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The Labeling Problem
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The Labeling Problem

• Needed: better representation & interactions

– Ohta ‘78
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Using Regions
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Using Regions
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Input Actual Regions

Slide from T. Malisiewicz



Using Regions + Interactions
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Image Representation Ideal Prob. Graphical Model
• High-order
• Expressive interactions

small regions

big regions



Using Regions + Interactions

8

Actual PGM
• Restrictive interactions
• Still NP-hard

Image Representation
small regions

big regions



Learning with Approximate Inference

• PGM learning requires exact inference

– Otherwise, may diverge       Kulesza and Pereira ’08
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PGM Approach
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Our Approach
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Input f1 OutputfN

Sequence of simple problems

…

Cohen ’05, Daume III ’06



A Sequence of Simple Problems

• Training simple modules to net desired output

– No searching in exponential space

• Not optimizing any joint distribution/energy

– Not necessarily doing it before!  Kulesza & Pereira ‘08
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Input f1 fN Output…
Stacked Hierarchical Labeling



Our Contribution

• An effective PGM alternative for labeling

– Training a hierarchical procedure of simple problems

• Naturally analyzes multiple scales

– Robust to imperfect segmentations

• Enables more expressive interactions

– Beyond pair-wise smoothing
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Related Work
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small regions

big regions

• Learning with multi-scale configurations

– Joint probability distribution

Bouman ‘94, Feng ‘02, He ’04

Borenstein ‘04, Kumar ’05

– Joint score/energy

Tu ‘03, S.C. Zhu ‘06, L. Zhu ‘08

Munoz ‘09, Gould ’09, Ladicky ’09

• Mitigating the intractable joint optimization
– Cohen ’05, Daume III ’06, Kou ‘07, Tu ’08, Ross ‘10
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In this work, the segmentation tree is given

We use the technique from Arbelaez ’09
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Segmentation Tree
(Arbelaez ’09)



• Parent sees big picture

• Naturally handles scales
18

Label Coarse To Fine

1 2 3 4

Segmentation Tree
(Arbelaez ’09)
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• Parent sees big picture

• Naturally handles scales

• Break into simple tasks

• Predict label mixtures

f1 f2 f3 f4

1 2 3 4

Segmentation Tree
(Arbelaez ’09)



Handling Real Segmentation

• fi predicts mixture of labels for each region

Input Segmentation Map
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Actual Predicted Mixtures
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P(Tree)P(Building)P(Fgnd)

(brighter  higher probability)   



Training Overview
• How to train each module fi ?

• How to use previous predictions?

• How to train the hierarchical sequence?
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Training Overview
• How to train each module fi ?

• How to use previous predictions?

• How to train the hierarchical sequence?
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Modeling Heterogeneous Regions

• Count true labels Pr present in each region r

• Train a model Q to match each Pr

– Logistic Regression

• minQ H(P,Q) Weighted Logistic Regression

– Image features: texture, color, etc.  (Gould ’08)
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Training Overview
• How to train each module fi ?

• How to use previous predictions?

• How to train the hierarchical sequence?
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Using Parent Predictions

• Use broader context in the finer regions

– Allow finer regions access to all parent predictions

• Create & append 3 types of context features

– Kumar ’05, Sofman ’06, Shotton ’06, Tu ‘08
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Parent Context

• Refining the parent
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Detailed In Paper

• Image-wise (co-occurrence)

• Spatial Neighborhood (center-surround)

Σ
regions
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Training Overview
• How to train each module fi ?

• How to use previous predictions?

• How to train the hierarchical sequence?
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Approach #1

• Train each module independently

– Use ground truth context features

• Problem: Cascades of Errors

– Modules depend on perfect context features

– Observe no mistakes during training
 Propagate mistakes during testing
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Approach #2

• Solution: Train in feed-forward manner

– Viola-Jones ‘01, Kumar ‘05, Wainwright ’06, Ross ‘10
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Training Feed-Forward
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Training Feed-Forward
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Cascades of Overfitting

• Solution: Stacking

– Wolpert ’92, Cohen ’05

– Similar to x-validation

– Don’t predict on data 
used for training
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Stacking
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Stacking
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Stacking
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Stacking
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Stacking
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Learning to Fix Mistakes

Segments

Level 5 Level 6 Level 7

Current
Output

Person part of incorrect segment
Person segmented, but relies on parent
Person fixes previous mistake



Level 1/8 Predictions
Segmentation
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P(Foreground)
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Level 3/8 Predictions
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Level 8/8 Predictions
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Stanford Background Dataset
• 8 Classes

• 715 Images

• Inference time

– Segmentation & image features held constant
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Method sec/image

Gould ICCV ‘09 30 - 600

SHL (Proposed) 10 - 12

Method Avg Class Accuracy

Gould ICCV ‘09 65.5

LogReg (Baseline) 58.0

SHL (Proposed) 66.2



MSRC-21
• 21 Classes

• 591 Images
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Method Avg Class Accuracy

Gould IJCV ‘08 64

LogReg (Baseline) 60

SHL (Proposed) 71

Ladicky ICCV ‘09 75

Lim ICCV’09 67
Tu PAMI’09 69
Zhu NIPS’08 74
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• 21 Classes

• 591 Images

62

Method Avg Class Accuracy

Gould IJCV ‘08 64

LogReg (Baseline) 60

SHL (Proposed) 71

Ladicky ICCV ‘09 75

LogReg (Baseline) 69

SHL (Proposed) 75

Lim ICCV’09 67
Tu PAMI’09 69
Zhu NIPS’08 74



Ongoing Work
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Conclusion
• An effective structured prediction alternative

– High performance with no graphical model

• Beyond site-wise representations

– Robust to imperfect segmentations & multiple scales

• Prediction is a series of simple problems

– Stacked to avoid cascading errors and overfitting
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Thank You
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Image-wise

Σ
regions
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Spatial neighborhood
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Interactions
• Described in this talk

• Described in the paper
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SHL vs. M3N
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SHL vs. M3N
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