Learning Multimodal Clarification Strategies

Verena Rieser¹ Ivana Kruijff-Korbayová¹ Oliver Lemon²

¹Department of Computational Linguistics, Saarland University, Germany

> ²School of Informatics, University of Edinburgh, GB

In affiliation with: IGK and TALK Project
http://www.talk-project.org/

Motivation

The basic problem Previous work

Framework

The Learning Approach
The Data Collection
Results

Performance modelling

Motivation

The basic problem Previous work

Framework

The Learning Approach
The Data Collection
Results

Performance modelling

Motivation

The basic problem Previous work

Framework

The Learning Approach
The Data Collection
Results

Performance modelling

Motivation

The basic problem

Previous work

Framework

The Learning Approach
The Data Collection
Results

User: Add "American Pie" to this list.

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here?

00

User: Add "American Pie" to this list.

CRs:

Pardon?

User: Add "American Pie" to this list.

CRs:

Pardon? no acoustic hypothesis

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here?

00

User: Add "American Pie" to this list.

CRs:

Add what?

User: Add "American Pie" to this list.

CRs:

Pardon?

Add what? partial acoustic hypothesis

The album or the song?

By Madonna or Don McLean?

Any of the songs here?

User: Add "American Pie" to this list.

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here?

User: Add "American Pie" to this list.

CRs:

Pardon?

The album or the song? ambig lexical

interpretation

By Madonna or Don McLean?

Any of the songs here?

User: Add "American Pie" to this list.

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here?

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean? ambig

reference

Any of the songs here?

User: Add "American Pie" to this list.

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here?

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here? [display list]

User: Add "American Pie" to this list.

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here? [display list] ambig

reference

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here? [display list]

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here? [display list]

Any of these playlists? [display list]

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here? [display list]

Any of these playlists? [display list] ambig

reference

User: Add "American Pie" to this list.

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here? [display list]

Any of these playlists? [display list]

CRs indicate a problem with "understanding" (part of) an utterance.

User: Add "American Pie" to this list.

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here? [display list]

Any of these playlists? [display list]

CRs indicate a problem with "understanding" (part of) an utterance.

How to generate CRs indicating different types of errors?

Motivation

.0

The basic problem

Previous work

Framework

The Learning Approach

Dialogue costs and multimodality Modality costs and situations Ambiguity and task success Dialogue quality and "emotions"

- Form-function mappings
- Human decision making on function features was influenced by dialogue type, modality and channel quality.

- Form-function mappings
- Human decision making on function features was influenced by dialogue type, modality and channel quality.

- Form-function mappings
 - → We know how to generate surface forms of CRs once we have the functions
- Human decision making on function features was influenced by dialogue type, modality and channel quality.

- Form-function mappings
 - ightarrow We know how to generate surface forms of CRs once we have the functions
- Human decision making on function features was influenced by dialogue type, modality and channel quality.

- Form-function mappings
 - ightarrow We know how to generate surface forms of CRs once we have the functions
- Human decision making on function features was influenced by dialogue type, modality and channel quality.
 - \rightarrow We don't know how to set function features in dialogue systems!

Motivation

The basic problem Previous work

Framework

The Learning Approach

The Data Collection Results

Performance modelling

Approach

Assumptions

- Clarification strategies involve complex decision making over a variety of contextual factors
- and exhaustive planning towards reaching a "goal".

Approach

Assumptions

- Clarification strategies involve complex decision making over a variety of contextual factors
- and exhaustive planning towards reaching a "goal".

Approach

Assumptions

- Clarification strategies involve complex decision making over a variety of contextual factors
- and exhaustive planning towards reaching a "goal".
- → Apply reinforcement learning (RL) in the information state update (ISU) approach.

- 1. Collect data on possible strategies in WOZ experiment.
- Bootstrap an initial policy using supervised learning in the ISU approach.
- 3. Optimise the learnt policy for dialogue systems using reinforcement learning (RL).

- 1. Collect data on possible strategies in WOZ experiment.
- Bootstrap an initial policy using supervised learning in the ISU approach.
- Optimise the learnt policy for dialogue systems using reinforcement learning (RL).

- 1. Collect data on possible strategies in WOZ experiment.
 - → Identify possible state-action mappings
- Bootstrap an initial policy using supervised learning in the ISU approach.
- 3. Optimise the learnt policy for dialogue systems using reinforcement learning (RL).

- 1. Collect data on possible strategies in WOZ experiment.
 - → Identify possible state-action mappings
- 2. Bootstrap an initial policy using supervised learning in the ISU approach.
- 3. Optimise the learnt policy for dialogue systems using reinforcement learning (RL).

- 1. Collect data on possible strategies in WOZ experiment.
 - → Identify possible state-action mappings
- 2. Bootstrap an initial policy using supervised learning in the ISU approach.
 - → Learn wizards' decisions in context
- 3. Optimise the learnt policy for dialogue systems using reinforcement learning (RL).

Framework for learning multimodal CRs

- 1. Collect data on possible strategies in WOZ experiment.
 - → Identify possible state-action mappings
- 2. Bootstrap an initial policy using supervised learning in the ISU approach.
 - → Learn wizards' decisions in context
- 3. Optimise the learnt policy for dialogue systems using reinforcement learning (RL).

- Collect data on possible strategies in WOZ experiment.
 - → Identify possible state-action mappings
- 2. Bootstrap an initial policy using supervised learning in the ISU approach.
 - → Learn wizards' decisions in context
- 3. Optimise the learnt policy for dialogue systems using reinforcement learning (RL).
 - → How should the performance function (reward) look like?

Outline

Motivation

The basic problem Previous work

Framework

The Learning Approach

The Data Collection

Results

Performance modelling
RL and Performance modelling
Dialogue costs and multimodality
Modality costs and situations
Ambiguity and task success
Dialogue quality and "emotions"

The SAMMIE-2¹ Data Collection

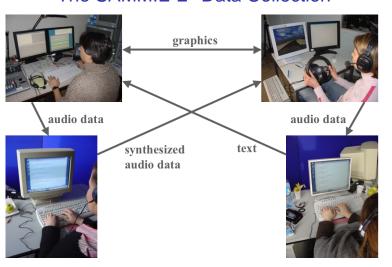


Figure: Multimodal Wizard-of-Oz data collection setup for an in-car = 1 900

Experimental Setup

6 wizards, 24 subjects

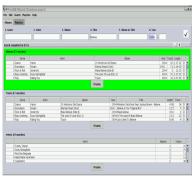
Wizard:

- Screen output options pre-computed, wizard freely talking
- Wizard "sees what the system sees" (corrupted transcriptions) → "clarification pop-up"

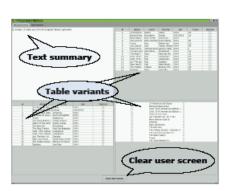
<u>User:</u>

- User's primary task is driving
- Secondary MP3 selection task:
 - (a) searching for a title either in the database or in an existing playlist
 - (b) building a playlist satisfying a number of constraints ("10 songs from the 70s")

Wizards' choice for graphical presentation (2 steps)



1. Choose content: album, tracks or artists.



2. Choose graphical presentations

Outline

Motivation

The basic problem

Previous work

Framework

The Learning Approach

Results

Performance modelling

Dialogue costs and multimodality
Modality costs and situations

Ambiguity and task success

Dialogue quality and "emotions"

- User Satisfaction fairly high across wizards (15.0, δ =2.9, range 5 to 25)2
- Graphical display was judged distracting the driver.

- User Satisfaction fairly high across wizards (15.0, δ =2.9, range 5 to 25)2
- "Most helpful" presentation strategy was showing a table with most information.

²US as the sum of 5 different aspects probed by a survey following [Walker et al.], 2002. イロト イ押ト イヨト イヨト 手性 かなべ

- User Satisfaction fairly high across wizards (15.0, δ =2.9, range 5 to 25)2
- "Most helpful" presentation strategy was showing a table with most information.
- Graphical display was judged distracting the driver.

- User Satisfaction fairly high across wizards (15.0, δ =2.9, range 5 to 25)2
- "Most helpful" presentation strategy was showing a table with most information.
- Graphical display was judged distracting the driver.
- Amount of graphical information was judged too much while driving.

- "Costs" caused by multi-modal dialogue acts.
- Vague task success by non directed task definition and high ambiguity.
- In-car environment: cognitive workload on primary task.
- All features should be available at runtime (RL).

- "Costs" caused by multi-modal dialogue acts.
- Vague task success by non directed task definition and high ambiguity.
- In-car environment: cognitive workload on primary task.
- All features should be available at runtime (RL).

Consequences for Performance Modelling

- "Costs" caused by multi-modal dialogue acts.
- Vague task success by non directed task definition and high ambiguity.
- In-car environment: cognitive workload on primary task.
- All features should be available at runtime (RL).

Consequences for Performance Modelling

- "Costs" caused by multi-modal dialogue acts.
- Vague task success by non directed task definition and high ambiguity.
- In-car environment: cognitive workload on primary task.
- All features should be available at runtime (RL).

Outline

Motivation

The basic problem Previous work

Framework

The Learning Approach
The Data Collection
Results

Performance modelling

RL and Performance modelling

Dialogue costs and multimodality Modality costs and situations Ambiguity and task success Dialogue quality and "emotions"

Reinforcement Learning

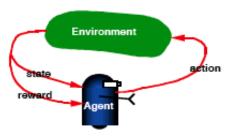


Figure: [Sutton and Barto], 1998.

The reward/performance function defines the "goal" of the RL agent.

RL and PARADISE

Performance modelling for RL in PARADISE [Walker], 2000.

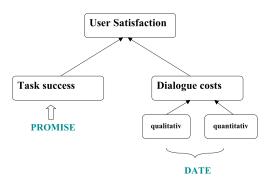
RL and PARADISE

Performance modelling for RL in PARADISE [Walker], 2000.

UserSatisfaction(max TaskSuccess, min Costs)

Performance modelling for RL in PARADISE [Walker], 2000.

UserSatisfaction(max TaskSuccess, min Costs)



Outline

Motivation

The basic problem Previous work

Framework

The Learning Approach
The Data Collection
Results

Performance modelling

RL and Performance modelling

Dialogue costs and multimodality

Modality costs and situations Ambiguity and task success Dialogue quality and "emotions"

PARADISE:

• turn duration, elapsed time, number of turns, ...

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: conversational domain, task/sub-task level, speech act

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001)

→ present-info indicates task success

PARADISE:

• turn duration, elapsed time, number of turns, ...

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: conversational domain, task/sub-task level, speech act

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001)

→ present-info indicates task success

PARADISE:

turn duration, elapsed time, number of turns, . . .

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: conversational domain, task/sub-task level. speech act

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001)

PARADISE:

turn duration, elapsed time, number of turns, . . .

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: conversational domain, task/sub-task level, speech act

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001)

PARADISE:

turn duration, elapsed time, number of turns, . . .

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: conversational domain, task/sub-task level, speech act

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001)

→ present-info indicates task success

PARADISE:

turn duration, elapsed time, number of turns, . . .

DATE:

- accounts for relations between cost features and features indicating task success
- multiple views on one turn: conversational domain, task/sub-task level, speech act

Example: For certain speech acts turn duration is positively related to US [Walker and Passonneau], 2001)

→ present-info indicates task success

ID	Utterance	Speaker	Modality	Speech act
1	Please play "Nevermind".	user	speech	request
2a	Does this list contain the	wizard	speech	request info
	song?			
2b	[shows list with 20 DB	wizard	graphic	present info
	matches]			
3a	Yes. It's number 4.	user	speech	provide info
3b	[selects item 4]	user	graphic	provide info

- Simultaneous actions
- Redundant actions

ID	Utterance	Speaker	Modality	Speech act
1	Please play "Nevermind".	user	speech	request
2a	Does this list contain the	wizard	speech	request info
	song?			
2b	[shows list with 20 DB	wizard	graphic	present info
	matches]			
3a	Yes. It's number 4.	user	speech	provide info
3b	[selects item 4]	user	graphic	provide info

- Simultaneous actions
- Redundant actions

Costs of Multimodal Dialogue Acts

ID	Utterance	Speaker	Modality	Speech act
1	Please play "Nevermind".	user	speech	request
2a	Does this list contain the song?	wizard	speech	request info
2b	[shows list with 20 DB matches]	wizard	graphic	present info
3a 3b	Yes. It's number 4. [selects item 4]	user user	speech graphic	provide info provide info

- Simultaneous actions
- Redundant actions

Costs of Multimodal Dialogue Acts

ID	Utterance	Speaker	Modality	Speech act
1	Please play "Nevermind".	user	speech	request
2a	Does this list contain the	wizard	speech	request info
	song?			
2b	[shows list with 20 DB	wizard	graphic	present info
	matches]			
3a	Yes. It's number 4.	user	speech	provide info
3b	[selects item 4]	user	graphic	provide info

- Simultaneous actions
- Redundant actions

ID	Utterance	Speaker	Modality	Speech act
1	Please play "Nevermind".	user	speech	request
2a	Does this list contain the song?	wizard	speech	request info
2b	[shows list with 20 DB matches]	wizard	graphic	present info
3a	Yes. It's number 4.	user	speech	provide info
3b	[selects item 4]	user	graphic	provide info

- Simultaneous actions
- Redundant actions

Outline

Motivation

The basic problem Previous work

Framework

The Learning Approach
The Data Collection
Results

Performance modelling

RL and Performance modelling Dialogue costs and multimodality

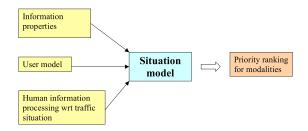
Modality costs and situations

Ambiguity and task success
Dialogue quality and "emotions"

Cognitive load of primary and secondary task

Performance modelling

[Salmen], PhD thesis, 2002)): Multi-modale Menüausgabe im Fahrzeug.



Can we utilise these rankings for our reward measure?

•000

Outline

Motivation

The basic problem Previous work

Framework

The Learning Approach
The Data Collection
Results

Performance modelling

RL and Performance modelling
Dialogue costs and multimodality
Modality costs and situations
Ambiguity and task success
Dialogue quality and "emotions"

Task success

PARADISE: AVM-style definition of task success

attribute	possible values	info flow
<depart-city></depart-city>	{Milano, Roma, Torino, Trento}	to agent
<arrival-city></arrival-city>	{Milano, Roma, Torino, Trento}	to agent
<depart-range></depart-range>	{morning, evening}	to agent
<depart-time></depart-time>	{6am, 8am, 6pm, 9pm}	to user

PROMISE: [Beringer et al.], 2002

information bits to measure (sub-)task success

Example: "Plan an evening watching TV": film = [channel, time] \sqrt{fittle, time} \sqrt{fittle, channel} \sqrt{...}

Task success

PARADISE: AVM-style definition of task success

attribute	possible values	info flow
<depart-city></depart-city>	{Milano, Roma, Torino, Trento}	to agent
<arrival-city></arrival-city>	{Milano, Roma, Torino, Trento}	to agent
<depart-range></depart-range>	{morning, evening}	to agent
<depart-time></depart-time>	{6am, 8am, 6pm, 9pm}	to user

PROMISE: [Beringer et al.], 2002

information bits to measure (sub-)task success

Example: "Plan an evening watching TV": film = [channel, time] \sqrt{fittle, time} \sqrt{fittle, channel} \sqrt{...}

Task success

PARADISE: AVM-style definition of task success

attribute	possible values	info flow
<depart-city></depart-city>	{Milano, Roma, Torino, Trento}	to agent
<arrival-city></arrival-city>	{Milano, Roma, Torino, Trento}	to agent
<depart-range></depart-range>	{morning, evening}	to agent
<depart-time></depart-time>	{6am, 8am, 6pm, 9pm}	to user

PROMISE: [Beringer et al.], 2002

information bits to measure (sub-)task success

Example: "Plan an evening watching TV": film = [channel, time] \(\) [title, time] \(\) [title, channel] \(\) ...

Your little brother likes to listen to heavy metal music. You want to build him a playlist including three metal songs. Make sure you have "Enter Sandman" on the playlist! Save the playlist under the name "heavy guys".

```
main task (makePlaylist)
sub-tasks: search(item1), search(item2),
search(item3), playlist( name),
add(item1, name), add(item2, name),
add(item3, name)
```

Your little brother likes to listen to heavy metal music. You want to build him a playlist including three metal songs. Make sure you have "Enter Sandman" on the playlist! Save the playlist under the name "heavy guys".

```
main task (makePlaylist)
sub-tasks: search(item1), search(item2),
search(item3), playlist( name),
add(item1, name), add(item2, name),
add(item3, name)
```

Your little brother likes to listen to heavy metal music. You want to build him a playlist including three metal songs. Make sure you have "Enter Sandman" on the playlist! Save the playlist under the name "heavy guys".

```
main task (makePlaylist)
sub-tasks: search(item1), search(item2),
search(item3), playlist( name),
add(item1, name), add(item2, name),
add(item3, name)
```

Your little brother likes to listen to heavy metal music. You want to build him a playlist including three metal songs. Make sure you have "Enter Sandman" on the playlist! Save the playlist under the name "heavy guys".

```
main task (makePlaylist)
sub-tasks: search(item1), search(item2),
search(item3), playlist( name),
add(item1, name), add(item2, name),
add(item3, name)
```

Your little brother likes to listen to heavy metal music. You want to build him a playlist including three metal songs. Make sure you have "Enter Sandman" on the playlist! Save the playlist under the name "heavy guys".

```
main task (makePlaylist)
sub-tasks: search(item1), search(item2),
search(item3), playlist( name),
add(item1, name), add(item2, name),
add(item3, name)
```

Extend the information bit set until the description is precise.

Example:

```
tem1= [title= "Enter Sandman"]
f item1 has several matches in the DB:
item1= [title= "Enter Sandman"] ∧ [album]
```

→ Recursive definition of task success based on ambiguity

Extend the information bit set until the description is precise.

```
Example:
```

```
item1=[title= "Enter Sandman"]
```

If item1 has several matches in the DB: item1= [title= "Enter Sandman"] ∧ [album]

→ Recursive definition of task success based on ambiguity.

Extend the information bit set until the description is precise.

```
Example:
```

```
item1= [title= "Enter Sandman"]
If item1 has several matches in the DB:
```

```
item1= [title= "Enter Sandman"] ∧ [album]
```

→ Recursive definition of task success based on ambiguity.

Extend the information bit set until the description is precise.

```
Example:
```

```
item1= [title= "Enter Sandman"]

If item1 has several matches in the DB:

item1= [title= "Enter Sandman"] ∧ [album]
```

→ Recursive definition of task success based on ambiguity

Extend the information bit set until the description is precise.

```
Example:
```

```
item1= [title= "Enter Sandman"]

If item1 has several matches in the DB:

item1= [title= "Enter Sandman"] ∧ [album]
```

→ Recursive definition of task success based on ambiguity.

Motivation

The basic problem Previous work

Framework

The Learning Approach
The Data Collection
Results

Performance modelling

RL and Performance modelling
Dialogue costs and multimodality
Modality costs and situations
Ambiguity and task success
Dialogue quality and "emotions"

Subjective evaluation using "emotions"

- PARADISE: user questionnaires
- How to get these measures at system runtime?
- → Recognise "emotions" as immediate positive/negative feedback
- → Hope to learn a strategy which reacts to user frustration/stress more quickly (following [Litman et al.])

Subjective evaluation using "emotions"

- PARADISE: user questionnaires
- How to get these measures at system runtime?
- → Recognise "emotions" as immediate positive/negative feedback
- → Hope to learn a strategy which reacts to user frustration/stress more quickly (following [Litman et al.])

Subjective evaluation using "emotions"

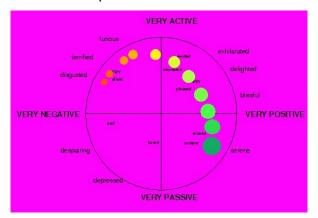
- PARADISE: user questionnaires
- How to get these measures at system runtime?
- → Recognise "emotions" as immediate positive/negative feedback
- → Hope to learn a strategy which reacts to user frustration/stress more quickly (following [Litman et al.])

- PARADISE: user questionnaires
- How to get these measures at system runtime?
- → Recognise "emotions" as immediate positive/negative feedback
- → Hope to learn a strategy which reacts to user frustration/stress more quickly (following [Litman et al.])

IGK project, July 2005 (Hofer, Rieser): Emotion tagging for the COMMUNICATOR corpus.

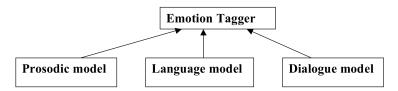
Detecting emotions

IGK project, July 2005 (Hofer, Rieser): Emotion tagging for the COMMUNICATOR corpus.



Detecting emotions

IGK project, July 2005 (Hofer, Rieser): *Emotion tagging for the COMMUNICATOR corpus*.



Summary

Hypothesis

 Multi-modal clarification strategies involve complex planning over a variety of contextual factors while maximising user satisfaction.

Method

 Apply RL in the ISU update approach and model user satisfaction by assigning local rewards.

Expected outcome

- Learn flexible, context-adaptive strategy for clarification subdialogues
- While following a user centred approach.

In other words ...

Asking the "right" clarification depends on the context and the "goal".



Figure: Performance modelling for multi-modal in-car dialogues

Asking the "right" clarification depends on the context and the "goal".

- Help to accomplish the task!
- Save costs!
- Don't distract the driver!
- Don't frustrate the driver!

In other words ...

Asking the "right" clarification depends on the context and the "goal".

- · Help to accomplish the task!
- Save costs!
- Don't distract the driver!
- Don't frustrate the driver!

Papers associated with this talk:

- Verena Rieser and Johanna Moore. Implications for Generating Clarification Requests in Task-oriented Dialogues. Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL-05), 2005.
- Ivana Kruijff-Korbayová, Nate Blaylock, Ciprian Gerstenberger, Verena Rieser, Tilman Becker, Michael Kaisser, Peter Poller, Jan Schehl. An Experimental Setup for Collecting Data for Adaptive Output Planning in a Mutlimodal Dailogue System. Proceedings of European Natural Language Generation Workshop, 2005.
- Verena Rieser, Ivana Kruijff-Korbayová, Oliver Lemon: A Framework for Learning Multimodal Clarification Strategies. Submitted.

For Further Reading I

Marylin Walker and Rebecca Passoneau. DATE: A dialogue act tagging scheme for evaluation. Proceedings of the Human Language Technology Conference, 2001.

Nicole Beringer and Ute Kartal and Katerina Louka and Florian Schiel and Uli Türk.

PROMISE: A Procedure for Multimodal Interactive System Evaluation.

Proceedings of the Workshop Multimodal Resources and Multimodal Systems Evaluation, 2002.

For Further Reading II

Marylin Walker.
An Application of Re

An Application of Reinforcement Learning to Dialogue Strategy Selection in a Spoken Dialogue System for Email. Journal of Artificial Intelligence Research, 2000.

Angelika Salmen.

Multi-modale Menüausgabe im Fahrzeug. (PhD thesis, University of Regensburg, 2002.

For Further Reading III

Cowie, Roddy and Douglas-Cowie, Ellen and Savvidou, Suzie and McMahon, Edelle and Sawey, Martin and Schröder, Marc

'FEELTRACE': An Instrument for Recording Perceived Emotion in Real Time

Proceedings of the ISCA Workshop on Speech and Emotion: A Conceptual Framework for Research, 2000.


```
U is user input string
F field searched by wizard
DB is number of matches in the database
```

Constraints are sets of information bits


```
Constraints are sets of information bits
U is user input string
F field searched by wizard
DB is number of matches in the database
Initialize:
     task = makePlaylist
     makePlaylist = subtask(item1) \land ... \land subtask(itemN)
     item1, ..., itemN = ValueList
     ValueList = constraint1 ∨ constraint2 ∨ . . . ∨ constraintN
```



```
Constraints are sets of information bits
U is user input string
F field searched by wizard
DB is number of matches in the database
Initialize:
     task = makePlaylist
     makePlaylist = subtask(item1) \land ... \land subtask(itemN)
     item1, ..., itemN = ValueList
     ValueList = constraint1 ∨ constraint2 ∨ . . . ∨ constraintN
Repeat:
     value = Parse(U)
     If (value != F): "error; needs manual annotation"
```

```
Constraints are sets of information bits
U is user input string
F field searched by wizard
DB is number of matches in the database
Initialize:
     task = makePlaylist
     makePlaylist = subtask(item1) \land ... \land subtask(itemN)
     item1, ..., itemN = ValueList
     ValueList = constraint1 ∨ constraint2 ∨ ... ∨ constraintN
Repeat:
     value = Parse(U)
     If (value != F): "error; needs manual annotation"
     Else:
         For constraint in ValueList:
              If (DB != 0): refineConstraintDefinition
```

onth. Task success is precisely defined

```
Constraints are sets of information bits
U is user input string
F field searched by wizard
DB is number of matches in the database
Initialize:
     task = makePlaylist
     makePlaylist = subtask(item1) \land ... \land subtask(itemN)
     item1, ..., itemN = ValueList
     ValueList = constraint1 ∨ constraint2 ∨ ... ∨ constraintN
Repeat:
     value = Parse(U)
     If (value != F): "error; needs manual annotation"
     Else:
         For constraint in ValueList:
              If (DB != 0): refineConstraintDefinition
Until: Task success is precisely defined
```

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ト 多 り へ ○