

Learning Dialogue Strategies with a Simulated User

Jost Schatzmann and Steve Young

Cambridge University Engineering Department Trumpington Street, Cambridge CB21PZ, UK {js532, sjy}@eng.cam.ac.uk

Dialog on Dialogs Meeting
Carnegie Mellon University, 19 August 2005

User Simulation-Based Learning

Learn dialogue strategies through trial-and-error interaction with with a simulated user

Agenda

- Work on Evaluation: Experiments and Results
- Agenda-based User Modelling

Research Questions

- How good are the currently available simulation techniques? Can they...
 - produce human-like behaviour?
 - cover the variety of real user behaviour?

SIGdial paper

- What is the effect of the user model on the learned strategy?
 - Influence on strategy performance?
 - Influence on strategy characteristics?
 - Are the strategies merely fitted to a particular UM?
 - Can we find UM-independent forms of strategy evaluation?

ASRU paper

User Modelling Techniques

State of the art in intention-level modelling:

```
Bigram model: p(a_u|a_s)
```

- Levin model: p(yes_answer|expl_conf)
- Pietquin model: p(yes_answer|expl_conf, goal)
- UMs typically not trained on real data
- Standard evaluation practice is to test learned strategy on the user model used for learning

Experiments

Comparative Evaluation

Performance of the learned strategy depends on the quality of the UM

Real dialogue data

Simulated dialogues

Cross-model Evaluation

Strategies learned with a poor UM can fail when tested on a better UM

Strategy Characteristics

Learned strategies exploit weaknesses in UMs

UM-independent Evaluation

 Techniques for evaluating new strategies on real dialogue data would be helpful

Agenda

- Work on Evaluation: Experiments and Results
- Agenda-based User Modelling

Motivation

- Currently have drastically different levels of sophistication for DM and UM
- Fail to model context which extends beyond the previous dialogue turn

User: I want to go from Boston to London.

System: Going from Austin to London And when do you want to fly?

User: No, from Boston to London.

System: From Boston to London, is that correct?

User: Yes And I'm flying on March 15th.

Agenda-based User Model

<u>Idea</u>: MDP User Model with agenda-based state representation

- Combines user state and user goal representation
- Naturally encodes dialogue history
- Allows delayed user responses (priority of actions)

Agenda-based User Model

- Assume cooperative user behaviour to label dialogues
- Learn output probabilities to model user behaviour

 Potential scope for modelling uncertainty about true state of user agenda ('Hidden Agendas')

Summary

- Current lack of solid user models and reliable evaluation standards is a major roadblock to simulation-based strategy learning
- Work on agenda-based user models may help to enhance our model of the user state and improve simulation quality

Thank you!

js532@cam.ac.uk http://mi.eng.cam.ac.uk/~js532/

- J. Schatzmann, K. Georgila, and S. Young. "Quantitative Evaluation of User Simulation Techniques for Spoken Dialogue Systems". 6th SIGdial Workshop on Discourse and Dialogue, Lisbon, September 2-3, 2005 (to appear)
- J. Schatzmann, M. N. Stuttle, K. Weilhammer and S. Young. "Effects of the User Model on Simulation-based Learning of Dialogue Strategies". IEEE Automatic Speech Recognition and Understanding Workshop, Cancun, Mexico, November 27 December 1, 2005 (submitted)

Backup slides

The rest of this slide deck is only a backup for further questions.

Strategy Confidence Scores (1/3)

 Need to deviate from known strategies to explore new and potentially better ones

System: Where are you flying from, where are you flying

to, on what date are you flying, when is your preferred time, do you have a preferred airline

and would you like a window-seat?

Sim. User: Flying from Boston to London on March 15 at

9am with Delta Airlines. Window seat please.

Real User: ?????

Strategy Confidence Scores (2/3)

- <u>Idea:</u> System designer needs a confidence measure indicating how reliable the learned strategy is
- Define strategy confidence as function of the likelyhood of the user response in the given context

$$conf(\pi) = \frac{1}{N} \sum_{i=0}^{N} \frac{1}{N_i} \sum_{t=0}^{N_i} conf(a_{u,t,i}, a_{s,t,i}, s_{t,i})$$

$$conf(a_u, a_s, s) = p(a_u \mid a_s) p(a_s \mid s)$$

Strategy Confidence Scores (3/3)

increasing reliability

 Reliability score can integrated into the learning process by weighting the reward

Error Generation (1/1)

<u>Idea:</u> Produce acoustic-level output and optimize strategy for system-specific error conditions

User Studies (1/1)

- Evaluate performance of new user models using real users
 - Test simulation quality using listening tests
 - Test strategy performance using questionnaires
 - Test usefulness of reliability scores

Summary

- Work on Evaluation (January to July 2005)
 - Experiments and Results
- Project Proposals (Summer 2005 to Summer 2007)
 - Introduction of strategy confidence scores
 - Agenda-based User Models
 - Strategy learning under system-specific error conditions
 - User studies

Experiments

- Implemented a handcrafted DM and trained three different UMs
 - **Bigram model:** $p(a_u|a_s)$
 - Levin model: p(yes_answer|expl_conf)
 - Pietquin model: p(yes_answer|expl_conf, goal)
- Implemented Q-Learning DM, learned strategies with each UM and compared performance and characteristics
- Cross-model evaluation of strategies
- Investigated user-model independent techniques for testing learned strategies

Phase II: New User Models (2/3)

- Idea 2: Use clustering to construct networks of user behaviour
- Motivation: Networks are well-suited for encoding dialogue context, but their manual construction is expensive
- Represent each dialogue as follows:

- We want to cluster user states, but the user state can never be fully observed or captured.
- However, we can cluster user actions and assume that similar actions imply similar contexts

$$s_{d1}$$
 a_{si} c_1 a_u s_{d2}

Phase II: New User Models (3/3)

- Idea 2, contd.: Overlay all dialogue sequences to obtain a network
- Use frequency counts to obtain transition probabilities

Backup Slides for Sigdial paper

Evaluation must cover two aspects

- Can the model produce human-like behaviour?
 - Does it produce user responses that a real user might have given in the same dialogue context?
 - **1** Need to compare real and simulated user responses!

- Can the model reproduce the variety of human behaviour?
 - Does it represent the whole user population?
 - 2 Need to compare real and simulated dialogue corpora!

Simulated vs. real user responses

- Split the corpus into training and testing data
- Evaluate how well the model can predict the user responses in the test data
 - Feed in all information about dialogue history and user goal
 - Compare simulated user turn and real user turn
 - Use Precision and Recall to measure how closely the predicted turn matches the real user turn

Use of Precision and Recall

Evaluate turn by turn:

Dialogue in the test set:

Sys: greeting instructions request_info orig_city

Usr: unknown provide_info orig_city london

Sys: implicit_conf orig_city london request_info dest_city

Usr: no_answer provide_info orig_city boston

Simulated user responses:

P=100%, R=50%

Usr: provide_info orig_city london

P=0%, R=0%

Usr: yes_answer provide_info dest_city paris

- P = Correctly predicted actions / All predicted actions
- R = Correctly predicted actions / All actions in real response

Results: Precision and Recall

Precision and Recall

	Precision	Recall
Bigram	17.83	21.66
Levin	37.98	31.57
Pietquin	40.16	33.38

- What do the results mean?
- Is this analysis sufficient?

Simulated vs. real corpora

- We need to evaluate if the model can reproduce the variety of user behaviour in the training data
 - Generate a whole corpus through interaction between the sim. user and the DM
 - Use statistical metrics to compare the simulated corpus to the real one

Statistical metrics

- High-level dialogue features
 - Dialogue length (in number of turns)
 - Turn length (in number of actions)
 - Proportion of user vs system talk
- Dialogue Style and Cooperativeness
 - Frequency of different user and system speech acts (average number of occurrences per dialogue)
 - Proportion of goal-directed actions vs. Grouding actions vs dialogue formalities vs. Unrecognised actions
 - Number of times information is requested, provided, rerequested, re-provided
- Dialogue Success and Efficiency
 - Average goal / subgoal achievement rate
 - Goal completion time

Results: Goal completion rates / times

Goal completion rates and times

Project overview

- Phase I
 - Evaluation of the current state of the art
 - Re-assessment of standard evaluation practices
 - Introduction of strategy confidence scores

Work completed

- Phase II
 - Development of new user models
 - Separation of user and error model
- Phase III
 - Acoustic-level simulation
 - Strategy learning under system-specific error conditions
- Phase IV
 - User studies

Phase I: Results (1/5)

 Simple statistical metrics can distinguish simulated from real dialogue data

Motivation

- Lack of a solid user model is currently a major roadblock to automatic DM design
- Lack of rigorous evaluation standards has led to uncertainty about the validity of simulation-based learning
- Goal is to develop user and error modelling techniques that enable us to learn strategies which outperform competing handcrafted strategies when tested on human users

Backup slides for simulation techniques

User Models (Backup Slide)

Bigram model: $p(a_u|a_s)$

Levin model: p(yes_answer|expl_conf)

Pietquin model: p(yes_answer|expl_conf, goal)

Overview of simulation techniques

- User simulation for strategy learning is a young field of research:
 - Levin, Pieraccini, Eckert (1997, 1998, 2000)
 - Lin and Lee (2000)
 - Scheffler and Young (1999, 2000, 2001, 2002)
 - Pietquin (2002, 2004)
 - Henderson, Georgilia, Lemon (2005)
- Closely related work on user simulation for SDS evaluation:
 - Lopez-Cozar et al. (2003)
 - Araki et al. (1997, 1998)

Levin, Pieraccini, Eckert (1997, 1998)

Simulation on intention- rather than word- or acoustic level

- N-gram model for predicting the next user intention
 û_t = arg max P(u_t|s_t)
- Simulated user responses often unrealistic and inconsistent

System: What is your departure city?

User: New York

System: What is your destination?

User: New York

Different approaches to user simulation

- Levin, Eckert, Pieraccini (2000)
- A Araki et al. (1997, 1998)
- Lin and Lee (2000, 2001)
- Scheffler and Young (1999, 2000, 2001, 2002)
- Lopez-Cozar et al. (2003)
- PR Pietquin and Renals (2002, 2004)

Levin, Pieraccini, Eckert (2000)

- Attempt to account for weaknesses of the n-gram model
- Assume a simple dialogue model and hand-select appropriate probabilities for predicting user responses

User responses still not goal-consistent!

Scheffler and Young (1999 - 2002)

 User model includes user goal and user's beliefs on current system status

Goal field	Value	Status
Туре	GET_FILM_LIST	Specified
Film	NA	NA
Cinema	ARTS_PICT_HOUSE	Pending
Day	TODAY	Pending

- User acts according to the given goal until it is completed
- Frequencies of different goals are estimated from corpus

Scheffler and Young (1999 - 2002)

 Utterance generation lattices, obtained by analysing possible dialogue path in existing prototype system

Pietquin (2002, 2004)

- Pietquin combines ideas from Scheffler's and Levin's work
- Probabilities are conditioned on user's goal and memory

	Memory			
Attribute	Value Priority		Count	
PROCESSOR	Pentium	High	0	
SPEED	800	High	0	
RAM	256	Low	0	
HDD	60	Low	0	

- P(n|greeting,goal)
- P(provide RAM | constrain HDD, goal, memory)
- P(yes | relax RAM, goal)
- P(close | asked for SPEED, goal, memory)

Graph-based DM

SDS Overview

Dialogue as a Markov Decision Process

- Describe dialogue in terms of states and actions
- View DM strategy as a mapping from states to actions

Dialogue State:

orig_city confirmed dest_city known depart_date unknown depart time unknown

System Action:

```
<impl_conf, dest_city, london>
<requ_info, depart_date>
```

Reinforcement Learning (1/2)

- Learning DM explores its environment through trial-and error and receives a reward r_t at each time t.
- Aim is to maximise to the cumulative discounted reward over time $r_{(t)}$

$$r_{(t)} = \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$$

Reinforcement Learning (2/2)

Estimate value of taking action a in state s

Actions

$$Q^{\pi}(s,a) = E_{\pi}(r_{(t)} | s_t = s, a_t = a)$$

■ Define the optimal policy π^*

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

	States					
	s ₁	S ₂	S ₃			
a_1	4.23	5.67	2.34	0.67	9.24	
a_2	1.56	9.45	8.82	5.81	2.36	
a ₃	4.77	3.39	2.01	7.58	3.93	

Q-Learning (Backup Slide)

The Q-learning update rule

