the button and the hyperlink
objects, and the start and stop methods of a listen object.

test: Optional. An XML Pattern (as in the W3C XML DOM specification) string indicating the condition under which
the bind will be executed. If unspecified, no condition is applied and the bind element will always be executed on a
succesful recognition.

value: Required. An XPATH (as in the W3C XML DOM specification) string that specifies the value from the
recognition result document to be assigned to the target element.

Each bind directive can have at most one targetmethod and targetattribute attribute. Specification of both will result in an
invalid document.

When multiple bind directives return a Boolean value "true" on their respective test conditions, they are executed in their
document order.

Example:
So given the recognition result of the examples above, the following listen element uses bind to transfer the values in
origin_city and dest_city into the target page elements txtBoxOrigin and txtBoxDest:

<xhtm xm ns:salt="urn:schenmas. sal tforum org/ 2002/ 02/ SALT" >

<formid="fornlravel ">
<i nput nanme="t xt BoxOrigin" type="text"/>
<i nput nane="t xt BoxDest" type="text" />
</fornp

<salt:listen id="listenTravel ">
<salt:grammar src="./city.xm" />

<sal t: bi nd t arget el enent ="t xt BoxOri gi n”
value="//origin_city" />
<sal t: bi nd t arget el ement ="t xt BoxDest "

val ue="//dest _city" />
</salt:listen>

</ xhtm >

This binding may be conditional, as in the following example, where a test is made on the confidence attribute of the
dest_city result as a pre-condition to the bind operation:

<salt:bind targetel ement="txtBoxDest"
val ue="//dest_city"
test="//dest_city[ @onfidence &gt; 0.4]" />

The bind element is also able to call methods on the specified element, so the following example would submit the HTML
travel form without needing any script code:

<salt:bind test="//dest_city[@onfidence &gt; 0.4]"
target el ement ="f ornilr avel "
t ar get net hod="submi t" />



The bind element is a simple declarative means of processing recognition results on downlevel or uplevel browsers. For more
complex processing, the listen DOM object supported by uplevel browsers implements the onreco event handler to permit
programmatic script analysis and post-processing of the recognition return (see 2.4.1) or recording results (see 2.8.4.1).

Further illustrations of the use of <bind> may be found in the sample markup examples in 8.8.

2.1.3 Speech recognition configuration: <param>

Additional, non-standard configuration of the speech recognition engine is accomplished with the use of the <param>
element which passes parameters and their values to the platform. param is a child element of listen.

The exact nature of the configurative parameters will differ according to the proprietary platform used. Values of parameters
may be specified in an XML namespace, in order to allow complex or structured values.

param element
param: Optional. Used to pass parameter settings to the speech platform.

param content

Attributes:
name: required. The name of the parameter to be configured.
xmlns: optional. Specifies a namespace and potentially a schema for XML content of the parameter.

So, for example, the following syntax:

<sal t: param nanme="recoServer">// nypl atform recoServer</salt: parane
could be used to specify the location of a remote speech recognition server for distributed architectures.

Note that page-level parameter settings may also be defined using the <meta ...> element (see 10.2.2.1.5).

2.2 Attributes and properties
The following attributes are supported by all browsers, and the properties by uplevel browsers.

2.2.1 Attributes
The following attributes of listen are used to configure the speech recognizer for a dialog turn.

initialtimeout: Optional. The time in milliseconds between start of recognition and the detection of speech. This
value is passed to the recognition platform, and if exceeded, an onsilence event will be thrown from the
recognition platform (see 2.4.2). A value of 0 effectively disables the timeout. If the attribute is not specified, the
speech platform will use a default value.

babbletimeout: Optional. The maximum period of time in milliseconds for an utterance. For listens in automatic
and single mode (see 2.6), this applies to the period between speech detection and the speech endpoint or stop
call. For listens in ‘multiple’ mode, this timeout applies to the period between speech detection and each phrase
recognition— i.e. the period is restarted after each return of results or other event. If exceeded, the onnoreco
event is thrown with status code -15. This can be used to control when the recognizer should stop processing
excessive audio. For automatic mode listens, this will happen for exceptionally long utterances, for example, or
when background noise is mistakenly interpreted as continuous speech. For single mode listens, this may
happen if the user keeps the audio stream open for an excessive amount of time (eg by holding down the stylus
in tap-and-talk). For a summary of onnoreco status codes, see section 2.4.4. A value of 0 effectively disables
the timeout. If the attribute is not specified, the speech platform will use a default value.

maxtimeout: Optional. The period of time in milliseconds between the call to start recognition and results
returned to the browser. If exceeded, an onerror event is thrown by the browser — this caters for network or
recognizer failure in distributed environments. For listens in ‘multiple’ mode, as with babbletimeout, the period is
restarted after the return of each recognition or other event. Note that the maxtimeout attribute should be greater
than or equal to the sum of initialtimeout and babbletimeout. A value of 0 effectively disables the timeout. If the
attribute is not specified, the speech platform will use a default value.



endsilence: Optional. For listens in automatic mode (see 2.6), the period of silence in milliseconds after the
end of an utterance which must be free of speech after which the recognition results are returned. The speech
recognizer may ignore this attribute for listens of modes other than automatic. If unspecified, defaults to platform
internal value.

reject: Optional. The recognition rejection threshold below which the platform will throw the onnoreco event. If
not specified, the speech platform will use a default value. Confidence scores are floating point values between 0
and 1. Reject values lie in between.

xml:lang: Optional. String indicating which language the speech recognizer should attempt to recognize. The
string format follows the xml:lang definition in RFC3066 of the IETF. For example, xml:lang="en-us" denotes US
English. This attribute is only meaningful when xml:lang is not specified in the grammar element (see 2.1.1).
mode: Optional. String specifying the recognition mode to be followed (see 2.6 below). If unspecified, defaults to
"automatic" mode.

Many of these attributes are used in the same way to configure the audio recording process, as detailed in section 2.8.2.1.

In certain HTML profiles, the HTML attributes accesskey and style may also be used as attributes of listen, as described in
10.2.1.1.

2.2.2 Properties
The following properties contain the results returned by the recognition process (these are supported by uplevel browsers).

recoresult Read-only. The results of recognition, held in an XML DOM node object containing the recognition return,
as described in 2.1.2, In case of no recognition, the return may be empty.

text Read-only. A string holding the text of the words recognized. (In SAPI SML, this string is also contained in the
text attribute of the highest level element).

status: Read-only. Status code returned by the recognition platform. The status property is only meaningful after
status-setting events are thrown by the listen object, and as such should be examined in the handler of the relevant
event. Possible values are 0 for successful recognition, or the failure values -1 to -3 (as defined in the exceptions
possible on the Start method (section 2.3.1) and Activate method (section 2.3.4)) and statuses -11 to -15 set on the
reception of recognizer error events (see 2.4.6), and statuses -20 to -24 in the case of recording (see 2.8.5.1).

2.3 Object methods

The execution of listen elements may be controlled using the following methods in the listen’s DOM object. With these
methods, browsers can start and stop listen objects, cancel recognitions in progress, and uplevel browsers can also activate
and deactivate individual grammar top-level rules.

2.3.1 Start

The Start method starts the recognition process, using as active grammars all the top-level rules for the recognition context
which have not been explicitly deactivated. As a result of the start method, a speech recognition event such as onreco,
onnoreco, or onsilence will typically be fired, or an onerror or onaudiointerrupt event will be thrown in the cases of a platform
error or loss of connection, respectively. See section 2.4 for a description of these events. (Note that for telephony profiles,
associated dtmf recognition events can also end the execution of listen, as described in 4.6.)

Syntax:
Object.Start()
Return value:
None.
Exception:
The method sets a non-zero status code and fires an onerror event if it fails. The onerror event description in
section 2.4.5 lists possible non-zero status codes.

On the calling of the Start() method the speech recognition platform should ensure that the active grammars of a <listen> are
complete and up-to-date. onerror events resulting from this process are thrown according to the status codes in section
2.4.5,



2.3.2 Stop

The Stop method is a call to end the recognition process. The listen object stops processing audio, and the recognizer
returns recognition results on the audio received up to the point where recording was stopped. Once the recognition process
completes, all the recognition resources used by listen are released. (Note that this method need not be used explicitly for
typical recognitions in automatic mode (see 2.6), since the recognizer itself will stop the listen object on endpoint detection
after recognizing a complete grammar match.) If the listen has not been started, the call has no effect.

Syntax:
Object.Stop()

Return value:
None.

Exception:
There are no explicit exceptions associated with this method. However, if Stop() is called before speech is
detected, the onnoreco event is fired and status code is set to -11 (as in 2.4.4), and if there is any problem
an onerror event is fired with and the status codes as outlined in section 2.3.1 are set.

2.3.3 Cancel

The Cancel method stops the audio feed to the recognizer, deactivates the grammar and releases the recognizer. The
platform may return a recognition result for a cancelled recognition (although this should be empty). If the recognizer has not
been started, the call has no effect. No event is thrown when the cancel method is called.

Syntax:

Object.Cancel()
Return value:

None.
Exception:

None.

2.3.4 Activate

The Activate method activates the grammars of a <listen>. The first argument identifies the grammar for activation, the
second an optional, top-level rulename within that grammar. If called during a ‘started’ <listen>, the change will not take
effect until the listen is restarted. (Recall also that Activate() is not necessary in the default case: all the top-level rules of a
listen's grammars are treated as active unless explicitly deactivated.)

Syntax:
Object.Activate(grammarName, [ruleName]);
Parameters:
o grammarName: Required. Grammar name.
o ruleName: Optional. Rule name.
Return value:
None.
Exception:
There are no explicit exceptions associated with this method. However, if the grammar identified with the
grammarName argument does not exist, an onerror event is fired and a value of -6 is set in the status
property of the listen object. (Note also that onerror would be fired as a result of the listen.Start() method if
the rule identified by the ruleName argument does not exist.)

2.3.5 Deactivate

The Deactivate method deactivates the grammars of a <listen>. The first argument identifies the grammar for deactivation,
the second an optional, top-level rulename within that grammar. If called during a ‘started’ <listen>, the change will not take
effect until the listen is restarted. If the grammar or rule is already deactivated, the call has no effect.

Syntax:
Object.Deactivate(grammarName, [ruleName]);
Parameters:
o grammarName: Required. Grammar name.



o ruleName: Optional. Rule name.

Return value:
None.

Exception
There are no explicit exceptions associated with this method. However, if the grammar identified with the
grammarName argument does not exist, an onerror event is fired and a value of -6 is set in the status
property of the listen object. (Note also that onerror would be fired as a result of the listen.Start() method if
the rule identified by the ruleName argument does not exist.)

2.4 listen events

The listen DOM object supports the following events, whose handlers may be specified as attributes of the listen element.
For a graphical summary of events along the timeline in different modes of recognition see section 2.6.

Although browsers will update the recoresult property for both successful and unsuccessful events from the speech
recognizer, this property should only be assumed to hold a valid result in the case of successful recognitions. In the case of
unsuccessful or aborted recognitions, the result may be an empty document (or it may hold extra information which
applications are free to use or ignore).

2.4.1 onreco:

This event is fired when the recognizer has a successful recognition result available for the browser. This
corresponds to a valid match in the grammar. For listens in automatic mode, this event stops the recognition
process automatically and clears resources. The onreco handler is typically used for programmatic analysis of the
recognition result and processing of the result into the page.

Syntax:
Inline HTML <listen onreco ="handler" >
Event property Object.onreco = handler;
Object.onreco = GetRef("handler");

Event Object Info:

Bubbles No
To invoke User says something
Default action Return recognition result object

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data (see
the use of the event object in the example below).

Example
The following XHTML fragment uses onreco to call a script to parse the recognition outcome and assign the values to
the proper fields.

<xhtm xm ns:salt="urn:schenas. saltforum org/ 2002/ 02/ SALT" >
<i nput type="button" value="Talk to ne" onClick="listenCity.Start()" />
<i nput nanme="t xtBoxOrigin" type="text" />
<i nput nane="t xt BoxDest" type="text" />

<salt:listen id="listenCity" onreco="processCityRecognition()" />
<sal t:grammar src="/gramars/cities.xm" />
</salt:listen>

<scri pt><![ CDATA[
function processCityRecognition () {
sm Result = event.srcEl enment.recoresult;

ori gNode = sml Result. sel ect Si ngl eNode("//origin_city/text()");



if (origNode != null) txtBoxOrigin.value = origNode. val ue;

dest Node = sml Result. sel ect Si ngl eNode("//dest_city/text()");
if (destNode != null) txtBoxDest.value = destNode. val ue;
}
]1></script>
</xhtm >

2.4.2 onsilence:

onsilence handles the event of no speech detected by the recognition platform before the duration of time specified in the
initialtimeout attribute on the listen (see 2.2.1). This event cancels the recognition process automatically for the automatic
recognition mode — see Figure 1.

Syntax:
Inline HTML <listen onsilence="handler" ...>
Event property (in ECMAScript) Object.onsilence = handler
Object.onsilence = GetRef("handler");

Event Object Info:

Bubbles No

To invoke Recognizer did not detect speech within the period specified in the
initialtimeout attribute.

Default action Set status = -11

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.4.3 onspeechdetected

onspeechdetected is fired by the speech recognition platform on the detection of speech. Determining the actual time of firing
is left to the platform (which may be configured on certain platforms using the <param> element, as in 2.1.3), so this may be
anywhere between simple energy detection (early) or complete phrase or semantic value recognition (late). This event also
triggers onbargein on a prompt which is in play (see 3.4.2), and may disable the initial timeout of a started dtmf object, as
described in 4.6. This handler can be used in multimodal scenarios, for example, to generate a graphical indication that
recognition is occurring, or in voice-only scenarios to enable fine control over other processes underway during recognition.

Syntax:
Inline HTML <listen onspeechdetected="handler" ...>
Event property (in ECMAScript) Object.onspeechdetected = handler
Object.onspeechdetected = GetRef("handler");

Event Object Info:

Bubbles No

To invoke Recognizer detects speech.

Default action Trigger onbargein if prompt is in playback, disable dtmf initial
timeout if started.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.4.4 onnoreco:

onnoreco is a handler for the event thrown by the speech recognition platform when it is unable to return a complete
recognition result. The different cases in which this may happen are distinguished by status code. For listens in automatic
mode, this event stops the recognition process automatically.

Syntax:



Inline HTML <listen onnoreco ="handler" >
Event property Object.onnoreco = handler;
Object.onnoreco = GetRef("handler");

Event Object Info:

Bubbles No

To invoke Recognizer detects speech but is unable to fully interpret the
utterance.

Default action Update recoresult and status properties. recoresult may be an

empty document or it may hold information provided by the speech
recognizer. Status codes are set as follows:

status -11: execution was stopped before speech was detected.
status -13: sound was detected but no speech was able to be
interpreted;

status -14: some speech was detected and interpreted but rejected
with insufficient confidence (for threshold setting, see the reject
attribute in 2.2.1);

status -15: speech was detected and interpreted, but a complete
recognition was unable to be returned between the detection of
speech and the duration specified in the babbletimeout attribute
(see 2.2.1).

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.4.5 onaudiointerrupt:

The onaudiointerrupt event is fired when the communication channel with the user is lost. In telephony scenarios, for
example, it will fire when the line is disconnected. Its default action is to stop recognition and return results up to that point
(i.e. just as in listen.stop). Its handler is typically used for local clean-up of resources relevant to an individual listen. In
relevant profiles, this event is also fired on <dtmf> and the PromptQueue and call control objects. The order of firing is as
follows:

1. listen

2. dtmf

3. PromptQueue object

4. call control object.

Syntax:
Event property Object.onaudiointerrupt= handler;
Object.onaudiointerrupt = GetRef("handler");

Event Object Info:

Bubbles No

To invoke The system detects the loss of the connection of the
communication channel with the user.

Default action stop recognition and return results.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.4.6 onerror:
The onerror event is fired if a serious or fatal error occurs with the recognition process (i.e. once the recognition process has
been started with a call to the Start method). Different types of error are distinguished by status code and are shown in the
event object info table below.

Syntax:



Inline HTML <listen onerror ="handler" >
Event property Object.onerror = handler;
Object.onerror = GetRef("handler");

Event Object Info:

Bubbles No

To invoke The grammar activation or recognition process experiences a
serious or fatal problem.

Default action Set status property and return null recognition result. The listen’s

recoresult and text properties are set to empty. Status codes are
set as follows:

status -1: A generic (speech) platform error occurred during
recognition.

status -2: Failure to find a speech platform (for distributed
architectures)

status -3: An illegal property/attribute setting that causes a
problem with the recognition request.

status -4: Failure to find resource — in the case of recognition this
is a grammar resource.

status -5: Failure to load or compile a grammar resource

status -6: Failure to activate or deactivate rules/grammars (this is
thrown as as result of the Activate/Deactivate methods as in 2.3.4,
2.3.5).

status -7: The period specified in the maxtime attribute (see 2.2.1)
expired before recognition was completed

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.5 Interaction with DTMF

In telephony profiles which support DTMF input, platforms will implement certain links between speech and dtmf which
simplify the authoring of joint behavior on a single dialog turn. This relationship is discussed in section 4.6 of the DTMF input
chapter.

2.6 Recognition mode

Different scenarios of speech recognition can require subtle differences in behavior from a speech recognizer. Although the
starting of the recognition process is standard in all cases — an explicit start() call from uplevel browsers, or a declarative
<listen> element in downlevel browsers — the means of stopping of the process and the return of results may differ.

For example, an end-user using tap-and-talk in a multimodal application will control the period he wishes talk to the device
by tapping and holding a form field, so the browser uses a GUI event, eg pen up, to control when recognition should stop and
return results. However, in voice-only scenarios such as telephony or hands-free, the user has no direct control over the
browser, and the recognition platform must take the responsibility of deciding when to stop recognition and return results
(typically once a complete path through the grammar has been recognized). Further, dictation and other scenarios where
intermediate results may need to be returned before recognition is stopped (here called ‘open microphone’ ) not only require
an explicit stop but also need to return multiple recognition results to the application before the recognition process is
stopped.

Hence the mode attribute on the listen element is used to distinguish the following three modes of recognition: automatic,
single and multiple. These are distinguished by how and when the speech recognizer returns results. The return of results is
accompanied by the throwing of the onreco event.



SALT will define profiles for the support expected of different modes according to the class of client device. Generally,

automatic mode will be more useful in telephony profiles,single mode in multimodal profiles, and multiple mode in all kinds of
dictation scenarios. (It is expected that applications will reflect such profiles in server-side page generation, that is, individual
pages will be tailored on a web server to specific classes of client device according to the modality capabilities of that client.)

As noted above, if mode is unspecified, the default recognition mode is ‘automatic’.

Note

Many applications may make the assumption that communications between the browser and the recognition platform are
ordered correctly in time. This assumption may not always hold true in distributed architectures where heavy loads on the
recognition platform cannot guarantee the chronological sequencing of communications across components. For example a
Stop() call may transmitted from browser to platform after the user has stopped speaking, but while the platform is still
processing the input. Browser implementations with distributed architectures will clearly need to take this into account.

2.6.1 Automatic mode
<listen mode="automatic" ... >
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Figure 1: Automatic mode listen timeline

Automatic mode is used for recognitions in telephony or hands-free scenarios. The general principle with automatic listens is
that the speech platform itself (rather than the application) is in control of when to stop the recognition process. So no
explicit Stop() call is necessary from the application, because the utterance end will be automatically determined, typically
using the endsilence value.

As soon as a recognition is available (the endsilence time period is used to determine the phrase-end silence which implies
recognition is complete), the speech platform automatically stops the recognizer and returns its results. The onreco event is
thrown for a successful recognition (i.e. confidence higher than the threshold specified in the reject attribute), and onnoreco
for an unsuccessful recognition (i.e. confidence higher than the threshold specified in the reject attribute). This is shown in
diagrammatic form in case (1) of Figure 1: Automatic mode listen timeline. Case (2) shows the firing of onnoreco after
the babbletimeout period is exceeded, which ends execution of the listen. Case (3) displays an unsuccesful recognition
attempt where the recognizer throws onnoreco before the utterance endsilence. Case (4) shows no input from the user, and



the resulting throwing of the onsilence event. As noted above, all events except onspeechdetected end the execution of a
listen in automatic mode.

2.6.2 Single mode
<listen mode="single" ... >
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Figure 2: Single mode listen timeline

Single mode recognitions are typically used for push-to-talk scenarios. In this mode, the return of a recognition result is
under the control of an explicit stop call from the application.

Figure 2: Single mode listen timeline shows the common speech recognition events and their behavior for a single mode
listen. Case (1) shows the stop call in action and the possible resulting events of onreco or onnoreco, according to whether
recognition was successful or not. Case (2) illustrates the firing of onnoreco in response to the babbletimeout, and this event
automatically ends the execution of the listen. Case (3) shows how onnoreco may be fired in the case of an unrecognizable
utterance, but this does not automatically cease execution of the listen. And case (4) shows how, as with all modes, the
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onsilence event is thrown if speech is not detected within the timeout period, but for a single mode listen this does not stop
recognition. So for single mode listens, the only speech event which automatically halts execution before a stop call is
onnoreco as a result of babbletimeout (along with the non-speech events onerror and onaudiointerrupt).

2.6.3 Multiple mode
<listen mode="multiple" ... >
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Figure 3: Multiple mode listen timeline

Multiple mode recognition is useful for "open-microphone" or dictation scenarios. In this mode, recognition results are
returned at intervals until the application makes an explicit Stop() call (or the babbletimeout or maxtimeout periods are
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exceeded). It is important to note that after any onsilence, onreco, or onnoreco event which does not stop recognition, the
maxtimeout and babbletimeout periods are restarted. recoresult is updated by these events as for the other modes of
recognition.

For each phase recognized, an onspeechdetected and an onreco event is thrown and the result returned. This is shown in
case (1) of Figure 3: Multiple mode listen timeline. On the return of the result, the babbletimeout and maxtimeout periods
are restarted. Case (2) shows how the exceeding of the babbletimeout results in the onnoreco and the halting of listen. Case
(3) displays the throwing of onnoreco in response to unrecognizable input, with the listen object continuing execution and the
restarting of the babbletimeout and maxtimeout periods. Case (4) shows the throwing of onsilence in response to no input
during the initialtimeout period, and again the execution of the listen object continues.

2.7 Events which stop listen execution
The following is a summary of the commands and events will stop a listen while in execution:

methods
listen.Stop()
listen.Cancel()

listen events
listen.onreco (automatic mode only)
listen.onnoreco (babbletimeout: all modes)
listen.onnoreco (unsuccessful recognition: automatic mode only)
listen.onsilence (automatic mode only)
listen. onerror
listen. onaudiointerrupt

DTMF events (telephony profiles only)
dtmf.onreco
dtmf.onnoreco
dtmf.onsilence

2.8 Recording with listen

The <listen> element is also used for recording audio input from the user. Recording may be used in addition to recognition
or in place of it, according to the abilities of the platform and its profile. The attributes, properties and methods of <listen> are
used in the recording case with equivalent or appropriate semantics. This section explains these features for recording
scenarios, and a full example can be found in section 8.8.

2.8.1 <listen> content for recording

2.8.1.1 <record> element

Recording is enabled on a listen element by the use of the <record> element. Only one record element is permitted in a
single listen. The following optional attributes of <record> are used to configure the recording process:

type: Optional. If unspecified, defaults to G.711 wave file.
beep optional. Boolean value, if true, the platform will play a beep before recording begins. Defaults to false.

2.8.1.2 <grammar> element

If specified in addition to a <record> element, the grammar element enables speech recognition during the recording process
as described in 2.1.1. (not all platforms will support this profile). This is useful in certain scenarios, including "hotword"
detection to end recording, or where the audio of recognized input needs to be made available to the application.

2.8.1.3 <bind> element

The semantic markup document returned after a recording holds in its root element the following extra attributes relevant to
the recording result:



recordlocation: uri of the location of the recorded audio;

recordtype: mime-type of the recorded audio.

recordduration: value (in ms) corresponding to the approximate length of the recording;
recordsize: value (in bytes) holding the size of the recorded audio file;

The values of these attributes are copied to the relevant properties of a recording listen object (see 2.8.2.2). In the case of a
totally unsuccessful recording, recordlocation and recordtype will hold empty strings, and recordduration and recordsize will
hold values of zero.

2.8.1.4 <param> element

As with typical listens, the param element can be used to specify the platform specific features of recording, eg: sampling
rate, mu-law/A-law compression, etc.

2.8.2 Attributes and properties

2.8.2.1 Attributes
The following attributes of <listen> are used to configure the speech recognizer for recording.

initialtimeout: Optional. The time in milliseconds between start of recording and the detection of speech. This
value is passed to the recording platform, and if exceeded, an onsilence event will be thrown from the recognition
platform (see 2.4.2)°. If not specified, the speech platform will use a default value.

babbletimeout: For recording, this sets the time limit on the amount of audio that can be recorded once
speech has been detected”. If babbletimeout is exceeded, the onnoreco event is thrown but different status
codes are possible. If exceeded, the onnoreco event is thrown with status code -15 (see section 2.4.4). If
babbletimeout is not specified, the speech platform will default to an internal value. A value of 0 effectively
disables the timeout.

maxtimeout: this is used in the standard way as for a typical <listen> (see 2.2.1).

endsilence: Optional. For recording, the period of silence in milliseconds after the end of an utterance which
must be free of speech after which audio recording is automatically stopped. If unspecified, defaults to a platform
internal value.

reject: (this attribute is ignored for listens which perform recording only).

xml:lang: (this attribute is ignored for listens which perform recording only).

mode: Where recognition is enabled along with recording, this is used in the standard way as for a typical
<listen> (see 2.2.1). For listens used only for recording, it is ignored.

2.8.2.2 Properties

The following properties contain the results returned by the recording process. Those properties which hold values specific to
recording obtain the corresponding values from the return document described in 2.8.1.3.

recoresult Read-only. As for recognition, the results of recording in an XML DOM node holding the return document
described in 2.8.1.3. For listens used for simultaneous recording and recognition, the return document will hold
information for both results.

text Read-only. (Only used when recognition is enabled along with recording).

status Read-only. Status code returned by the recognition platform. Status codes from -20 to -24 are relevant for
errors specific to the audio recording process (see 2.8.5.1).

recordlocation Read-only. This holds the location of the recorded audio in a URI.

recordtype Read-only. This holds the mime type of the recorded audio.

recordduration: Read-only. This holds the approximate length of the recording in milliseconds.

recordsize: Read-only. This holds the size of the recorded audio file in bytes.

% For recording on a telephony platform this functionality could also be accomplished by most telephony cards. Hence, for
recording, the implementation of this feature is left in the hands of platform implementation.

* Recording platforms may begin writing to file at any time during the initialtimeout period, so the entire length of a recorded
file may be anywhere up to the sum of initialtimeout and babbletimeout.



2.8.3 Object methods

Recording activation can be controlled using the following methods of listen. With these methods, uplevel browsers can start
and stop recording, and cancel recordings in progress.

2.8.3.1 Start
This method is used to start audio recording.

Syntax:
Object.Start()
Return value:
None.
Exception:
The method sets a non-zero status code and fires an onerror event if it fails. See the onerror event
description in section 2.4.5 for the non-zero status codes.

2.8.3.2 Stop

This method is used to stop audio recording. For recording-only listens, unless there is a recording error, the onreco event
will fire once the platform completes the audio recording.

Syntax:
Object.Stop()
Return value:
None.
Exception:
There are no explicit exceptions associated with this method. However, if recording is successful, onreco is
fired, otherwise an onerror event is fired and the status codes as outlined in section 2.8.5.1 are set.

2.8.3.3 Cancel

This method is used to cancel audio recording when the recognition mode is set to ‘record’. Any written audio data may be
removed by the platform. No events are fired when this method is called.

Syntax:

Object.Cancel()
Return value:

None.
Exception:

None.

2.8.3.4 Activate
This method is used only when recognition is enabled, and is as described in section 2.3.4.

2.8.3.5 Deactivate
This method is used only when recognition is enabled, and is as described in section 2.3.5.

2.8.4 Recording events
A recording listen supports the following events, whose handlers may be specified as attributes of the listen element.

For listens which execute recording only (without recognition), the event behavior is as for a listen of automatic mode (see
section 2.6.1.). For listens which accomplish recognition along with recording, the mode of recognition used will determine
which events are thrown and their behavior (see section 2.6 for different modes of recognition).

2.8.4.1 onreco:

For recording-only listens, this event is fired when audio recording has completed. The ‘recoresult’ property is
returned with the recording result and properties are updated according to the previous sections.



Syntax:
Inline HTML <listen onreco =" handler” >
Event property Object.onreco = handler;
Object.onreco = GetRef(“handler”);

Event Object Info:

Bubbles No
To invoke Recording is accomplished
Default action Return recognition result object

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data (see
the use of the event object in the example below).

2.8.4.2 onsilence:

For recording-only listens, this event is fired when no speech is detected by the platform before the duration of time
specified in the initialtimeout attribute on the listen (see 2.8.2.1). This event cancels the audio recording process
automatically.

Syntax:
Inline HTML <listen onsilence="handler” ...>
Event property (in ECMAScript) Object.onsilence = handler
Object.onsilence = GetRef(*handler”);

Event Object Info:

Bubbles No

To invoke Recognizer did not detect speech within the period specified in the
initialtimeout attribute.

Default action Set status = -11

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.8.4.3 onnoreco:

For recording-only listens, this event is thrown when the ‘babbletimeout’ on the recording has been exceeded. In this
case the platform also returns the recording results via the ‘recoresult’ property.

Syntax:
Inline HTML <listen.onnoreco =" handler” >
Event property Object.onnoreco = handler;
Object.onnoreco = GetRef(*handler”);

Event Object Info:

Bubbles No
To invoke babbletimeout expires during audio recording.
Default action Set status property and return recording result in recoresult. Status

codes are set as follows:

status -15: speech was detected and recording made but
babbletimeout was exceeded (see 2.2.1).

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.



2.8.5 onaudiointerrupt:

The onaudiointerrupt event is fired when the communication channel with the user is lost. In telephony scenarios, for
example, it will fire when the line is disconnected. Its default action is to stop recording and return the result up to that point
(i.e. just as in listen.stop). Its handler is typically used for local clean-up of resources relevant to an individual listen. In
relevant profiles, this event is also fired on <dtmf> and the PromptQueue and call control objects. The order of firing is as
follows:

1. listen

2. dtmf

3. PromptQueue object

4. call control object.

Syntax:
Event property Object.onaudiointerrupt= handler;
Object.onaudiointerrupt = GetRef("handler");

Event Object Info:

Bubbles No

To invoke The system detects the loss of the connection of the
communication channel with the user.

Default action stop recording and return results.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.8.5.1 onerror:

The onerror event is fired if a serious or fatal error occurs with the recording process. Different types of error are
distinguished by status code and are shown in the event object info table below.

Syntax:
Inline HTML <listen onerror =" handler” >
Event property Object.onerror = handler;
Object.onerror = GetRef(*handler”);

Event Object Info:

Bubbles No

To invoke The recording process (once the Start method has been invoked)
experiences a serious or fatal problem.

Default action Set status property and return empty recording result. Recording

status codes are set as follows:

status -20: Failure to record file locally on the platform

status -21: Unsupported codec

status -22: Unsupported format (if both Format and Codec are
unsupported one of the status will be set)

status -23: Error occurred during streaming to a remote server.
status -24: An illegal property/attribute setting that causes a
problem with the recording request.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

2.8.6 Stopping audio recording

Audio recording is stopped by any of the means of stopping a listen object in automatic mode (see section 2.7). Since a
result is always returned to the listen object, recording listens which are stopped by dtmf input or hang-ups (as in many voice
mail applications) always contain recording results if available.



2.9 Advanced speech recognition technology

It should be clear that advanced speech recognition technologies such as speaker verification or enrolment are enabled by
the listen element as it is currently defined in SALT, although optimal methods for accomplishing such mechanisms may not
be portable across platforms.

3 Speech output: <prompt >

The prompt element is used to specify the content of audio output. Prompts are queued and played using a prompt queue,
which in uplevel browers is exposed to the application as the PromptQueue object (see section 3.5).

The content of prompts may be one or more of the following:

inline or referenced text, which may be marked up with prosodic or other speech output information;
variable values retrieved at render time from the containing document;
links to audio files.

In uplevel browsers, prompts are queued individually onto the PromptQueue object (defined in section 3.5) using the Queue
method. The PromptQueue object is then used to control the playback of the system. In general the distribution of features
between PromptQueue and <prompt> reflects the distinction that the PromptQueue object is used for global audio play
settings, and individual prompts are used for local elements of output. In HTML profiles the PromptQueue is a child of the
window object (see 10.2.2.1.4).

3.1 prompt content

The prompt element contains the resources for system output, as text or as references to audio files, or both. It also permits
platform-specific configuration using the <param> element.

3.1.1 Text and inline tts markup
Simple prompts need specify only the text required for output, eg:

<pronpt id="Welcome">
Thank you for calling ACME weat her report.
</ pronpt >

SALT also allows any format of speech synthesis markup language to be used inside the prompt element.

To enable interoperability of SALT applications, SALT browsers must support the W3C Recommendation for Speech
Synthesis Markup Language (SSML), http://www.w3.0rg/TR/speech-synthesis. A SALT browser may support any other
speech synthesis formats. Note: the W3C SSML specification is currently a Working Draft and not yet a W3C
Recommendation.

The following example shows text with an instruction to emphasize certain key phrases:

<pronpt id="giveBal ance"” xm ns:ssm ="http://ww. w3. org/ 2001/ 10/ synt hesi s">
You have <ssnl :enphasis> five dollars </ssm:enphasis> left in your account.
</ pronpt >

3.1.2 value
The value element can be used to refer to text or markup held in elements of the document.

value element
value: Optional. Retrieves the values of an element in the document.

Attributes:
targetelement: Required. The id of the element containing the value to be retrieved.
targetattribute: Optional. The attribute of the element from which the value will be retrieved. If unspecified, no
attribute is used, and the value defaults to the content (text or XML) of the element.



The targetelement attribute is used to reference an element within the containing document. The content of the element
whose id is specified by targetelement is inserted into the text to be synthesized. If the desired content is held in an
attribute of the element, the targetattribute attribute may be used to specify the necessary attribute on the targetelement.
This is useful for referencing the values in HTML form controls, for example. In the following illustration, the "value" attributes
of the "txtBoxOrigin" and "txtBoxDest" elements are inserted into the text before the prompt is output:

<pronpt id="Confirm >
Do you want to travel from
<val ue targetel ement ="t xt BoxOrigin" targetattribute="val ue" />
to
<val ue targetel ement ="t xt BoxDest" targetattribute="val ue" />
?

</ pr onpt >

3.1.3 content

The content element can be used to reference external content such as dynamically generated speech markup or remote
audio files. It also holds optional inline content which will be rendered in the event of a problem with the externally referenced
material. This can take the form of any of the inline content possible for <prompt>.

content element

content: Optional. The content element specifies a link to an external output resource and identifies its type. SALT platforms
should attempt to render if possible the content of the resource, but if this is impossible, any content specified inline will
instead be output.

Attributes:
href: Required. A URI referencing prompt output markup or audio.
type: Optional. The mime-type corresponding to the speech output format used. For XML content, typical types may
be the W3C Speech Synthesis Markup Language format, specified as type="application/ssml+xml", or proprietary
formats such as "application/x-sapitts+xml". Typical binary content MIME type is "audio/wav" for WAV (RIFF
header) 8kHz 8-bit mono mu-law [PCM] single channel or "audio/basic" for Raw (headerless) 8kHz 8-bit mono mu-
law [PCM] single channel. (G.711). This attribute permits the SALT author to signal the format of a prompt resource
and determine compatibility before a potentially lengthy download. Note, however, that it does not guarantee the
format of the target (or inline resource), and platforms are free to treat the attribute (or its absence) in their own way.

The following example holds one content element to reference XML content in SSML, and another to point to an audio file.

<pr onpt >
<content href="/Voi ceMail Wl cone. ssm " type="application/ssm +xm" />
After the beep, please record your nessage:
<content href="/wav/beep.wav" />.

</ pronpt >

3.1.4 Speech output configuration: <param>

Additional, non-standard configuration of the prompt engine is accomplished with the use of the <param> element which
passes parameters and their values to the platform. param is a child element of <prompt>.

The exact nature of the configurative parameters will differ according to the proprietary platform used. Values of parameters
may be specified in an XML namespace, in order to allow complex or structured values.

param element
param: Optional. Used to pass parameter settings to the speech platform.

param content

Attributes:



name: required. The name of the parameter to be configured.
xmlns: optional. Specifies a namespace and potentially a schema for XML content of the parameter.

So, for example, the following syntax:
<sal t: param nanme="pr onpt Server" >/ / nmypl at f or m pronpt Server </ sal t: paranr
could be used to specify the location of a remote prompt engine for distributed architectures.

Note that page-level parameter settings may also be defined using the <meta ...> element (see 10.2.2.1.5).

3.2 Attributes and properties

The prompt element holds the following attributes and properties. Attributes are supported by all browsers, and properties by
uplevel browsers.

3.2.1 Attributes

bargein: Optional. This Boolean flag indicates whether the platform is responsible for stopping prompt playback
when speech or DTMF input is detected (this is sometimes also known as delegated bargein or cut-through)®. If
true the platform will stop the prompt in response to input and flush the prompt queue. If false the platform will
take no default action in response to input. If unspecified, it defaults to true. In both cases the onbargein handler
is called when input is detected (see section 3.4.2).

prefetch: Optional. A Boolean flag which, if true, indicates to the platform that the external content of a prompt
is likely to require a lengthy download, and may be prefetched sooner than playback time if possible. Defaults to
false.

xmins Optional. This is the standard XML namespacing mechanism and is used with inline XML prompts to
declare a namespace and identify the schema of the format. See http://www.w3.0rg/TR/REC-xml-names/ for
usage.

xml:lang: Optional. String indicating the language of the prompt content. The value of this attribute follows the
xml:lang definition in RFC3066. For example, xml:lang="en-us" denotes US English. The attribute is scoped, so
if unspecified, a higher level element in the page may propagate the xml:lang value down to <prompt> (see
equivalent in <grammar> element, section 2.1.1). If xml:lang is not specified at any level, the platform is free to
determine the language of choice.

3.2.2 Properties
Uplevel browsers support the following properties in the prompt’s DOM object.

bookmark: Read-only. A string object recording the text of the last synthesis bookmark encountered (see 3.4.1).
For each playback, the property is set to null until a bookmark event is encountered.

status: Read-only. Status code returned by the speech platform on an event. The status property is only meaningful
after status-setting events are thrown by the prompt object, and as such should be examined in the handler of the
relevant event. A status code of zero is set by the oncomplete event (see 3.4.3). Other status values are set when
the onerror event is thrown (see 3.4.4).

3.3 prompt methods

Prompt queuing and manipulation may be controlled using the following methods on the prompt object. In this way, uplevel
browsers can queue prompt objects.

3.3.1 Queue

Queue the prompt on the PromptQueue object (see section 3.5). Takes an optional argument of type string (which
may be markup, as for inline content). If no argument is provided, the method queues the inline content of the object.
If an argument is provided, it is treated as the string to be output. This argument overrides any inline content, and is

® This applies to whichever kind of input detection (or 'bargein type') is supported by platform. The type of detection could be
set by using a platform specific setting using the <param> element. It is not fired by keypress input on a visual display.



subject to any relevant features specified in the prompt's attributes in section 3.2.1 (i.e. bargein, xmins and
xml:lang). When a prompt finishes playback the oncomplete event is thrown, and its status code is set to zero.

Syntax:
Object.Queue([strText)]);
Parameters:

0 strText: optional. The text or markup to be sent to the speech output engine. If present, this argument
overrides the contents of the object. The content specified in the argument is treated exactly as if it were
inline content in terms of resolving external references, etc.

Return value:
None.

Exception:
In the event of a problem with queuing the prompt, e.g. that external content cannot be retrieved and no
alternate inline text is provided (see 3.1.3), the onerror event is thrown, and the prompt's status code is set
to one of the relevant values described in 3.4.4.

Content, whether inline or passed as an argument, must be resolved completely in order for queuing to succeed, so
it is on the Queue() call that content is checked for validity and freshness. As noted in section 3.1.3, inline text can
be specified as an alternative to external content, and this text is queued if external content is invalid or
unretrievable. If no inline text is specified, and content is unable to be resolved, the onerror event is thrown as
described above.

If Queue() is called in succession on multiple prompt objects, playbacks are queued in sequence. Prompt playback
does not begin until Start() is called (on a prompt or the PromptQueue). If Queue() is called during playback (i.e.
after PromptQueue.Start() but before the onempty event is thrown), the prompt is added to the current queue, and
will be played back without requiring a further explicit call to start the queue.

3.3.2 Start

Queue the prompt on the PromptQueue object (see section 3.5) and begin playback immediately. Takes an optional
argument of type string. If no argument is provided, the method queues the inline content of the object. If an
argument is provided, it is treated as the string to be output. This argument overrides any inline content, and is
subject to any relevant features specified in the prompt's attributes in section 3.2.1 (i.e. bargein, xmins and
xml:lang). This method can be thought of a shorthand for the two commands: prompt.Queue([arg]) followed by
PromptQueue.Start, and its content, arguments and the possible resulting events are entirely as for these functions.

Syntax:
Object.Start([strText]);

Parameters:

0 strText: the text or markup to be sent to the speech output engine. If present, this argument overrides the

contents of the object.

Return value:
None.

Exception:
In the event of a queuing problem, the onerror event is thrown, and the prompt's status code is set according
to the codes in section 3.4.4. In the case of a PromptQueue object problem after a successful queue, the
PromptQueue's status codes are set according to the values in 3.5.3.2.

3.4 prompt events
The prompt DOM object supports the following events, whose handlers may be specified as attributes of the prompt element.

3.4.1 onbookmark

Fires when a synthesis bookmark is encountered. Bookmarks are specified by application authors in the input to the
speech output engine, and are used to notify an application that a particular point has been reached during
playback. When the engine encounters a bookmark, the event is thrown to the platform. The example in section
8.2.2 shows how bookmarks in a prompt can be used to help determine the meaning of a user utterance.



On reception of this event, the bookmark property of the prompt object is set to the name of the bookmark thrown.
The event does not pause or stop the playback.

Syntax:
Inline HTML <prompt onbookmark="handler" ...>
Event property Object.onbookmark = handler
Object.onbookmark = GetRef("handler");

Event Object Info:

Bubbles No
To invoke A bookmark in the rendered string is encountered
Default action Returns the bookmark string

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

3.4.2 onbargein

optional. Fires when an input event is detected from the user. This event corresponds to the detection of input from
either speech or dtmf, and will be triggered by the onspeechdetected event on a started listen object (see section
2.4.3), or by the onkeypress event or onnoreco event on a started dtmf object for in-grammar and out-of-grammar
keypresses respectively (sections 4.4.1, 4.4.3)°.

This handler is used to specify processing either (i) instead of, or (ii) in addition to the cessation of prompt
playback on reception of an input event. (See section 3.2.1 for use of the "bargein" attribute to automatically stop
prompt playback on detection of such an event.)

(i) If the bargein attribute is false and user input is detected, the prompt will keep playing when this event
fires and while its associated processing is executed (unless of course it is explicitly stopped elswehere in the
script). This may be used in an email reader application, for example, where commands are enabled which do not
require the prompt to stop, eg 'speak louder' or 'read faster’, or for bookmarking, such as the example in 8.2.2.

(ii) If the bargein attribute is true, and user input is detected, the handler will fire after prompt playback has
been halted by the platform and the prompt queue flushed. This may be used to specify any additional processing of
a bargein event (e.g. to log the fact that the user has barged in).

It should not need restating that whether or not this event is specified, prompt playback is automatically
stopped by user input when the "bargein" attribute is set to true (section 3.2.1). (The automatic method generally
results in less latency than using the onbargein handler to script an explicit prompt.Stop()).

Syntax:
Inline HTML <prompt onbargein="handler" ...>
Event property Object.onbargein = handler
Object.onbargein = GetRef("handler");

Event Object Info:

Bubbles No
To invoke A speech/dtmf input event is encountered
Default action None

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

® Note that in multimodal profiles where a visual display is used, the keypress event from a GUI element will not trigger the
onbargein event.



3.4.3 oncomplete

This event fires when the prompt playback completes normally. It has no effect on the rest of the prompt queue
maintained by the PromptQueue object. After the oncomplete event of the last prompt in the queue, the onempty
event is thrown by the PromptQueue object (section 3.5.3.1).

Syntax:
Inline HTML <prompt oncomplete="handler" ...>
Event property Object. oncomplete = handler
Object. oncomplete = GetRef("handler");

Event Object Info:

Bubbles No
To invoke prompt playback completes
Default action Set status = 0.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

3.4.4 onerror

The onerror event is fired if a serious or fatal error occurs with a prompt such that it is unable to be queued. The onerror event
will therefore be thrown after the Queue() command, and before playback of the current queue begins. Different types of
errors are distinguished by status code and are shown in the event object info table below. The throwing of this event by a
single prompt will flush the entire queue maintained by the PromptQueue object.

Syntax:
Inline HTML <prompt onerror ="handler" >
Event property Object.onerror = handler;
Object.onerror = GetRef("handler");

Event Object Info:

Bubbles No
To invoke The synthesis process experiences a serious or fatal problem.
Default action On encountering an error, status codes are set as follows:

status -1: Failure to queue the prompt onto the PromptQueue
object.

status -2: Failure to find a speech output resource (for distributed
architectures)

status -3: An illegal property/attribute setting that causes a
problem with the synthesis request.

status -4: Failure to resolve content — this is likely to be an
unreachable URI, or malformed markup content.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

3.5 PromptQueue object

The PromptQueue object is a browser object used to control prompt playback. It is accessible from script and has no
markup element on the SALT page. In an XHTML profile, the PromptQueue object will be a child of the Window object (see
section 10.2.2.1.4).

The PromptQueue is maintained as a browser object rather than a markup element for two reasons:

1. It maintains a central object for playback control. The asynchronous nature of the call to prompt.queue() means that
with multiple queued prompts, the application cannot know (without explicit maintenance scripts) which prompt is



currently being played back, and therefore which to pause/stop/resume, etc. when necessary. The PromptQueue
object provides a single object for doing this.

It permits prompt playback to be uninterrupted across page transitions, since the PromptQueue object persists
across the loading and unloading of individual pages. That is, unlike the markup elements in the DOM, it is not
destroyed when its containing page is unloaded (although events which would otherwise be thrown to the prompt
elements, are lost if the containing page has been unloaded).

The PromptQueue object contains the following methods and properties.

3.5.1 PromptQueue properties

Uplevel

browsers support the following properties in the prompt's DOM object.

status: Read-only. Status code returned by the speech platform. The status code of zero indicates a successful
prompt operation by the speech platform, a negative status code indicates an error on the speech output platform.

3.5.2 PromptQueue methods
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3.5.2.2

Start

Start playback of the prompts queued. When the final prompt in the queue finishes playback (and after the throwing
of that prompt's oncomplete event), an onempty event is thrown to the PromptQueue object (see 3.5.3.1) and its
status property is set to zero. If no prompts are in the prompt queue, or a problem arises with the speech output
resource, this call throws an onerror event with the error codes listed in 3.5.3.3.

Syntax:
Object.Start();

Parameters:

o None.

Return value:
None.

Exception:
In the event of a problem the onerror event is fired, and the status code is set to a negative value, as listed in
3.5.3.3.

Pause
This method pauses playback without flushing the audio buffer. This method has no effect if playback is paused or

stopped.

3.5.2.3

paused.

Syntax:
Object.Pause();
Return value:
None.
Exception:
In the event of a problem the onerror event is fired, and the status code is set to -1.

Resume
This method resumes playback without flushing the audio buffer. This method has no effect if playback has not been

Syntax:
Object.Resume();
Return value:
None.
Exception:
In the event of a problem the onerror event is fired, and the status code is set to -1.
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Stop
Stop playback and flush the audio buffer. If playback is not underway (i.e. it has not been started or has already

been stopped or paused) the method simply flushes the prompt queue and audio buffer.

3.5.2.5

Syntax:

Object.Stop();
Return value:

None.
Exception:

None.

Change
Change speed and/or volume of playback. Change may be called during playback..

Syntax:
Object.Change(speed, volume);
Parameters:
0 speed: Required. The factor to change. Speed=2.0 means double the current rate, speed=0.5 means halve
the current rate, speed=0 means to restore the default value.
o volume: Required. The factor to change. Volume=2.0 means double the current volume, volume =0.5
means halve the current volume, volume =0 means to restore the default value.
Return value:
None.
Exception:
None.

3.5.3 PromptQueue event handlers

3.5.3.1

3.5.3.2

onempty:

This event fires when all prompts queued have finished playback. It fires after the oncomplete is fired on the last
individual prompt queued on the object (and therefore only fires when prompt playback completes naturally without
explicit stop calls).

Syntax:

Event property Object.onempty = handler

Object.onempty = GetRef("handler");

Event Object Info:

Bubbles No
To invoke All prompts queued on PromptQueue complete playback.
Default action Set status = 0 if playback completes normally.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

onaudiointerrupt:

The onaudiointerrupt event is fired when the communication channel with the user is lost. In telephony scenarios, for
example, it will fire when the line is disconnected. Its default action is to stop the playback and flush the prompt queue. Its
handler is typically used for local clean-up of resources relevant to the prompts of a given page. In relevant profiles, this event
is also fired on <listen>, <dtmf> and the call control object. The order of firing is as follows:

1. listen

2. dtmf

3. PromptQueue

4. call control object.



Syntax:
Event property Object.onaudiointerrupt= handler;
Object.onaudiointerrupt = GetRef("handler");

Event Object Info:

Bubbles No

To invoke The system detects the loss of the connection of the
communication channel with the user.

Default action Stop prompt playback and flush the prompt queue.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

3.5.3.3 onerror:

The onerror event is fired if a serious or fatal error occurs with the synthesis (voice output) process. Since onerror on the
PromptQueue object will fire on generic platform errors, playback is stopped on reception of this event and the prompt queue
is flushed. For platform errors, a status code of -1 is set; if onerror is fired due to start being called on an empty queue, a
status code of -2 is set.

Syntax:
Event property Object.onerror = handler;
Object.onerror = GetRef("handler");

Event Object Info:

Bubbles No
To invoke The synthesis process experiences a serious or fatal problem.
Default action On encountering an error, status codes are set as follows:
status -1: A generic speech output resource error occurred during
playback.
status -2: the start() call was made on an empty prompt queue.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

4 DTMF input : <dtmf>

The <dtmf> element is used in telephony applications to specify possible DTMF inputs and a means of dealing with the
collected results and other DMTF events. Like <listen>, its main elements are <grammar> and <bind>, and it holds
resources for configuring the DTMF collection process and handling DTMF events. The dtmf element is designed so that
type-ahead scenarios are enabled by default. That is, for applications to ignore input entered ahead of time, flushing of the
dtmf buffer has to be explicitly authored.

4.1 Content

Mirroring the listen recognition element, the DTMF element holds as content the <grammar> and <bind> elements, and may
also be configured in extensible ways with the <param> element.

4.1.1 <grammar>

This is a grammar, as defined in section 2.1.1. The only difference between a speech grammar and a DTMF grammar is that
the DTMF grammar will hold DTMF keys as tokens, rather than words of a particular language. So for a DTMF grammar, the

xml:lang attribute is not meaningful, and within the grammar itself, terminal rules will contain only the digits 0-9, * and # and
A, B, C and D as possible tokens. In all other respects, the grammar element is identical to the speech recognition grammar
element in section 2.1.1.



4.1.2 <bind>

The bind element is a declarative way to assign the DTMF result to a field in the host page, and is defined in section 2.1.2.
<bind> acts on the XML in the result returned by DTMF collection in exactly the same way as it does for listen.

The following example demonstrates how to allow consecutive dtmf input into multiple fields, using remote DTMF grammars
and <hind> to update the fields.

<xhtm xm ns:salt="urn:schenas. sal tforum org/ 2002/ 02/ SALT" >

<i nput type="text" name="i pt AreaCode" onFocus="dtnf AreaCode.start ()" />
<i nput type="text" nanme="iptPhoneNunber" />

<sal t:dtnf id="dtnfAreaCode" onreco="dtnf PhoneNunber. Start()">
<l-- grammar result will contain "sml AreaCode" node -->
<salt:granmar src="3digits.grani' />
<sal t: bind value="//smnl AreaCode" targetel ement="iptAreaCode" />
</salt:dtnf>

<sal t:dtnf id="dtnfPhoneNunber">
<l-- grammar result will contain "sm PhoneNunber" node -->
<salt:granmar src="7digits.grani />
<sal t: bind val ue="//sm PhoneNunber" targetel enent="i pt PhoneNunber" />

</sal t:dtnf>
</ xhtm >

4.1.3 DTMF configuration: <param>

Additional, non-standard configuration of the dtmf engine is accomplished with the use of the <param> element which
passes parameters and their values to the platform. param is a child element of <dtmf>.

The exact nature of the configurative parameters will differ according to the proprietary platform used. Values of parameters
may be specified in an XML namespace, in order to allow complex or structured values.

param element
param: Optional. Used to pass parameter settings to the speech platform.

param content
Attributes:

name: required. The name of the parameter to be configured.

xmlins: optional. Specifies a namespace and potentially a schema for XML content of the parameter.
So, for example, the following syntax:

<sal t: param name="nmyDTMFPar ani > nmyDTMFVal ue </salt: paranp

could be used to specify a parameterization on particular DTMF platform.

Note that page-level parameter settings may also be defined using the <meta ...> element (see 10.2.2.1.5).
4.2 Attributes and properties

4.2.1 Attributes



initialtimeout: Optional. The time in milliseconds between start of collection and the first key pressed. If exceeded,
the onsilence event is thrown and status property set to -11. A value of 0 effectively disables the timeout. If the
attribute is not specified, the speech platform will use a default value.

interdigittimeout: Optional. Timeout period for adjacent DTMF keystokes, in milliseconds. A value of 0 effectively
disables the timeout. If unspecified, defaults to the telephony platform’s internal setting. When exceeded, the
platform throws an onnoreco event and sets the status property to -16.

endsilence: optional. The timeout period when input matches a complete path through the grammar but further input
is still possible. This timeout specifies the period of time in which further input is permitted after the complete match.
Once exceeded, onreco is thrown. If unsupported by a platform, or unspecified in the application, the value defaults
to that used for interdigittimeout.

flush: Optional. Boolean flag indicating whether to automatically flush the DTMF buffer on the underlying telephony
interface card before activation. If unspecified, defaults to false (in order to facilitate type-ahead applications).

4.2.2 Properties

dtmfresult: Read only. XML node storing the DTMF result. This is updated at the end of dtmf collection, and holds
an XML document containing semantic markup language. Semantic markup language is discussed in section 2.1.2.
text: Read-only string containing the actual keys pressed during recognition. This string is appended with every key
press event (in-grammar or out-of-grammar) received by the dtmf object.

status: Read-only. Status code returned by the dtmf collector. The status property is only meaningful after status-
setting events are thrown by the dtmf object, and as such should be examined in the handler of the relevant event.
Possible values are 0 for successful recognition, the failure values -1 to -4 (as defined in the exceptions possible on
the Start method (section 4.3.1)), status -11 on the reception of onsilence (see 4.4.4), and status -13 or -16 on an
onnoreco (see 4.4.3). (These values reflect corresponding status codes in the listen object of section 2.2.2.)

4.3 Object methods:

DTMF collection may be controlled using the following methods on the dtmf object. With these methods, browsers can start,
stop and flush dtmfobjects.

4.3.1 Start
The Start method starts the dtmf collection process, using as grammars all the top-level rules for active dtmf grammars.

Syntax:
Object.Start();
Return value:
None
Exception:
The method sets a non-zero status code and fires an onerror event if it fails. See the onerror event
description in section 4.4.5 for the non-zero status codes.

4.3.2 Stop

Stop dtmf collection and return results received up to the point when collection was stopped. (Any subsequent key strokes
entered by the user, however, will remain in the platform buffer.) If the dtmf object has not been started, this call has no
effect.

Syntax:
Object.Stop();
Return value:
None
Exception:
There are no explicit exceptions associated with this method. However, if there is any problem an onerror
event is fired and the status codes as outlined in section 4.4.5 are set.

4.3.3 Flush
Flush the DTMF buffer. Flush has no effect if called while the <dtmf> object is started.



Syntax:
Object.Flush();
Return value:
None
Exception:
There are no explicit exceptions associated with this method. However, if there is any problem an onerror
event is fired and the status codes as outlined in section 4.4.6 are set.

44 Events

Like the listen element, although browsers will update the recoresult property for both successful and unsuccessful dtmf
recognitions, this property should only be assumed to hold a valid result in the case of successful recognitions. In the case
of unsuccessful or aborted recognitions, the result may be an empty document (or it may hold extra information which
applications are free to use or ignore).

4.4.1 onkeypress’

Fires on every pressing of a DTMF key which is legal according to the input grammar (otherwise, an onnoreco event is fired).
Immediately prior to the event firing, the value of the key pressed is appended to the string in the text property of the dtmf
element. If a prompt is in playback, the onkeypress event will trigger the onbargein event on the prompt (and cease its
playback if the prompt's bargein attribute is set to true). If a listen element is active, the first onkeypress event has the effect
described in section 4.6.

Syntax:
Inline HTML <DTMF onkeypress="handler" ...>
Event property Object.onkeypress = handler
Object.onkeypress = GetRef("handler");

Event Object Info:

Bubbles No
To invoke Press on the touch-tone telephone key pad
Default action Appends Obiject.text with key pressed

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

4.4.2 onreco

Fires when a DTMF recognition is complete. This event stops the current DTMF object automatically and updates dtmfresult
with the results of recognition. If a listen is also active, this event stops the listen object, as described in section 4.6. The
onreco handler is typically used for programmatic analysis of the recognition result and processing of the result into fields on
the page.

DTMF recognition is considered complete and onreco fired in the following circumstances:

1. immediately the input sequence matches a complete path through the grammar and further input is not possible
according to that grammar.

2. when the input sequence matches a complete path through the grammar and further input is still possible
according to that grammar, after the period specified in the endsilence attribute. (So setting an endsilence period
of zero would fire onreco immediately a complete path through the grammar is matched, and have the same
behavior as 1.)

Syntax:
Inline HTML <DTMF onreco="handler" ...>
Event property Object.onreco = handler

" For HTML and XHTML, this overrides the default ‘onkeypress' event inherited from the HTML control. Only DTMF
keypresses fire this event.



| | Object.onreco = GetRef("handler");

Event Object Info:

Bubbles No
To invoke DTMF recognition is complete.
Default action Returns dtmf result object.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

4.4.3 onnoreco

Fires when a key is pressed which is not legal according to the DTMF grammar, or when interdigittimeout is exceeded. This
event stops the DTMF object automatically and updates dtmfresult with a result (this may be an empty document or it may
hold the out-of-grammar input). If a listen is also active, this event stops the listen object, as described in section 4.6.

Syntax:
Inline HTML <DTMF onnoreco="handler" ...>
Event property (in ECMAScript) Object.onnoreco = handler
Object.onnoreco = GetRef("handler");

Event Object Info:

Bubbles No

To invoke lllegal key press, or exceeding of interdigittimeout period when
input is incomplete.
Default action Appends Object.text with key pressed, stops dtmf collection. Set
status property and update dtmfresult. Status codes are set as
follows:

status -13: out-of-grammar dtmf keypress.
status -16: interdigittimeout was exceeded.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

4.4.4 onsilence

onsilence handles the event of no DMTF collected by the platform before the duration of time specified in the initialtimeout
attribute (see 4.2.1). This event stops the dtmf object atuomatically.

Syntax:
Inline HTML <dtmf onsilence="handler" ...>
Event property (in ECMAScript) Object.onsilence = handler
Object.onsilence = GetRef("handler");

Event Object Info:

Bubbles No

To invoke Recognizer did not detect DMTF within the period specified in the
initialtimeout attribute.

Default action Set status = -11

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

4.4.5 onaudiointerrupt

The onaudiointerrupt event is fired when the communication channel with the user is lost. In telephony profiles, for example, it
will fire when the line is disconnected. Its default action is to stop collection, update dtmfresult and flush the dtmf buffer. Its



handler is typically used for local clean-up of resources relevant to an individual dtmf element. In relevant profiles, this event
is also fired on <listen> and the PromptQueue and call control objects. The order of firing is as follows:

1. listen

2. dtmf

3. PromptQueue

4. call control object.

Syntax:
Event property Object.onaudiointerrupt= handler;
Object.onaudiointerrupt = GetRef("handler");

Event Object Info:

Bubbles No

To invoke The system detects the loss of the connection of the
communication channel with the user.

Default action Stop dtmf collection, update dtmfresult and flush the dtmf buffer

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

4.4.6 onerror

The onerror event is fired if a serious or fatal error occurs with the DTMF collection/recognition process. Different types of
error are distinguished by status code and are shown in the event object info table below.

Syntax:
Inline HTML <dtmf onerror ="handler" >
Event property Object.onerror = handler;
Object.onerror = GetRef("handler");

Event Object Info:

Bubbles No

To invoke The DTMF collection process experiences a serious or fatal
problem.

Default action On encountering an error, the dtmf object is stopped and status

codes are set as follows:

status -1: A generic platform error occurred during DTMF collection.
status -3: An illegal property/attribute setting that causes a
problem with the DTMF collection request.

status -4: Failure to find resource — in the case of DTMF this is
likely to be a the URI of a DTMF grammar.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

45 DTMF event timeline

The following diagram illustrates typical event possibilities for the dtmf element.
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Figure 4: DTMF event timeline

Case (1) shows a successful dtmf recognition. onkeypress events are fired for every in-grammar keypress, and onreco is
thrown either when a complete grammar match has been made (and after the endSilence period if futher input was permitted
in the grammar). Case (2) shows the onnoreco event being thrown by the exceeding of the interdigittimeout period. Case (3)
shows that an out-of-grammar keypress fires onnoreco, and case (4) shows onsilence being thrown if no input is entered

before the initialtimeout period elapses. As noted, all events except onkeypress end dtmf collection.

4.6 Using listen and dtmf simultaneously

Many telephony applications typically permit speech and/or dtmf to be used at the same time. To simplify the authoring of
such scenarios, SALT platforms implement a model of default behavior whereby detection and successful recognition of one
mode of input need not interfere with the other. In general, this means that the application only has to worry about receiving a
single recognition result, or other event, even when both objects are started. For finer level behavior, listen or dtmf events can

be handled individually without affecting the other mode.



SALT enables this in two ways: (i) the disabling of initial timeouts on the other mode on detection of input, and (ii) the
automatic cancellation of one mode when the other mode comes to an end. This behavior is discussed in the following two
subsections, and the section completes with a diagram illustrating the interplay of the objects.

4.6.1 Disabling timeouts

Once the platform has detected input in one mode, it disables the initialtimeout of the other mode. That is, when the
initialtimeout period is exceeded, the object is stopped automatically but its event is not thrown to the handler. This is
effectively an acknowledgement that user input is occurring, and therefore the calling of an onsilence handler on the other,
unused mode is irrelevant. This prevents, for example, a listen's onsi | ence from calling its handler while the user is
entering dtmf. The manifestation of detection is a keypress (onkeypress event) for <dtmf>, and the onspeechdet ect ed
event for <listen>®.

dnt f. onkeypress --> disable listen timeouts
i sten.onspeechdetected --> disable dtnf tinmeouts

With initialtimeout disabled, such ‘unused' objects do not throw an onsilence event. If the timeout of the unused mode does
not expire, both objects remain active until otherwise stopped. This may be useful, for example, in scenarios such as where
dtmf keypresses are used to control playback of the prompt, while voice commands effect dialog navigation (e.g. in an e-mail
reader application). If the application author wishes to stop the unused object on detection of the other input mode, this is
possible by adding such a stop command to the relevant event handler of the 'used’ mode.

Once disabled, the initaltimeout is not re-enabled or re-started. That is, once the platform detects one mode of input,
onsilence will never be thrown on either mode. This should never be a problem, since other timeouts are still active on any
‘'used’ modes (endsilence, babbletimeout and interdigittimeout), so they will always eventually stop.

4.6.2 Automatic stop

When one mode stops and throws an event of onsilence, onnoreco or onreco, the other mode is automatically stopped.
(Stopping actually occurs before the object receives the event, in order for the event handler functions to operate under a
predictable situation.) A result should be returned in the relevant property of the automatically stopped object (recoresult for
listen, dtmfresult for dtmf) and the status property may be given a particular code.

dntf.onsil ence --> stop listen
dnt f. onnor eco --> stop listen
dntf.onreco --> stop listen
listen.onsilence --> stop dtnf
i sten. onnoreco --> stop dtnf
listen.onreco --> stop dtnf

This means that such events from either mode which signal the end of a dialog turn do not need to be caught twice. So the
firing of onsilence will be thrown only to the started listen or to the started dtmf object, but not to both. Similarly, the other
mode is stopped automatically on (i) a misrecognition or out-of-grammar dtmf sequence (listen.onNoreco or dtmf.onreco); or
(i) a successful recognition (listen.onreco, dtmf.onreco).

This allows the application author to write modular code for these handlers which does not need to take explicit account of
which objects have been started. And since a result is returned for the automatically stopped object, it allows scenarios
where one mode is actually used to force a result return of the other, for example using dtmf to stop audio recording.

4.6.3 listen and dtmf interaction event timeline

The model described above is illustrated by the following event diagram, showing possible interactions between the two
started modes of input.

® Recall from section Error! Reference source not found. that the decision when to throw onspeechdetected is left to the
platform - this permits platforms to operate robust mechanisms whereby throwing the event later - i.e. at a safer time - will
not unnecessarily disable the dtmf timeout.
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Figure 5: listen and dtmf event interaction
4.7 Events which stop dtmf execution
The following is a summary of the commands and events will stop dtmf while in execution:

methods
dmtf.Stop()

dtmf events
dmtf.onreco
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dtmf.onnoreco
dtmf.onsilence
dtmf.onerror
dtmf.onaudiointerrupt

listen Events
listen.onreco
listen.onnoreco
listen.onsilence

5 Platform messaging: <smex>

smex, short for Simple Messaging EXtension, is a SALT element that communicates with the external component of the
SALT platform. It can be used to implement any application control of platform functionality such as logging and telephony
control. As such, smex represents a useful mechanism for extensibility in SALT, since it allows any new functionality be
added through this messaging layer.

On its instantiation, the object is directed to establish an asynchronous message exchange channel with a platform
component through its configuration parameters (specified in <param> elements) or attributes. The smex object can send or
receive messages through this channel. The content of a message to be sent is defined in the sent property. Whenever the
value of this property is updated (either on page load or by dynamic assignment through script or binding), the message is
sent to the platform. The smex element can also receive XML messages from the platform component in its received
property. The onreceive event is fired whenever a platform message is received. Since the smex object's basic operations are
asynchronous, it also maintains a built-in timer for the manipulation of timeout settings. ontimeout and onerror events may
also be thrown.

The smex object makes no requirement on the means of communication with platform components. It should also be noted
that the smex object has the same life span as other XML elements, i.e. it will be destroyed when its hosting document is
unloaded. While in many cases, the smex object can perform automatic clean-up and release communication resources
when it is unloaded, there might be use cases (e.g. call control) in which a persistent communication link is desirable across
pages. For those cases, SALT places the responsibility of relinquishing the allocated resources (e.g. closing the socket) on
the application.

The smex object also is neutral on the format (schema) of messages. In order to encourage interoperability, however, the
SALT conformance specification may require implementations to support a few core schemas, with strong preferences to
existing standard messages formats. In essence, SALT allows both platform and application developers to take the full
advantage of the standardized extensibility of XML to introduce innovative and perhaps proprietary features without
necessarily losing interoperability.

5.1 smex content
smex may have the following child elements:

5.1.1 bind

This is the same element as described in section 2.1.2. It operates on the XML document contained in the message received
by the browser, so the XPath query held in the value attribute will match an XML pattern in this document.

5.1.2 param

<param> is used to provide platform-specific parameters for the smex object. Each param element may be named using a
“name” attribute, with the contents of the param element being the value of the parameter.

The exact nature of the configurative parameters will differ according to the proprietary platform used. Values of parameters
may be specified in an XML namespace, in order to allow complex or structured values.

param element
param: Optional. Used to pass parameter settings to the speech platform.



param content

Attributes:
name: required. The name of the parameter to be configured.
xmlins: optional. Specifies a namespace and potentially a schema for XML content of the parameter.

So, for example, the following syntax:

<par am nanme="nmnyPl at f or nPar am' >y Par anmval ue</ par ane
could be used to specify a parameterization of the message interface to the platform.

Note that page-level parameter settings may also be defined using the <meta ...> element (see 10.2.2.1.5).

5.2 Attributes and properties
The smex object has the following attributes:

sent: Optional. String corresponding to the message to be sent to the platform component. Whenever a non-null
value is assigned to this attribute, its contents are dispatched.

timer: Optional. Number in milliseconds indicating the time span before a timeout event will be triggered. The clock
starts ticking when the property is assigned a positive value. The value can be changed when a count down is in
progress. A zero or negative value stops the clock without triggering the timeout event. The default is 0, meaning no
timeout.

In addition to the attributes, the smex element holds the following properties:

received: Read-only. XML DOM Node data indicating the received message. The message is held as the value of
this property until the next onreceive event is ready to fire.

status: Read-only. Integer indicating the recent status of the object. The possible values are 0, -1, and -2, which
means normal, timeout expired, and communication with the platform cannot be established or has been interrupted,
respectively. Platform specific error messages should conveyed through the received property. For the cases that
the error message is successfully delivered, the status code is 0.

5.3 smex events
The object has the following events:

5.3.1 onreceive

The onreceive event is fired when a platform message is received by the browser. If there are any directives declared by the
bind elements, those directives will first be evaluated before the event is fired. Prior to the firing, the received property is
updated with the message content.

Syntax:
Inline HTML <smex onreceive ="handler" >
Event property Object. onreceive = handler;
Object. onreceive = GetRef("handler");

Event Object Info:

Bubbles No

To invoke Platform message received by the browser.

Default action Bind directives are evaluated, the received property is updated, and
status code set to zero.

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.



5.3.2 ontimeout
The ontimeout event is fired when the timeout expires.

Syntax:
Inline HTML <smex ontimeout="handler" >
Event property Object.ontimeout=handler;
Object.ontimeout =GetRef("handler");

Event Object Info:

Bubbles No
To invoke Time out.
Default action None

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

5.3.3 onerror

The onerror event is fired when a communication error is encountered. When the event fires, the status property is updated
with a corresponding error code as described above.

Syntax:
Inline HTML <smex onerror ="handler" >
Event property Object.onerror = handler;
Object.onerror = GetRef("handler");

Event Object Info:

Bubbles No
To invoke Communication error
Default action Set status codes as follows:

status -1: communication error

Event Properties:
Although the event handler does not receive properties directly, the handler can query the event object for data.

6 Telephony Call Control: the CallControl object

This chapter specifies the telephony call control for SALT, the Speech Application Language Tags.

6.1 Requirements

1. An HTML document containing SALT markup must have the ability to provide access to telephony call control
related functions, such as answering a call, transferring a call (bridged or unbridged), managing a call or
disconnecting a call.

2. The specification must define a means to associate a telephony media stream with SALT media tags, such as tags
for Speech Recognition, Recording, Speech Synthesis, and Audio Playback.

3. The call control related objects defined in the specification must provide a programming abstraction that is
independent of the underlying call control signaling protocol.

4. The call control related tags and objects defined in the specification must be extensible. Different applications will
have varying degrees of need for access to call control functionality from the simple (e.g., interactive voice dialog with
a single caller) to the complex (e.g., full call center capability, or enhanced services by service providers). It should
be possible for SALT documents to perform run-time query of extension availability to handle variances in the
environment.

5. The call control object model specified here should follow an accepted industry standard, and be easy for
programmers to use. This approach leverages a trained telephony developer community. This also provides a vision
and guidelines for the upgrade path.



6. The call control object model specified here supports first party call control (third party call control is outside the
scope of a Speech Recognition endpoint system).® The specified model should support both client and server call
control requirements.

6.2 Solution Overview

The call control object will be specified as an intrinsic entity of the SALT-enhanced browser. Various call control interface
implementations conformant with this specification may be “plugged in” by browser-specific configuration procedures and in
that way be made accessible to SALT documents. SALT documents can query for the presence of these “plug-ins” at run-
time.

The object shall appear in the DOM of the HTML document. The object will have various properties and methods that can be
manipulated via ECMAScript code. Some of these methods will create derivative “child” objects, thereby instantiating an
entire call control object hierarchy. The objects should also generate events. Event handlers may be written as ECMAScript
functions.

The call control object model specification shall be derived from and modeled after the Java Call Processing API (JCP),*
which is an open industry specification. The SALT call control specification will not necessarily follow those specifications to
the letter, as much of those specifications deal with issues specific to the Java language, whereas the SALT call control
specification will be adapted to the ECMAScript programming environment in HTML documents.

For call control use examples see section 8.6.

6.2.1 Call Control Object Hierarchy

The SALT call control objects comprise a hierarchy.

provider )—‘ provider

address }—‘ address

conference conference [« « s «

At the very top of the hierarchy are one or more window objects within the browser. Each window object has a document
object representing the loaded HTML page. The document object will have all the traditional subordinate objects as defined
elsewhere (g.v., W3C HTML DOM at http://www.w3.0rq).

Each window contains a single callControl object giving a single point of abstraction for interface to the platform’s call
control functionality.

° A first-party call control system is one where the activating entity (the system executing the call control function) is also
one of the parties of the conversation. This is the case with SALT documents, which participate in a dialog with a human. A
third-party call control system is one where the activating entity is not one of the parties of the conversation, but is instead a
“moderator” of the conversation. This is the typical case with a telephony switching element such as a softswitch, SIP
proxy, etc. This specification addresses the former scenario and not the latter.

°To be explicit, this specification is an ECMAScript binding derived from the documents for JCP/JCC 1.0 (JSR 021) and
selected portions of JTAPI 1.4 (JSR 034), which may be located on the World Wide Web at http://java.sun.com.




The callControl object contains one or more provider objects. Each provider allows access to a single telephony
implementation.

Different telecommunication vendors can market providers for different styles of telecommunication platforms, so long as
they are conformant with this specification. For example, vendor “A” may market a SIP telephony provider for Voice over
IP, while vendor “B” may market an ISDN telephony provider for a specific T1/E1 adaptor card.

The SALT call control interface is platform and protocol independent. It provides a common abstraction above many possible
telephony platform implementations.
Which providers are present on any given system is a platform browser configuration issue.

Each provider object provides telecommunications connectivity through one or more addresses. In traditional telephone
networks, an address is commonly known as a telephone number.

Providers also allow creation and management of conferences, which are logical groupings of calls." Conferences may
be created and terminated. Calls may be created and terminated, and also moved into or out of conferences. A call is
commonly thought of as a “call leg”.

Each call has media streams associated with it, known as channels. These media streams will typically be audio, but
could also be video streams (for support of video conferencing) or text (for support of teletext or chat).

6.2.2 Browser Configuration of Call Control Providers
The method of instantiation of call control providers inside the browser is a platform specific configuration issue.

All other call control objects are derived from the provider object programmatically using methods of call control objects.
For example, you can use the cr eat eConf er ence() method of a provider object resulting in a conference object.
Likewise, you can use the cr eat eCal | () method of a conference object resulting in a call object, and so on.

The major exception is that incoming calls can result in conference and call objects being spontaneously created by the
platform. Appropriate events will be generated informing the script of the creation of those objects, and the names of the
newly created objects.

6.2.3 Call Control Event Handling

When the browser starts up and each provider object is “plugged in”, the first event the provider throws will be the
“provi der.inService”event.

An ECMAScript event handler to catch this event can be written as shown below.

<script |anguage="JavaScript”>
cal | Control.provider[0].attachEvent (“provider.inService”, nyProviderEvent Handl er);

function myProvi der Event Handl er (event, object) {
if (event == “provider.inService”) {
/1 handl e In-Service event here.
}
}

</script>

Any call control object can have a programmer-written ECMAScript event handler attached to it using the at t achEvent
method as illustrated above. The event handler may be dedicated to handling a single event, or multiple events may be
attached to a single handler. The handler can discriminate between different arriving events by examining the event

" Those of you intimately familiar with Java call control will notice that this specification is using the terms conference and
call in place of call and connection objects, respectively. This is for alignment with the terminology used by the current
draft of the Call Control XML (CCXML) document of the W3C Voice Browser Working Group.



parameter passed to the handler. The handler can also tell what call control object threw the event by examining the
obj ect parameter.

If any call control object throws an event and it is not caught by a handler attached to the object throwing the event, then the
event will “bubble” up to its parent object. The event will continue to “bubble” up the object hierarchy until it is either caught
by an attached event handler, or until it ultimately reaches the callControl object, where it will be processed by a system-
default event handler.

At a minimum, all events have a sr cEl ement sub-property that refers to the object that generated an event. You can tell,
for example, which call was disconnected when you get a cal | . di sconnect ed event by examining
event . srcEl enent .

Other properties of events depend on the individual event in question.

6.2.4 Lifetime of Objects

Objects such as conferences and calls do not spontaneously disappear. For example, a call object does not destroy
itself just because of a call disconnect. The programmer must explicitly destroy the object when finished with it.

Objects are persistent regardless of how many windows are opened or closed. All the objects are accessible to any child
window of a single browser. The objects are destroyed when the browser exits, however.

The programmer must typically create objects needed before using them. The only exceptions are as follows:
A conference object and a call object are spontaneously created on an incoming call.
The programmer has no control over what addresses a provider offers; addresses cannot be created or destroyed,
they are essentially a platform provisioning issue.

6.2.5 Associating Media Streams with SALT Tags
Because each window is defined to have a single PromptQueue object (for audio output) and single active <listen> and/or

<dtmf> object (for audio input), the SALT browser implementation will connect the audio input or output to telephony streams
as it deems appropriate.

Each telephony media stream is represented by a channel. Each call object typically has two channels: channel [ 0] for
audio output, and channel [ 1] for audio input. Each conference object also has a channel [ 0] whose audio is “split
out” to each child call of the conference, and a channel [ 1] comprised of the mixed input audio of all child calls of a
conference.

The programmer has some control over which specific audio input channel and/or audio output channel are in use. See the
description of medi aSr ¢ and nmedi aDest properties in the callControl object section below.

Note: Any SALT document that needs to process more than one input stream or output stream concurrently will require the
use of multiple windows. The implications of multi-window browsing are still under consideration.

6.2.6 Support for a Call Distributor

A Call Distributor is an application program that waits for incoming calls and then dispatches sub-programs to service them.
In VoiceXML platforms, the Call Distributor behavior is either provided by the platform vendor and inaccessible to the
programmer, or CCXML scripts may be used to program the same functionality.

SALT provides a method of the callControl object named spawn() to assist the coding of a Call Distributor in ECMAScript.
Programmers may use this facility if they wish, but they are not required to do so.

The following steps are suggested to implement a Call Distributor behavior:

Code a SALT document to act as the parent window that waits for incoming calls, and another SALT document to
act as the child window to process the call.



Upon receipt of an incoming call indication (conf er ence. creat ed and cal | . cr eat ed events), the

cal | Control . spawn() method may be invoked with an HTML document URL (the child SALT document) as a
parameter, and the object ID of the new conference.

The parent window will “donate” the conference object (and its children) to the child window. The object will be
deleted from the DOM of the parent window, and appear in the DOM of the child window. The parent document
can go back to listening for more incoming calls. Note that the “donated” conference is not destroyed; it is merely
re-parented from one DOM to another.

The child document will receive the incoming call indication (conf er ence. creat ed and cal | . cr eat ed events),
as if the call had come into the child window in the first place. ECMAScript code in the child document can now
process the call.

The child window may terminate itself by calling the wi ndow. cl ose() method.

6.3 Call Control Object Dictionary

The descriptions of object properties below contain abbreviations “R/O” for Read Only and “R/W” for Read / Write. “Read
Only” properties can only be examined, not set. “Read / Write” properties may be examined and/or set.

6.3.1 Events
All events have at least the following properties, and may have more, depending upon the particular event in question.

6.3.1.1 Properties

cause — R/O - the reason the event was thrown.

sr cEl enent — R/O — reference to the object that threw the event.

6.3.2 callControl Object
The callControl object is the top-level browser object for call control interface. It is a child of each window object.

6.3.2.1 Properties

capabilities —R/O —an XML docunent El enent in a format (to be determined, perhaps Web Services
Description Language, WSDL) listing the functionality supported by the call control implementation. Scripts can use
XML DOM methods, e.g., sel ect Nodes(), to discover what capabilities are supported before trying to use them.

i d — R/O — symbolic globally unigue id of this object assigned by the platform (URN format).

medi aDest — R/W — controls where audio output, i.e. the output from the PromptQueue, is heard. If null, output is
sent to the device's speaker (or is lost if there is no speaker). If it contains a reference to the output channel of a
conference, the audio is heard by all calls in the conference. If it contains the output channel of a call object, the
output is sent to and only heard by the specific call referenced, (such a scenario is sometimes referred to as
“whisper”, in which only one conference participant hears the message). If medi aDest is null and a conference is
created, nedi aDest is automatically set to that conference object’s channel [ 0] . If nedi aDest refersto a
conference that is destroyed, nedi aDest is automatically set to null. If a prompt is playing while nedi aDest
changes, the precise timing of when the actual audio switchover takes place is undefined. For example, platforms
may implement the switchover immediately, at the end of the current prompt, or at the end of all queued

prompts. However, the switchover is guaranteed to take place prior to playing a subsequent prompt once

the PromptQueue is empty or is stopped.

medi aSr ¢ — R/W — controls where audio input is sourced for <listen> objects (speech recognition and/or audio
recording). If null, input is received from the device's microphone. If it contains a reference to the input channel of a
conference object, input is received from a mixture of all of the calls in the conference. If it contains a reference
to the input channel of a call object, input is received from only the specific call referenced. If medi aSr c is null
and a conference is created, nedi aSr ¢ is automatically set to that conference object. If medi aSr c refersto a
conference that is destroyed, nedi aSr ¢ is automatically set to null. If a <listen> is in progress while medi aSr c
changes, the precise timing of when the actual audio switchover takes place is undefined. For example, platforms



may implement the switchover immediately, at the end of the current <listen>. However, the switchover is
guaranteed to take place prior to beginning a subsequent <listen> operation.

provi der [] — R/O -- array of providers configured into the system and accessible through the browser.

provi der. | engt h —R/O -- number of providers configured into the system

6.3.2.2 Methods

spawn( uri, [conf]) -- create a new window object using the URI parameter as the start document, and begin a
new sandboxed thread of execution. The new window will have its own callControl object. If the optional conf
parameter is specified, it refers to a conference object that the parent window will donate to the new child
window. The child window will receive a conf er ence. cr eat ed event for the conference and a

cal | . creat ed event for each call object that is a child of the conference object being donated. The donated
conference and its child objects will be deleted from the DOM of the donating parent window. This is how a
parent window can “hand off’ a conference and/or call to a child window for processing. Scripts in the child
window can be written with the belief that the events represent one or more incoming calls.

6.3.2.3 Events
The callControl object does not throw any events; however, it is usually useful to attach an event handler to this object to

catch events that bubble up from lower-level objects in the hierarchy.

6.3.3 Provider Object

A provider represents an abstracted interface to an implementation of a telephony protocol stack; it is the SALT
document’s "window" into the telephony platform.

Example providers can include SS7-ISUP, ISDN, POTS, SIP, and H.323. Vendors may choose to develop one or more of
these as separate providers, or a single (multi-protocol) provider giving an abstracted view of one or more of these.
The methods, properties, and events of provider objects and all of the derivative call control objects are themselves protocol

and implementation independent.

6.3.3.1 State Machine

QutOfservice Shutdown

The prowder object state machine has three states:
I nSer vi ce — This state indicates that the provider is currently alive and available for use.
Qut OF Ser vi ce -- This state indicates that a provider is temporarily not available for use. Many methods in
this API are invalid when the provider is in this state. Providers may come back in service at any time (due to
system provisioning by the administrator); however, the application can take no direct action to cause this
change.
Shut down -- This state indicates that a provider is permanently no longer available for use. Most methods in
the API are invalid when the provider is in this state. Applications may use the shut down() method on this
interface to cause a provider to move into the Shut down state.



6.3.3.2 Properties

addr ess[] — R/O -- array of addresses hosted by the provider.

addr ess. | engt h — R/O -- number of listenable addresses hosted by the provider.

conf er ence[] — R/O -- array of conferences.

conf erence. | engt h — R/O -- number of child conferences currently in existence.

i d — R/O — symbolic globally unigue id of this object assigned by the platform (URN format).
par ent —R/O — the object id of the callControl object the provider instance is within.

st at e — R/O -- the current state of the provider object’s finite state machine. String value, see section “State
Machine” above.

6.3.3.3 Methods

cr eat eConf er ence — create a child conference object.

shut down — completely shut down the provider (this provider instance of a given window cannot be restarted).
This function performs object memory cleanup in a typical implementation. Some platforms may not need to
implement the shut down() function, in which case it silently ignores such calls made by scripts.

6.3.3.4 Events

provi der.inService --the provider is available for use by the script.
provi der. out Of Ser vi ce --the provider is unavailable.

provi der. shut down -- the provider has been shut down.

6.3.4 Address Object
An address is a connectable endpoint. In order to receive incoming calls, you must listen on a particular address.

In a traditional Public Switched Telephone Network (PSTN) environment, addresses are known as “telephone numbers”.
They are represented in RFC 2806 compliant URL format, e.g., ‘t el : +1- 888- 555- 1212".

In Voice over IP (VoIP) environments, addresses are represented as SIP URLs (g.v., RFC 2543) appearing typically like
electronic mail addresses (e.g., “si p: fred@ | i nt st one. conf) or as H.323 URLs (g.v., RFC 2000) which may appear as
electronic mail addresses, simple IP addresses, or free-form gatekeeper aliases (e.g., “h323: bar ney @ ubbl e. or g”,
“h323:134. 128. 1. 10", or *h323: arbitrary-al i as”).”

How an application registers one or more addresses with a directory service in order to receive incoming calls is beyond the
scope of this specification.

Note that gpplications never explicitly create new address objects. Which addr esses are available for useisa
provider provisoning/configuration issue.

2 The “cal | t 0: " URI namespace as used in Microsoft NetMeeting was never formally registered with the IETF and is
deprecated by RFC 2806.



6.3.4.1 State Machine
The address object has no associated state machine.

6.3.4.2 Properties

i d — R/O — symbolic globally unique id of this object assigned by the platform (URN format).
par ent —R/O --id of the provider this address is a member of.
st at e — R/O -- the current “listen” state of the address object. String value, either “Li st eni ng” or “l dl e”.

uri —R/O -- URI of the address. Must be an RFC 2806 URI, a SIP URI, or an H.323 URI.

6.3.4.3 Methods

I i st en( state, [answer]) — begin listening for incoming calls on this address (state is Tr ue) or stop listening (state
is Fal se). This function allows the programmer to have control over exactly which addresses may receive incoming
calls, which is useful on platforms (especially servers) that have multiple addresses. Some implementations may
choose to automatically listen by default, in which case an explicit callto | i st en() is not necessary. The optional
parameter answer is a boolean indicating whether incoming calls are automatically accepted (value Tr ue, the
default) so that explicit invocations of accept () are not required; or whether incoming calls must be explicitly
accepted or rejected (value False) in order to leave the Al erti ng state. Note that if you call | i st en( True), the
address will continue listening until you call | i st en( Fal se), i.e., the listen state is not automatically reset when
an incoming call occurs.

6.3.4.4 Events

The address object throws no events. Incoming calls will generate conf er ence. creat ed and cal | . cr eat ed events.

6.3.5 Conference Object
A conference is a logical grouping of calls that can share their media streams.

Every call must be created as a member of some conference, even ifitis in a conference all by itself. For example, a
voicemail application would typically use a conference object with only one call: the person who called in to leave or
retrieve messages.

When more than one call is a child of the same conference object, these calls become “conferenced together”.

Conference objects are only good for one “lifetime”. When the last call leaves a conference, the conference enters the
I nval i d state. No new calls can enter an | nval i d conference. Properties may be examined, and then the
conference can be destroyed, and a new one created if needed.

6.3.5.1 State Machine

The conference object state machine has three states:
Act i ve — A conference with some current ongoing activity is in this state. Conferences with one or more
associated calls must be in this state.
I dl e -- This is the initial state for all conferences, immediately after creation. In this state, the conference has
zero calls.



6.3.5.2

6.3.5.3

6.3.5.4

I nval i d -- This is the final state for all conferences. Conference objects which lose all of their call objects
(via a transition of the last call object into the Di sconnect ed state) moves into this state. Conferences in
this state have zero calls and these conference objects may not be used for any future action.

Properties

cal | [ = R/O -- array of the calls in the conference.
cal | . I engt h — R/O -- number of active calls in the conference.

channel [] — R/W — channels of the conference’s media mixer ... channel[0] is the audio output channel which
can be used as a nedi aDest for <pr onpt > tags, allowing beeps or intrusion messages to be played into
conferences (e.g., “the conference will end in five minutes”) ... channel[1] is the audio input channel which can be
used as a nedi aSr c for recording, so that you can record the entire conference.

channel . | engt h — R/O — number of channels of the conference.
i d — R/O — symbolic globally unique id of this object assigned by the platform (URN format).
par ent —R/O --id of the provider this conference is a member of.

st at e — R/O -- the current state of the conference object’s finite state machine. String value, see section “State
Machine” above.

Methods

createCal | () —create a call as a member of this conference.

dest roy() —destroy the conference object. If a conference is in the Act i ve state at the time it is destroyed,
the following sequence will occur:

o All connected child calls are disconnected, resulting in cal | . di sconnect ed events being thrown.
o All child call objects are destroyed.
o Aconference.invalid eventis thrown, and then the conference object is destroyed.

o The document script will now get a chance to respond to the pending events. Note that this implies that
the cal | . di sconnect ed event handler will not be able to query the state of the call object because it
has already been destroyed. If this behavior is not desired, then the connected calls should be individually
disconnected before destroying the parent conference.

Also note that the conference object will be automatically destroyed if its parent provider is shutdown.

Events

conf erence. acti ve -- the first call has joined the conference.
conf erence. cr eat ed —the conference has been created.

conference. i nval i d -- the last call has left the conference.

6.3.6 Call Object
A call is a connection between an external endpoint address and an endpoint address on the platform.

A call can be created in order to place an outgoing call, or may be created as a result of an incoming call.



The external endpoint address is known as the r enot e. uri and the platform endpoint address is known as the
| ocal . uri. They retain these relationships regardless of whether the call was incoming or outgoing (unlike ANI and DNIS
who switch senses depending upon the direction of the call).

For calls that have at least one audio output channel and at least one audio input channel, the primary audio output channel

is channel[0] and the primary audio input channel is channel[1]. The direction is with respect to the platform upon which
SALT is executing.

6.3.6.1 State Machine

Alerting

S AN

e

Connected

The call object state machine has seven states:

Al erti ng -- This state implies notification of an incoming call.

Connect ed -- This state implies that a call is actively part of a telephone call. In common terms, two people
talking to one another are represented by two calls of a single conference in the Connect ed state. A person
interacting with a dialog script only requires a single call.

Di sconnect ed -- This state implies the call is no longer part of an active telephone call. A call in this state is
interpreted as once previously belonging to this telephone call.

Fai | ed -- This state indicates that a call has failed for some reason. One reason why a call would be in the
Fai | ed state is because the destination party of an outgoing call was busy.

| dl e -- This state is the initial state for all new calls. Calls which are in the | dl e state are not actively part of
a telephone call. Calls typically do not stay in the | dl e state for long, quickly transitioning to other states.

I nProgr ess -- This state implies that the call object has been contacted by the origination side or is
contacting the destination side. The contact happens as a result of the underlying protocol messages. Under
certain circumstances, the call may not progress beyond this state. Extension packages elaborate further on
this state in various situations.

Unknown — This state implies that the implementation is unable to determine the current state of the call
(perhaps due to limitations or latency in underlying signaling). Typically, methods are invalid on calls that are in
this state. Calls may move in and out of the Unknown state at any time.

Unknown



6.3.6.2 Properties

channel [] —R/O -- array of the channels of the call; channel[0] is the audio output channel which can be used as
a nmedi aDest for <prompt> tags, allowing beeps or messages to be played into calls ... channel[1] is the audio
input channel which can be used as a nedi aSr ¢ for recording, so that you can record the entire call.

channel . | engt h — R/O -- number of active channels of the call.
i d — R/O — symbolic globally unique id of this object assigned by the platform (URN format).

| ocal . pi —R/O — presentation indicator, set as a result of specifying pi in the connect () method. See
acceptable values in the table in a section below.

| ocal . si —R/O -- screening indicator, set as a result of specifying si in the connect () method. See
acceptable values in the table in a section below.

| ocal . uri —R/W -- URI of the local address endpoint of the call; for incoming calls, this is equivalent to (and may
be mapped from) DNIS. The ability to programmatically change | ocal . uri on outgoing calls is provider
implementation dependent. This field is in RFC 2806 format.

par ent —R/O --id of the conference this call is a member of.

redi rect[] —R/O — array of redirections of the call (e.g., occurrences of the call being forwarded)
redi rect. | ength —-R/O —length of the redi rect[] array, i.e., the number of entries.
redirect[].reason —R/O — reasons for each of the redirections.

redirect[].uri —R/O - URI(s) of the intermediate address(es) that redirected the call (e.g., call forwarded); for
incoming calls, this is equivalent to (and may be mapped from) RNE. The order of redirect entries is from least
recent to most recent: r edi rect [ 0] . uri is the first number that call was redirected from, and
redirect[redirect.length - 1].uri isthe last.

renot e. pi —R/O — presentation indicator of the remote phone, set as a result of an incoming call or connection of
an outgoing call by the connect () method. See acceptable values in the table in a section below.

renot e. si —R/O -- screening indicator of the remote phone, set as a result of an incoming call or connection of
an outgoing call by the connect () method. See acceptable values in the table in a section below.

renot e. uri —R/O -- URI of the remote address endpoint of the call; for incoming calls, this is equivalent to (and
may be mapped from) ANI. This field is in RFC 2806 format.

st at e — R/O -- the current state of the call object’s finite state machine. String value, see section “State Machine”
above.

6.3.6.3 Methods

accept () —answer an Al erti ng call (in response to receiving a cal | . al erti ng event), moving it to the
Connect ed state. Accepting a call will cause a cal | . connect ed event.

connect (uri, [pi, si]) — place an outbound call on a call. This is only valid if the call is in the | dl e state. The
URI parameter is in RFC 2806 format. ™ The presentation indicator pi and the screening indicator si are optional
parameters that may be used to control permissions for how caller ID information will be displayed, if the call control
implementation supports such functionality. ~See acceptable values in the table in a section below.

3 please consult the RFC 2806 document for format details. RFC 2806 contains a very rich syntax, including such things as
wait-for-dialtone and calling-card DTMF sending for the ‘t el : " URI, as well as modem dialing strings for the “nodem ” URI.



dest roy() —destroy the call object. If the call was connected at the time it is destroyed, it will be disconnected
first. The call object will be automatically destroyed if any of its ancestor objects in the DOM are destroyed.

di sconnect ([ reason]) -- hang up on a call. The optional reason parameter is a character string describing the
reason the call was disconnected. Specific “well known values” for reason are to be determined. Note that
disconnecting a call will resultin a cal | . di sconnect ed event being thrown, and may also result in the

onaudi oi nt er rupt handler of one or more of the <listen>, <dtmf> or PromptQueue objects being invoked.

rej ect ([ reason]) —reject an Al er t i ng call (in response to receiving acal | . al erti ng event), moving it to the
Di sconnect ed state. Rejecting a call will cause a cal | . di sconnect ed event. The optional reason parameter
is a character string describing the reason the call was rejected. Specific “well known values” for reason are to be
determined.

t ransf er (uri, [bridge, pi, si]) -- transfer a call from its current endpoint (the telephony platform) to some other
destination specified by the URI parameter. The optional bridge parameter is a request that the platform perform a
“trombone” transfer (when Tr ue) or a “release trunk” transfer (when Fal se). The default value is Fal se. The
presentation indicator pi and the screening indicator si are optional parameters that may be used to control
permissions for how caller ID information will be displayed, if the call control implementation supports such
functionality. See acceptable values in the table in a section below.

6.3.6.4 Values for Presentation Indicator and Screening Indicator

Presentation Indicator pi: An indicator whether the URI and name fields are allowed to be presented (if available) to
the user. This field is optional; if not supported, value is undefined. If supported, the default value is
presentati on-al | oned.

Value Description
presentation-all owed Display URI and name.
presentation-restricted Do not display URI and name: show "private”.

nunber - | ost - due-t o-i nt er wor ki ng Information not available for display: show
"unknown" or “out of area”.
reserved-val ue Implementation specific.

Screening Indicator si: An indicator of which party or network element has set and/or verified the URI and name
fields. This field is optional; if not supported, value is undefined. If supported, the default value is user - pr ovi ded-
unscr eened.

Value Description

user - provi ded- unscr eened The application set URI and name, and has not
screened it.

user - provi ded- passed The application set URI and name, has screened
it, and it passed screening.

user - provi ded- screeni ng-fail ed The application set URI and name, has screened
it, and it failed screening.

net wor k- provi ded The network set URI and name.

6.3.6.5 Events

cal | . al erting --anincoming call is "ringing".

cal | . connect ed -- the call has been answered and connected to both local and remote endpoints; for outgoing
calls this event may have a t ype property indicating the type of device that answered (e.g., voi ce, f ax, modem).

cal | . creat ed -- the call object was created, either it is an incoming call, or the script explicitly used the
createCal | () method of a conference object.



cal | . di sconnect ed -- the call has been disconnected, either by the remote end, or by the near end using the
di sconnect () method; this event will have a cause property indicating the disconnect reason (e.g., far-end hang
up, credit expired, time exceeded, etc.) and a properties for the call start time and call end time for billing purposes.

cal | . fail ed --the call has experienced an unexpected failure, or the method could not be performed, e.g., an
outgoing call attempt could not connect; this event will have a cause property indicating the failure reason (e.qg.,
busy, no answer, network congestion, etc.).

cal | . i nProgress -- an outbound call is in the process of connecting to the remote end.

cal | . unknown —the call is in an unknown state.

7 Logging

This section is under development. It will define a means to enable general platform logging using a global script function.

8 SALT illustrative examples

8.1 Controlling dialog flow

8.1.1 Click to talk

This simple example shows how, in a multimodal application, GUI events can be wired to SALT commands such as
beginning a recognition turn. In this example, pressing the button named buttonCityListen starts the listen named listenCity,
which holds a grammar of city names, and a <bind> command to transfer the value into the input control named txtBoxCity.

<l— HIM. -->
<htm xml ns:salt="urn:schenmas. saltforum org/ 2002/ 02/ SALT" >

<i nput id="txtBoxCity" type="text" />
<input id="buttonCityListen" type="button" onClick="listenCity.Start();" />

<I— SALT -->

<salt:listen id="listenCity">
<sal t:granmar nane="g city" src="./city.xm" />
<sal t: bind targetel ement ="t xt BoxCi ty"

val ue="//city" />
</salt:listen>
</htm >

8.1.2 Using HTML and script to implement dialog flow

This example shows how to implement a simple dialog flow which seeks values for input boxes and offers context- sensitive
help for the input. It uses the title attribute on the HTML input mechanisms (used in a visual browser as a "tooltip"
mechanism) to help form the content of the help prompt.

<htm xm ns:salt="urn:schemas. saltforum org/ 2002/ 02/ SALT" >
<title>Context Sensitive Help</title>
<head>

<scri pt>

<! [ CDATA[

var focus;

functi on RunSpeech() {

if (trade.stock.value == "") {
focus="trade. stock";



p_stock. Start();

return,;

}

if (trade.op.value == "") {
focus="trade. op";
p_op.Start();
return,;

}

/l.. repeat above for all fields
trade. submt();
}
function handle() {
res = event.srcEl enment.recoresult;
if (res.value == "help") {
text = "Please just say";
text += docunent.all[focus].title;
p_help. Start(text);
} else {
/1 proceed with value assignments

}
}
11>
</script>
</ head>

<body onl oad="RunSpeech()">

<sal t:pronpt id="p_hel p* onconpl ete=" RunSpeech()" />

<sal t:pronpt id="p_stock” onconplete="g_stock.Start()">
Pl ease say the stock nane

</salt: pronpt>

<sal t:pronpt id="p_op" onconplete="g_op.Start()">
Do you want to buy or sel

</salt: pronpt>

<salt:pronpt id="p_quantity" onconplete="g quantity.Start()">
How many shares?

</ pr onpt >

<salt:pronpt id="p_price" onconplete="g price.Start()">
What's the price

</salt: pronpt>

<salt:listen id="g_stock" onreco="handl e(); RunSpeech()" >
<sal t:grammr src="./g_stock.xm" />
</salt:listen >

<salt:listen id="g_op" onreco="handl e(); RunSpeech()" />
<sal t:grammar src="./g_op.xm" />
</salt:listen >

<salt:listen id="g_quantity" onreco="handl e(); RunSpeech()" />
<sal t:grammr src="./g_quant.xm" />
</salt:listen >

<salt:listen id="g_price" onreco="handl e(); RunSpeech()" />
<sal t:grammr src="./g_quant.xm" />
</salt:listen >

<formid="trade">
<i nput nanme="stock" title="stock nanme" />



<sel ect nanme="op" title="buy or sell">
<option val ue="buy" />
<option value="sell" />

</ sel ect >

<i nput nanme="quantity" title="nunber of shares" />

<i nput nanme="price" title="price" />

</ fornp
</ body>
</htm >

8.1.3 Downlevel dialog flow

This example asks and confirms with the caller for a London football team without using script. It demonstrates a system
initiative dialog. However, since data and Ul is separated, the app developers only need to change the speech section when
changing interaction style to mixed initiative. The data section remains the same.

Here is briefly how it works:

When an incoming call comes in, the bind in smex starts the welcoming prompt and the corresponding listen object.
Depending on the recognition results, the bind directives in the listen object guide the execution using declarative logic.
Finally, when everything is okay, the form is submitted, all without scripting.

<htm xm ns:salt="urn:schenmas. saltforum org/ 2002/ 02/ SALT" >
<body>
<I— the data section -->
<formid="get teant>
<i nput nane="tean’ />
<i nput nanme="ui d” type="hidden"/>
</ fornp
<l-- The speech section -->
<sal t: pronpt id="wel cone”>
Wel come, caller!
</salt: pronpt>
<sal t:pronpt id="ask”>
Whi ch team woul d you |ike the latest results for: Arsenal, Chelsea,
Spurs or West Han®
</salt: pronpt>
<salt:pronpt id="confirni>
| heard <val ue targetelenment="teant/>. Is this correct?
</salt: pronpt>
<sal t: pronpt id="thanks”>
Thank you. Please wait while | get the latest results.
</salt: pronpt>
<salt:pronpt id="retry”>
Okay, let's do this again
</salt: pronpt>
<salt:pronpt id="repronpt”>
Sorry, | missed that.
</salt: pronpt>

<salt:listen id ="listen_teant>
<salt:granmmar src="./teantypes” />

<salt:bind test="/[ @onfidence $gt$ 10]”

targetel ement ="teant value="//teant />
<salt:bind test="/[ @onfidence $gt$ 10]”

targetel ement="confirn targetnethod="start” />



<salt:bind test="/[ @onfidence $gt$ 10]”
targetel ement="1isten_yesno” targetnethod="start” />

<salt:bind test="/[ @onfidence $le$ 10]”
targetel ement="repronpt” targetnethod="start” />
<salt:bind test="/[ @onfidence $le$ 10]”
target el ement =" ask” targetnethod="start” />
<salt:bind test="/[ @onfidence $le$ 10]”
targetel ement="1isten_tean’ targetnmethod="start” />
</salt:listen>

<salt:listen id="1isten_yesno”>
<sal t:grammar src="./yesno” />

<salt:bind test="/yes[ @onfidence $gt$ 10]”
target el ement ="t hanks” targetnethod="start” />

<salt:bind test="/yes[ @onfidence $gt$ 10]”
targetel ement =" get _teani targetnethod="submt” />

<salt:bind test="/no or ./[ @onfidence $le$ 10]" />
targetel ement="retry” targetnmethod="start”
<salt:bind test="/no or ./[ @onfidence $le$ 10]”
target el ement =" ask” targetnethod="start” />
<salt:bind test="/no or ./[ @onfidence $le$ 10]”
targetel ement="1isten_tean’ targetmethod="start” />
</salt:listen>

<I— call control section -->
<salt:snex id="tel ephone” sent="start_I|istening”>
<sal t: param nanme="server" val ue="ccxm proc” />
<sal t:bind targetel enent="uid” value="/@id” />
<salt:bind test="/Call _connected”
t arget el ement =" wel cone” t ar get met hod="queue” />
<salt:bind test="/Call _connected”
target el ement =" ask” targetnethod="start” />
<salt:bind test="/Call _connected”
targetel ement="1isten_tean’ targetmethod="start” />
</salt:smex>
</ body>
</ htm >

8.2 Prompt examples

8.2.1 Prompt control example

The following example shows how control of the prompt using the methods above might be authored for a platform which
does not support a keyword barge-in mechanism. On detection of a speech input event, the application reduces the volume
of the prompt being played while the input speech is being recognized. The prompt is stopped if recognition succeeds, or is
restored to full value if it fails.

<htm xml ns:salt="urn:schenas. saltforum org/ 2002/ 02/ SALT" >
<title>Pronmpt control</title>
<head>
<script>
function checkkKWBar gei n() {
if (keyword.value == "") { // result is below threshold
news. change(1.0, 2.0); // restore the volune



keyword. Start(); // restart the recognition
} else {
Pronmpt Queue. Stop(); // keyword detected! Stop the pronpt
/1 Do whatever that is necessary
}
}

</script>
<script for="w ndow' event="onl oad">
news. Start (); keyword. Start();

</script>
</ head>
<body>
<sal t:pronpt id="news" bargein="fal se" onbargei n=" news.change(1.0, 0.5);" >
<l — onbargein... turns down the volunme while verifying -->

Stocks turned in another |ackluster performance Wednesday as investors received
little incentive to make any big moves ahead of next week's Federal Reserve
nmeeti ng. The tech-heavy Nasdaqg Conposite |Index dropped 42.51 points to close at
2156.26. The Dow Jones Industrial Average fell 17.05 points to 10866.46 after an
early-afternoon rally failed.
<l--
More to foll ow
-->
</salt: pronpt>
<salt:listen i d="keyword"
rej ect="70"
onreco="checkKWBar gei n()"
onnor eco="checkKWBargein()" >
<sal t: granmar src="grans/ news_bargei n_grammar.grxm" />
</salt:listen>
</ body>
</ htm >

8.2.2 Using bookmarks and events

The following example shows how bookmark events can be used to determine the semantics of a user response - either a
correction to a departure city or the provision of a destination city — in terms of when bargein happened during the prompt
output. The onbargein handler calls a script which sets a global ‘mark’ variable to the last bookmark encountered in the
prompt, and the value of this ‘mark’ is used in the listen’s postprocessing function (‘ProcessCityConfirm’) to set the correct
value.

<scri pt ><! [ CDATA[
var marKk;
function interrupt() {
mark = event.srcEl ement. booknark;
}
function ProcessCityConfirm() ({
Prompt Queue. stop(); // flush the audio buffer
if (mark == "mark_origin_city")
t xt BoxOri gi n. val ue = event. srcEl enent. val ue;
el se
t xt BoxDest . val ue = event. srcEl enent . val ue;
}
]]1></script>
<body xml ns:salt="urn:schemas. saltforum org/ 2002/ 02/ SALT" >
<i nput nanme="t xtBoxOrigin" value="Seattle" type="text" />
<i nput nane="t xt BoxDest" type="text" />



<salt:pronpt id="confirm onbargein="interrupt()" bargein="true">
From <bookmark mark="mark_origin_city" />
<val ue targetel enent="txtBoxOrigin" targetattribute="value" />,
pl ease say <bookmark mark="mark_dest_city" /> the
destination city you want to travel to.

</salt: pronpt>

<salt:listen onreco="ProcessCityConfirm)" >
<salt:grammar src="/grm 1033/cities.xm" />

</salt:listen>

</ body>

8.3 Using SMIL
The following example shows activation of prompt and listen elements using SMIL mechanisms.

<htm xm ns:t="urn:schemas-m crosoft-comtinme"
xm ns: sal t="urn: schemas. sal tf orum or g/ 2002/ 02/ SALT" >
<head>
<styl e>
.time { behavior: url (#defaul t#tinme2); }
</style>
</ head>
<body>

<i nput name="t xt BoxOri gi n" type="text" />
<i nput nanme="t xt BoxDest" type="text" />

<sal t:pronpt class="tinme" t:begin="0">
Pl ease say the origin and destination cities
</sal t: pronpt>

<t:par t:begin="tinme.end" t:repeatCount="indefinitely"
<salt:listen class="tine">
<salt:grammar src="./city.xm" />
<sal t: bind targetel enent ="t xt BoxOri gi n"
val ue="//origin_city" />
<sal t: bind targetel enent ="t xt BoxDest "
test="//dest_city[ @onfidence &gt; 40]"
val ue="//dest _city" />
</salt:listen>
</t:par>

</ body>
</htm >

8.4 A 'safe'voice-only dialog

This example shows prompt and listen elements used with script in a simple voice-only dialog. Its point is to show that all
possible user input and error events are caught and safely handled, so that the dialog is never left in a ‘hanging' state.

<htm xm ns:salt="urn:schemas. saltforum org/2002/02/ SALT" >
<head>

<title>origin and destination</title>
</ head>



<body>

<formid="travel Forni action="http://nysite.com travel/inquire.php”

nmet hod=" post” >
<i nput name="txtBoxOriginCity" type="text" />
<i nput nanme="t xt BoxDestCity" type="text" />
</fornp

<I— SALT -->
<salt:pronpt id="askOriginCity" onError="procError()>
Where fronf
</salt: pronpt>
<salt:pronpt id="askDestCity" onError="procError()”>
Where to?
</salt: pronpt>
<sal t: pronpt id="notUnderstood” onError="procError()”>
Sorry, | could not understand your input.
</salt: pronpt>
<sal t: pronpt id="operator”
onConpl ete="transfer ToOperator()”
onError="transferToOperator()”>
<l-- external function -->
| amtransferring you to an operator
</salt: pronpt>

<salt:listen id="recoOriginCity"
onreco="procOriginCity()"
onnor eco="pr ocNot hi ngUnder st ood()”
onsi | ence="procNot hi ngUnder st ood()”
onerror="procError()”>
<salt:grammar src="./city.xm" />
</salt:listen>

<salt:listen id="recoDestCity"
onreco="procDestCity()"
onnor eco="pr ocNot hi ngUnder st ood()”
onsi | ence="procNot hi ngUnder st ood()”
onerror="procError()”>
<salt:grammar src="./city.xm" />
</salt:listen>

<I— scripts -->
<scri pt>
function RunAsk() {

if (txtboxOriginCity.value=="") {
askOriginCity. Start();
recoOriginCity. Start();

} else if (txtboxDestCity.value=="") {
askDestCity. Start();
recobDestCity. Start();

} else {
<l-- all slots filled -->
travel Form subm t ();

}

}

function procOriginCity () {
txt BoxOriginCity.value = recoOriginCity. val ue
RunAsk() ;



}
function procDestCity () {

t xt BoxDest City.val ue = recoDestCity. val ue;
RunAsk() ;
}
functi on procNot hi ngUnder st ood() {
not Under st ood. Start();
RunAsk() ;
}
function procError() {
operator. Start();

}
function termi nate() {
<l-- caller hung up -->
wi ndow. cl ose();
}
</script>
<I— on page load -->
<scri pt>
<l-- detect disconnect at a central place instead of

pl aci ng onaudi oi nterrupt handlers in the |listen objects -->
call Control . attachEvent (“call.di sconnected”,ternminate());

<l-- start dialog execution -->
RunAsk() ;
</script>
</ body>
</ htm >

8.5 smex examples
8.5.1 logging

<sal t:snex id="|ogServer”>
<sal t: param name="d: server” xml ns:d="urn: M crosoft.com COM >
<d: pr ot ocol >DCOW</ d: pr ot ocol >
<d: cl si d>2093093029302029320942098432098</ d: cl si d>
<d:ii d>0903859304903498530985309094803</d: i i d>
</sal t: paranp
</sal t:smex>

<salt:listen .>
.l other directives binding listen results to input fields
<salt:bind targetel ement="1ogServer” targetattribute="sent”
val ue="*[ @og $ge$ 3]"/>
</salt:listen>

This example demonstrates how logging mechanism can be achieved using a COM object with its class id and interface id.
The speech developers attach an attribute “log” indicating the level of interests for logging to the relevant SML nodes. In the
example above, the app developer chooses to log all nodes with log value greater or equal to 3 by using a single bind
directive. The example works in both downlevel and uplevel browsers.

The example also intends to demonstrate it is possible for a page to contain multiple smex objects communicated with the
same platform component as long as there won’t be confusion on which smex object is responsible for delivering the platform



messages back to the SALT document. The above example implies a component can implement multiple interfaces, each of
which has its own smex conduit. The same argument applies to TCP servers listening to multiple ports.

8.6 Call Control use case examples

8.6.1 Voicemail incoming call

In this example, a caller reaches the number of a network service provider based voice mail service. The service determines
whether the caller is the voice mail subscriber or not, and performs the appropriate action.

<htm xm ns:salt="urn: schemas. sal tforum org/ 2002/ 02/ SALT" >

<head>

<title>Voicemnil|l incomng call</title>

<script type="text/javascript"><![ CDATA[
/'l Events conference.created and call.created will automatically occur upon incom ng calls
/1 Wth aut oAnswer=True, the call wll automatically accept as well, causing call.connected

/1 Attach an event handler to catch the incom ng call connected event.
cal | Control.attachEvent ("call.connected", procConnected);
function procMail box() {
wi ndow. navi gat e("subscri ber. asp?mai | box=" + recoMi |l box. val ue);
}
function procConnected(event) {
/1l call object that caused this event
var caller = event.srcEl enent;
if (0 == caller.redirect.length) {
/1l call dialed into voicemil systemdirectly
/'l (was not forward-no-answer)
if (hasVoicemail (caller.remote.uri)) {
/'l subscriber called-in fromown office phone
/1 no need to ask for mail box
wi ndow. navi gat e("subscri ber.asp?mai | box="
+ caller.remte.uri);
} else {
/'l subscriber called-in from another phone
askMai | box.start();
recoMai | box. start();
}
} else {
/'l someone called subscriber, but got forward-no-answer,
/!l so now wants to | eave a nessage
wi ndow. navi gat e(" nmessage. asp?mai | box="
+ caller.redirect[caller.redirect.length-1].uri);

}
11></script>
</ head>
<body>
<sal t:pronpt id="askMail box">
Wel come, pl ease say your nmail box number.
</sal t: pronpt>
<salt:listen id="recoMil box" onreco="javascript: procMail box()">
<salt:grammar src="./digits. xm" />
</salt:listen>
</ body>
</htm >

8.6.2 Notification call
In this example, a notification service dials an outbound call to a subscriber to notify him of a pending dentist appointment.

<htm xm ns:salt="urn: schemas. sal tforum org/ 2002/ 02/ SALT" >
<head>

<title>Notification call</title>

<script type="text/javascript"><![ CDATA[



var callee, conf;
function procOnLoad() {
conf = call Control.provider[0].createConference();
callee = conf.createCall ()
cal | ee. attachEvent ("call.connected", procConnected);
cal | ee. connect ("tel : +1-415- 555-1212");
}
function procConnected(event) {
sayRem nder.start();
}
1]1></script>
</ head>
<body onLoad="j avascri pt: procOnLoad()">
<salt:pronpt id="sayRem nder" onconpl ete="javascript:callee.disconnect()">
Hello, this call is to remi nd you of your dentist appointnment tonorrow. Goodbye
</salt:pronpt>
</ body>
</htm >

8.6.3 Notification call with Caller Line Identity set

This is an elaboration of the dentist appointment example, illustrating how to set the Caller ID that would appear on the
subscriber's phone.

<htm >
<head>
<title>Notification call with arbitrary CLI (calling line identity)</title>
<script type="text/javascript"><![ CDATA[
var callee, conf;
function procOnLoad() {
conf = call Control.provider[0].createConference();
callee = conf.createCall ()
cal | ee. attachEvent ("call.connected", procConnected);
callee.local.uri = "tel:+1-408-555-1212";
cal | ee. connect ("tel: +1-415-555-1212");
}
function procConnected(event) ({
sayRem nder.start();
}
]1></script>
</ head>
<body onLoad="javascri pt: procOnLoad()">
<salt:pronpt id="sayRem nder" onconpl ete="javascript:callee.disconnect()">
Hello, this call is to rem nd you
of your dentist appointnent tomorrow. Goodbye
</sal t: pronpt >
</ body>
</htm >

8.6.4 Voice Activated Dialing

In this example, a subscriber calls a voice activated dialing service, speaks the number he wants called, and the service
places the call using network transfer facilities.

<htm xm ns:salt="urn: schemas. sal tforum org/ 2002/ 02/ SALT" >
<head>
<title>Voice Activated Dialing - Intelligent Network Transfer</title>
<script type="text/javascript"><![ CDATA[
var caller;
call Control .attachEvent("call.connected", procConnected);
function procConnected(event) { //incom ng cal
caller = event.srcEl enent;
askPhoneNumnber. start();
recoPhoneNunber.start();



function procPhoneNunber () {
caller.transfer("tel:" + recoPhoneNunber. val ue);
}
]1></script>
</ head>
<body>
<sal t: pronpt id="askPhoneNumber">
What phone nunber would you like to dial?
</sal t:pronpt>
<salt:listen id="recoPhoneNunber" onreco="javascri pt: procPhoneNumnber()">
<salt:grammar src="./phone.xm" />
</salt:listen>
</ body>
</htm >

8.6.5 Voice Activated Dialing with Active Listen

This is a slightly different example of voice activated dialing. The subscriber calls the service, speaks the number he wants
connected, and is connected using a “trombone” (or “hairpin”) of the two call legs in a single conference.

<htm xm ns:salt="urn:schemas. saltforum org/ 2002/ 02/ SALT" >
<head>
<title>Voice Activated Dialing - Trombone Conference with Active Listen</title>
<script type="text/javascript"><![ CDATA[
var caller, callee
cal | Control.attachEvent ("call.connected", procConnected);
function procConnected(event) { //incom ng cal
caller = event.srcEl enent;
askPhoneNumber.start();
recoPhoneNunber. start();
}
function procPhoneNunber () {
callee = caller.parent.createCall();
cal | ee. attachEvent ("call.connected", call eeConnected);
askHangup. start ();
cal | ee. connect (recoPhoneNunber. val ue);
recoHangup. start();
dt nf PoundPound. start();
}
function call eeConnected(event) { //outgoing call connected
/1 note that incom ng & outgoing calls now conferenced.
}
function procHangup(callee) { // request to hangup on callee
/1 allow caller to place another cal
cal | ee. di sconnect ();
askPhoneNunber. start();
recoPhoneNunber. start();
}
]11></script>
</ head>
<body>
<sal t: pronpt id="askPhoneNunber">
What phone nunber would you like to dial?
</sal t: pronpt >
<salt:listen id="recoPhoneNunber" onreco="javascri pt: procPhoneNumnber()">
<salt:grammar src="./phone.xm" />

</salt:listen>
<sal t: pronpt id="askHangup">
| am now placing the call. To hang-up, say 'Please hang up now

</salt:pronpt>

<salt:listen id="recoHangup" onreco="javascri pt:procHangup(callee)">
<salt:grammar src="./hangup.xm" />

</salt:listen>

<sal t:dtnf id="dtnfPoundPound" onreco="javascript:procHangup(callee)">
<sal t:grammar> # # </salt:granmmar>



</salt:dtnf>
</ body>
</htm >

8.6.6 Find Me

This is more elaborate example of the “trombone” scenario above. An arbitrary caller dials a subscriber, the service attempts
to contact three locations the subscriber might be at using parallel dialing. When the subscriber answers one of the three
lines, he is connected to the caller using a “trombone” conference, and the other two lines are disconnected.

<htm xml ns:sal t="urn: schemas. sal tforum org/ 2002/ 02/ SALT" >
<head>
<title>Find Me - Sinultaneously Dial Several Numbers</title>
<script type="text/javascript"><![ CDATA[

var caller, callee[3], answerer;

var phoneNunber|[ 3];

phoneNunmber[0] = "tel:+1-408-555-1212";
phoneNunber[ 1] = "tel:+1-415-555-1212";
phoneNumber[2] = "tel:+1-925-555-1212";

var timeoutl D;
call Control .attachEvent("call.connected", procCallerConnected);
function procCall erConnected(event) { //incom ng call
caller = event.srcEl enent;
cal l er.attachEvent ("cal |l . di sconnected", procCallerDi sconnected);
askPl easeWait.start();
/1 abort if no answer within 60 seconds
timeoutl D = set Ti meout (procTi meout, 60000);
for (var i = 0; i < phoneNunmber.length; i++) {
callee[i] = caller.parent.createCall();
callee[i].attachEvent("call.connected",
procCal | eeConnect ed) ;
cal l ee[i].connect (phoneNunber[i]);
}
}
function procCal |l eeConnected(event) { // got a callee to answer
answerer = event.srcEl ement;
cal | Control . medi aDest = event.srcEl enent.channel [0];
cal | Control . medi aSrc = event.srcEl ement. channel [1];
askTakeCal | .start();
recoTakeCal |l .start();
}
function procTakeCall () {
cal | Control . medi aDest = caller.parent.channel [0];
cal | Control.mediaSrc = caller.parent.channel [1];
if (recoTakeCall.value == "yes") {
cl ear Ti meout (ti meout|D);
/1 disconnect all other outgoing calls

for (var i = 0; i < phoneNunmber.length; i++) {
if (answerer != callee[i]) {
callee[i].disconnect();
}
}
}
}
function procTi meout () {
pronpt Queue. stop();
cal | Control . medi aDest = call er.channel [0];
/1 disconnect all outgoing calls
for (var i = 0; i < phoneNunmber.length; i++) {
cal l ee[i].disconnect();
}
sayNot Avai |l abl e. start();
}

1]1></script>
</ head>



<body>
<sal t: pronpt id="askPl easeWait">
Pl ease hold while | attenpt to reach him
</salt:pronpt>
<sal t: pronpt id="askTakeCall">
Soneone is trying to reach you, do you want to take the call?
</sal t: pronpt>
<salt:listen id="recoTakeCall" onreco="javascript:procTakeCall ()">
<sal t:grammar src="./yesno.xm" />
</salt:listen>
<sal t: pronpt id="sayNotAvail abl e" onconpl ete="javascript:caller.disconnect()">
Sorry, he is not avail able. Goodbye.
</sal t:pronpt>
</ body>
</htm >

8.7 Compatibility with visual browsers

SALT documents can be designed to be compatible with both multimodal browsers and legacy (visual-only) browsers.
Because SALT extends and enhances markup languages, rather than altering the behavior of the base markup language,
SALT documents can be used by legacy browsers by simply omitting or ignoring the SALT tags.

Dynamically-generated web-pages can examine the browser's HTTP_USER_AGENT to determine whether to include or omit
the SALT tags and any associated scripts.

It is also possible to create static web-pages that work equally well with both legacy browsers and multimodal browsers.
Because the SALT tags are not recognized by legacy browsers, legacy browsers will ignore them. However, SALT-specific
text that is not within a tag (not within angle-brackets), will be displayed by legacy browsers. This includes text that is part of
an inline <grammar>, or part of a <prompt>, for example. The recommended way to exclude the display of such text in
legacy browsers is by encompassing it with the span tag as follows:

<span styl e="di spl ay: none">
<sal t: pronpt id="giveBal ance" xm ns:ssm ="http://ww. w3. org/ 2001/ 10/ synt hesi s">
Which city do you want to <enphasi s> depart </enphasis> fronf
</salt: pronpt>

<sal t:grammar xm ns="urn: m crosoft.com speech/ schemas/ STGF" >
<gr anmmar >
<rul e topl evel ="active">
<p>from </ p>
<rul eref name="cities" />
</rul e>
<rul e name="cities">
<list>
<p> Chi cago </p>
<p> M | waukee </p>
<p> Kal amazoo </ p>
</list>
</rul e>
</ gr anmar >
</sal t: grammar >
</ span>

To prevent SALT scripts in static web-pages from interfering with legacy browsers, the scripts should be designed such that
they do not fail because the legacy browser does not find an object. Therefore, for static pages, it is recommended that
scripts test for the existence of SALT objects before referencing them. For example:

function procOriginCity () {
if (txtBoxOriginCity & recoOriginCity) {



txt BoxOriginCity.value = recoOriginCity. val ue
RunAsk() ;

}

8.8 Audio recording example
The following example demonstrates recording audio for a voice mail system.

<!l— HIM. -->
<I— on page load -->
<body onl oad="RunAsk() ">

<formid="f1" action="http://acme.conl savewaveform aspx” net hod="post”>
<i nput name="vmail" type="file" />
</fornp

<!— Pronpts -->
<salt:pronpt id="p_record” onconplete="r_recordvm Start()”>
Pl ease speak after the tone. You nmay press any key to end your recording.
</salt: pronpt>
<sal t:pronpt id="p_save”>
Do you want to save this voicenmail?
</salt: pronpt>

<I— listens -->

<l -- Recording session — max 60 seconds recording -->

<salt:listen id="r_recordvnt
initialtinmout="3000" endsilence="1500" babbl eti meout ="60000"
onreco="saveAudi o()” onnoreco="saveAudi o()” onsilence="RunAsk()” >
<salt:record />

</salt:listen>

<l-- listen for capturing whether user wants to save voice mail -->
<salt:listen id="r_save” onreco="processSave()"”>

<salt:granmar src="./yesno.xm" />
</salt:listen>

<salt:dtnf id="d_stop_rec” onreco="saveAudi o()"”>
<grammar src="alldigits.grxm”>
</salt:dtnf>

<l— HITM. + script controlling dialog flow -->
<script>
function RunAsk() {

if (voicemail.value=="") {

p_record. Start();

}
}

/1 Ask user if they are satisfied with their recording
function saveAudio () {

p_save. Start();

r_save. Start();

}

/1 1f user is satisfied post recording back to web server



/1l otherwi se start again
function processSave () {
sm Result = event.srcEl ement.recoresult;

ori gNode = sm Resul t. sel ect Si ngl eNode(“//answer/text()”");

if (origNode.value == “Yes”) {
vimai | . value = r_recordvm recordl ocati on;
fl.submt();
} else {
RunAsk() ;
}
}
</script>
</ body>

9 Appendix A: SALT DTD

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- DID for SALT WD 2.0 of 13 Feb 2002 -->

<IENTITY % bool ean "(true | false)">

<IENTITY % confi dence. val ue "CDATA"> <!-- should be a float between 0.0 and 1.0 -->
<IENTITY % content.type "CDATA">

<IENTITY % expressi on " CDATA">

<IENTITY % mlliseconds "CDATA">

<IENTITY % obj ect. net hod " CDATA">

<IENTITY % listen.node "(automatic | nultiple | single)">
<IENTITY % scri pt.statenent " CDATA">

<IENTITY % script.variabl e "CDATA">

<IENTITY % uri " CDATA">

<IENTITY % xpat h. query " CDATA" >

<IENTITY % xpattern.string "CDATA">

<! ELEMENT bi nd EMPTY>
< ATTLI ST bi nd

targetattribute Y%script.variable; "value”

t ar get el enent Y%script.variabl e; #REQUI RED

t ar get net hod %obj ect . net hod; #1 MPLI ED

t est %pattern.string; #l MPLIED
val ue % pat h. query; #REQUI RED

>

<! ELEMENT cont ent (#PCDATA) >
<! ATTLI ST cont ent

hr ef Quri ; #REQUI RED

type %ontent . type; "application/ssm +xm "
>

<l ELEMENT dtnf (grammar | bind | param* >
<I ATTLI ST dt nf

id I D #1 MPLI ED
endsi | ence %m | | i seconds; #| MPLI ED

flush %bool ean; "fal se"
initialtimout %m | | i seconds; #| MPLI ED
interdigittimeout %m | |i seconds; #1 MPLI ED

onaudi oi nt er rupt Y%scri pt.statenent; #1 MPLI ED



onerror

onkeypress

onnor eco

onreco

onsi |l ence
>

<I ELEMENT grammar ANY>
<I ATTLI ST gr ammar

name

src

type

xm ns

xm : 1 ang
>

<I ELEMENT listen (record
<I ATTLI ST listen
id
initialtinmeout
babbl et i meout
maxt i meout
endsi | ence
rej ect
xm : 1 ang
node
accesskey
style
onaudi oi nt er rupt
onerror
onnor eco
onreco
onsi |l ence
>
<l--

<I ELEMENT par am ANY>
<I ATTLI ST param

xm ns

name
>

<! ELEMENT pronmpt (#PCDATA

<! ATTLI ST pr onpt
id
bar gei n
prefetch
xm ns
xm : 1 ang
onaudi oi nt er rupt
onbar gein
onbookmar k
onconpl ete
onerror

>

<I--

granmar |

default audio M ME type

Y%script.statement;
Y%script.statement;
Y%script.statement;

Y%script.statement;
Y%script.statement;

CDATA

Quri ;
%ontent . type,
Quri ;

CDATA

bind | param* >
ID
% | |i seconds;

% | |i seconds;

% | |i seconds;

% | |i seconds;
%onfi dence. val ue;
CDATA

% i sten. node;

CDATA

CDATA

Y%script.statement;
Y%script.statement;

Y%script.statement;
Y%script.statement;

Y%script.statement;

%uri ; #1 MPLI
CDATA #REQU
content | value | param*

I D

%bool ean;

%bool ean;
uri ;

CDATA
Y%script.statement;
Y%script.statement;
Y%script.statement;
Y%script.statement;

Y%script.statement;

confornms to RFC 2361 -->

#| MPLI ED
#| MPLI ED
#| MPLI ED

#| MPLI ED
#| MPLI ED

#1 MPLI ED

#1 MPLI ED
"application/grammar+xm "
#1 MPLI ED

"en- US"

#| MPLI ED

#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED

#| MPLI ED

"en- US"
"automatic"
" g
"visibility:
#| MPLI ED

#| MPLI ED
#| MPLI ED

#| MPLI ED
#| MPLI ED

hi dden"

NOTE: accesskey and style attributes are used only in HTM. profiles -->

ED
RED

>

#| MPLI ED
"true"
"fal se"
#| MPLI ED
"en- US"
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED
#| MPLI ED



<!l ELEMENT record EMPTY>

<I ATTLI ST record
type %ont ent . type; "audi o/ wav; codec=g711"
beep %bool ean; "fal se"

>

<l ELEMENT snex (bind | param* >
<I ATTLI ST snex

id I D #1 MPLI ED
sent CDATA #1 MPLI ED

timer % | |iseconds; #1 MPLI ED

onerror %script.statenent; #| MPLI ED
onrecei ve %script.statenent; #1 MPLI ED

>

<! ELEMENT val ue EMPTY>
<I' ATTLI ST val ue
targetattribute Y%script.variable; "val ue"
t ar get el enent %script.variable; #l MPLI ED

10 Appendix B: SALT modularization and profiles

10.1 Modularization of SALT

This section defines a number of SALT modules for use in different profiles according to device capability and application
functionality.

We envisage SALT browsers falling into the following classes of device:

Smart Clients: simple or mobile devices with modest computation power and resources. In this case, the speech
capabilities may be achieved using a distributed computing architecture, the devices may have only rudimentary
displays, and the browsers may not support scripting. Examples include PDA, smart phones, set top boxes, and
some automobile navigation systems, etc.

Rich Clients: computing devices that rival PCs. Usually, the devices have suitable displays, and Ul may be more
biased towards a visual design other than for the hands free, eyes free applications. Speech related computations
may still be distributed, but a network connection is not mandatory. Examples include desktop, wall, and pocket
PCs and some automobile PCs. Rick Clients should have no problem supporting scripting.

Telephony Servers: SALT browsers are running on server-grade computers that process multiple phone calls. The Ul
includes speech and DTMF. As of the conference call on Feb. 8, 2002, the group feel requiring scripting support is
reasonable.

Many functional features in SALT do not make sense to all the environments. The purpose of SALT modularization is to
classify them into proper categories so that browser implementers have the greatest flexibility and the app developers can
enjoy maximum interoperability.

10.1.1Declarative Programming Module
The module contains the <bind> subelement and all its attributes.

Note that app developers can still enjoy the full SALT functionality on a browser that does not implement this module but
supports scripting or SMIL. It is reasonable to allow browsers to claim certain level of compliance without declarative module.

10.1.2Basic Recognition Module

The module contains the <listen> object, all the recognition related properties (e.g., text, recoResult), the mode attribute, the
<grammar> and <param> subelements and all their attributes, and all the events and methods defined in Chapter 2.



The module is particularly sensible for smart clients, where basic recognition but not recording is needed.

10.1.3Basic Recording Module

The module contains the <listen> object, all the recording related properties (e.g., recordlocation, recordtype, recordduration,
recordsize), the <record> and <param> subelements and all their attributes, and all the events and methods defined in
Chapter 2.

This module makes sense for browsers that use only input methods that do not generate uncertainties (e.g. DTMF,
keyboards, pointing devices). For this case, the browsers should be able to claim certain level of conformance without
implementing any speech recognition features.

10.1.4Concurrent Recording and Recognition Module

When a browser claims to support both the basic recognition and the basic recording modules, it does not guarantee that
recording and recognition can be performed simultaneously. Note that for distributed recognition, the browser can perform
front-end signal processing locally and only send the acoustic features to the recognition servers. Doing so usually lowers
the bandwidth requirements considerably. Therefore, there might be cases where recording and recognition are performed by
two different remote servers, and the browser only implements single channel streaming but not two-channel multicasting.

Apps can only enjoy simultaneous recording and recognition on a browser supporting this module. This module contains the
union of the basic recognition and recording modules. Supporting this module implies the support of both the basic
recognition and recording modules.

10.1.5Basic Media Playback Module

The module contains the <prompt> element and all its properties, methods, events, but the <prompt> element can only
contain <content> nodes for referring to pre-recorded media files, but not text nodes in speech synthesis markup languages.

10.1.6Speech Synthesis Module

The module contains the <prompt> element and all its properties, methods, events, and subelements. Note that prompt
gueue object is not included here. This is because a multimedia enabled browser (e.g., SMIL aware) often has more
sophisticated mechanism in place already to synchronize different media types. For that case, synthesized speech should
behave more like other media streams that do not define their own media buffer.

10.1.7Messaging Module
This module contains the <smex> element and all its properties, methods, events, and the <param> subelement.

10.1.8Call Control Module

This module contains the call control object and all its child objects. The module makes sense for smart phones where the
call control functions are mostly intended for speech communications with another party. Supporting this module implies the
browser also supports the scripting module. However, basic telephony module can be supported in the absence of other
speech modules. Therefore, the global logMessage function and the PromptQueue object do not belong here.

10.1.9 DTMF Module
This module contains the DTMF element and all its properties, methods, and events.

10.1.10 PromptQueue Module
The module supports the PromptQueue object and all its properties, events, and methods.

10.1.11 Logging Module
The module contains the global logging function.

10.1.12 Deployment Matrix

This section is under development. It will incorporate a table which maps different classes of client device to each of the
SALT modules defined above, in terms of whether support of the module should be mandatory, optional or not applicable to
that device.



10.2 SALT/HTML profiles

This section defines the support of HTML and associated environmental features in terms of multimodal and voice-only
profiles.

10.2.1 HTML multimodal

SALT can be used in HTML multimodal profiles which support a display. In these cases the extent to which HTML is
supported depends on the capabilities of the device. The extent of SALT module support is also dependent on the device
capability, and this will be reflected in individual profiles. For example, if a scripting module is not supported, then full object
mode of SALT is unlikely to be incorporated in the profile.

10.2.1.1accesskey and style

When SALT is used in HTML profiles which support the two general HTML attributes accesskey and style, SALT adopts
these attributes and their capabilites into the <listen> element. As described below, this enables simple declarative
authoring of the typical functionality required in multimodal applications.

accesskey
When the hosting environment supports accesskey, the attribute has the following semantics for a listen object:

o for 'automatic' mode, the onkeypress event for the accesskey invokes the start method.

o for 'single’ mode, the onkeydown and onkeyup events invoke the start and stop methods, respectively. In
other words, the accesskey enables "push-hold-and-talk".

o for ‘continuous' and ‘record’ modes, the onkeypress event toggles the start and stop methods. In other
words, the access key enables "“click to talk".

This permits simple declarative statements such as:
<listen accesskey="*" ... [>

where the onkeypress event from the ™" will have the behavior above (depending on the mode of listen) that would otherwise
need to be scripted directly.

style

When hosting HTML environment supports the style module, the listen object shall at minimum implement that portion of the
object model conforming to W3C CSS level 1 specification. The onclick, onmousedown, onmouseup events assume the
same behaviors as the onkeypress, onkeydown and onkeyup events as those defined for the accesskey above. In addition,
when the hosting environment supports tabindex, a listen object shall have the same behavior as other visual HTML objects.

10.2.2 HTML voice-only

10.2.2.1HTML module support

This section describes the subset of HTML elements to be supported by a SALT voice-only browser. The subset is defined
on the basis of useful functionality in structuring and executing a web application with a SALT speech interface but without a
visual display™.

10.2.2.1.1 XHTML Modules

The following XHTML modules as defined at http://www.w3.org/TR/xhtml-modularization/abstract_modules.html should be
supported by voice-only XHTML browsers according to the table below. Required elements are in bold typeface, with
hyperlinks to the relevant W3C module definition recommendation. (see the following subsection for finer detail on the level of
support for each element).

Required | Module Name Supported elements |

“ The subset of elements listed here does not correspond strictly to W3C's existing XHTML Abstract Modules as defined at
http://www.w3.org/TR/xhtml-modularization/, since many modules contain elements and functionality superfluous to speech
functionality.




Part Attribute Collections* This defines the following common attributes: class, id,
title, xmiIns, xml:lang, style, and common events
collection (i.e. onclick, onkeypress, etc)

All Structure Module* body, head, html, title

Part Text Module* abbr, acronym, address, blockquote, br, cite, code, dfn,
div, em, hl, h2, h3, h4, h5, h6, kbd, p, pre, q, samp,
span, strong, var

All Hypertext Module* a

No List Module dl, dt, dd, ol, ul, li

No Applet

No Text Extension

No Presentation

No Edit

No Bi-directional

No (see Basic forms

below)

Part Forms Module button, fieldset, form, input, label, legend, select,
optgroup, option, textarea

No Basic Tables

No Table Module caption, col, colgroup, table, tbody, td, tfoot, th, thead, tr

No Image

No Client-side Image Map

No Server-side Image Map

No Object

No Frames

No Target

No Iframe

Part Intrinsic Events Module Events attributes (onreset, onsubmit for form, and
onload, onunload for body).

All Metainformation Module | meta

Part Scripting Module noscript, script

No Style Sheet

No Style Attribute

All Link Module link

All Base Module base

No Name Identification

No Legacy

10.2.2.1.1.1 Elements

The following elements and events should be supported by HTML voice browsers:

<IDOCTYPE>
<html>




<head>
<body>
<title>
<div>
<a>
<form>
<input>
<select>
<option>
<textarea>
<meta>
<script>
<link>
<base>

Common Events.

The level of support required for the interface of each of the above elements in the supported modules is outlined below.
Interfaces which are required are shown in bold. DOM methods and properties (i.e. not attributes) are italicized.

ID Element Subcategor | Detail Comments
y
General
1 <IDOCTYP | - - This tag tells the browser which DTD specification the document
E> uses for validation.
Structure
2 body Attribute Common The body element defines the documents' body. It contains all the
set contents of the document.
3 head Attribute 118N The head element can contain information about the document. The
set following tags can be in the head-section: <base>, <link>, <meta>,
<script>, (<style>) and <title>.
head Attribute profile A space separated list of URLs. The pages referenced by the list
contain meta data information about the page.
4 html Attribute 118N Root node for the XHTML document
set
Attribute version
Attribute xmins This attribute defaults to "http://www.w3.org/ 1999/xhtml".The
browser checks that this namespace is set.
7 title Attribute 118N This element defines the title of the document. (No SALT behavior
is directly associated with this element™.)
Text
8 abbr Attribute Common
9 acronym Attribute Common

> Of course the information held by structural elements can be used indirectly in SALT, as in:

<title id="wel comeTitle">

Wel come to ny truly fabul ous application.

</title>

<sal t: pronpt

i d="wel comePronpt " >
<sal t:val ue targetel ement="wel coneTitle" />
</sal t: pronpt>




10 address Attribute Common

11 blockquote | Attribute Common

12 blockquote | Attribute Common

13 br Attribute Common

14 cite Attribute Common

15 code Attribute Common

16 dfn Attribute Common

17 div Attribute Common The div element defines the start of a division/section in a
document.

18 em Attribute Common

19 hl Attribute Common

20 h2 Attribute Common

21 h3 Attribute Common

22 h4 Attribute Common

23 h5 Attribute Common

24 h6 Attribute Common

25 kbd Attribute Common

26 p Attribute Common

27 pre Attribute Common

28 pre Attribute Common

29 samp Attribute Common

30 span Attribute Common

31 strong Attribute Common

32 var Attribute common

Hypertext

33 a Attribute Common The anchor tag defines an anchor element. An anchor can be used
in two ways: To create a link to another document by using the href
attribute or to create an anchor in a document, by using the id
attribute.

34 Attribute accesskey

35 Attribute charset Sets the character encoding of the page where the link points

36 Attribute href Creates a link to a document

37 Attribute hreflang Set base language of the page where the link points.

38 Attribute rel Specifies a forward link: alternate, designates, stylesheet, start,
next, prev, contents, index, glossary, copyright, chapter, section,
subsection, appendix, help, bookmark

39 Attribute rev Specifies a backwards link: alternate, designates, stylesheet, start,
next, prev, contents, index, glossary, copyright, chapter, section,
subsection, appendix, help, bookmark

40 Attribute tabindex

41 Attribute type Gives a hint about the content type of the content where the link
points to




42 DOM click() This allows a script author to simulate a mouse click. This is not
method strictly part of the HTML DOM spec (but it is supported in IE).
Forms
49 form Attribute Common The form element creates a form for user input. A form can contain
textfields, checkboxes, radio-buttons and more. With forms the user
can pass data to the server. The <form> tag can of course be used
without any attributes, but most forms requires the action attribute
to do something meaningful. See http://www.w3.0rg/TR/REC-
html40/interact/forms.html#h-17.13 for HTML4 forms.
50 Attribute accept A comma separated list of mime types that the server accepts. A
browser can use this information.
51 Attribute accept- A comma separated list of character encodings the server must be
charset able to process when the form is submitted. The default value is
"unknown"
52 Attribute action URI - Specifies where to send the data when the user pushes the
submit button in a form (required attribute)
53 Attribute method The HTTP method of passing the data to the web server, ("get" |
llpostll)
54 Attribute enctype The encoding is only applicable to the "post” method, since "get" is
ASCII only.
55 DOM elements Read-only property returns a collection of all form control elements
Property in the form.
56 DOM length Read only property returns the number of form controls in the form
Property
57 DOM reset() Restores a form element's default values. It performs the same
method action as a reset button
58 DOM submit() Submits the form. It performs the same action as a submit button.
method
59 input Attribute Common The <input> tag defines the start of an input field where the user
can enter data
60 Attribute accept The different kind of files allowed. Used with type="file"
61 Attribute accesskey
62 Attribute alt
63 Attribute checked
64 Attribute disabled
65 Attribute maxlength
66 Attribute name This is of type CDATA and is the form control name or object name
when submitted with a form. The name attribute can be used in
conjunction with a valid reference to the owning form to reference the
corresponding form control (or accessed independently via the id
attribute) from within script.
67 Attribute readonly




68 Attribute size

69 Attribute src

70 Attribute tabindex

71 Attribute type Only ("text" | "submit" | "reset" | "file" | "hidden") types are
supported in M2. This leaves "password, checkbox, button, radio,
image.

72 Attribute value When the type attribute of the element has the value "text", "file" or
"password", this represents the current contents of the
corresponding form control, in an interactive user agent. Changing
this attribute changes the contents of the form control, but does not
change the value of the HTML value attribute of the element. When
the type attribute of the element has the value "hidden", "submit",
"reset" this represents the HTML value attribute of the element.

73 DOM defaultValue | When the type attribute of the element has the value "text", "file" (or

Property "password"), this represents the HTML value attribute of the
element. The value of this attribute does not change if the contents
of the corresponding form control, in an interactive user agent,
changes.

74 DOM form Returns the FORM element containing this control. Returns null if

Property this control is not within the context of a form.

75 DOM click() This DOM method simulates a mouse click for the <input> element

method when the type is submit or reset (and although not implemented this
also applies to radio, checkbox and button).

76 select Attribute Common The select element creates a drop-down box. Note that the browser
should return the first option in a select as the value to pass to the
server if no options are specified.

77 Attribute disabled

78 Attribute multiple Sets whether multiple items can be selected. Set
multiple="multiple" to have multiple items, otherwise do not specify.

79 Attribute name This is of type CDATA and is the form control name or object name
when submitted with a form. The name attribute can be used in
conjunction with a valid reference to the owning form to reference the
corresponding form control (or accessed independently via the id
attribute) from within script.

80 Attribute size

81 Attribute tabindex

82 DOM form Returns the FORM element containing this control. Returns null if

Property this control is not within the context of a form.

83 DOM length This read-only property returns the number of options in this

Property SELECT

84 DOM options This read-only property returns the collection of OPTION elements

Property contained by this element

85 option Attribute Common The option element defines an option in the drop-down box.

86 Attribute disabled

87 Attribute label




88 Attribute selected To select this option the value should be set to "selected".
89 Attribute value Sets the value of the option
90 DOM form Returns the FORM element containing this control. Returns null if
Property this control is not within the context of a form.
91 DOM index This read-only property returns the index of this OPTION in its
Property parent SELECT, starting from 0
92 textarea Attribute Common Defines a text-area (a multi-line text input control). A user can write
text in the text-area. In a text-area you can write an unlimited
number of characters.
93 Attribute accesskey
94 Attribute cols
95 Attribute disabled
96 Attribute name This is of type CDATA and is the form control name or object name
when submitted with a form. The name attribute can be used in
conjunction with a valid reference to the owning form to reference the
corresponding form control (or accessed independently via the id
attribute) from within script.
97 Attribute readonly
98 Attribute rows
99 Attribute tabindex
100 DOM form Returns the FORM element containing this control. Returns null if
Property this control is not within the context of a form.
101 DOM type This read-only property returns the type of this form control. This is
Property the string "textarea".
102 button Attribute Common
103 Attribute accesskey
104 Attribute disabled
105 Attribute name
106 Attribute tabindex
107 Attribute type ("button”|"submit”|"reset")
108 Attribute value
109 fieldset Attribute Common
110 label Attribute Common
111 Attribute accesskey
112 Attribute for
113 legend Attribute Common
114 Attribute accesskey
115 optgroup Attribute Common
116 Attribute disabled
117 Attribute label
Intrinsic events
118 a& Attribute




119 area& Attribute

120 frameset& Attribute

121 form& Attribute onreset For use in conjunction with <script> (when the form is reset). This is
enabled separately in a custom module without using the Intrinsic
events module.

122 Attribute onsubmit For use in conjunction with <script> (when the form is submitted).
This is enabled separately in a custom module without using the
Intrinsic events module.

123 body& Attribute onload For use in conjunction with <script> (when a document loads). This
is enabled separately in a custom module without using the Intrinsic
events module.

124 Attribute onunload For use in conjunction with <script> (when a document unloads).
This is enabled separately in a custom module without using the
Intrinsic events module.

125 label& Attribute

126 input& Attribute

127 select& Attribute

128 textarea& Attribute

129 button& Attribute

Metainformation

130 meta Attribute 118N The meta element provides meta-information about your page, such
as descriptions and keywords for search engines. Container object
for meta in M2. The object and it's attributes are not "properly”
implemented in M2. Partial implementation for http-equiv

131 Attribute content

132 Attribute http-equiv ContentScriptType, ContentType, Set-cookie and Palette are
supported. These values are stored in the httpHeader class that is
part of the HtmIDocument DOM object.

133 Attribute name

134 Attribute scheme

Scripting

135 noscript Attribute

136 script Attribute charset The character encoding used

137 Attribute defer

138 Attribute src URL to a file that contains the script (instead of inserting the script
into your HTML document, you can refer to a file that contains the
script)

139 Attribute type Although there are a number of types (text/ecmascript,
text/javascript, text/jscript, text/vbscript, text/vbs, text/xml), | guess
we should only be supporting text/jscript?

140 Attribute xml:space Provided by the XmITextReader. Note that this is NOT set by
default.

141 Attribute - Inline scripting support is required.




Link

142 link Attribute Common The link element defines the relationship between two linked

documents - commonly used to link to an external style sheet.

143 Attribute charset Sets the character encoding

144 Attribute href A url to the linked resource

145 Attribute hreflang The base language of the linked resource

146 Attribute media Which medium the link applies to

147 Attribute rel Defines a link relationship from the current document to the linked

document; see <a> for values.

148 Attribute rev Defines a link relationship from the linked document to the current

document; see <a> for values.

149 Attribute type The MIME type, like text/jscript or text/css

Base

150 base Attribute href Defines the default base address for relative links

Common

151 - Attribute - Core + Events + [18N + Style

152 Core Attribute class The class of the element.

153 attribute Attribute id String that identifies the object. This must be a unique id for the
collection document or the page will fail to validate.

154 Attribute title

Attribute xmlns XML namespaces are part of the core supported attributes

155 118N Attribute xml:lang Developers are encouraged to use only the xml:lang attributes when
attribute (and lang) specifying the language of an element. but lang is also supported.
collection Note that xml:lang takes precedence over lang (if both are specified)

including when xml:lang is inherited from a parent node.

156 Events Attribute - These are onclick (Script), ondblclick (Script), onmousedown
attribute (Script), onmouseup (Script), onmouseover (Script), onmousemove
collection (Script), onmouseout (Script), onkeypress (Script), onkeydown

(Script), onkeyup (Script). These are of limited use in a voice only
environment, and hence are not supported.

157 Style Attribute style Inline style indicating how to render the element.
attribute
collection

10.2.2.1.2 HTML DOM

SALT platforms supporting HTML are expected to support the DOM specified in the HTML DOM Level 1 Core spec
(http://www.w3.0rg/TR/2000/WD-DOM-Level-1-20000929/idI-definitions.html).

The following methods however need not be implemented, since they permit application scripts to change the DOM
significantly, possibly invalidating internal browser or script host data structures.

INode
INamedNodeMap
IElement

insertBefore, replaceChild, appendChild, removeChild

setNamedItem, removeNamedItem

setAttribute, setAttributeNode, removeAttributeNode,




normalize
IText SplitText

10.2.2.1.3 Event model

This section contains examples of the event model implemented by (1) the Microsoft Internet Explorer browser (versions 5+),
and by (2) the emerging DOM level 2 specification.

10.2.2.1.3.1 IE 5,6 event model

Event listener registration:
In HTML, one may use event name like an attribute:
<listen id="Listenl" onreco="myhandl ()"..>
Script method 1: use generic attachEvent method as
Li stenl. attachEvent ("onreco", nyhandl e);
Script method 2: use the event delegate on the object model (OM)
Li stenl. onreco = nyhandl e;
All above 3 mechanisms share the same event handler:
function nyhandl e() ({

var obj = event.srcEl ement;
/1 obj is listen object that dispatches the event.

}
Script method 3: use HTML script tag that registers event listener and implements event handler in one step:

<script for="Listenl" event="onreco" |anguage="Jscript">

var obj = event.srcEl ement;
/1 obj is the listen object that sends the event.
</script>

By definition, an event handler has no argument, returns nothing, and throws no exception.

10.2.2.1.3.2 DOM Level 2 model

The DOM Level 2 event model is currently specified at http://www.w3.0rg/TR/2000/REC-DOM-Level-2-Events-20001113/. This
may be used in profiles outside of HTML.

Event listener registration:

Since DOM Level 2 HTML module is not finalized yet, currently the standard way to register an event listener is through
scripting. A standard addListener method, similar to the attachEvent above, is defined in the standard for all nodes and can
be used as follows:

Li stenl. addLi stener("onreco", nyhandl e, false);

The third argument is a Boolean flag indicating whether user wants to initiate capture. See DOM Level 2 for precise definition
for event capturing.

As before, an event handler returns nothing and throws no exception, but now has an argument of the "event" type:



function nyhandl e(event e) {
var obj = e.target;
/1 obj is the object that sends the event.

}
Again, please refer to the DOM Level 2 documentation for a definition of event type.

(Backward compatibility issue in DOM Level 2: it is not clear how one can continue to use HTML "script" tag to register event
listener and implement event handler in one stroke.)

10.2.2.1.4 HTML window object

The following is the proposed subset of features of the window object which will be required for implementation by a SALT
voice-only browser.

Methods:
- attachEvent
clearinterval
clearTimeout
detachEvent
navigate
setinterval
setTimeout

Attributes/Properties:
length
name
self

Events:
onbeforeunload (note: this applies to the page)
onerror
onload
onunload (note: this is inherited from HTML object)

Objects:
- clientinformation/navigator
document
event
location
10.2.2.1.5 Using <meta >

Following the principles established for expressing meta data in HTML (see
http://www.w3.0org/TR/html4/struct/global.html#meta-data), the meta element can be used in SALT to express meta data
about the spoken aspects of the page. (This can be used in conjunction with a profile definitions referenced in the HTML
<head > elements).

The content of such data will be meaningful to SALT platforms in proprietary contexts, so it may be considered a page level
equivalent of the <param> element (which expresses configuration data particular to an individual element). Param is defined
on the <prompt>, <listen> and <dtmf> elements. Platforms may then treat such data as applicable to the entire page.

The following are sample uses of the meta element in SALT:

<neta name="recoServer" content="nyRecoServer.url" />
<neta name="recoSpeechDet ecti onThreshol d* content="0. 15" />
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<net a nanme="pronpt Server" content="nyPronpt Server.url" />
<net a name="audi oEncodi ng" content="a-law' />
etc.

10.2.3 HTML telephony profile

This profile will be defined in terms of the HTML voice-only profile, and the SALT modules specific to conducting telephony
dialogs.
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