Challenges for Dialog in Human-Robot Interaction

Dialogs on Dialogs Meeting
October 7th 2005

Hartwig Holzapfel

About me

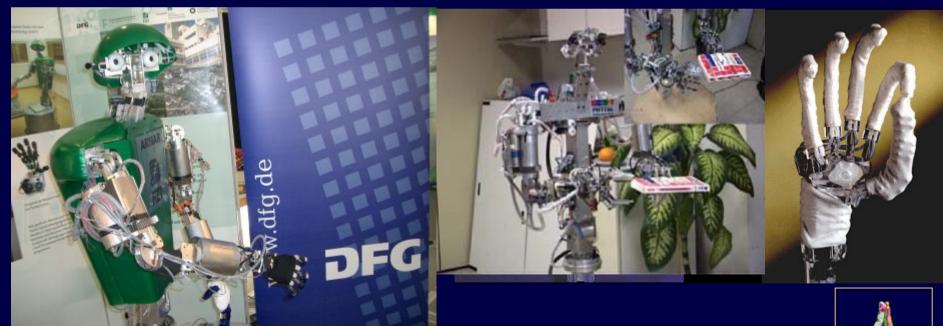
- Studied Computer Science in Karlsruhe (Germany)
- Minor field of study Computational Linguistics Stuttgart (Germany)
- Diploma Thesis on Emotion-Sensitive Dialogue at ISL, Prof. Waibel
- Scientific employee/PhD student at Karlsruhe/Prof. Waibel since 2003
- Recent Projects
 - FAME: EU Project: Facilitating Agents for Multicultural Exchange presented at Barcelona Forum/ACL 2004
 - SFB 588: collaborative research effort at Karlsruhe on Humanoid Robots
- Research (within above projects):
 - Multimodal (speech+pointing synchronous and fleximodal)
 - Multilingual Aspects
 - ASR in dialogue context
 - Current: Cognitive Architecture for Robots and Learning

Outline

- Robots
- SFB588: The humanoid-Robots project
- The Robot "Armar"
- Interaction scenarios
- Multimodal Interaction
- Multilingual Speech Processing
- Cognitive Architectures
- Open Tasks

Humanoid Robots

- Why humanoid:
 - Humanoid body facilitates acting in a world designed for humans
 - Use Tools designed for humans
 - Interaction with humans
 - Intuitive multimodal communication
 - Other aspecs like understand human intelligence
- Kind of Humanoid Robots
 - Service Robots
 - Assistants
 - Space
 - Help for elderly persons


Humanoid Robots (some examples)

- Cog
- ASIMO
- QRIO
- GuRoo
- Kismet
- Nursebot
- PINO Open Plattform
- HOAP 2
- Sarcos Robot
- Robonaut
- ARMAR

SFB588 - the humanoid Robot Project

- Started 2001
- 2nd phase started 2004 targeting for an integrated system
- Current robot-platform ARMAR
- New platform in development
- Goals: Household and Kitchen scenarios

Selected Interaction Scenarios

- Loading and unloading the dishwasher
- Proactive behaviour: coffee service
- "Bring me something"

Bring me something

- Interaction:
- Detect persons
 - Detect person visually
 - Respond to person
- Initiate Interaction (what can I do for you?)
- Recognize speech (distant?) and gestures (bring me this cup)
- Locate objects, update environment model
- Find, go to, grasp, and bring object to person
- Recover from error states

Challenges

- Multimodal communication
- Multilingual (our Robot lives in Germany)
- Uncertain information about environment
- Distant speech
- New words, new objects and new actions
 - Semantic description
 - Attributes
 - Visual features
 - Task description
- Introducing new persons
 - Name, Hobbies, ..
 - Visual ID
 - Voice ID
- Floating domain-boundaries

Multimodal Interaction

Multimodal Interaction with

A humanoid robot

- Visual Perception of the user
 - Person Tracking
 - Gaze / Head orientation
 - Gesture Recognition
- Speech Recognition
 - Distant microphones
 - Spontaneous speech
- Dialog Manager
 - Multimodal Parsing

Take the cup!

"Which cup do you want me to take?"

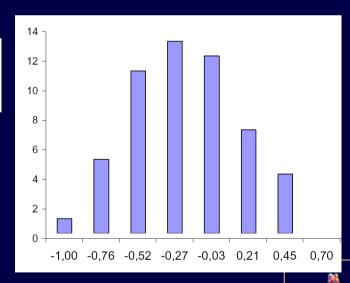
This one!

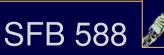


Multimodal Fusion

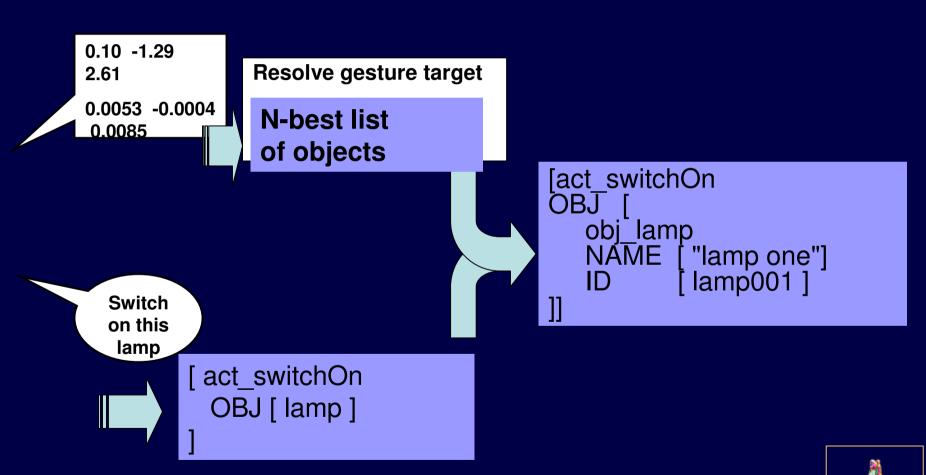
Δt

Speech

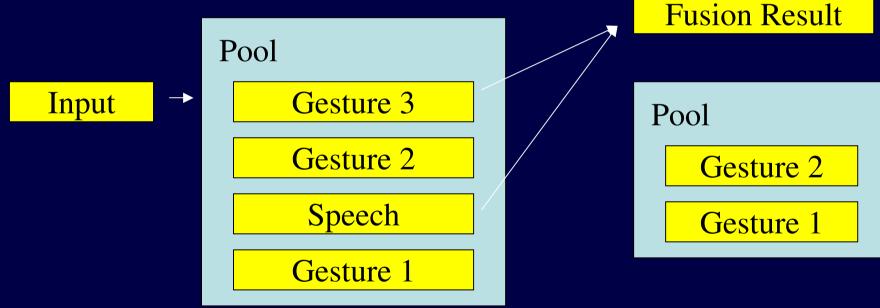

Gesture


Fusing utterance 1 and G1 G2: false positive

G2


Temporal correlation between Speech and pointing gesture

Sec



Fusing Speech and Pointing Gestures

Multimodal Parsing

- Pool of semantic tokens
- Parsing rules for fusion of tokens

Experiments and Evaluation

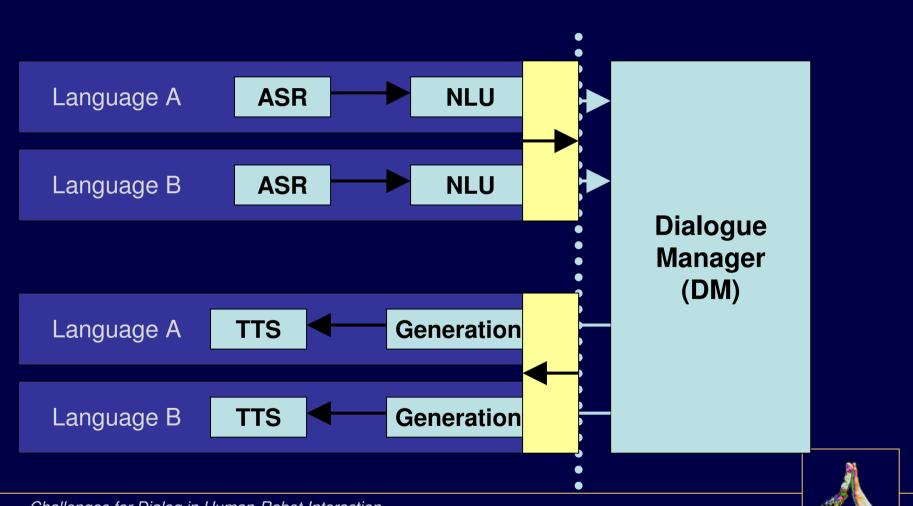
• Fusion for n-best Lists

Gesture Detection (rt)		
Recall	87%	
Precision	47%	

Gesture Recognizer (rt, relative errors)		
First Hypo	44%	
N-best	94%	

Speech Recognition (0,8*rt)		
WER	24%	
SER	33%	

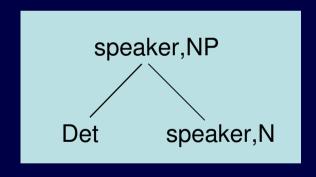
Fusion	
Speech + Nbest G	74%
Nbest S + nbest G	76%

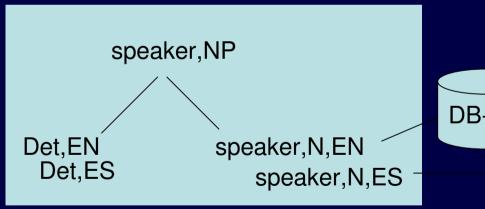


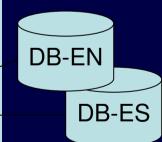
Multilingual Speech Processing

- Why?
 - German lab,
 - To get native speakers we need to build a German system
 - However, best ASR system is English
 - International Visitors

Designing a multilingual system


Input Grammar - Rule Interfaces


- Software engineering offers principles for programming languages
- Usage of Interfaces for common functionality
- Rule interfaces define
 - Common semantic information
 - Abstract grammar nodes



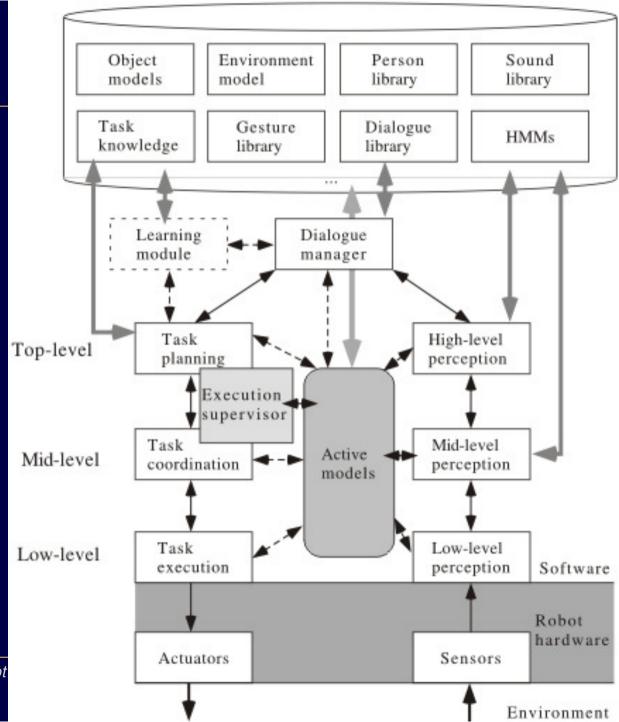
Multilingual information from databases – semantic grammars

- Proper nouns are read from databases
 - Syntactic phrase structure
 - Imported nouns form construct rules

Speaker,N,EN -> ,name1': ,name2': ,name3';

Experiences of using these concepts

- FAME demonstrator (http://isl.ira.uka.de/fame)
 - 5 persons working on grammars: 2 English, 2 Spanish, 1 German,
 only English as output
 - English and Spanish developed in parallel roughly same amount of time, German developed afterwards by using rule interfaces and grammar porting
- SFB humanoid robots (German research effort http://sfb588.uni-karlsruhe.de)
 - 3 persons working on grammars and generation:
 2 English (experts) developing, 1 German (student) translating
 - German application works reliably (grammars and generation)



Cognitive Architecture

- Integrate dialogue into complete system architecture
- Distribution of cognitive abilities:
 - Simple dialogue manager with intelligent controller architecture
 - vs. Cognitive abilities in dialogue control
- Both approaches already exist
 - Dialog centered systems with control of background application
 - Vs. Intelligent architecture and adding speech commands
- Our current approach tries to model the complete architecture for a robot, dialogue only as a component
 - Competing Model of input by the user and current robot tasks
 - Conflicting resource access

Cognitive Architecture

Communication Models

- Interpret and forward User commands to the platform
 - Test if actions are possible
- Receive information by the platform to resolve information => query user
 - Request new information
 - Recover from errors
- Maintain user's goal model, update according to system and task state
 - Request information from system model
 - (When is the goal fulfilled)
 - Challenge: Interpret input by the user in the right context
- Request output channels (speech/multimodal)
- Request resources to receive input by the user

Open Tasks

- Initiate Interaction: detect persons, obtain attention and start dialog
- Attention modelling
- Learn new objects
 - Detect unkown words referencing objects
 - Introduce words, semantic meaning
 - Get visual "understanding" of these objects
- Learn about persons
 - ID: voice and vision
 - Names: new words
 - Social relations: what is this person doing here?
- Learn new actions
 - New sentence constructions
 - Relate semantics to robot actions

