TALK project work at UCAM

Matt Stuttle

August 2005

Cambridge University Engineering Department

Web: http://mi.eng.cam.ac.uk/ mns25 Email: mns25@eng.cam.ac.uk

Overview

- TALK project
 - Goals
 - Baseline system
- the Hidden Information State (tHIS) system
 - Proposed system architecture
 - The Speech Understanding (SU) Agent
 - Confidence scores
 - HVS parser
- Current and future work

TALK project: Tools for Ambient Linguistic Knowledge

Project Goals:

- Implement Information State Update (ISU) approaches
- Develop in-car and in-home multimodal dialog systems
- Learning strategies for the ISU approach
- Integrate multimodality and multilinguality
- Partners include Edinburgh, Gothenburg, DFKI, Saarbrucken, Seville, Bosch, Linguamatics and BMW

TALK project:

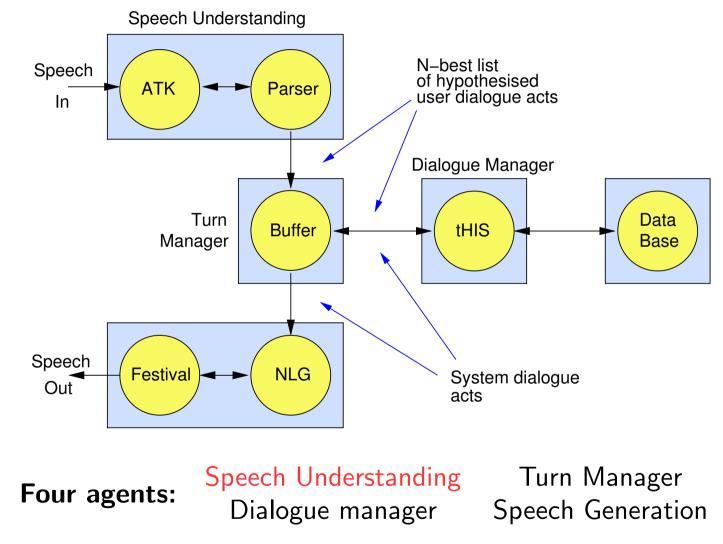
UCAM Project Workpackages:

- WP1: Unifying Multimodality and Multilinguality
 - New Speech Understanding components
 - Developing notion of multimodal dialog act
 - Closely coupling parser, recogniser and dialog manager
- WP4: Adaptivity and Learning
 - Reinforcement learning approaches
 - (Partially Observable) Markov Decision Process dialog managers
 - User modelling approaches

Baseline System:

Current baseline system built with Edinburgh:

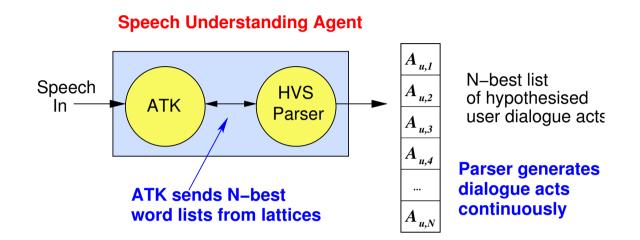
- Based on SACTI Tourist Information domain
- Built using:
 - DIPPER dialog manager
 - Open Agent Architecture
 - ATK speech recogntion using n-gram language models
 - Word spotting parser


• Currently features:

- Implicit and explicit confirmation
- Fragmentary clarifications
- Simple fixed dialog plan (slot filling)
- Overanswering
- Multimodal output

Proposed HVS System Overview

System Architecture



Proposed HVS System Overview Hidden Information State model

- Operates as a MDP over Belief State $B = P(S_d, S_u)$ where S_u =user state and S_d =dialog state
- Similar advantages to POMDP for modelling uncertainty but like an MDP can be optimised using on-line methods
- Belief state is discrete approximation to continuous state space
- Approximation is a *forest* of most likely states
- User state expands according to **application specific** rules
- User state captures domain ontology
- Actions A_s are based on a linear function approximation of $Q(B, A_s)$

Speech Understanding Agent

- Some of UCAM's proposed work focuses on developing the SU agent.
- Uses ATK and the Hidden Vector State (HVS) Parser.
- Outputs an n-best list of user dialog acts with scores.
- Operates asynchronously, forwards dialog acts to the Turn Manager agent.

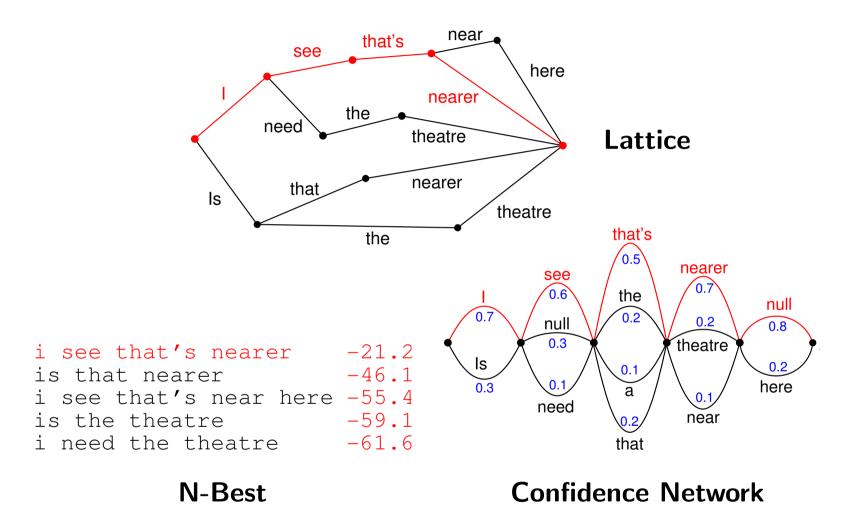
Speech Understanding (SU) Agent Motivation

- Asynchronous, so does not impose a turn-taking model will allow barge-in.
- Will output the n-best dialog acts
- Use of HVS and ATK will allow statistical confidence measures to be implemented
- HVS model can be incrementally trained on-line with system data.
- Multimodal inputs can be investigated later (WP1 work)

Confidence Scores

Current implementation:

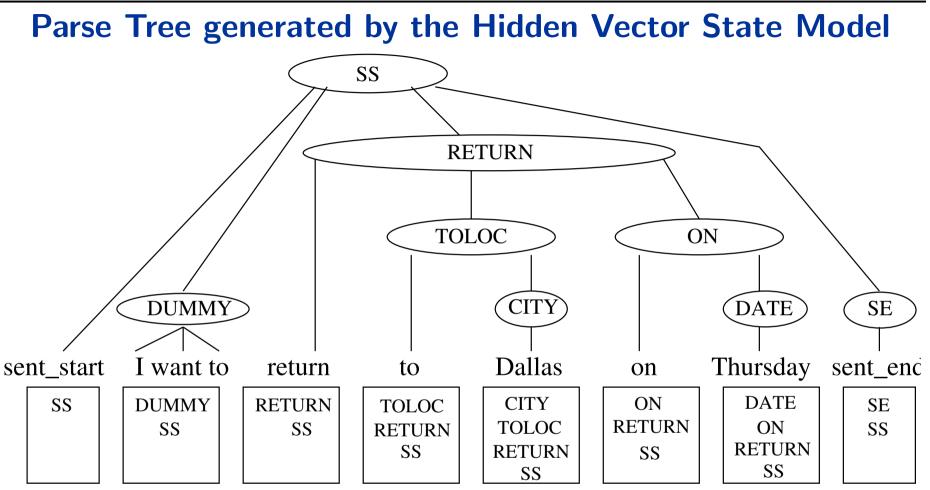
- ATK currently outputs confidence scores based on recognition scores relative to a "background" model
 - Current scores do not contain much information about correctness of hypothesis
- Recent work has enabled use of n-best lists and lattice generation in ATK
 - Need to generate very long n-best lists to get alternative parse hypotheses.


Confidence Scores

Proposed alternative:

- Generate word posteriors from lattice for each word position
 - Will generate more hypotheses from parser
 - Deletions/insertions handled by "NULL" label
- Can generate alternatives for each word in the best hypothesis
 - Word posteriors have been shown to be more informative
 - Can develop strategies based on fragmentary clarification more easily
- Currently working on generating information on-the-fly
 - Calculating word posteriors requires forward and backward pass through the (complete) lattice

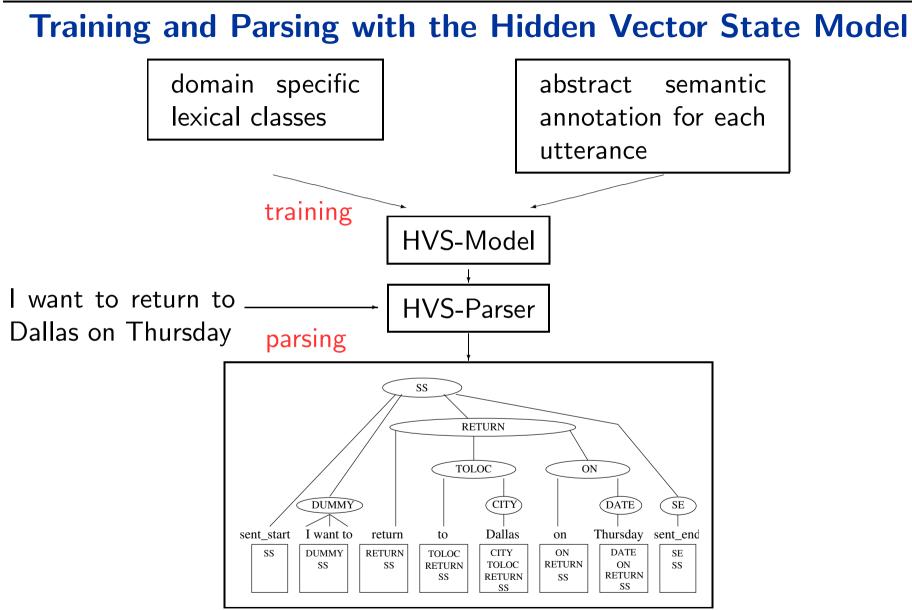
ATK Outputs



The Hidden Vector State (HVS) model for Semantic Parsing Overview

- Trade-off between flat-concept and hierarchical models
- Flat-concept HMM model extended by expanding each state
- States encode stack of push-down automata
- Model is right branching
 - encodes hierarchical context
 - avoids tractability issues of a PCFG approach

- Parse tree of semantic concepts is right branching
- Tree is represented in vector state sequence below



The Hidden Vector State (HVS) model for Semantic Parsing Motivation

- HVS is a statistical semantic parser
 - Fits well into UCAM's plan for a statistical dialogue modelling approach
 - Gives n-best acts together with probability/confidence scores
- HVS model is data-driven
 - allows on-line/incremental adaptation/training
 - requires only lightly supervised data
- HVS can be adapted to work on-the-fly
 - will allow barge-in
 - can use more complicated turn-manager

Current work

- Training HVS and word-spotting model on SACTI data for subset of tasks.
- Encapsulate HVS parser as an ATK component
- Make speech understanding (ATK+HVS) OAA agent
- Modify ATK to produce word-posterior networks with associated confidence scores

Future plans (SU) Agent

- Combine ATK and HVS probabilities for a parser confidence score
- Adapt HVS approach to work with this data format
- Current parser results using HVS and word-spotting techniques are relatively poor
 - SACTI data is not ideal: will perform a new data collection to bootstrap parser and language models
 - Collection will feature abstract prompts of all features desired in final system
 - May also do some collections with baseline system
 - Plan to use a real town (Cambridge?) for new data collection with a much larger database extracted from Google maps/Yell.com

