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Clarification Requests in Multimodal Dialogue

User: Add “American Pie" to this list.

CRs:

Pardon?

Add what?

The album or the song?

By Madonna or Don McLean?

Any of the songs here? [display list ]

Any of these playlists? [display list ]

CRs indicate a problem with “understanding" (part of) an
utterance.
How to generate CRs indicating different types of errors?
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Generating CRs in task-oriented dialogues

[Rieser and Moore], ACL 2005: Implications for generating
clarification requests in task-oriented dialogues.

• Form-function mappings
• Human decision making on function features was

influenced by dialogue type, modality and channel
quality .
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Generating CRs in task-oriented dialogues

[Rieser and Moore], ACL 2005: Implications for generating
clarification requests in task-oriented dialogues.

• Form-function mappings
→ We know how to generate surface forms of CRs once
we have the functions

• Human decision making on function features was
influenced by dialogue type, modality and channel
quality .
→ We don’t know how to set function features in dialogue
systems!
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Approach

Assumptions

• Clarification strategies involve complex decision making
over a variety of contextual factors

• and exhaustive planning towards reaching a “goal".

→ Apply reinforcement learning (RL) in the information state
update (ISU) approach.
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Framework for learning multimodal CRs

1. Collect data on possible strategies in WOZ experiment.
→ Identify possible state-action mappings

2. Bootstrap an initial policy using supervised learning in the
ISU approach.
→ Learn wizards’ decisions in context

3. Optimise the learnt policy for dialogue systems using
reinforcement learning (RL).
→ How should the performance function (reward) look like?
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The SAMMIE-21 Data Collection

Figure: Multimodal Wizard-of-Oz data collection setup for an in-car
music player application, using the Lane Change driving simulator.
Top right: User, Top left: Wizard, Bottom: transcribers.

1SAMMIE stands for Saarbrücken Multimodal MP3 Player Interaction
Experiment (cf. for more details [Kruijff-Korbayová et al.], ENLG 2005).
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Experimental Setup

6 wizards, 24 subjects
Wizard:

• Screen output options pre-computed, wizard freely talking

• Wizard “sees what the system sees" (corrupted
transcriptions) → “clarification pop-up"

User:

• User’s primary task is driving
• Secondary MP3 selection task:

(a) searching for a title either in the database or in an existing
playlist

(b) building a playlist satisfying a number of constraints (“10
songs from the 70s")
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Wizards’ choice for graphical presentation (2 steps)

1. Choose content: album,
tracks or artists.

2. Choose graphical presen-
tations
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Wizards’ Performance

• User Satisfaction fairly high across wizards (15.0, δ=2.9,
range 5 to 25)2

• “Most helpful" presentation strategy was showing a table
with most information.

• Graphical display was judged distracting the driver.

• Amount of graphical information was judged too much
while driving.

2US as the sum of 5 different aspects probed by a survey following
[Walker et al.], 2002.



Motivation Framework Performance modelling Summary

Wizards’ Performance

• User Satisfaction fairly high across wizards (15.0, δ=2.9,
range 5 to 25)2

• “Most helpful" presentation strategy was showing a table
with most information.

• Graphical display was judged distracting the driver.

• Amount of graphical information was judged too much
while driving.

2US as the sum of 5 different aspects probed by a survey following
[Walker et al.], 2002.



Motivation Framework Performance modelling Summary

Wizards’ Performance

• User Satisfaction fairly high across wizards (15.0, δ=2.9,
range 5 to 25)2

• “Most helpful" presentation strategy was showing a table
with most information.

• Graphical display was judged distracting the driver.

• Amount of graphical information was judged too much
while driving.

2US as the sum of 5 different aspects probed by a survey following
[Walker et al.], 2002.



Motivation Framework Performance modelling Summary

Wizards’ Performance

• User Satisfaction fairly high across wizards (15.0, δ=2.9,
range 5 to 25)2

• “Most helpful" presentation strategy was showing a table
with most information.

• Graphical display was judged distracting the driver.

• Amount of graphical information was judged too much
while driving.

2US as the sum of 5 different aspects probed by a survey following
[Walker et al.], 2002.



Motivation Framework Performance modelling Summary

Consequences for Performance Modelling

• “Costs" caused by multi-modal dialogue acts.

• Vague task success by non directed task definition and
high ambiguity.

• In-car environment: cognitive workload on primary task.
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Reinforcement Learning

Figure: [Sutton and Barto], 1998.

The reward/performance function defines the “goal" of the RL
agent.
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RL and PARADISE

Performance modelling for RL in PARADISE [Walker], 2000.
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Dialogue costs and dialogue acts

PARADISE:
• turn duration, elapsed time, number of turns, . . .

DATE:
• accounts for relations between cost features and features

indicating task success

• multiple views on one turn: conversational domain,
task/sub-task level, speech act

Example: For certain speech acts turn duration is positively
related to US [Walker and Passonneau], 2001)
→ present-info indicates task success



Motivation Framework Performance modelling Summary

Dialogue costs and dialogue acts

PARADISE:
• turn duration, elapsed time, number of turns, . . .

DATE:
• accounts for relations between cost features and features

indicating task success

• multiple views on one turn: conversational domain,
task/sub-task level, speech act

Example: For certain speech acts turn duration is positively
related to US [Walker and Passonneau], 2001)
→ present-info indicates task success



Motivation Framework Performance modelling Summary

Dialogue costs and dialogue acts

PARADISE:
• turn duration, elapsed time, number of turns, . . .

DATE:
• accounts for relations between cost features and features

indicating task success

• multiple views on one turn: conversational domain,
task/sub-task level, speech act

Example: For certain speech acts turn duration is positively
related to US [Walker and Passonneau], 2001)
→ present-info indicates task success



Motivation Framework Performance modelling Summary

Dialogue costs and dialogue acts

PARADISE:
• turn duration, elapsed time, number of turns, . . .

DATE:
• accounts for relations between cost features and features

indicating task success

• multiple views on one turn: conversational domain,
task/sub-task level, speech act

Example: For certain speech acts turn duration is positively
related to US [Walker and Passonneau], 2001)
→ present-info indicates task success



Motivation Framework Performance modelling Summary

Dialogue costs and dialogue acts

PARADISE:
• turn duration, elapsed time, number of turns, . . .

DATE:
• accounts for relations between cost features and features

indicating task success

• multiple views on one turn: conversational domain,
task/sub-task level, speech act

Example: For certain speech acts turn duration is positively
related to US [Walker and Passonneau], 2001)
→ present-info indicates task success



Motivation Framework Performance modelling Summary

Dialogue costs and dialogue acts

PARADISE:
• turn duration, elapsed time, number of turns, . . .

DATE:
• accounts for relations between cost features and features

indicating task success

• multiple views on one turn: conversational domain,
task/sub-task level, speech act

Example: For certain speech acts turn duration is positively
related to US [Walker and Passonneau], 2001)
→ present-info indicates task success



Motivation Framework Performance modelling Summary

Costs of Multimodal Dialogue Acts

ID Utterance Speaker Modality Speech act
1 Please play “Nevermind". user speech request
2a Does this list contain the

song?
wizard speech request info

2b [shows list with 20 DB
matches]

wizard graphic present info

3a Yes. It’s number 4. user speech provide info
3b [selects item 4] user graphic provide info

• Simultaneous actions

• Redundant actions
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Cognitive load of primary and secondary task

[Salmen], PhD thesis, 2002)): Multi-modale Menüausgabe im
Fahrzeug.

Can we utilise these rankings for our reward measure?
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Task success

PARADISE: AVM-style definition of task success

attribute possible values info flow
<depart-city> {Milano, Roma, Torino, Trento} to agent
<arrival-city> {Milano, Roma, Torino, Trento} to agent
<depart-range> {morning, evening} to agent
<depart-time> {6am, 8am, 6pm, 9pm} to user

PROMISE: [Beringer et al.], 2002

• information bits to measure (sub-)task success

Example: "Plan an evening watching TV": film = [channel,
time] ∨ [title, time] ∨ [title, channel]∨ . . .
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Ambiguity in PROMISE

Your little brother likes to listen to heavy metal music. You
want to build him a playlist including three metal songs.
Make sure you have “Enter Sandman" on the playlist! Save
the playlist under the name “heavy guys".

main task (makePlaylist )

sub-tasks: search( item1 ), search(item2),

search(item3), playlist( name),

add( item1 , name), add(item2, name),

add(item3, name)

What to do when “Enter Sandman" has several matches in the
DB? How to measure task success online?
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Extend the information bit set until the description is
precise.

Example:
item1= [title= “Enter Sandman"]
If item1 has several matches in the DB:
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→ Recursive definition of task success based on ambiguity.
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• PARADISE: user questionnaires

• How to get these measures at system runtime?

→ Recognise “emotions" as immediate positive/negative
feedback

→ Hope to learn a strategy which reacts to user
frustration/stress more quickly (following [Litman et al.])
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IGK project, July 2005 (Hofer, Rieser): Emotion tagging for the
COMMUNICATOR corpus.
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Detecting emotions
IGK project, July 2005 (Hofer, Rieser): Emotion tagging for the
COMMUNICATOR corpus.

Figure: Feeltrace, [Cowie et al.], 2000
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IGK project, July 2005 (Hofer, Rieser): Emotion tagging for the
COMMUNICATOR corpus.



Motivation Framework Performance modelling Summary

Summary

Hypothesis
• Multi-modal clarification strategies involve complex

planning over a variety of contextual factors while
maximising user satisfaction.

Method
• Apply RL in the ISU update approach and model user

satisfaction by assigning local rewards.
Expected outcome

• Learn flexible, context-adaptive strategy for clarification
subdialogues

• While following a user centred approach.
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In other words . . .
Asking the “right" clarification depends on the context and the
“goal".

Figure: Performance modelling for multi-modal in-car dialogues
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• Save costs!

• Don’t distract the driver!

• Don’t frustrate the driver!
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Association for Computational Linguistics (ACL-05), 2005.

• Ivana Kruijff-Korbayová, Nate Blaylock, Ciprian
Gerstenberger, Verena Rieser, Tilman Becker, Michael
Kaisser, Peter Poller, Jan Schehl. An Experimental Setup
for Collecting Data for Adaptive Output Planning in a
Mutlimodal Dailogue System.Proceedings of European
Natural Language Generation Workshop, 2005.

• Verena Rieser, Ivana Kruijff-Korbayová, Oliver Lemon: A
Framework for Learning Multimodal Clarification
Strategies. Submitted.
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Algorithm for flexible task success definition

Constraints are sets of information bits
U is user input string
F field searched by wizard
DB is number of matches in the database
Initialize:

task = makePlaylist
makePlaylist = subtask(item1) ∧ . . .∧ subtask(itemN)
item1, . . . , itemN = ValueList
ValueList = constraint1 ∨ constraint2 ∨ . . .∨ constraintN

Repeat:
value = Parse(U)
If (value != F): "error; needs manual annotation"
Else:

For constraint in ValueList:
If (DB != 0): refineConstraintDefinition

Until: Task success is precisely defined
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