
Inference Machines
Parsing Scenes via Iterated Predictions

Daniel Muñoz

CMU-RI-TR-13-15

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics.

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

June 6, 2013

Thesis Committee
J. Andrew Bagnell, Co-chair
Martial Hebert, Co-chair

Takeo Kanade
Yann LeCun, New York University

c© Daniel Muñoz 2013
All rights reserved

To my family, my dog, and clowns

Abstract

Extracting a rich representation of an environment from visual sensor readings can

benefit many tasks in robotics, e.g., path planning, mapping, and object manipulation.

While important progress has been made, it remains a difficult problem to effectively

parse entire scenes, i.e., to recognize semantic objects, man-made structures, and land-

forms. This process requires not only recognizing individual entities but also under-

standing the contextual relations among them.

The prevalent approach to encode such relationships is to use a joint probabilistic or

energy-based model which enables one to naturally write down these interactions. Un-

fortunately, performing exact inference over these expressive models is often intractable

and instead we can only approximate the solutions. While there exists a set of sophisti-

cated approximate inference techniques to choose from, the combination of learning and

approximate inference for these expressive models is still poorly understood in theory

and limited in practice. Furthermore, using approximate inference on any learned model

often leads to suboptimal predictions due to the inherent approximations.

As we ultimately care about predicting the correct labeling of a scene, and not

necessarily learning a joint model of the data, this work proposes to instead view the

approximate inference process as a modular procedure that is directly trained in order

to produce a correct labeling of the scene. Inspired by early hierarchical models in the

computer vision literature for scene parsing, the proposed inference procedure is struc-

tured to incorporate both feature descriptors and contextual cues computed at multiple

resolutions within the scene. We demonstrate that this inference machine framework

for parsing scenes via iterated predictions offers the best of both worlds: state-of-the-

art classification accuracy and computational efficiency when processing images and/or

unorganized 3-D point clouds. Additionally, we address critical problems that arise in

practice when parsing scenes on board real-world systems: integrating data from multi-

ple sensor modalities and efficiently processing data that is continuously streaming from

the sensors.

Acknowledgements

I would like to thank Drew Bagnell, Martial Hebert, Takeo Kanade, and Yann

LeCun, for serving on my committee. I appreciate the time they set aside for me and

am thankful for the invaluable discussions and comments regarding this work.

I’m extremely happy to have spent the past n years working with Drew and Martial.

Despite their many other commitments, both have been there whenever I’ve needed their

help (and often to quickly point why what I was thinking should probably be avoided).

At the same time, I’m thankful for the freedom they gave me to pursue collaborations on

a variety of topics which have bettered myself as researcher. I’ve learned a tremendous

amount from them during my journey, and I’m eternally grateful and in debt for their

guidance, support, and patience with me along the way.

One of the perks of being co-advised is calling home to two lab groups. Thanks to

the members of Drew’s LAIR lab and Martial’s VMR lab for teaching me about their

research and sharing their diverse perspectives and expertise with me. Particularly, many

discussions with Alex Grubb and Stéphane Ross were critical in the development of the

ideas and methods used in this (and future) work.

Over the years I’ve been fortunate to have successful collaborations with multiple

people: Elliot Cuzzillo, Debadeepta Dey, Alex Grubb, Hanzhang Hu, Ondra Miksik,

Varun Ramakrishna, Nick Rhinehart, Stéphane Ross, Nicolas Vandapel, and Xuehan

Xiong. Thank you for calling me out on my half-baked ideas and teaching me new

tricks. Additionally, a big thanks to Brian and Sean Bittner for helping me with many

experimental setups.

I could not have made it all the way through grad school without critical help along

the way. In roughly chronological order:

• I am forever in debt to Siva “MF” Srinivasan for trying to teach me remedial

computer science & discrete math concepts throughout undergrad – who knows

where I would’ve ended up without you.

• I am thankful for the enthusiastic support from my undergrad advisor, Yongwon

Lee. He helped me put things into perspective and instilled belief in me that I

could survive in the big leagues of grad school.

• Nicolas Vandapel was my unofficial MS advisor and taught me many things that I

still closely hold on to (including all I know about 3-D point clouds). Furthermore,

my early work (and consequently my admission into the PhD program) wouldn’t

have been possible without his insights and help over countless late nights – thank

you.

• The first year of grad school was overwhelming, but it was easy to get through it

with the support of great people: Brian Becker, Alvaro Collet, Santosh Divvala,

Michael Furlong, and Uma Nagarajan.

• I am extremely grateful for early discussions with Nathan Ratliff on his excel-

lent research. Those conversations definitively shaped the way that I think about

problems – thank you for your time and patience with me.

• A huge thanks to Suzanne Muth for ensuring that I didn’t fall through the cracks

along the way.

Many thanks to my officemates for tolerating my incessant mutterings, entertain-

ing my aloud musings (i.e., rants) on research & the purpose of life, and (especially)

celebrating FTS o’clock: Carl Doersch, Ed Hsiao, Tomasz Malisiewicz, Stéphane Ross.

Scott Satkin, and Yuandong Tian. Also, a big thanks to Michael Dille for being a great

housemate and sharing his savory dishes.

Lastly, but most importantly, getting to now would not have been possible without

the unwaning support of my family and friends, particularly, DHQ. I have the fortunate

problem of having many people playing important parts of my life, so I apologize for

copping out with an insufficient, impersonal acknowledgement: thank you for being

there.

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Approach . 3
1.3 Overview and Contributions . 4

2 Datasets 7
2.1 Image Datasets . 7
2.2 3-D Point Cloud Datasets . 10
2.3 Registered Image and 3-D Point Cloud Datasets 12
2.4 Evaluation . 12

3 Computer Vision Tools 15
3.1 Low-level Features . 15
3.2 Segmentation . 18
3.3 Region Features . 19
3.4 Normalization . 22

4 Machine Learning Tools 23
4.1 Regression . 23
4.2 Classification . 25
4.3 The Subgradient Method . 27
4.4 Boosting . 28

5 Parsing Scenes with Graphical Models 31
5.1 Introduction . 31
5.2 Background . 31
5.3 Smoothing-based Markov Networks . 34
5.4 Experimental Analysis . 38
5.5 Summary . 43

6 Hierarchical Inference Machines 45
6.1 Motivation . 45
6.2 Approach . 46
6.3 Parsing Images with Inference Machines 49
6.4 Experimental Analysis on Images . 56
6.5 Parsing 3-D Point Clouds with Inference Machines 60

6.6 Experimental Analysis on 3-D Point Clouds 61

7 Co-inference Machines 67
7.1 Introduction . 67
7.2 Background . 68
7.3 Reasoning with Multiple Modalities . 71
7.4 Experimental Analysis . 75
7.5 Summary . 79

8 Temporal Consistency in Streaming Video 81
8.1 Introduction . 81
8.2 Background . 84
8.3 Learning Similarity . 84
8.4 Temporal Consistency . 88
8.5 Experimental Analysis . 90
8.6 Summary . 93

9 Efficient 3-D Scene Parsing from Streaming Data 99
9.1 Introduction . 99
9.2 Data Structures for Streaming Data . 101
9.3 Segmentation . 103
9.4 Efficiency Analysis . 105
9.5 Classification Analysis . 109
9.6 Streaming Classification . 111
9.7 Summary . 113

10 Future Directions 115
10.1 Learning Structure . 115
10.2 Learning Context . 115
10.3 Learning Features . 116
10.4 Semi-supervised Structured Prediction . 117
10.5 Task-based Scene Parsing . 117

Bibliography 119

List of Figures

1.1 Two examples of scene parsing from images and 3-D point clouds. 2

2.1 Examples from Stanford Background and its distribution of classes (%) . 8

2.2 Examples from CamVid and its distribution of classes (%) 8

2.3 Examples from MPIVehicleScenes and its distribution of classes (%) . . . 9

2.4 Examples from NYU Scenes and its distribution of classes (%) 9

2.5 An annotated point cloud from the Freiburg dataset 10

2.6 An annotated point cloud from the GML-PCV dataset 11

2.7 An annotated point cloud from the VMR Oakland-v2 dataset 11

2.8 Examples from CMU Image+Laser and its distribution of classes (%) . . . 13

3.1 Low-level Image Features . 16

3.2 Tensor Voting. 17

3.3 Example hierarchical segmentation. 19

5.1 Qualitative comparisons of 3-D point cloud classification on two scenes 40

5.2 Qualitative comparison of geometric surface estimation on three scenes 41

5.3 Quantitative comparisons on the Geometric Context dataset 42

6.1 Simplified mechanics of a top-down hierarchical inference machine on a syn-
thetic image. 47

6.2 Example hierarchical segmentation and classification. 48

6.3 Refinement of predicted label proportions while traversing coarse-to-fine down
the hierarchy. 50

6.4 Illustration of the pixels being used (grayed) to compute the context features. 51

6.5 Learning to correct mistakes. 55

6.6 The effects of stacking during the learning procedure. 57

6.7 Per-pixel accuracies at each stage of the inference procedure. 58

6.8 Predicting with uncertainty. 58

6.9 Adapting inference machines to 3-D point clouds. 60

6.10 Learning context in 3-D point clouds. 62

6.11 Point cloud classifications on the VMR Oakland-v2 dataset. 63

6.12 Point cloud classifications on the GML-PCV dataset 65

7.1 Multimodal scene parsing. 68

7.2 Example images and point cloud from our CMU Image+Laser dataset. . . 69

7.3 The effects of constraining the representation into a single domain. 70

7.4 Synthetic example of inter-domain co-neighborhoods and overlaps. 73
7.5 Per-class F1 scores on our Image+Laser dataset. 77
7.6 Qualtitative comparisons of multi-model parsings. 78

8.1 Parsing scenes from video. 82
8.2 Temporal consistency overview . 83
8.3 Comparing similarity metrics. 86
8.4 Generating data for training the metric. 88
8.5 Temporal classifications on CamVid-05VD 95
8.6 Temporal classifications on NYU Scenes . 96
8.7 Temporal classifications on MPIVehicleScenes 97

9.1 A screenshot of classifying streaming 3-D data. 100
9.2 Visualizations of our data structures. 102
9.3 Comparison of (a) F-H and (b) grid segmentations. 103
9.4 Visualization of a multi-grid segmentation. 104
9.5 Example 3-D point cloud classifications. 105
9.6 Average region hierarchy construction time. 106
9.7 Analysis, on validation data, of region grid resolution at the finest level. . . . 107
9.8 Analysis, on validation data, of (a) classification performance and (b) com-

putation time with respect to different multi-grid configurations. 108
9.9 Average per-class F1, on validation data, with respect to the number of times

the training data is rotated. 110
9.10 Average timings of each component during the entire inference procedure.

Hierarchy construction includes feature computation time. 111
9.11 Per-class F1 for the datasets. “average” is the mean over the classes. 111
9.12 Average classification time per scene using multi-grid and F-H segmentation

on streams of VMR Oakland-v2 and Freiburg datasets. 112

10.1 Example ground truth annotation of an urban scene using the LabelMe tool
(Russell et al., 2007). 116

List of Tables

5.1 Per-class F1 scores and overall point accuracy comparisons. 39

6.1 Performances on the MSRC-21 dataset . 57
6.2 Performances on Stanford Background dataset. 57
6.3 Breakdown of HIM computations on the Stanford Background dataset. 59
6.4 Classification comparisons on the Stanford Background and CamVid

datasets. 59
6.5 Precisions (P) and recalls (R) on the VMR Oakland-v2 dataset. 63
6.6 Precisions (P) and recalls (R) on the GML-PCV dataset. 64

7.1 Comparison of average (co-)inferences times per scene. 79

8.1 Breakdown of computation time for temporal smoothing. 91
8.2 Per-class F1 scores and accuracy on CamVid 91
8.3 Per-class F1 scores and accuracy on NYU Scenes 92
8.4 Per-class F1 scores and accuracy on MPIVehicleScenes 92
8.5 Overall pixel accuracies (%) . 93

9.1 Breakdown of average computation times for constructing the hierarchical
regions for a Grid (a) and a [2, 1, 1, 1] Multi-grid (b). 109

9.2 Video sequence statistics . 112

Chapter 1

Introduction

Perception remains one of the depressingly difficult bottlenecks to the deployment of

reliable autonomous systems. It has been consistently demonstrated that improving the

representation of the robot’s environment often results in improving the success rate of

subsequent robotic tasks. For example, robustly recognizing landmarks from seemingly

disparate viewpoints can help the robot to simultaneously localize in, and construct maps

of, novel environments that span large areas (Cummins and Newman, 2011). Reliably

identifying obstacles from long-range can help path planners avoid exploring places in the

world that might be difficult to navigate through (Sofman et al., 2006). And consistently

identifying different kinds of objects and their pose can help robotic manipulators to

succeed in interacting with objects of interest without collision (Collet et al., 2011a).

These examples highlight the importance of extracting a better representation, even if

the representation is only a specific portion of the environment.

1.1 Problem

This work focuses on improving the representation of entire environments. Specifically,

we address the problem of scene parsing, i.e., assigning a semantic categorical label to

all sites1 in an observed scene, as illustrated in Figure 1.1. In our extensive experi-

mental analysis, these labels include objects (e.g., people, cars, animals, signs, etc.),

man-made structures (e.g., buildings, power lines, sidewalks, etc.), and landforms (e.g.,

grass, mountains, water, etc.).

Scene parsing is a challenging problem because it is unclear how to best represent a

scene in order to label it. For example, labeling each pixel in an image is problematic

because many objects appear very similar at a local scale in the image. In contrast,

1We refer to a “site” as the most basic element in the domain to be labeled. In images, sites are
typically pixels or superpixels, and sites are points or voxels in 3-D point clouds.

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Two examples of scene parsing from images (top) and 3-D point clouds
(bottom). In both examples, the input unlabeled data are on the left and parsings from
this work are shown on the right.

in an ideal world, we would label the exact regions/segments of the things of interest.

However, it is impossible to generate this perfect segmentation, and, in practice, we are

instead left with imperfect regions that often contain multiple categories. In addition to

representation, it is necessary for any approach to be holistically consistent, e.g., cars

should not be floating in the sky (yet). Learning models for scene parsing that effectively

integrate these contextual relations remains difficult.

From a machine learning perspective, scene parsing can be considered as a structured

prediction problem, in that we want to model the structure of the outputs in the pre-

diction, i.e., the interactions of the sites’ label assignments. The two prevalent tools for

structured prediction are graphical models, such as Conditional Random Fields (CRFs)

(Lafferty et al., 2001, Kumar and Hebert, 2006), or unnormalized, energy-based mod-

els (Taskar et al., 2003, Tsochantaridis et al., 2005, LeCun et al., 2006). While indeed

these models have been demonstrated to give large improvements over local classifiers

for scene parsing (He et al., 2004, Kumar and Hebert, 2005, Anguelov et al., 2005), most

are limited in the types of interactions they can model among the predictions.

1.2. APPROACH 3

In the recent computer vision literature, there is a trend of developing models with

increasingly sophisticated interactions in order to achieve more accurate predictions,

which is evident from recent award-winning papers (Ladicky et al., 2010, Gupta et al.,

2010, Desai et al., 2011, Kuettel et al., 2012). However, it should be noted that even the

simplest models over multiple labels are known to be NP-hard (Veksler, 1999), and many

recent works are focused on developing approximate inference algorithms. Unfortunately,

while graphical models provide a clean separation between modeling and inference, learn-

ing these models with approximate inference is not well understood (Wainwright, 2006,

Kulesza and Pereira, 2007, Finley and Joachims, 2008). Furthermore, restricting our

models to use approximate inference techniques, even with bounded guarantees on the

solution, can lead to learning models that infer labelings with a better score than the

ground truth labeling, which indicates a modeling mismatch of the problem (Szeliski

et al., 2007).

1.2 Approach

We address the scene parsing problem from a machine learning approach, but we are also

grounded with representations that are in spirit with the probabilistic models developed

in the computer vision literature. However, we make the key distinction of avoiding

learning a probabilistic model, which leads to my thesis statement.

Thesis statement: As we ultimately care about predicting a correct labeling

of the scene, we should directly train an inference procedure to do so. By

exploiting useful intermediate representations of the scene, we can break

down the inference procedure into a sequence of simple modules that we can

effectively train to net a holistically consistent labeling.

At the heart of our approach, we consider approximate inference as a procedure: we

can view an iterative inference algorithm, such as variational mean field on a random

field (Wainwright and Jordan, 2008), as a network of computational modules taking

in observations and other local computations on the graph (messages). We can then

iteratively train each of these modules to output ideal intermediate messages, culminat-

ing in a holistically consistent parsing of the scene. This approach, which we refer to

as an inference machine, eschews the theoretical and empirical difficulties of learning a

global or probabilistic model of the data, and is heavily inspired from work in machine

learning for sequence prediction (Cohen and Carvalho, 2005, Daume III et al., 2009).

Furthermore, training the inference procedure builds off work in training deep, modu-

lar networks (Fahlman and Lebiere, 1990, LeCun et al., 1998, Bengio, 2009) with key

distinctions. Firstly, we can effectively train each subproblem with what is the ideal

4 CHAPTER 1. INTRODUCTION

intermediate output. Secondly, this results in a more controlled overall learning problem

because we can observe of how much progress is being made after each subproblem.

Thirdly, the process is trained to follow the same procedure during test-time in order to

avoid cascading of errors and overfitting between subproblems.

We demonstrate on a variety of datasets that this inference machine framework gen-

erates state-of-the-art scene parsings not only in terms of classification accuracy but

also computationally efficiency. Additionally in this work, we address critical problems

which are necessary for operating within real-world systems: integrating data from mul-

tiple sensor modalities, and processing both image and point cloud data that is streaming

from the sensor.

1.3 Overview and Contributions

The next three chapters review background material which will be leveraged throughout

the remainder of this thesis. In Chapter 2, we describe the various image and point cloud

datasets we analyze in our experimental evaluations. In Chapter 3, we review image and

point cloud preprocessing techniques, including feature computation and segmentation.

In Chapter 4, we review statistical machine learning concepts, including classification,

regression, and convex function(al) minimization. The remaining chapters detail the

main contributions of this thesis:

• In Chapter 5, we revisit the canonical approach of parsing scenes using graphical

models. This chapter presents an effective max-margin learning algorithm for

these models with non-parametric clique potentials that improves upon previous

methods. This work was published in (Munoz et al., 2009a) and also contributes

a new annotated point cloud dataset to the community.

• In Chapter 6, we present the Inference Machine framework for parsing scenes from

images and 3-D point clouds and demonstrate its state-of-the-art perfomance in

both accuracy and efficiency. This work was published in (Munoz et al., 2010b,

Xiong et al., 2011).

• In Chapter 7, we show how to adapt the inference machine framework to incorpo-

rate data from multiple modalities. This addresses the problem of parsing scenes

from images and registered 3-D data in the general scenario when there is not a

one-to-one correspondence between each pixel and point. This work was published

in (Munoz et al., 2012) and also contributes a new annotated dataset of images

with registered 3-D point clouds to the community.

1.3. OVERVIEW AND CONTRIBUTIONS 5

• In Chapter 8, we show how to efficiently impose temporally consistent scene parses

from streaming video by learning a distance metric that discriminatively propagates

information between frames. This work was published in (Miksik et al., 2013)

• In Chapter 9, we show how to modify the representation in order to efficiently

parse unorganized 3-D points that are streaming from the laser sensor. This work

was published in (Hu et al., 2013)

Chapter 2

Datasets

This thesis analyzes classification and efficiency performances on a variety of different

real-world (and publicly available) datasets. These datasets were collected using a diverse

set of sensor modalities (e.g., different optical cameras and laser scanners) in diverse

environments (e.g., natural, urban, and college campus) and are annotated with various

classes. The datasets were chosen both to compare with prior work on scene parsing and

because they were collected under real-world operating conditions for a mobile robot,

i.e., the data is not synthetic or collected under controlled conditions.

2.1 Image Datasets

2.1.1 Stanford Background

This dataset contains 572 images of a diverse set of outdoor environments (Gould et al.,

2009). The vast majority of images are fully annotated into 8 classes, as illustrated in

Figure 2.1, making it a moderately large and useful dataset to analyze scene parsing.

Evaluation is averaged over 5 random folds of 572 training/143 testing images.

2.1.2 CamVid

This dataset consists of over 10 minutes of 30 Hz video captured around Cambridge,

U.K. during both daylight and dusk (Brostow et al., 2008, 2009). A subset of the video

is sparsely annotated in time at 1 Hz, resulting in an annotated dataset of 701 annotated

images. Following the authors’ original analysis, we evaluate predictions over 11 classes,

as illustrated in Figure 2.2. The diverse set of annotated classes and real-world operating

conditions make this a good dataset to evaluate scene parsing for mobile robotics. Static

image evaluation is performed on one fold of 468 training/233 testing images.

8 CHAPTER 2. DATASETS

— Sky — Tree — Road — Grass — Water — Building
— Mountain — Object

Sky Tree Road Grass Water Building Mountain Object

14.5 14.1 22.6 6.88 4.02 22.7 1.35 13.7

Figure 2.1: Examples from Stanford Background and its distribution of classes (%)

— Sky — Tree — Road — Sidewalk — Building — Car
— Pole — Pedestrian — Bicycle — Fence — Sign

Build. Tree Sky Car Sign Road Ped. Fence Pole Sidewalk Bicyc.

29.9 9.0 12.8 2.88 1.07 31.5 0.78 1.59 1.03 8.67 0.70

Figure 2.2: Examples from CamVid and its distribution of classes (%)

2.1.3 MPIVehicleScenes

This dataset consists of 156 annotated frames1 captured from a dashboard-mounted

camera while driving in a city (Wojek et al., 2010). The images are annotated into 5

classes, as illustrated in Figure 2.3.

1We use video sequence Continuous 2008.07.30 at 13.10.53

2.1. IMAGE DATASETS 9

— Background — Road — Lane-marking — Vehicle — Sky

Background Road Lane-marking Vehicle Sky

48.0 30.0 2.87 4.02 15.2

Figure 2.3: Examples from MPIVehicleScenes and its distribution of classes (%)

— Building — Car — Door — Person — Plant — Pole
— Road — Sidewalk — Sign — Staircase — Sky — Tree
— Window

Building Car Door Person Plant Pole Road

14.1 21.6 1.26 1.14 0.39 0.47 27.0

Sidewalk Sign Sky Staircase Tree Window

1.74 0.12 0.37 1.50 28.9 1.51

Figure 2.4: Examples from NYU Scenes and its distribution of classes (%)

2.1.4 NYU Scenes

This dataset consists of 74 annotated frames from a video of a person walking with a

hand-held camera in an urban street in New York City; it was provided by Clement

Farabet. In addition to the moving objects, the video has a lot of camera motion due

to the motion of the person, making it a challenging dataset to perform well on. The

10 CHAPTER 2. DATASETS

— Ground — Facade — Vegetation — Linear structure

c

Figure 2.5: An annotated point cloud from the Freiburg dataset

images are annotated into the same 33 classes from the SIFT Flow dataset (Liu et al.,

2011), as illustrated in Figure 2.4.

2.2 3-D Point Cloud Datasets

2.2.1 Freiburg

This point cloud dataset was captured using a pan-tilting SICK LMS laser scanner

around the University of Freiburg (Steder et al., 2010). Following (Behley et al., 2012),

we evaluate predictions over 4 classes, as illustrated in Figure 2.5. The large spatial

extent of the data in a college campus environment makes it a unique dataset. Evaluation

is averaged over 5 folds of 4 training/1 testing scans, where each scan contains 170, 000

3-D points.

2.2.2 GML-PCV

This point cloud dataset was captured using an airborne laser scanner covering large

outdoor areas (Shapovalov et al., 2010). The dataset is annotated into 5 classes, as

illustrated in Figure 2.6. Evaluation is performed performed over two partitions of 1

training/1 testing scan, each of which contains 1 M points.

2.2.3 VMR Oakland

We collected and annotated this dataset using a push-broom SICK LMS laser scanner

around Carnegie Mellon University (Munoz et al., 2009a). In VMR Oakland-v2, the

points are annotated into 7 classes illustrated in Figure 2.7. In VMR Oakland-v1, the

2.2. 3-D POINT CLOUD DATASETS 11

— Ground — Building — Tall vegetation — Shrub — Vehicle

Figure 2.6: An annotated point cloud from the GML-PCV dataset

— Ground — Facade — Veg. — Pole — Tree-trunk — Vehicle

Figure 2.7: An annotated point cloud from the VMR Oakland-v2 dataset

Pole and Tree-trunk classes are collapsed into a Linear-structure class and the Vehicle

class is removed, resulting in a 5-class dataset. Its diverse set of annotated classes and

spatial extent make it one of the largest, laser-based 3-D point cloud datasets. For VMR

Oakland-v1, the training set is a single scan of 37, 000 points and tested on 15 scans,

totaling of 1.3 M points overall. For VMR Oakland-v2, the evaluation is averaged

over 6 folds of 6 training/24 testing scans.

12 CHAPTER 2. DATASETS

2.3 Registered Image and 3-D Point Cloud Datasets

2.3.1 CMU Image+Laser

We collected and annotated this dataset of 372 scenes (images with registered 3-D point

clouds) obtained from a vehicle driving around Carnegie Mellon University (Munoz et al.,

2012). The camera used a wide-angle lens and the laser scanner operated in push-broom

mode. Hence, the displacement is often on the order of tens of meters between the

location of the laser when it scanned a point vs. the location of the camera when it

observes that point. The images were annotated using LabelMe (Russell et al., 2007)

into 29 classes, as illustrated in Figure 2.8. The 3-D points are mapped into a global

reference frame and then registered to corresponding images. On average, 31,000 3-D

points project into an image. The 3-D annotations are obtained by back-projecting these

2-D annotations. Hence, the 3-D annotations are susceptible to subtle projection errors

when objects are transparent/porous and/or have a high incident angle with the camera.

Since the laser scans in push-broom mode, there exist many scenes containing 3-D scan

lines that do not cover the image due to when the vehicle moves slowly/stops. Evaluation

is performed on 5 different partitions (297 training/75 testing) of the data, grouped by

time, which is needed to avoid testing on scenes that might overlap with the training

data.

2.4 Evaluation

In both image and point cloud datasets, performance is quantitatively evaluated on the

classification of pixels or 3-D points/voxels. We report the k’th class’ precision pk and

recall rk values,

pk =
tk
ik
, (2.1)

rk =
tk
nk
, (2.2)

where tk is the number of pixels/points correctly classified for the k’th class, ik is the

number of pixels/points inferred/predicted as the k’th class, and nk is the number an-

notated of pixels/points from the k’th class. Hence, rk is equivalent to the per-class

accuracy. To summarize the tradeoff between precision and recall values, we report each

class’ F1 score, defined as

2pkrk
pk + rk

. (2.3)

2.4. EVALUATION 13

— Road — Sidewalk — Ground — Shrub — Tree-trunk
— Tree-top — Tall-light — Sign — Building

Road Sidewalk Ground Building Barrier Bus-stop
2-D 27.65 12.66 5.99 17.48 3.25 0.11
3-D 10.79 8.01 8.88 27.06 2.54 0.21

Shrub Tree-trunk Tree-top Small-veh. Big-veh. Bike
2-D 2.46 0.79 17.89 7.22 1.78 0.03
3-D 4.42 1.37 26.51 5.41 1.55 0.04

Flag-pole Tall-light Short-light Post Sign Util.-pole
2-D 0.01 0.17 0.03 0.27 0.24 0.22
3-D 0.04 0.31 0.10 0.43 0.36 0.26

Traffic-pole Traffic-signal Bag Trash Hydrant Mailbox
2-D 0.09 0.04 0.03 0.04 0.01 0.01
3-D 0.14 0.06 0.03 0.06 0.01 0.02

Bench Stairs Person Wire Obstacle
2-D 0.02 0.19 0.62 0.57 0.13
3-D 0.03 0.44 0.72 0.10 0.10

Figure 2.8: Examples from CMU Image+Laser and its distribution of classes (%)

Finally, we consider two metrics to summarize the performance for a particular dataset.

First is the overall per point/pixel accuracy,∑
k

tk∑
k

nk
. (2.4)

Achieving a high overall accuracy can be misleading due to the often severe imbalance

in the proportions of each class in the dataset, e.g., buildings and the ground plane often

dominant a large proportion of the scene. Hence, we also report the average/macro F1

score, which is the unweighted averaged of the per-class F1 scores, to summarize how

well an algorithm performs across all classes.

Chapter 3

Computer Vision Tools

In order to process either image or point cloud data, it is necessary to compute a com-

pressed representation of the raw input signal that is consistent across different observa-

tions, e.g., images of different resolutions. This chapter describes these representations

that are used in the experiments in the later chapters. In Section 3.1, we discuss low-level

feature reprsentations computed locally in the input signal. In Section 3.2, we discuss

how the signal can be partitioned/segmented into a compressed representation. In Sec-

tion 3.3, we discuss higher-level descriptors that can be computed over these segments.

3.1 Low-level Features

3.1.1 Images

A basic pixel descriptor for image processing is to use each pixel’s color channel val-

ues, e.g., red, green, and blue. Additionally, it can be helpful to consider non-linear

transformations of RGB into additional colorspaces, such as HSV and CIELAB.

In order to capture edges/texture in the image, we can convolve the image with

various spatial filters, as illustrated in Figure 3.1a. In order to account for variations

in appearance, we convolve multiple scaled versions of the filters. We refer to the pixel

descriptor that is the formed by aggregating the responses from the filters at the pixel

as TXT.

A related descriptor that encodes relative order of discontinuities is a local binary

pattern (LBP), as illustrated in Figure 3.1b. Centering a w × w window at a pixel, a

binary desciptor of length w2−1 is formed by comparing the intensity of the center pixel

to every other pixel in an ordered manner, e.g., row-major order.

A more expressive descriptor that captures image gradient statistics over larger neigh-

borhoods is the Scale Invariant Feature Transform (SIFT) descriptor (Lowe, 2004), as

16 CHAPTER 3. COMPUTER VISION TOOLS

(a) (b) (c)

Figure 3.1: (a) Spatial filters: Derivative of Gaussians at horizontal and vertical orien-
tations (top), Gaussian (bottom-left), Laplace of Gaussian (bottom-right). (b) A 3 × 3
Local Binary Pattern is formed by comparing the center pixel intensity (128) with all
other intensities. (c) A SIFT descriptor is formed by quantizing the gradients into pre-
specified angular bins (8) over cells/windows (4 cells each containing 16 pixels); image
reproduced from (Lowe, 2004).

illustrated in Figure 3.1c. To construct this descriptor, pixel gradients (orientation and

energy) are first computed. At each pixel, the gradient orientations are then quan-

tized into angular bins. Finally, these angular bins are pooled/averaged over spatial

cells/windows in the image. Hence, the pixel descriptor is formed by concatenating

each cell’s angular histogram. This descriptor can be computed over intensity images

(I-SIFT) or over each channel in a colorspace (C-SIFT).

We use the publicly available Automatic Labeling Environment software library

(Ladicky, 2011) to compute these low-level features in our experiments.

3.1.2 3-D Point Clouds

Similar to images, when processing 3-D points it is necessary to consider statistics com-

puted over neighborhoods of the data. This thesis focuses on processing unorganized 3-D

point clouds, i.e., the points do not lie on a regular grid/lattice structure. Hence, these

neighborhoods are defined in terms of absolute measurements (e.g., meters) instead of

an underlying representation (e.g., an 8 pixel neighborhood in an image).

A powerful descriptor to quantify the local shape/geometry of a point is to use a

local neighborhood of 3-D points and tensor voting (Medioni et al., 2000, Lalonde et al.,

2007). Let p ∈ R3 be a 3-D point, Np be a set of its neighboring 3-D points (inclusive),

3.1. LOW-LEVEL FEATURES 17

(a) (b) (c)

Figure 3.2: Tensor Voting. The eigenvalues of the covariance matrix formed by the
points in Np describe three basic linear structures: (a) linear, (b) planar, (c) scattered.

Σp be the covariance matrix constructed from Np,

Σp =
1

|Np|
∑
q∈Np

(q − µp)(q − µp)T , (3.1)

µp =
1

|Np|
∑
q∈Np

q, (3.2)

λ0 > λ1 > λ2 be the eigenvalues of Σp, and v0, v1, v2 be its respective eigenvectors. When

Np represents a linear structure, e.g., street poles, then λ0 >> λ1, λ2 (Figure 3.2a).

When Np represents a planar structure, e.g., building facades, then λ0, λ1 >> λ2 (Fig-

ure 3.2b). When Np represents a spherical/scattered structure, e.g., vegetation, then

λ0 ≈ λ1 ≈ λ2 (Figure 3.2c). Hence, the three quantities λ0 − λ1, λ1 − λ0, λ2 encode the

saliency of these three geometric structures (Geom).

Additionally, from the eigendecomposition of Σp, v0 indicates the principal direction

of the linear structure and v2 is the normal of the plane; both directions are up to a

sign ambiguity. Assuming the +z axis extends towards the sky, then local orientation

(Orient) can be encoded with the values |vT0 ez| and |vT2 ez|, where ez = [0, 0, 1]T is a

standard basis vector.

As with the SIFT descriptor in images, a more expressive 3-D descriptor can be

constructed by analyzing the spatial distribution of points. The SpinImage descriptor

(Johnson and Hebert, 1999) compresses the relative 3-D locations of points into a 2-D

representation/image. Conceptually, a cell image with cell sizes rβ×rα m2 is centered at

a point and then revolved/spun around an axis vβ, and the respective cell is incremented

for every point that it collides with. Formally, letting vpq = q− p be the vector from the

centered point p to neighbor point q ∈ Np, the cell with signed row coordinate

⌊
vTpqvβ
rβ

⌋
and column coordinate

⌊
‖vpq × vβ‖2

rα

⌋
is incremented.

Finally, gravity is an informative cue which can be exploited for recognizing objects.

For example, shrubs, by definition, are close to the ground, and power lines overhang

from above. We can model relative elevation using the position of the sensor for each

18 CHAPTER 3. COMPUTER VISION TOOLS

point; however, this information may not be available for particular datasets. Instead,

to be consistent across all evaluations, we approximate local elevation by constructing

a 2.5-D elevation grid which records the lowest and highest point inside each cell. The

point’s descriptor is then the difference in min. and max. elevation for the respective

cell it falls into (Elev).

3.2 Segmentation

Segmenting an image or 3-D point cloud can be considered as a clustering problem for

which a variety of techniques can be applied. K-means (LLoyd, 1982) is a canonical

algorithm for partitioning the data into K clusters, each of which with members that

have minimal distance to the cluster’s mean. In images, a simple segmentation can be

done by clustering over a descriptor that includes a pixel’s color value and location in

the image and using a metric that scales the relative importance of these values. In point

clouds, we can simply cluster over the 3-D coordinates.

One drawback of K-means is the requirement to pre-specify the number of desired

clusters, which we do not know in advance. Alternatively, we can use other techniques

that implicitly parameterize the number of resulting clusters based on the distribution

of the data. For its simplicity, efficiency, and applicability to both image and point cloud

data, we use the graph-based segmentation algorithm from (Felzenszwalb and Hutten-

locher, 2004) (F-H). Briefly, this graph-based approach operates similarly to Kruskal’s

algorithm for finding a minimum spanning tree in a graph. The input to the algorithm

is an undirected graph G = (V,E) with vertices V and edges (ij) ∈ E that are associ-

ated with edge weights wij whose values indicate dissimilarity between vertices, i.e., if

vertices vi and vj are exactly the same then wij = 0. The algorithm is initialized with

each vertex as its own component (cluster/segment). Iterating over the weighted edges

{wij} in ascending order, two components separately containing vi and vj are merged if

wij ≤ min (c(vi) + τ(vi), c(vj) + τ(vj)) , (3.3)

where c(v) is the value of the largest edge weight in the minimum spanning tree of the

component that contains vertex v, and τ is a threshold function that controls when

differing components are merged. We use the commonly used threshold function of

τt(v) =
t

s(v)
, (3.4)

where s(v) returns the size (i.e., number of vertices) of the component that contains

vertex v and t is a pre-specified parameter. Hence, Equation (3.3) becomes harder to

satisfy as the components grow in size, causing Equation (3.4) to shrink, and the edge

weights are iterated in ascending order.

3.3. REGION FEATURES 19

Figure 3.3: Example hierarchical segmentation of an image from the CMU Im-
age+Laser dataset which was constructed by using F-H and varying t in Equa-
tion (3.4).

In this thesis, we use the F-H algorithm both in images and point clouds. In im-

ages, the graph is constructed over the pixels as vertices with an 8-pixel neighborhood

connectivity; an edge weight is the Euclidean distance between two pixels’ RGB values.

In point clouds, the graph is constructed over points/voxels as vertices and linking to

neighboring vertices within a 1.0 m radius; an edge weight is the Euclidean distance

between two points’ concatenated Geom and Orient features.

In practice, the segmentation parameters (e.g., K in K-means, kernel bandwidth in

mean shift, and t in F-H) that work well for one scene often do not generalize as expected

in other scenes. To account for this, it is common to vary the segmentation parameters

to generate multiple segmentation hypotheses, or a hierarchy of segmentations, to reason

over, as illustrated in Figure 3.3. While varying the parameters using the same input

will not necessarily generate a true hierarchy of a unique parent-to-child relationship,

if necessary, a true hierarchy can be achieved by running the next segmentation using

the previous segmentation as input. Chapter 5 and Chapter 6 study how to effectively

integrate the multiple segmentations to improve classification.

3.3 Region Features

The regions resulting from a segmentation can provide better spatial support to compute

richer feature representations. In both images and point clouds, the shape/geometry of

the regions can be an informative cue.

In images, we compute the following region descriptor, as similarly used in (Gould

et al., 2008b), which we refer to as RShape2D:

• The region area and its ratio to the entire image area and the 25th, 50th, 75th

percentile region areas.

• The ratio of the region’s perimeter to both its and the entire image’s areas.

20 CHAPTER 3. COMPUTER VISION TOOLS

• The regions variance along the rows, columns, and cross-covariance.

• The relative row and column offsets of the region’s center with respect to the image

center, normalized into [−1, 1].

In 3-D point clouds, we compute similar a descriptor to encode the shape of the 3-D

region (RShape3D):

• The region’s length along the z-axis (“height”).

• The three lengths of the bounding box that encloses the region along its principal

components and their ratios relative to each other and “height”.

• The diagonal length of the 2-D bounding box that encloses the projection of the

region’s points into the x-y plane (“2-D span”).

• The ratio of the “2-D span” to “height”.

• The product of the “2-D span” and “height” (“volume”).

• The number of points in the region and its ratio to the “volume”.

Additionally, we adapt two of the low-level features (Section 3.1.2) to be used over

regions: 1) in the Geom descriptor, we use the region’s points to define the neighborhood

N , and 2) in the Elev descriptor, we compute min. and max. differences using the

region’s highest, lowest, and medoid points, resulting in a descriptor length of 6.

3.3.1 Pooled Statistics

In addition to computing explicit statistics over the shape of the region, a powerful

feature representation is to look at the variation of the low-level features aggregated

inside the region. For example, let Xr be the set of low-level feature descriptors xi ∈ Rd

for each site, i.e., pixel or point, inside region r. Then, a region descriptor xr ∈ Rd can

be formed by computing empirical moments (e.g., mean, variance, skewness, kurtosis)

for each component/dimension (RMoments).

Instead of using statistics computed over the original feature space, it can be better

to use sparser representations of the low-level features that are pooled over region. A

common technique to achieve this sparse representation is through vector quantization,

where a sparse representation zi ∈ Rm, referred to as a code, with few non-zero values is

computed from the original representation xi ∈ Rd. In computer vision, performing vec-

tor quantization using K-means has demonstrated to perform well for classification-based

tasks (Leung and Malik, 2001). Briefly, K-means is run over a large and diverse dataset

of features, e.g., the low-level features in Section 3.1, to obtain a set of m exemplar cluster

3.3. REGION FEATURES 21

centers {µk}mk=1 which can be thought of as words/elements in a dictionary/codebook.

Letting

dk(x) = ‖x− µk‖22, (3.5)

denote the squared Euclidean distance to dictionary element µk, a sparse code z ∈ Rm

of one non-zero value can be constructed using the coding rule

z[k] = 1(k = arg min
j

dj(x)), ∀k = 1, . . . ,m, (3.6)

where 1(·) is the indicator function. A region can be described as a sum of its parts by

either averaging or max pooling over the sparse codes inside the region (RCodes).

Instead of constructing the sparse code z through a single assignment to the closest

center, it has been shown that pooling over softer codes, generated from multiple assign-

ments, can increase classification performance, even when compared to deep networks

used for feature learning (Coates et al., 2011). These soft codes are constructed using

the coding rule

z[k] = max

0,
1

m

m∑
j=1

dj(x)− dk(x)

 , ∀k = 1, . . . ,m, (3.7)

In words, components are non-zero for the respective dictionary elements µk that the

original descriptor x is closer to vs. the average squared distance to all elements in the

dictionary. Note that values of each component in the code can be computed indepen-

dently by expanding distance and regrouping,

z[k] = max

0,
1

m

m∑
j=1

dj(x)− dk(x)

 (3.8)

= max

0,
1

m

m∑
j=1

(‖x‖22 − 2xTµj + ‖µj‖22)− (‖x‖22 − 2xTµk + ‖µk‖22)

 (3.9)

= max

0,
1

m

m∑
j=1

‖µj‖22 −
2

m

m∑
j=1

xTµj + 2xTµk − ‖µk‖22)

 (3.10)

= max

0, xT (2µk −
2

m

m∑
j=1

µj) +
1

m

m∑
j=1

‖µj‖22 − ‖µk‖
2
2

 (3.11)

Furthermore, note that many terms do not depend on the argument and can be precom-

puted as constants. Hence, the computations for each component are independent from

each other and can be done with by thresholding a single inner product with zero.

Finally, we note that there exist other techniques to feature quantization includ-

ing auto-encoders (Vincent et al., 2010), sparse coding (Mairal et al., 2012), K-SVD

22 CHAPTER 3. COMPUTER VISION TOOLS

(Aharon et al., 2006), and deep networks (Farabet et al., 2013). In our experiments,

we use a variant of the K-means quantization where we define the dictionary elements

simply using the K-means++ initialization procedure (Arthur and Vassilvitskii, 2007).

Conceptually, this procedure can be thought of as defining the dictionary to be a diverse

set of exemplar prototypes that maximally covers the set of training samples in feature

space.

3.4 Normalization

Many clustering and machine learning algorithms are sensitive to the scale of the feature

values and it is necessary to first standardize the features before processing. A common

normalization technique is whitening that decorrelates each feature component. That is,

letting X denote a zero-mean random variable for the feature vector, whitening finds a

linear transformation W such that E[WX(WX)T] = I, where I is the identity matrix.

Hence, the whitening transformation W is obtained by eigendecomposing the covariance

matrix Σ = V ΛV T and defining W = V −√ΛV T .

Note that a naive application of whitening the low-level features before vector quan-

tization can be computationally expensive in practice when d is large due to the mul-

tiplication with a d × d matrix. However, this quadratic cost can be reduced to an

inner product by noting that the squared norm of the transformed features ‖Wx‖22 is

constant across distance computations to all dictionary elements. For example, in the

single assignment case,

arg min
j

dj(Wx) = arg min
j
‖Wx− µj‖22 (3.12)

= arg min
j
‖Wx‖22 − 2(Wx)Tµj + ‖µj‖22 (3.13)

= arg min
j

xT µ̃j + ‖µj‖22, (3.14)

where µ̃j = −2W Tµj . This observation holds in the soft assignment cases and vector

quantization with whitening still costs O(dm) time to compute the entire sparse code.

Chapter 4

Machine Learning Tools

This work leverages several machine learning concepts which are used and built upon

throughout the thesis. At a high level, we will predict classes using the feature represen-

tations described in the previous chapter. As there are a variety of prediction techniques

to choose from, in this chapter we review these commonly used supervised learning tech-

niques in isolation. In the remaining chapters we discuss how they are pieced together

to form a coherent scene parser.

4.1 Regression

A common supervised learning task is to use an annotated training set to fit a function

h : Rd → Rm that regresses numerical values y ∈ Rm from a feature representation of

the data x ∈ X . When classifying a 3-D point cloud over a set of 3 possible classes,

K = {1, 2, 3}, y could be a binary indicator/basis vector of length m = 3 with a value of

1 in the component of the sample’s respective class index and 0 elsewhere, e.g., yi = ek

if the i’th sample belongs to the k’th class.

4.1.1 Linear Regression

If h is a linear model parameterized by θ ∈ Rd, we can define the score for assigning

sample x to the k’th class as θTφ(x, k), where φ : X × K → Rd is a feature function

that computes a (potentially label-specific) feature representation for the sample, e.g.,

the Geom descriptor from Section 3.1.2. Finding the parameters can be formulated as

minimizing the regularized squared error

min
θ
λΩ(θ) +

∑
i

wi
∥∥yi − θTφ(xi, ki)

∥∥2

2
, (4.1)

24 CHAPTER 4. MACHINE LEARNING TOOLS

where Ω : Rd → R is a regularizer function that measures some notion of model com-

plexity, wi ∈ R+ weights the error of the i’th sample’s fit, and λ trades off between

the model’s complexity and error. When the regularizer decouples across the model

parameters, e.g., the squared L2 norm, Ω(θ) = ‖θ‖22, the parameters for each class can

be solved for independently (and in closed form). Alternatively, one can obtain a model

that better generalizes to new data by coupling/sharing the parameters across classes,

e.g., a rank constraint or trace norm if the parameters θ were interpretted in matrix

form (Srebro and Shraibman, 2005).

4.1.2 Tree Regression

In practice, more accurate predictions can often be achieved using a non-linear model h,

e.g., kernel regression (Nadaraya, 1964), neural networks (Werbos, 1974), and regression

trees/forests (Breiman, 2001). Due to its demonstrated effectiveness with computer

vision representations (Criminisi and Shotton, 2013), we will use the regression forest

framework throughout this thesis. Briefly, given an annotated dataset1, D = (X,Y) =

{(xi, yi)}ni=1, a regression tree is constructed by recursively partitioning the data into non-

overlapping two left and right subsets (children nodes), DL = (XL, YL),DR = (XR, YR),

respectively, with targets that maximally reduce the variance from the input set (parent

node). Formally, letting ΣZ be the covariance matrix of the targets Y ∈ DZ , we split

the current parent node DP into two using the objective

max
DL,DR

|DP |J(ΣP)− |DL|J(ΣL)− |DR|J(ΣR) (4.2)

s.t. DL ∪ DR = DP ,

DL ∩ DR = ∅,

where J(Σ) = Tr(Σ) measures the sum of the output components’ variance2. The data

can be partitioned by 1) exhaustively iterating over each feature component in x, 2)

partitioning samples with values less than or greater than a hypothesis threshold, 3)

picking the threshold (from an exhaustive set) that maximizes Equation (4.2).

The tree is grown until some criterion is met, e.g., a maximum tree depth, perfor-

mance on a validation set, and/or a minimum number of samples a node needs in order

to further partition the data. At prediction time, a descriptor follows the sequence of

threshold comparisons down the tree and outputs the average targets from the training

samples that fell into the respective leaf node. In practice, it has been observed that an

exhaustive search for feature splits is prone to overfitting (Breiman, 2001). To better

1In this context, xi ∈ Rd is the feature representation for the sample that is shared for all the classes.
2Alternative measures for variance can be used such as J(Σ) = log(|Σ|). We consider the trace

because it is efficient to evaluate.

4.2. CLASSIFICATION 25

generalize the predictions, a forest of trees can be grown simultaneously where at each

node, only a small random subset of features are considered to split over. At prediction

time, the average of each tree’s output from the random forest is used.

4.2 Classification

Another canonical supervised learning task is to learn a discriminative function that

explicitly classifies the data into a predefined set of labels/categories, often with a notion

of confidence in the prediction.

4.2.1 SVM Predictor

A standard classification tool is the Support Vector Machine (SVM) (Cortes and Vapnik,

1995) which attempts to score the true label over other labels with maximum margin.

This can be formulated as the program

max
θ,γ,ξ

λ

2
m−

∑
i

wiξi (4.3)

s.t. θTφ(xi, ki) ≥ max
k∈K\ki

θTφ(xi, k) + γ − ξi, ∀i

ξi ≥ 0, ∀i

‖θ‖ = 1,

where ξ are slack variables that relax the margin constraints in the case the data is

not linearly separable, wi weights the cost of the i’th sample violating the margin (this

is referred to as slack-scaling), and λ trades off between maximizing the margin γ and

satisfying the constraints. Program (4.3) can be equivalently written as the convex

program

min
θ,ξ

λ

2
‖θ‖22 +

∑
i

wiξi (4.4)

s.t. θTφ(xi, ki) ≥ max
k∈K\ki

θTφ(xi, k) + 1− ξi, ∀i

ξi ≥ 0, ∀i.

And, Program (4.4) can be equivalently written as the unconstrained minimization

min
θ

λ

2
‖θ‖22 +

∑
i

wi max(0, max
k∈K\ki

θTφ(xi, k) + 1− θTφ(xi, ki)). (4.5)

Each term in the summation of Equation (4.5) is often referred to as the (weighted) hinge

loss because it is piecewise linear with a “hinge” at the point of non-differentiability.

26 CHAPTER 4. MACHINE LEARNING TOOLS

Instead of weighting/scaling the slack of violating the i’th constraint by wi, another way

to soften/strengthen the constraint is to scale the margin value 1 to a smaller/bigger

value; this is referred to as margin-scaling.

4.2.2 MaxEnt Predictor

While the max-margin SVM approach provides a notion of confidence via the mar-

gin/score of a class relative to others, it is often useful to have a probabilistic inter-

pretation. The principle of maximum entropy (Jaynes, 1957) can be used to find a

conditional probability distribution, P (Y |X), that is least committed to predicting any

particular class Y , i.e., the distribution has maximal conditional entropy, H(Y |X) =

−
∑

x,y P (x, y) logP (y|x)), while matching the feature statistics of the data X. Finding

this distribution can be formulated as the concave program

max
P (Y |X)

H(Y |X) (4.6)

s.t. EP (X,Y)[φd(X,Y)] = EP̃ (X,Y)[φd(X,Y)], ∀d, (4.7)∑
y

P (y|x) = 1, ∀x

P (y|x) ≥ 0, ∀x, y,

where P̃ is the empirical distribution of the data, and φd(x, y) → R computes a (label-

specific) feature statistic, e.g., the planar-ness of a 3-D point. Using the method of

Lagrange multipliers, the satisfying distribution has the exponential family form

P (y|x; θ) =
1

Zθ(x)
exp(θTφ(x, y)), (4.8)

Zθ(x) =
∑
y

exp(θTφ(x, y)), (4.9)

where Equation (4.9) is referred to as the partition function that normalizes the distri-

bution. We refer to this conditional distribution as a MaxEnt “predictor”. The result-

ing dual problem is the canonical maximum (log-)likelihood estimation (MLE) method,

negated,

min
θ

EP̃ (X,Y)[− log(P (Y |X; θ))] ≡ min
θ

Ex∼P̃ (X)

[
Ey∼P̃ (Y |x)[− log(P (y|x; θ))]

]
. (4.10)

In practice, we assume the marginal distribution of the data P̃ (X) follows a uniform

distribution.

Note that if we replace the equality constraints in Equation (4.7) with the inequality

constraints

(EP (X,Y)[φd(X,Y)]− EP̃ (X,Y)[φd(X,Y)])2 ≤ 2λ, ∀d, (4.11)

4.3. THE SUBGRADIENT METHOD 27

then the resulting dual problem is the maximum a posteriori (MAP) problem with L2

regularization (Chen and Rosenfeld, 2000)

min
θ

λ

2
‖θ‖22 + Ex∼P̃ (X)

[
Ey∼P̃ (Y |x)[− log(P (y|x; θ))]

]
. (4.12)

See (Dudik et al., 2007) for generalizations of modifying the constraints to use other

convex functions.

4.3 The Subgradient Method

Learning the parameters of these linear models can be done using standard function

minimization techniques. In this thesis, we are only concerned with minimizing convex

functions due to their well-understood properties; see (Boyd and Vandenberghe, 2004)

for in-depth analysis. While there exist a variety of minimization techniques that can

be used, we use a simple first-order technique, the projected subgradient method (Shor,

1985), for its generality and efficient convergence properties (Ratliff et al., 2007).

Briefly, for a convex function l : Θ → R defined over a convex set Θ (e.g., Θ ⊆ Rd,
or, as is used in Chapter 8, Θ is the set of positive semi-definite, symmetric matrices),

a subgradient gθ0 ∈ Rd of the function at a point θ0 forms a linear lower bound of the

function. Formally, the subdifferential ∂l(θ0) of the function at point θ0 is the set of all

subgradients,

∂l(θ0) = {gθ0 | l(θ) ≥ l(θ0) + 〈gθ0 , (θ − θ0)〉, ∀θ ∈ Θ}. (4.13)

If l is differentiable, e.g., Equation (4.12), then gθ0 ≡ ∇θl(θ0) and |∂l(θ0)| = 1. For

example, the (sub)gradient for one sample x of the negative log likelihood (log loss) of

Equation (4.12) is

gθ = EP (Y |x;θ)[φ(x, Y)]− EP̃ (Y |x)[φ(x, Y)]. (4.14)

In words, the gradient is the difference between the expected feature counts induced by

the current model vs. empirical feature counts.

If l is non-differentiable, e.g., Equation (4.5), then |∂l(θ0)| =∞ at each non-differentiable

point θ0. For example, a subgradient for one hinge loss term in the summation of Equa-

tion (4.5) is

gθ = wi (φ(xi, k
∗
i)− φ(xi, ki)) · 1((θTφ(xi, k

∗
i) + 1− θTφ(xi, ki)) > 0), (4.15)

(4.16)

where

k∗i = arg max
k∈K\ki

θTφ(xi, k). (4.17)

28 CHAPTER 4. MACHINE LEARNING TOOLS

Algorithm 1 Online Subgradient Method

Given: Additive function to minimize l(θ) =
∑

i li(θ), step-sizes {αt}Tt=1

Output: arg minθ∈Θ l(θ)
θ = 0
for t = 1, . . . , T do

Randomly sample li
Compute direction gθ ∈ ∂li(θ)
θ ← PΘ(θ − αtgθ)

end for

In words, the subgradient is non-zero when the constraint is violated and its value is the

difference between the features of the label with the highest margin/score, k∗i , vs. the

features of the true label, ki, scaled by wi.

In a similar iterative procedure as gradient descent, the function l can be minimized

by taking small steps, αt = c√
t
, where c is the learning rate and t is the iteration

number, along the negative subgradients. When optimizing a function that is additive

over a large number of samples, l(θ) =
∑

i li(θ), faster convergence can be achieved by

performing online, stochastic updates over the dataset, instead of in batch (Bottou and

LeCun, 2004). Finally, when optimizing over a closed, convex set Θ and an update steps

off the set, it is necessary to project to the closest point in the set, which we denote with

the function PΘ : Rd → Θ. The entire procedure is summarized in Algorithm 1.

4.4 Boosting

As presented so far, the SVM and MaxEnt models are (log) linear in the features, i.e.,

the score for assigning a sample x to the k’th label is defined as θTφ(x, k). Often we can

obtain better performance by using a more expressive model where the score is defined

from a non-parametric function of the features, f(φ(x, y)) → R. Alternatively, we can

use a single feature representation of the data that is shared for all classes, which we

simply denote as x, and have f(x)→ Rm output the scores for all classes at once. Then,

we select the score for k’th class using the respective standard basis vector ek. For

example, we can specify the MaxEnt predictor as

logPf (y|x) = f(x)T ey − logZf (x). (4.18)

Boosting (Freund and Schapire, 1997) is a powerful technique to fit a strong/complex

function f as a weighted combination of weak/simple functions {ht},

f(x) =
∑
t

αtht(x), (4.19)

4.4. BOOSTING 29

Algorithm 2 Boosting via Functional Gradient Descent

Given: Additive functional to minimize L[f] =
∑

i li(f(xi)), step-sizes {αt}Tt=1, hy-
pothesis set of functions H
Output: arg minf L[f]
f ← 0
for t = 1, . . . , T do

Compute functional gradient
−→
∇ (Equation (4.21))

Find ht ∈ H that is maximally correlated with −
−→
∇ (Solve Equation (4.25))

f ← f + αtht
end for

where αt ∈ R are the weights. One way to view boosting is that it is performing gradient

descent in the space of functions that minimizes the empirical loss, e.g., hinge-loss and

log-loss, over the training data (Mason et al., 1999, Friedman, 2001, Ratliff, 2009, Grubb

and Bagnell, 2011). Using functional analysis techniques (Rudin, 1991), we define L[f]

to be the empirical loss functional we want to minimize, which measures the cumulative

loss of a function f evaluated over the training set,

L[f] =
∑
i

li(f(xi)), (4.20)

and we define
−→
∇ : X → Rm to be the functional gradient of Equation (4.20) evaluated

at f(x),

−→
∇(x) =

∑
i

∂L

∂f(xi)
(x) =

∑
i

∂

∂f(xi)
li(f(xi)) · 1(x = xi). (4.21)

If we descend along the successive functional gradients, with step-sizes αt, the learned

function will have the form

f(x) = −
∑
t

αt
−→
∇t(x), (4.22)

which is non-zero only at feature locations in the training set and will not generalize

to new data. Instead, we step in the direction of the negative functional gradient −
−→
∇

projected onto a hypothesis set functions H in order to generalize to new data. This

projection is done by finding a function h ∈ H with maximal correlation with the negative

30 CHAPTER 4. MACHINE LEARNING TOOLS

functional gradient,

h∗ = arg max
h∈H

〈h,−
−→
∇〉

‖h‖
(4.23)

= arg max
h∈H

∑
i

〈h(xi),−
−→
∇(xi)〉∑

i

‖h(xi)‖2
(4.24)

≡ arg min
h∈H

∑
i

∥∥∥h(xi) +
−→
∇(xi)

∥∥∥2

2
, (4.25)

where the equivalence holds under technical assumptions3. Hence, this projection pro-

cedure can be implemented by training a regressor (Section 4.1) to match the negative

functional gradient evaluated at each sample in the training set. In Chapter 5 and Chap-

ter 6 we detail the specifics of the functional gradients for specific loss functions that

are used as the targets. As summarized in Algorithm 2, after T projected functional

gradient updates, the function is then defined as the weighted sum of the fit regressors

h (which are referred to as weak learners/predictors),

f(x) =
∑
t

αtht(x). (4.26)

When the functional L is non-differentiable, an analogous functional version of the

parametric subgradient can be defined; however, the projection of the functional subgra-

dient onto H may not necessarily improve the loss. In order to guarantee convergence,

it has been shown that it is necessary to incorporate the cumulative errors from the

previous projections at each step (Grubb and Bagnell, 2011).

3Notably, iff H is closed under multiplication (Friedman, 2001).

Chapter 5

Parsing Scenes with Graphical

Models

5.1 Introduction

The typical approaches to the scene parsing problem are with graphical models, such

as Conditional Random Fields (CRFs) (Lafferty et al., 2001), or unnormalized energy-

based models, such as Max-Margin Markov Networks (M3Ns) (Taskar et al., 2003). The

models tie together the labels of each site such that the labeling of the scene requires

a joint optimization over all label variables, which typically is typically intractable to

solve exactly. In this chapter, we review the common approaches under this framework

and discuss their intrinsic limitations. Additionally, we extend upon previous work

on higher-order models, i.e., models that consider the label assignment to regions of

sites at a time. Specifically, we demonstrate how to effectively learn these higher-order

interactions using functional gradient techniques Section 4.4. Learning these higher-

order models is important in practice as it enables one to easily reason over multiple

segmentation hypotheses using feature statistics at multiple scales. We evaluate these

methods for 3-D point cloud classification and estimating the 3-D geometric surfaces

from images (Hoiem et al., 2007).

5.2 Background

In this section we describe the graphical framework in a general form. In the following

section we instantiate the specific, computationally tractable forms of these models that

are used in our experiments.

32 CHAPTER 5. PARSING SCENES WITH GRAPHICAL MODELS

5.2.1 Conditional Random Fields

A Conditional Random Field (Lafferty et al., 2001) is an extension of the MaxEnt model

presented in Section 4.2.2 to the joint distribution

P (Y |X) = P (Y1, . . . , Yn|X), (5.1)

where there n sites in the scene (e.g., the number of points in a 3-D point cloud), Yi ∈ K
is the label random variable of the i’th site (e.g., the label of a 3-D point), and X is the

data variable (e.g., the entire 3-D point cloud). Instead of matching feature statistics

over individual sites (Equation (4.7)), the feature statistics are now coupled over groups

of label random variables. For a given scene, we define C to be the set of all such

groupings and c ∈ C to be a particular grouping of indices, i.e., Yc = {Yi | i ∈ c}. Then,

the feature matching constraints are changed to

EP (X,Y)[φc(X,Yc)] = EP̃ (X,Y)[φc(X,Yc)], ∀c, (5.2)

where φc(x, yc) → Rd is a feature function that computes features statistics from the

data x for the assignment yc to grouping c, e.g., the variance of the planar-ness of the

3-D points in the group c. To simplify the notation, we drop the data argument x and

it is implicit that the feature function φc has access to the entire data. The satisfying

dual distribution has the exponential family form

P (y|x; θ) =
1

Zθ(x)
exp(

∑
c∈C

θTφc(yc)), (5.3)

Zθ(x) =
∑
y∈Kn

exp(
∑
c∈C

θTφc(yc)). (5.4)

This distribution can be interpreted as a Gibbs random field over a graph with n

nodes and cliques defined by the groupings C. That is,

P (y|x; θ) ∝ exp(
∑
c∈C

ψc(yc; θ)), (5.5)

where ψc(yc; θ) = θTφc(yc) are the clique potentials. Furthermore, we define

Ψ(y; θ) =
∑
c∈C

ψc(yc; θ), (5.6)

to be the total (negative1) energy of the system.

1From a physics viewpoint, a highly probable assignment y is described to have low energy, whereas
in this work we associte a large Ψ(y) to indicate a good score in the assignment.

5.2. BACKGROUND 33

The gradient of the negative log-likelihood of Equation (5.3) has the familiar feature

difference form,

−∂ logP (y|x; θ)

∂θ
=
∑
c∈C

(EP [φc(Yc)]− φc(yc)) (5.7)

=
∑
c∈C

(
∑
ŷc

P (ŷc|x; θ)φc(ŷc)− φc(yc)). (5.8)

Unfortunately, computing the exact marginal probabilities is NP-hard for general graphs.

A tractable case is when the groupings C form a tree; however, this model greatly re-

stricts the interactions among the sites. In practice, an approximate inference algorithm,

e.g., loopy belief propagation (Wainwright and Jordan, 2008), can be used instead to

approximate the marginals. However, there are often limitations dependent on the form

of the clique potentials, and the approximation can still be computationally expensive to

perform in practice, especially for graphs with dense edges. Hence, due to the require-

ment of estimating the marginals at each gradient step, MLE is often limited to graphs

that have low treewidth.

5.2.2 Max-Margin Markov Networks

A Max-Margin Markov Network (M3N) (Taskar et al., 2003) is the analog of an SVM

to the structured prediction setting and can also be thought of as an unnormalized

version of a CRF. In the spirit of the SVM formulation (Section 4.2.1), we can frame

the problem to finding parameters that maximize the score of the scene’s ground truth

labeling, y, over any other hypothesis labeling, ŷ, by a margin. This can be formulated

(Tsochantaridis et al., 2005) as the convex program

min
θ,ξ

λ

2
‖θ‖22 +

∑
ŷ∈Kn

ξŷ (5.9)

s.t. Ψ(y; θ) ≥ Ψ(ŷ; θ) + 1(ŷ 6= y)− ξŷ, ∀ŷ (5.10)

ξŷ ≥ 0, ∀ŷ. (5.11)

Due to the number of constraints exponential in the number of sites n, this slack-scaling

formulation is computationally intractable to solve, though there do exist tractable ap-

proximations for certain forms (Sarawagi and Gupta, 2008),

Alternatively, we can use a margin-scaling approach and change the margin depend-

ing on the discrepancy between different hypothesis labelings. This can be formulated

34 CHAPTER 5. PARSING SCENES WITH GRAPHICAL MODELS

as the convex program,

min
θ,ξ

λ

2
‖θ‖22 + ξ (5.12)

s.t. Ψ(y; θ) ≥ Ψ(ŷ; θ) + γ(y, ŷ)− ξ, ∀ŷ ∈ Kn (5.13)

ξ ≥ 0, (5.14)

where γ(y, ŷ) → R+ measures the discrepancy between the two labelings. Analogously

with SVMs, Program (5.12) can be rewritten as the unconstrained convex minimization

(Ratliff et al., 2007),

min
θ

λ

2
‖θ‖22 + max

ŷ∈Kn
(Ψ(ŷ; θ) + γ(y, ŷ))−Ψ(y; θ), (5.15)

where the second and third terms are collectively referred to as the structured hinge-

loss. In practice, we use the Hamming distance, γ(y, ŷ) =
∑

i 1(yi 6= ŷi), to measure the

disparity between labelings2.

A subgradient gθ of the structured hinge-loss is

gθ =
∑
c∈C

(φc(y
∗
c)− φc(yc)), (5.16)

where

y∗ = arg max
ŷ∈Kn

(Ψ(ŷ; θ) + γ(y, ŷ)). (5.17)

Hence, unlike MLE, the max-margin approach requires computing the MAP labeling,

augmented with the margin term (Equation (5.17)), instead of computing the marginal

probabilities. Unfortunately, again, computing the MAP labeling is NP-hard in gen-

eral; however, there exists a much larger set of approximate inference techniques that

can be used with the additional benefits of being convergent and often more computa-

tionally efficient in practice than message-passing algorithms. These techniques include

graphcuts (Kolmogorov and Zabih, 2004), linear programs (Wainwright et al., 2005),

and primal-dual formulations (Jojic et al., 2010). Additionally, using MAP inference in

the inner loop of the subgradient method follows the beneficial observation to use the

same approximate inference technique during both training and testing (Kumar et al.,

2005, Wainwright, 2006).

5.3 Smoothing-based Markov Networks

In this section, we instantiate the specific models that we use in our experiments.

2 In general, any function that quantifies margin between labelings can be used here; however, more
complicated functions can make resulting optimization difficult to optimize.

5.3. SMOOTHING-BASED MARKOV NETWORKS 35

5.3.1 Pairwise Model

We begin with the simplest structured model which only encodes interactions between

pairs of variables,

Ψ(y; θ) =
∑
i∈C1

ψi(yi; θ) +
∑
ij∈C2

ψij(yi, yj ; θ), (5.18)

where C1 and C2 are the sets of nodes and edges in the graph, respectively,

ψi(yi; θ) = θT1 φi(yi), (5.19)

ψij(yi, yj ; θ) = θT2 φij(yi, yj), (5.20)

and θ = [θT1 , θ
T
2]T . Hence, in this formulation we have all node potentials ψi sharing the

same parameters θ1 and all edge potentials ψij sharing the same parameters θ2.

5.3.2 Associative Markov Networks

For cyclic graphs, finding the MAP labeling y that minimizes the energy, −Ψ(y; θ), in

Equation (5.18) is NP-hard in general. However, if the label set is binary (|K| = 2), and

all potentials ij ∈ C2 follow the form

−ψij(0, 0)− ψij(1, 1) ≤ −ψij(0, 1)− ψij(1, 0), (5.21)

then it can be shown that exactly minimizing this energy can be done by minimizing an

equivalent submodular function over the nodes (Hammer, 1965, Kolmogorov and Zabih,

2004), which is implemented by solving a mincut problem over a graph. Note there are

no constraints on the node potentials.

Unfortunately, yet again, finding the MAP labeling is NP-hard when there more than

2 labels (|K| > 2). However, a factor of 2 approximation can be achieved by using the

move-making α-expansion algorithm (Boykov et al., 2001). This algorithm requires the

similar constraint,

−ψij(α, α)− ψij(yi, yj) ≤ −ψij(α, yj)− ψij(yi, α), ∀α, yi, yj ∈ K. (5.22)

Hence, this constraint can be viewed as transforming the multi-class labeling into a

binary-class labeling where value 1 in Equation (5.21) indicates the current assignment

yi and value 0 indicates the move to label α.

One multi-label model that satisfies both of the constraints in Equation (5.21) and

Equation (5.22) is the Associative/Pott’s Markov Network (AMN) (Taskar et al., 2004)

with edge potentials with the form and property, respectively,

ψij(yi, yj) = 1(yi = yj) · θT2 φij(yi, yj), (5.23)

ψij(yi, yj) ≥ 0, ∀yi, yj . (5.24)

36 CHAPTER 5. PARSING SCENES WITH GRAPHICAL MODELS

These potentials have a smoothing effect because better energy is achieved if the neigh-

boring label assignments around a node are in agreement. In practice, ensuring the

non-negativity constraint can be implemented by forcing the parameters θ2 and features

φij to always be non-negative; Section 5.3.4 further discusses this issue. Hence, these

associative potentials can not model repulsive properties such as certain labels should

not be adjacent to each other.

5.3.3 Robust Associative Markov Networks

The above pairwise models are local in the sense that they reason among the labels of the

sites in the scene. Especially in images to due scale ambiguity, it can be hard to define

the right spatial support for feature representation: if it is too small then computed

information is too local, and if it is too big then the are errors for defining a site over

multiple classes.

Alternatively, the graphical model approach can be extended to consider higher-order

interactions that reason over groups/regions of sites at a time,

Ψ(y; θ) =
∑
i∈C1

ψi(yi; θ) +
∑
ij∈C2

ψij(yi, yj ; θ),+
∑
r∈C3

ψr(yr; θ), (5.25)

where C3 are the set of regions/grouped sites, Yr = {Yi | i ∈ r} and ψr(yr; θ) = θT3 φr(yr).

While these expressive models can potentially encode more complex iterations, perform-

ing tractable (approximate) inference remains the bottleneck.

One class of higher-order models for which inference is tractable is the extension of

the associative model to higher-order cliques,

ψr(yr) =
∑
k∈K

Πi∈r1(yi = k) · θT3 φr(k). (5.26)

Hence, this model prefers for entire regions to take on the same label. As similar to

the pairwise models, if ψr is always non-negative, then MAP inference can be performed

exactly using a linear program (Taskar et al., 2004) or a mincut (Kohli et al., 2009) in

the two label case, and approximately in the multi-label case.

While this model enables one to extract statistics over regions in the scene, it is quite

restrictive as the model encodes the same score if 99% of the yi ∈ yr are the same value

as if only 1% were the same. A softer/robust version of this model is the Robust Pn

Pott’s model (Kohli et al., 2009) which enables some a portion of the region to be in

disagreement. Letting ρk(yr) = 1
|yr|

∑
yi∈yc 1(yi = k) be the fraction of yi ∈ yr have

value k, the potential is defined

ψr(yr) =
∑
k∈K

(
1(1− ρk(yr) ≤ qr) · (1−

1− ρk(yr)
qr

) · θT3 φr(k)

)
, (5.27)

5.3. SMOOTHING-BASED MARKOV NETWORKS 37

where qr = q|yr| and 0 < q < 0.5 is a parameter that controls the robustness of the

potentials. In words, q can be thought as the fraction of the region that can disagree

with the most common (mode) label in the region. The indicator function specifies that

the potential is non-zero for the k’th label that is the mode label. The middle term

then scales down the score for assigning the k’th label to region label by the number of

nodes in the region that disagree with the mode. The constraint on q ensures at most

only one indicator term in the summation is satisfied. This model, along with several

variants (i.e., linear envelope potentials (Kohli and Kumar, 2010)) can be optimized

using mincuts.

5.3.4 Learning

As previously mentioned, a benefit of the max-margin approach over MLE is that there

exists a larger set of approximate inference techniques which we can use in the inner

loop inside the subgradient method. For the smoothing models above, we require the

potentials to be non-negative, which can be done by forcing the features to be positive

and projecting the respective parameters (θ2, θ3) onto the positive orthant after each

subgradient update. However, models learned using this approach often converge slowly

in practice and are typically dominated by the cliques parameters that occur most fre-

quently. For example, there are typically many more edges than nodes in a graph, so

for the subgradient of Equation (5.18), the components corresponding to θ2 are typically

larger in scale than the components corresponding to θ1. Furthermore, the SVM and

M3N models are not invariant to scale of the features (Herbrich and Graepel, 2000).

For example, were we to scale a random feature dimension by 1, 000, that scaled feature

would essentially determine the margin and the parametric optima would converge to a

different solution, which is not the equivalent rescaled solution (and most likely worse).

Due to these issues, it can be hard to effectively regularize these parametric models in

practice.

Instead, we demonstrate that learning these models using functional gradient boost-

ing obtains models with better predictive performance. In contrast to related work (Di-

etterich et al., 2004, Torralba et al., 2004, Liao et al., 2007), this max-margin approach

provides an efficient and effective way to integrate feature statistics computed over large

regions in the scene, i.e., from multiple segmentations, and to learn non-parametric

potentials without requiring the marginal probabilities.

As a concrete example, we consider a pairwise, Pott’s model with energy,

Ψ(y; f) =
∑
i∈C1

ψi(yi; f) +
∑
ij∈C2

ψij(yi, yj ; f), (5.28)

38 CHAPTER 5. PARSING SCENES WITH GRAPHICAL MODELS

where

ψi(yi; f) = f1(φi(x))T eyi , (5.29)

ψij(yi, yj ; f) = 1(yi = yj) · f2(φij(x))T eyi , (5.30)

and φi : X → Rd1 and φij : X → Rd2 extract feature representations for the respective

node and edge cliques. Then, defining the loss function

l(f(x, y)) = max
k̂

(Ψ(ŷ; f) + γ(y, ŷ))−Ψ(y; f), (5.31)

we train regressors h1 and h2 to match the respective targets (negated)

∂

∂f1(x, y)
l(f(x, y)) =

∑
i∈C1

(
ey∗i − eyi

)
, (5.32)

∂

∂f2(x, y)
l(f(x, y)) =

∑
ij∈C2

(
1(y∗i = y∗j)ey∗i − 1(yi = yj)eyi

)
, (5.33)

at each node φi(x) and edge φij(x) feature location.

In order to ensure non-negative clique potentials, we use the analog of exponentiated

gradient descent (Kivinen and Warmuth, 1997) to function space (Ratliff, 2009). As in

the parametric version, this algorithm places a different prior over the space of functions

and encourages functions emphasizing few regions in feature space and little everywhere

else. The update rule is changed from

f ← f + αtht (5.34)

to

f ← f · exp(αtht). (5.35)

5.4 Experimental Analysis

We compare the performances of M3N models trained with the subgradient method and

functional gradient boosting on two vision problems: 1) 3-D point cloud classification

from laser range finders and 2) 3-D geometric surface estimation from images (Hoiem

et al., 2007). These experiments demonstrate the difference in predictive performance of

the models when using different optimization procedures.

5.4. EXPERIMENTAL ANALYSIS 39

Table 5.1: Per-class F1 scores and overall point accuracy comparisons.

HO-FGrad HO-PGrad Pair-PGrad

Vegetation 0.96 0.93 0.92
Wire 0.64 0.40 0.40

Pole/tree-trunk 0.39 0.35 0.30
Ground 0.99 0.99 0.99
Facade 0.89 0.89 0.89

Overall Accuracy 97.2% 96.1% 95.7%

5.4.1 3-D Point Cloud Classification

Random field Structure

We create models using pairwise and higher-order models. The regions for the higher-

order models result from performing two segmentations of K-means over on the 3-D

coordinates using values K1 = 0.026n and K2 = 0.042n, where n is the number of

3-D points in the scene. These values were chosen to generate compact groups of 3-

D points that typically consisted of a single label. The node features are the Geom,

Orient, Elev features from Section 3.1.2, the edge features are the difference Geom

and Orient features, and the region features are the same as the nodes’ except except

now the neighborhood volume is defined within a 1.0 m radius from the clique medoid.

Models

We compare the performances of three AMN models. The fist AMN model is a pairwise

model (Equation (5.18)) trained using the parametric subgradient method (Section 4.3),

which we refer to as Pair-PGrad. The next two AMN models are both higher-order

models (Equation (5.25)) trained using the parametric and functional (Section 4.4) sub-

gradient methods, which we refer to as HO-PGrad and HO-FGrad, respectively. The

HO-FGrad model was trained using linear regression to project the functional gradient.

Results

We evaluate performance on the VMR Oakland-v1 (Section 2.2.3) dataset. The per-

formance breakdowns of the models are given in Table 5.1. Though the change in overall

accuracy is marginal, this can be attributed to the severe imbalance in label proportions.

However, the table shows favorable per-class improvements with HO-FGrad over Pair-

PGrad for the smaller classes: wire and pole/tree-trunk. In addition, there is noticeable

improvement in the vegetation class as well. Figure 5.1 qualitatively demonstrates this

behavior of HO-FGrad producing improved classifications in challenging areas.

40 CHAPTER 5. PARSING SCENES WITH GRAPHICAL MODELS

— Ground — Facade — Vegetation — Pole/tree-trunk — Wire

Figure 5.1: Qualitative comparisons of 3-D point cloud classification on two scenes:
HO-PGrad (left side) and HO-FGrad (right side).

In our experiments, we found a trade-off between improving precision and better

preserving object boundaries. In principle, one would expect the robust potentials to

improve performance as there will always be segments spanning multiple objects. How-

ever, in this application we found that the number of such regions is small compared to

the number of regions with noisy data, as evident in Figure 5.1. The robust potentials

caused a decrease in performance because they allowed the noisy points to maintain the

wrong labels. The next experiment will demonstrate how robust potentials can be used

to improve classification when there are many more segments containing inhomogeneous

labels.

5.4.2 3-D Surface Estimation

We also evaluated these models on the problem of recovering 3-D geometric surfaces

from from images, i.e., classifying pixels into one of the three classes: {Ground, Vertical

(object standing on the ground), and Sky}. We use the Geometric Context Dataset

provided by (Hoiem et al., 2007), where the overall distribution of pixels per class is:

Ground = 31.4%, Vertical = 48.0%, Sky = 20.6%. In (Hoiem et al., 2007), the authors

extract features from overlapping segments in the image and average the independent

classifications from boosted decision tree classifiers. In this experiment we compare the

method used in (Hoiem et al., 2007) with different M3Ns models. We note that recent

work from (Saxena et al., 2008), have also used random fields to extract 3-D information

from single images. However, our model is not best suited in that scenario since we

perform discrete label classification and they are estimating continuous distances.

5.4. EXPERIMENTAL ANALYSIS 41

(a) (b) (c) (d)

Figure 5.2: Qualitative comparison of geometric surface estimation on three scenes:
(a) Potts-HO-PGrad, (b) Potts-HO-FGrad, (c) Robust-HO-FGrad, (d) (Hoiem
et al., 2007).

Features

In (Hoiem et al., 2007), the authors first group pixels into superpixels to use as the sites

in their classification. They then perform 15 different segmentations: by increments of

5 segments between 5 and 50, and then by increments of 10 segments until 100. Each

segment is composed of a group of superpixels. For each superpixel and segment, they

extract 50 and 94 features, respectively, which capture location, shape, color, texture,

and perspective. We used the features provided by the authors.

Random Field Structure

In the M3N model, the nodes represent superpixels and the segments are the cliques. As

the sizes of the segments from segmentation-5 will differ with those from segmentation-

100, the types of computed features will also vary with respect to the segment size.

We model how these features vary per clique by creating different potentials based on

segment size. In addition to the nodes (C1), we defined three clique-sets: C2, C3, C4,

each of which contain the regions resulting from the five smallest, middle, and largest

segmentations, respectively.

42 CHAPTER 5. PARSING SCENES WITH GRAPHICAL MODELS

Potts-HO-PGrad Potts-HO-FGrad

Ground Vertical Sky Ground Vertical Sky

Ground 0.74 0.24 0.02 0.84 0.15 0.01

Vertical 0.24 0.70 0.07 0.13 0.83 0.04

Sky 0.03 0.20 0.78 0.02 0.07 0.91

Accuracy: 72.8% Accuracy: 84.9%

Robust-HO-FGrad (Hoiem et al., 2007)

Ground Vertical Sky Ground Vertical Sky

Ground 0.85 0.14 0.01 0.83 0.16 0.00

Vertical 0.13 0.84 0.04 0.09 0.89 0.02

Sky 0.01 0.05 0.94 0.00 0.10 0.89

Accuracy: 86.0% Accuracy: 87.1%

Figure 5.3: Quantitative comparisons on the Geometric Context dataset. Confusion
matrices are row-normalized.

Models

We evaluate three different M3N models and compare with the original algorithm of

(Hoiem et al., 2007). The first model is learned using the subgradient method with Potts

model interactions (Potts-HO-PGrad). The second model uses the functional gradient

learning with Potts model interactions (Potts-HO-FGrad). Because many cliques in

this framework will contain multiple labels, we train the final model using functional

gradient learning with Robust Potts interactions (Robust-HO-FGrad). Again, we use

linear regressors to project the functional gradient.

We define the robustness of the clique-sets corresponding to the five largest (C4)

and five second largest (C3) segments to allow 20% (qr = 0.2) and 10% (qr = 0.1),

respectively, of the nodes within a clique to disagree with the mode label. We use

a Potts model (qr = ε) for the clique-set with the smallest segments (C2). In this

application, the feature dimensions are ten times the size as the features used in the

point cloud experiments. We found that the exponentiated functional gradient obtained

better predicted performance. Finally, we make a small modification to the functional

gradient algorithm. Since the size of the segment can be an indicator of the quality of

features extracted, we weight the clique features during regression proportional to the

number of pixels contained in the clique.

Results

In (Hoiem et al., 2007), the authors evaluate their algorithm by performing five-fold

classification on a dataset of 250 images where 200 random images are chosen for training

5.5. SUMMARY 43

and the remaining 50 are used for evaluation. Visual comparisons of the four models are

presented in Figure 5.2. Figure 5.3 gives the quantitative classification comparisons of the

above three models. We immediately see a clear improvement in performance across all

classes using Potts-HO-FGrad model over the parametric version. Furthermore, using

the robust potentials (Robust-HO-FGrad) improves per-class performance, especially

the preservation of the smallest class, Sky.

5.5 Summary

This chapter analyzed the canonical approach of using graphical models for scene parsing.

Specifically, we started out with the probabilistic Conditional Random Field (Lafferty

et al., 2001) framework, derived its unnormalized counterpart, the Max-Margin Markov

Network (Taskar et al., 2003) framework, and then discussed how we can leverage recent

advances in inference (Kohli et al., 2009) and learning (Ratliff, 2009) techniques, to learn

models that account for feature statistics and label compatibility defined over regions of

pixels/points in an image/3-D point cloud (higher-order cliques).

Our experiments demonstrated that learned parametric models were inferior to those

obtained with non-parametric/functional formulations of the learning objective. Prac-

tically, the inferiority of the parametric model can be attributed to the imbalance of

features for the different parameters. This imbalance comes from both the imbalance

in number of samples per class, but more importantly, due to the imbalance in number

of clique types (e.g., the number of nodes vs. edges) in the graph. Hence, because the

parametric formulation is not invariant to this imbalance (Herbrich and Graepel, 2000),

we observed convergence to a solution whose performance was often much worse to the

non-parametric formulation which is agnostic to this discrepancy. Additionally, with

the non-parametric approach, we can derive models with non-linear predictions such as

decision trees or neural networks (though we did not pursue this in our experiments).

Finally, we highlighted a major bottleneck for training these global models: the need

for practically-efficient, global inference techniques. In the following chapter, we discuss

how we can eschew this problem as well as the theoretical difficulties that arise when

only an approximate solution can be reached.

Chapter 6

Hierarchical Inference Machines

6.1 Motivation

Before proceeding, it is important to highlight fundamental drawbacks of using (unnor-

malized) graphical models for scene parsing that were briefly mentioned in the previous

chapter.

6.1.1 Restrictive Interactions

One fundamental limitation is that performing exact inference even over the simplest

models, e.g., a multi-class Pott’s model, is often NP-hard. Additionally, in order to

perform efficient, approximate inference with bounded guarantees on the solution, only

a restrictive class of models can be used, e.g., smoothing-like potentials (Veksler, 1999,

Kohli et al., 2009) and linear envelope potentials (Kohli and Kumar, 2010). Typically

these potentials greatly restrict the types of interactions among objects and/or are lim-

ited to pairwise interactions. While other approximate inference techniques can be used

to handle more general potentials, e.g., Sequential Tree-ReWeighted message passing

(TRW-S) (Kolmogorov, 2006), these techniques are typically much more computation-

ally expensive.

6.1.2 Modeling Mismatch

As we are forced to use an approximate inference technique during learning, it has been

demonstrated that the learned model (e.g., parameters) is tightly tied to the chosen

inference procedure in both theory (Wainwright, 2006) and in practice (Kumar et al.,

2005). Additionally, it is unclear how to learn the best model for the chosen inference

procedure. Further complicating matters, there are cases when the energy of the true

maximum a posteriori (MAP) labeling is worse than the energies returned from vari-

46 CHAPTER 6. HIERARCHICAL INFERENCE MACHINES

ous approximate inference techniques (Szeliski et al., 2007). This undesirable behavior

suggests an incorrectly modeling of the problem.

6.1.3 Provably Difficult to Learn

Finally, from a theoretical viewpoint, correctly learning these models requires exact in-

ference, and it is not well understood when approximate MAP or marginal inference is

used in its place (Wainwright, 2006, Kulesza and Pereira, 2007, Finley and Joachims,

2008). For example, in (Kulesza and Pereira, 2007), the authors demonstrate a patho-

logical case over a four-node graph with two parameters where using an approximate

MAP inference technique during the learning procedure prevents convergence onto the

true solution. Similarly, in another example they show that learning with loopy belief

propagation can also diverge in practice.

Due to the above three fundamental limitations when training models relying on

approximate inference techniques, this work proposes to bypass the use of global, prob-

abilistic models for scene parsing. Instead, in a manner that is inspired by the inference

mechanics over these models, we propose to break down the complex inference process

into a series of simple machine learning subproblems that iteratively decodes the scene.

6.2 Approach

6.2.1 Intuition

In this work, we propose a hierarchical approach for scene parsing. Our approach is

reminiscent of early vision literature in that we use a hierarchical decomposition of the

image in order to encode relational and spatial information (Bouman and Shapiro, 1994,

Feng et al., 2002). As we saw with the higher-order model in the previous chapter, these

probabilistic models typically have a node to represent the label of a site and variously

sized groupings of the nodes to form hierarchical regions. The nodes at the bottom of

the hierarchy provide low-level discriminative information, while regions towards the top

of the hierarchy resolve ambiguities using global information.

While the structure of the representation is similar to a graphical model, the key

difference is that we no longer attempt to model the joint distribution/energy. Instead,

we consider the mechanics of an approximate inference algorithm, specifically variational

mean field (Wainwright and Jordan, 2008), over this hierarchical representation as a

procedure. That is, we unroll the procedure as a sequence of computational modules

taking in observations and other local computations on the graph (messages). Then, we

train each of these modules, taking in as input the observations and messages, to predict

the ideal intermediate messages. After traversing over the hierarchical representation as

6.2. APPROACH 47

Figure 6.1: Simplified mechanics of a top-down hierarchical inference machine on a
synthetic image. Given an image and its hierarchical decomposition of regions, we se-
quentially predict the proportion of labels present (drawn in the dashed boxes) using
image features and previous predictions.

desired, the final parsing of the scene is extracted from the nodes of the site. Note that

each prediction along the sequence will propagate relevant contextual information which

can help the intermediate modules make correct predictions. We refer to this process

of iterated predictions over a hierarchical representation of the scene as a hierarchical

inference machine (HIM).

An idealized example of a top-down version of our approach on an image is depicted

in Figure 6.1. Given an image, we first create a hierarchy of regions that range from

very large regions in the image (potentially including the image itself as one region at

the top) down to small regions (e.g., superpixels) at the bottom. See for Section 3.2 for

techniques to create this segmentation. We represent the inference procedure as a series

of predictions along the hierarchy, in this case, from coarse to fine. Ideally, high levels

in the hierarchy can represent the type of environment which “primes” the lower levels

with a smaller set of labels to consider. We do not assume that this segmentation will

contain regions with homogeneous labels. Instead, we explicitly model the distribution

of labels inside a region to represent the fact that the segmentation is often imperfect in

practice. Starting with the region that is the entire image at the top of the hierarchy,

we train a predictor to predict the proportions of labels inside of it. As will be discussed

in detail, these predictions are passed to the child level and are used to train another

predictor for the children subregions’ proportions of labels. Incorporating predictions

from the previous predictor can be thought as message passing in a graphical model.

48 CHAPTER 6. HIERARCHICAL INFERENCE MACHINES

— Sky — Tree — Road — Grass — Building — Object

Figure 6.2: Example hierarchical segmentation and classification from Stanford
Backgrounddataset. From left to right: the input image with colorized ground truth
overlaid; four levels in the segmentation hierarchy; the inferred parsed scene from taking
the max label for each region in the leaf level.

However, note that messages are not combined by a sum of products, but rather are

arbitrarily combined by the predictor. The procedure ends when the leaves are reached

and the labeled scene is derived from the max label inside each region in the leaves. An

example hierarchical segmentation and labeling are shown in Figure 6.2. Note that since

we model label proportions over regions:

• We do not make a single hypothesis segmentation.

• We are robust to imperfect segmentations.

• We can use features defined over large regions.

• We do not make hard commitments during inference.

6.2.2 Related work

Our hierarchical formulation resembles early directed graphical models from (Bouman

and Shapiro, 1994) and (Feng et al., 2002) for scene analysis. Whereas these approaches

rely on tree-based interactions to enable tractable learning, we no longer train a graphical

model and are not restricted in the types of contextual cues that we can use. Instead we

focus on maximizing what we ultimately care about: predicting correct labelings. This

idea is analogous to the difficult and non-convex problem of maximizing the marginals

(Kakade et al., 2002). The notion of training the inference algorithm to make correct

predictions is also similar to (Barbu, 2009) for image denoising, in which a model is

trained knowing that an inaccurate, but fast, inference algorithm will be used. In our

approach we break up the complex structured prediction problem into a series of sim-

pler classification problems, inspired by recent works in machine learning focused on

6.3. PARSING IMAGES WITH INFERENCE MACHINES 49

sequence prediction (Cohen and Carvalho, 2005, Daume III et al., 2009). In the vision

setting, this notion of a series of classification problems is similar to Auto-context (Tu

and Bai, 2010), in which pixel classifiers are trained in series using the previous classi-

fier’s predictions with pairwise information to model contextual cues. In our work, we

go beyond typical site-wise representations that require entities to contain one label. Be-

cause we model label proportions, we can use features defined over large regions to better

represent the context, rather than an aggregation of site-wise labels. Furthermore, the

hierarchy provides spatial support context between levels and naturally propagates long-

range interactions that may be hard to capture with pairwise interactions. We build on

the forward sequential learning approach used and analyzed in (Viola and Jones, 2004,

Heitz et al., 2008, Ross and Bagnell, 2010) to prevent cascading errors and leverage the

sequential stacking idea to minimize cascaded overfitting (Wolpert, 1992, Cohen and

Carvalho, 2005, Kou and Cohen, 2007).

6.3 Parsing Images with Inference Machines

For clarity in the explanation, we describe the HIM framework applied to parsing images.

We will describe the application to 3-D point clouds later in this chapter at Section 6.5.

6.3.1 Overview

Given an image and its hierarchical region representation, we train a series of predictors,

where each predictor operates on regions from a level in the segmentation hierarchy.

Each predictor is explicitly trained to predict the proportion of labels that are contained

within each region of its respective level. Then, the predictions are passed to, and

incorporated by, the subsequent predictor, etc.. Figure 6.3 illustrates (on test data) how

the predicted probabilities are refined while traversing coarse-to-fine down the hierarchy.

The main components of the training procedure are detailed over the following sub-

sections:

• Training the predictor to predict label proportions (Section 6.3.2).

• Incorporating predictions from the previous predictor (Section 6.3.3).

• How to effectively train the entire procedure (Section 6.3.5).

6.3.2 Modeling Heterogeneous Regions

We define K to be the set of possible labels, x ∈ X to be a specific image, R(x) to be

the set of regions of the hierarchical segmentation of image x, r ∈ R`(x) to be a specific

region in the `’th level of the hierarchy, and L to be the number of levels in the hierarchy.

50 CHAPTER 6. HIERARCHICAL INFERENCE MACHINES

— Tree — Road — Building — Object

Figure 6.3: Refinement of predicted label proportions while traversing coarse-to-fine
down the hierarchy. Row 1: Test image (with ground truth overlaid) and the max labels
for each levels’ regions. Rows 2-4: The respective level’s label probability maps, where
white indicates high probability.

Given an image x with each pixel labeled, for any region r ∈ R(x), we can compute

an empirical distribution P̃ of labels for the region. Specifically, we denote

P̃ (Yr = k|x) = The % of pixels assigned to the k’th class in region r of image x. (6.1)

Given features for region r, we want to train a predictor to match this distribution of

labels for the region.

We use the MaxEnt framework for its properties discussed in Section 4.2.2, where we

use the feature function φr(x, k) to compute (label-specific) features for region r (e.g.,

Section 3.3). At level ` in the hierarchy, we train a MaxEnt predictor by minimizing the

empirical log-loss,

min
θ

λ

2
||θ||22 −

∑
x∈X

∑
r∈R`(x)

∑
k∈K

P̃ (Yr = k|x) logP (Yr = k|x; θ), (6.2)

6.3. PARSING IMAGES WITH INFERENCE MACHINES 51

cglobal clocal

Figure 6.4: Illustration of the pixels being used (grayed) to compute the context features.
In clocal, the pixels above and below the dashed line are used to compute c+

local and c−local,
respectively.

where

P (Yr = k|x; θ) =
exp(θTφr(x, k))∑

k′∈K
exp(θTφr(x, k

′))
. (6.3)

If we want a non-linear model, we can similarly use boosting (Section 4.4). We denote

b̃r, br ∈ R|K| to be the vectorized forms of the discrete distributions P̃ (Yr|x), P (Yr|x),

respectively, and φr(x)→ Rd to compute region features from the image that are shared

for all classes. Then, defining the loss function

lr(f(x)) = −
∑
k∈K

P̃ (Yr = k|x) logP (Yr = k|x; f), (6.4)

we train regressor h to match the targets (negated)

∂

∂f(x)
lr(f(x)) = br − b̃r, (6.5)

at feature location φr(x).

Partial Annotations

Training the predictors assumes each region has a valid empirical label distribution, i.e.,

it sums to one. However, obtaining images that are fully annotated can be difficult in

practice, and this is the case for many datasets. In these scenarios, we simply discard

regions that are not sufficiently labeled – we use a threshold of 75% – and for the

remaining distributions that do not sum to one, we assume the unlabeled pixels belong

to a “none-of-the-above” class.

6.3.3 Context Features

In graphical models, the beliefs of a node’s current marginal distribution are typically

propagated between adjacent factors via message-passing algorithms (Wainwright and

52 CHAPTER 6. HIERARCHICAL INFERENCE MACHINES

Jordan, 2008). Informally, during an update a node receives messages from its neighbors,

combines them (typically, by multiplying them), and the node sends its updated beliefs to

its neighbors. One can view the step of combining the messages as the result of a simple

function of the messages that takes the product of its inputs. From this perspective, a

natural idea is to use a more sophisticated function that combines the messages (and the

available image features) in an arbitrary manner. Furthermore, for each message-update

we can train the function to directly predict what the node’s state/marginal distribution

should be, which is known at training time. Finally, as the initial predictions will be

noisy, we can iterate this procedure over multiple passes of the graph.

Using this strategy, we can traverse over the hierarchy, level-by-level, and train a

predictor for each level to use predictions from the previous predictor. For example, in

a coarse-to-fine traversal, having access to the parent region’s predicted label distribu-

tion should make it easier for its smaller child region to make a refined prediction that

spatially localizes the labels. However, using the parent region’s prediction is only one

“message” for the child. We need not limit ourselves to simple (pairwise) interactions and

can instead form arbitrary interactions from the previous predictions in the sequence.

However, since the number of regions is of variable length per image, we need a way to

summarize the previous predictions into a fixed-length context feature descriptor. It is

this context information that ties together the per-region predictions to yield a globally

consistent parsing.

For each image x, we denote the set of predicted probability vectors for all the regions

in the image that the predictor operated on as

Bt = {br}r∈{R`(t)(x)}, (6.6)

where t indexes the predictor Pt in the sequence and `(t) returns the respective level of

the hierarchy that Pt operated on. When training the t’th predictor, we will use Bt−1

to compute different types of context feature descriptors. The following describes three

types of context features that are useful for a top-down inference machine.

The first context feature encodes what was predicted for a particular region’s parent,

cparent(r,B) = bπ(r), (6.7)

where π(r) returns the parent region for region r. This is useful for priming the child

region to make a more refined, spatially localized prediction. The description of the next

two are illustrated in Figure 6.4. The second context feature models the global context

by encoding the weighted average of the of all predictions in the previous level, weighted

by the region sizes,

cglobal(B) ∝
∑
br∈B
|r|br. (6.8)

6.3. PARSING IMAGES WITH INFERENCE MACHINES 53

This global distribution models the co-occurence of labels in the entire scene. The third

context feature, models the local context around a region. We denote Ir to be a local

neighborhood of pixel indices around region r. (In practice, this local neighborhood can

come from dilating the region or placing an expanded bounding box around the region.

In our experiments use the expanded bounding box and observed a slight decrease in

performance with much improved computational efficiency over region dilation.) The

local context is encoded by averaging the per-pixel probabilities, which are obtained by

mapping the per-region probabilities from the previous predictor, intersected with this

local neighborhood,

clocal(r,B) ∝
∑
br′∈B

(r′ ∩ Ir)br′ (6.9)

To encode spatial layout, we compute two separate averages for pixels above (c+
local) and

below (c−local) the region centroid, respectively. Now, when training the predictor Pt, we

use Bt−1 to compute an augmented feature descriptor for each region,

φ̆r(x,Bt−1) = [φr(x) ; cparent(r,Bt−1) ; cglobal(Bt−1) ; c+
local(r,Bt−1) ; c−local(r,Bt−1)].

(6.10)

6.3.4 Parsing Strategies

As described so far, given a segmentation hierarchy of L levels, parsing the scene is done

by performing a sequence of T = L predictions that traverses the hierarchy from coarse-

to-fine. However, similar to how message-passing algorithms perform multiple passes

over a graphical model, we can also arbitrarily traverse the segmentation hierarchy with

multiple predictors. Specifically, instead of training a single predictor for the regions

in a level and then passing these predictions Bt to the next level, it can be helpful to

train additional predictors, each of which updates the distributions for all regions in the

same level, before proceeding to the next level in hierarchy. These multiple stages of

predictions can help hone in on predicting the correct distribution of labels before being

refined at the next level. Under this multiple prediction approach, B can be grown to

consider the predictions on all regions from all previous predictors and Equation (6.10)

can be augmented with an additional cprev(r,B) context feature that simply returns

the label distribution for region r from the last predictor that operated on it. Finally,

instead of traversing the hierarchy coarse-to-fine, it can be effective to first traverse

fine-to-coarse to make initial predictions, and then refine these estimates coarse-to-fine.

Similarly, Equation (6.10) can be augmented with a cchildren descriptor that is analogous

to the cparent descriptor and is defined as the weighted average of the region’s children

predictions (weighted in proportion to the children’s region sizes). Note that the sequence

should always end on the leaf level to extract the sites’ label distributions.

54 CHAPTER 6. HIERARCHICAL INFERENCE MACHINES

Algorithm 3 train inference machine

1: Inputs: Set of labeled images and respective region hierarchies X , Traversal se-
quence [t1, . . . , tT].

2: B = ∅ // Predictions from previous predictors that are used to derive context features
3: for t = t1 . . . tT do
4: // Train test-time predictor using stacked predictions from previous stage
5: Train Pt using B and regions R`(t)(x), ∀x ∈ X
6:

7: // Create hold-out folds for stacking
8: [U ,V] = split data(X) // U ∪ V = X , U ∩ V = ∅
9: Train PU using B and regions R`(t)(x), ∀x ∈ U

10: Train PV using B and regions R`(t)(x),∀x ∈ V
11:

12: // Generate stacked predictions for the next stage
13: for r ∈ R`(t)(x), x ∈ U do
14: B ← B ⊕ {PV (Yr|x)}
15: end for
16: for r ∈ R`(t)(x), x ∈ V do
17: B ← B ⊕ {PU (Yr|x)}
18: end for
19: end for
20: Return: Trained test-time predictors {Pt}Tt=1

6.3.5 Training the Procedure

Training the predictors is prone to two problems with cascading errors. First, if we

independently train each predictor using ground truth context features, we will have

cascading errors at test-time due each predictor being trained with with perfect signal.

Therefore, we have to train the hierarchical procedure in the same way it is executed

at test-time: in sequence, using the previous predictor’s output. Second, now using

predictions from the same data used for training is prone to a cascade of errors due

to overfitting as subsequent predictors will rely heavily on still optimistically correct

context. While previous predictions are important, we also want to learn how to recover

from mistakes that will be made at test time by trading off between the context from

the previous predictions and image features. To achieve this robust training, we use the

idea of stacking (Wolpert, 1992, Cohen and Carvalho, 2005) when training the classifier.

At its core, stacking implements the natural observation that when training sequential

models, one should avoid using the predictions on the same data that was used to

train the previous model. Instead, the predictions should be generated on data that

was not used to train the model, i.e., held-out predictions. In our context, we want

to avoid training Pt using Bt as features if the same regions in Bt were used to train

Pt−1. Obtaining held-out predictions is achieved in a manner similar to cross-validation

6.3. PARSING IMAGES WITH INFERENCE MACHINES 55

— Tree — Road — Building — Object — Sky

Figure 6.5: Learning to correct mistakes. Left: test image with ground truth overlaid.
Top: levels 5, 6, 7 in the segmentation hierarchy. Bottom: the max label per region.

where the training data is split into multiple subsets that multiple models/predictors

are respectively trained on. However, we do not use the subsets to do model selection,

as would be done in cross-validation. Instead, a model that was trained on one subset

of the data is evaluated on the held-out subset to generate predictions {br} that are

less overfit for the next predictor to train on. This stacking procedure is done solely at

training-time to generate the predictions Bt−1 for the next predictor to use. The model

Pt that is used at test-time is trained over all the regions in Bt−1 (and not used during

training-time). An example training procedure using 2-fold stacking is summarized in

Algorithm 3; however, in our experiments we use 10-folds.

Because the predictions are made on unseen data, the stacking procedure simulates

the test-time behavior and ideally learns how to correct earlier mistakes. An example

of this correcting behavior during test-time is illustrated in Figure 6.5. In the 5th level

of the hierarchy (L5), the person is part of a very large region for which building class

has max probability. In L6, the person is segmented out from its large parent region;

however, the most likely label for this region incorrectly follows from the parent’s label

(building). In L7, the region recovers from this error and correctly labels the object.

6.3.6 Inference

At test-time, the scene is parsed by traversing over the hierarchy in the same way that

it was trained: at the t’th step, we use the previous set of predictions Bt−1 to generate

the augmented contextual feature reperesentation (Equation (6.10)) for each region, and

then evaluate each region with model Pt (Section 6.3.2) to generate Bt for the next

predictor. Hence parsing the scene is a simple sequence of T (MaxEnt) predictions.

56 CHAPTER 6. HIERARCHICAL INFERENCE MACHINES

6.4 Experimental Analysis on Images

6.4.1 Initial Experiments

In this section, we present early analysis of the hierarchical inference machine (HIM)

framework for scene parsing in images. In these experiments, we used 8-level and 9-level

segmentation hierarchies that were constructed using the sophisticated segmentation

technique of (Arbelaez et al., 2009). The inference procedure made one sequence of

predictions from coarse-to-fine down the hierarchy, and we use boosting with per-class

regression trees to project the functional gradient of the log-loss. The region features

follow from the flat CRF model of (Gould et al., 2008b): we use RMoments over TXT,

CIELAB, and RGB pixel values in a region (Section 3.3). We evaluate on the MSRC-21

(Shotton et al., 2009) and Stanford Background datasets and demonstrate favorable

performance compared to a variety of other models at the time, most of which explicitly

modeled the joint configuration of labels.

In Figure 6.6, we demonstrate the effect of stacking during the learning procedure.

When training without stacking, we achieve very good performance on the training set,

as indicated by a strong diagonal in the confusion matrix (Figure 6.6-a). However,

when the resulting poor performance on the test-set confusion matrix demonstrates the

learned predictors are overfit (Figure 6.6-b). Using stacking during training results in

more general predictors (Figure 6.6-c).

In Table 6.1 and Table 6.2, we present quantitative comparisons of HIM with other

techniques that use (unnormalized) graphical models (Zhang and Ji, 2010, Ladicky et al.,

2009, Gould et al., 2009), hierarchical regions (Lim et al., 2009), and sequential prediction

(over sites) (Tu and Bai, 2010). The baseline model Leaf is a predictor that is trained

only over the leaf regions in the hierarchy without any context. In Figure 6.7, we

quantify the pixel accuracy, by assigning each region’s pixels its most probable label, at

each stage of the inference procedure as the hierarchy is traversed from coarse (L1) to

fine. In addition to performance that is competitive with and exceeds related work at

the time, a major advantage of our approach is that inference is a simple sequence of

MaxEnt predictions and is extremely efficient in practice. In these early experiments,

holding segmentation and all feature computations constant, inference time took less

than a second.

Another benefit over techniques that rely on MAP inference is is that we never make

hard decisions and always predict a distribution of labels. Therefore, when eventually

assigning a label to a region, we can extract a notion of confidence in the labeling. We

define a labeling as confident when the difference between the first and second most

probable labels is greater than 0.2, and otherwise uncertain. For example, in Figure 6.8,

6.4. EXPERIMENTAL ANALYSIS ON IMAGES 57

(a) (b) (c)

Figure 6.6: The effects of stacking during the learning procedure. Confusion matri-
ces on the MSRC-21 dataset: (a) performance on the training set without stacking,
performance on the testing set (b) without and (c) with stacking.

Table 6.1: Performances on the MSRC-21 dataset. Pixel is the total number of pixels
correct and Class is the mean across the columns. ∗Averaged over 5 different splits.

P
ix
el

C
la
ss

B
u

il
d

in
g

G
ra

ss

T
re

e

C
o
w

S
h

ee
p

S
k
y

A
ir

p
la

n
e

W
a
te

r

F
a
ce

C
a
r

B
ic

y
cl

e

F
lo

w
er

S
ig

n

B
ir

d

B
o
o
k

C
h

a
ir

R
o
a
d

C
a
t

D
o
g

B
o
d

y

B
o
a
t

(Gould et al., 2008b)∗ 77 64 72 95 81 66 71 93 74 70 70 69 72 68 55 23 83 40 77 60 50 50 14
(Zhang and Ji, 2010) 75 65 77 93 70 58 64 92 57 70 61 69 67 74 70 47 80 53 73 53 56 47 40
(Lim et al., 2009) – 67 30 71 69 68 64 84 88 58 77 82 91 90 82 34 93 74 31 56 54 54 49
(Tu and Bai, 2010) 75 69 69 96 87 78 80 95 83 67 84 70 79 47 61 30 80 45 78 68 52 67 27
(Ladicky et al., 2009) 86 75 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 9
Leaf 74 60 72 96 85 74 70 91 63 58 65 59 69 58 32 22 84 25 83 55 33 54 4
HIM 78 71 63 93 88 84 65 89 69 78 74 81 84 80 51 55 84 80 69 47 59 71 24

Table 6.2: Performances on Stanford Background dataset.

P
ix

el

C
la

ss

S
k
y

T
re

e

R
oa

d

G
ra

ss

W
at

er

B
ld

g
.

M
tn

.

O
b

je
ct

(Gould et al., 2009) Pixel CRF 74.3 66.6 93.9 67.1 90.3 83.3 55.4 71.4 9.3 62.2
(Gould et al., 2009) Region CRF 76.4 65.5 92.6 61.4 89.6 82.4 47.9 82.4 13.8 53.7

Leaf 72.8 58.0 89.7 58.3 85.8 69.8 15.8 78.1 1.5 64.9
HIM 76.9 66.2 91.6 66.3 86.7 83.0 59.8 78.4 5.0 63.5

the cars are confident in the labeling, but the trees in front of the building are uncertain.

In MSRC-21, our confident predictions constitute 79% of the data and achieve an overall

accuracy of 89%, while the accuracy of the uncertain samples is 37%. In Stanford

Background, our confident predictions constitute 87% of the data and achieve an

overall accuracy of 82%, while the accuracy of the uncertain samples is 40%. These

numbers indicate that we make most errors when the labeling is uncertain.

58 CHAPTER 6. HIERARCHICAL INFERENCE MACHINES

Figure 6.7: Per-pixel accuracies at each stage of the inference procedure.

— Tree — Road — Building — Object — Sky

Figure 6.8: Predicting with uncertainty. The ambiguity in ground truth label (top-
middle), which contains a tree in front of a building, is correctly modeled in our pre-
dicted probabilities (bottom row). The classification (i.e., labels with highest predicted
probablities) is given in the top-right.

6.4.2 Recent Experiments

Since the original publication of this work (Munoz et al., 2010b), we have made a number

of practical improvements to achieve more efficient and accurate predictions. We found

that different choices in feature descriptors can result in statistiscally different predic-

tions. In particular, we found that average pooling over quantized features provides

discriminative representation and is computationally efficient to compute over regions.

6.4. EXPERIMENTAL ANALYSIS ON IMAGES 59

Table 6.3: Breakdown of HIM computations on the Stanford Background dataset.

Segmentation Features Inference

Time (s) 0.095 0.462 0.037
Proportion 16% 78% 6%

Table 6.4: Classification comparisons on the Stanford Background (top) and
CamVid (bottom) datasets. Class is the average class accuracy and Pixel is the per-
pixel accuracy. †Uses temporal cues from the video stream. ‡Uses additional training
data not leveraged by other techniques.

S
k
y

T
re

e

R
oa

d

G
ra

ss

W
at

er

B
ld

g
.

M
tn

.

O
b

je
ct

C
la

ss

P
ix

el

(Lempitsky et al., 2011) - - - - - - - - 72.4 81.9
(Socher et al., 2011) - - - - - - - - - 78.1
(Ren et al., 2012) 95 76 92 87 68 85 29 63 74.5 82.9
(Farabet et al., 2013) 95.7 78.7 88.1 89.7 68.7 79.9 44.6 62.3 76.0 81.4
HIM-v2 92.5 76.9 90.2 81.5 70.4 82.1 16.1 68.9 71.8 81.6

B
ld

g.

T
re

e

S
k
y

C
ar

S
ig

n

R
oa

d

P
ed

.

F
en

ce

P
ol

e

S
d

w
lk

.

B
ik

e

C
la

ss

P
ix

el

(Brostow et al., 2008)† 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1
(Sturgess et al., 2009)† 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8
(Ladicky et al., 2010)‡ 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8
(de Nijs et al., 2012)† 59 75 93 84 45 90 53 27 0 55 21 54.7 75.0
HIM-v2 83.5 85.1 94.5 78.3 41.7 95.5 38.7 18.0 15.2 78.3 36.2 60.5 85.7

We now do separate average poolings (RCodes) over quantized CIELab, TXT and

SIFT pixel descriptors (Section 3.1), in addition to RShape2D. Additionally, we found

the our procedure is robust to the choice of segmentation algorithm and noticed small

variation in performance when using the sophisticated, but computationally expensive,

segmentation algorithm from (Arbelaez et al., 2009) compared to using the seminal, and

extremely efficient, graph-based F-H technique. On the learning side, we found that

traversing fine-to-coarse-to-fine improves performance, and that using vector regression

when projecting the functional gradient provides both feature sharing and computational

efficiency.

In Table 6.3, we breakdown the computational costs for each step of the inference

procedure when processing an image from the Stanford Background dataset. These

timings were computed on a laptop with a Intel i7-2960XM, 4-core processor, and aver-

aged over all images in a test fold. “Segmentation” is the time to construct all levels in

the segmentation hierarchy. “Features” is the time to compute all region feature descrip-

60 CHAPTER 6. HIERARCHICAL INFERENCE MACHINES

(a) (b)

Figure 6.9: Adapting inference machines to 3-D point clouds. (a) A segmentation of
the 3-D point cloud (from K-means). The pink segment receives predictions (contextual
information) from its neighbors. (b) Contextual information is sent from the regions to
its children “regions” that constitute it – in this example, the children regions are the
3-D points themselves and are colored by their class for visualization purposes.

tors, including neighborhood information for the contextual features. “Inference” is the

time to make the sequence of T MaxEnt predictions along the hierarchy. From the table,

we see that feature computation time vastly dominants our current inference procedure

and making the actual predictions is only a small fraction of the total cost. In Table 6.4,

we present updated classification performances on the Stanford Background and

CamVid datasets. Many of the report techniques compute sophisticated feature de-

scriptors and/or segmentation(s) whose computation time exceeds our total approach

often by orders of magnititudes. In addition to achieve state-of-the-art performance, we

stress the extreme simplicity and efficency of our approach.

6.5 Parsing 3-D Point Clouds with Inference Machines

At its core, the inference procedure requires two sources of information: 1) a represen-

tation of the scene to operate over, 2) a representation of the contextual information.

Hence, only a few modifications need to be made to adapt the inference procedure to

parse 3-D point clouds. First, we can use a variety of techniques to construct a hierarchi-

cal segmentation of the 3-D points, e.g., K-means and F-H (Section 3.2), and compute

3-D descriptors (Section 3.3) for each region. Second, we can derive new context feature

encodings of the predictions from neighboring regions in space. Figure 6.9 illustrates

6.6. EXPERIMENTAL ANALYSIS ON 3-D POINT CLOUDS 61

these adaptations to 3-D point clouds. Note that this representation operates over re-

gion entities and does not require an organized/lattice structure of the 3-D information,

e.g., a range/depth image. Hence, our approach is very useful in mobile robotics where

the laser sensor returns an unorganized point cloud.

When parsing scenes, the most difficult classes to recognize are those that look the

same as other classes at a local scale. In 3-D point clouds, a canonical example is

the similarity among classes that are linear structures, e.g., poles and tree-trunks. In

the absence of any color/intensity readings from the laser (or other sensors), these two

classes look geometrically the same for every 3-D point on the object. Hence, the only

way to disambiguate these classes is with context, e.g., vegetation typically appears

“above” a tree-trunk. Effectively encoding this a priori knowledge into the feature

descriptors on the 3-D points can be difficult due to the variation of object configurations

in the world. For example, explicitly looking for vegetation at a fixed offset from a 3-

D point can be problematic due to the various sizes of trees. Instead, it is better for

the model to learn and propagate these interactions in a data-driven way. Note that

these repulsive/attractive interactions between classes are much more expressive than

the smoothing interactions we saw in Section 5.3.

In our experiments, we consider the relative spatial locations of the predictions us-

ing the contextual features. Analogously to the clocal context feature described in Sec-

tion 6.3.3, we look at the neighboring predictions within a 3-D window/sphere around

the region of interest. Because gravity is a discriminative cue, we spatially discretize the

sphere into 3 cells by elevation, as illustrated in Figure 6.10-a. For each of the 3 cells,

we average the neighboring predictions and concatenate them to form the contextual

descriptor. After learning a linear model, we can inspect the parameters to see what was

learned. For the weights corresponding to the tree-trunk class, θtree-trunk, we observed

that the model automatically learned sensible interactions, as illustrated in Figure 6.10-

b. Here, we plot the weights corresponding to the 3 cells of the context feature. We

see that the tree-trunk has high affinity for more tree-trunk points being above, below,

and at the same level of a region, which corresponds to a smoothing behavior. However,

we also see that affinity for vegetation being in the top slice (attraction) and negative

weights for poles and vegetation being below the region (repulsion).

6.6 Experimental Analysis on 3-D Point Clouds

We analyze the HIM approach for scene parsing in 3-D point clouds. In these ex-

periments, a simple 2-level hierarchy was constructed using K-means. The inference

procedure makes multiple passes up and down the hierarchy, and we train each predic-

tor using a parametric MaxEnt model. The region features compute Geom, Orient,

62 CHAPTER 6. HIERARCHICAL INFERENCE MACHINES

(a) (b)

Figure 6.10: Learning context in 3-D point clouds. (a) Spatial discretization to encode
neighboring context and (b) learned interactions between neighboring classes.

SpinImage, Elev descriptors (Section 3.1.2) centered at the centroid. We evaluate on

the VMR Oakland-v2 and GML-PCV datasets (Section 2.2). On VMR Oakland-

v2, we compare to the Associative Max-Margin Markov Networks (AMN) from Sec-

tion 5.3, using the same feature representation. On GML-PCV, we compare to the

non-associative version (NAMN), as described in (Shapovalov et al., 2010). For both

datasets, we also report the MaxEnt predictions just using the leaves of the hierarchy

without context (Leaf).

On the VMR Oakland-v2 dataset, HIM achieved a macro F1 score of 0.76 while

AMN and Leaf averaged 0.71 and 0.61, respectively. Qualitative results of AMN and

HIM are shown in Figure 6.11. We can see a significant improvement on the points that

are at the boundary of object regions using HIM. This can be explained by the way AMN

represents interactions between points. The higher order potentials over regions prefer

for the region to have a homogeneous label. In contrast, HIM supports heterogeneous

label distributions and it can preserve the correct labeling at the boundary of regions.

For example, in Figure 6.11-f the top border of a building is misclassified as vegetation

using AMN model. This is because the points possess similar local features (scatter

and high elevation) that resemble vegetation. Furthermore region-wise features do not

disambiguate the problem and the high-order potential function will prefer to group these

points as the same incorrect label. HIM solved this problem by learning the context of

the regions in the top level. Such context becomes essential when local features and

point context both failed to capture the correct label. Table 6.5 shows individual class

performance of the three algorithms. As we expected, Leaf performs the worst of the

three since it does not include any contextual information. The poor performance on

tree-trunk, vehicle, and wire classes demonstrates the difficulty of this dataset.

6.6. EXPERIMENTAL ANALYSIS ON 3-D POINT CLOUDS 63

(a) (b)

(c) (d)

(e) (f)
— Ground — Bldg. — Veg. — Wire — Pole — Tree-trunk — Vehicle

Figure 6.11: Point cloud classifications on the VMR Oakland-v2 dataset. Left column:
HIM classification. Right column: AMN classification.

Table 6.5: Precisions (P) and recalls (R) on the VMR Oakland-v2 dataset.

Wire Pole Ground Veg. Trunk Bldg. Veh.

P
AMN 0.66 0.55 0.99 0.94 0.55 0.80 0.70
HIM 0.73 0.51 0.99 0.96 0.65 0.83 0.79
Leaf 0.49 0.42 0.99 0.90 0.46 0.74 0.63

R
AMN 0.72 0.63 0.99 0.94 0.30 0.92 0.43
HIM 0.75 0.67 0.98 0.93 0.41 0.93 0.74
Leaf 0.52 0.53 0.99 0.90 0.13 0.87 0.38

On the GML-PCV dataset, HIM outscored NAMN 0.66 to 0.59 in Dataset A and

0.85 to 0.77 in Dataset B; Leaf averages 0.49 in A and 0.69 in B. Table 6.6 shows

the per-class performance of the three algorithms. In Dataset A, all three algorithms

perform poorly on vehicles and shrub classes. In contrast with the VMR Oakland-v2

dataset, few points constitute vehicles in this dataset. The shape information of small

objects is almost lost in these long range aerial scans. Because of this,the vehicle and

64 CHAPTER 6. HIERARCHICAL INFERENCE MACHINES

Table 6.6: Precisions (P) and recalls (R) on the GML-PCV dataset.

Dataset A Ground Bldg. Tall-veg. Shrub Veh.

P
NAMN 0.90 0.87 0.92 0.72 0.37
HIM 0.95 0.91 0.99 0.31 0.54
Leaf 0.92 0.74 0.96 0.06 0.03

R
NAMN 0.96 0.58 0.99 0.09 0.16
HIM 0.98 0.77 0.98 0.36 0.10
Leaf 0.96 0.37 0.93 0.13 0.01

Dataset B

P
NAMN 0.99 0.88 0.95 0.25
HIM 0.99 0.83 0.97 0.53
Leaf 0.98 0.79 0.88 0.38

R
NAMN 0.98 0.81 0.89 0.57
HIM 0.99 0.92 0.97 0.52
Leaf 0.99 0.63 0.96 0.10

shrub classes share similar local features and no contextual information can be used to

differentiate between the two. Without the ambiguity between vehicles and shrubs, we

can see an improvement on shrub in Dataset B.

One key characteristic of this dataset is that the ground points are not on the same

elevation, so the elevation of a point provides little information about its class. Due to

such difficulty, Leaf has extremely poor performance on the shrub and vehicle classes.

For example, Leaf cannot distinguish shrub from tall-vegetation because of their similar

local features (Figure 6.12-f). HIM learns that shrubs have a high distribution ground in

its neighborhood, while tall-vegetation does not and can fix this mistake (Figure 6.12-e).

Another challenging example is shown in (Figure 6.12-c). In this dataset, the roofs

of buildings can extend for very large areas. Hence, the Elev descriptor can no longer

discrminate between buildings and the ground as the relative height is the same. HIM

learns that building regions are above the neighboring ground regions and propagates this

information. It corrects misclassified building points using this contextual information

(Figure 6.12-b).

6.6. EXPERIMENTAL ANALYSIS ON 3-D POINT CLOUDS 65

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

—
G

ro
u

n
d

—
B

u
il

d
in

g
—

T
al

l-
ve

g.
—

S
h

ru
b

—
V

eh
ic

le

F
ig

u
re

6.
12

:
P

oi
n
t

cl
ou

d
cl

as
si

fi
ca

ti
on

s
on

th
e
G
M
L
-P

C
V

d
at

as
et

.
L

ef
t

co
lu

m
n

:
gr

ou
n

d
tr

u
th

la
b

el
in

g
.

M
id

d
le

co
lu

m
n

:
H
IM

cl
as

si
fi

ca
ti

on
.

R
ig

h
t

co
lu

m
n

:
L
e
a
f

cl
as

si
fi

ca
ti

on
.

Chapter 7

Co-inference Machines

7.1 Introduction

With the advent of an increasingly wide selection of sensing modalities (e.g., optical

cameras, stereo/depth cameras, laser scanners, flash ladar, sonar), it is now common

to obtain multiple observations of a given scene. In general, however, the sensor obser-

vations from different modalities often do not uniquely correspond to each other. For

example, 1) A laser scanner will never return any depth readings past a maximum range

limit, while a camera can measure pixels infinitely far. 2) Range sensors, such as the X-

Box Kinect, will often have missing depth information due to imperfect correspondences.

3) Scanning range sensors now commonly used on ground vehicles generate point clouds

with highly variable point density in 3-D because of variations in depth and incidence

angle coupled with complex scanning patterns. Further complicating matters is the fact

that it is physically impossible for the two sensors to have the exact same viewpoint,

and in practice the sensors are often physically far apart. As a consequence, objects are

often visible in one sensor but occluded in the other(s).

In this chapter, we address these fundamental challenges that arise in scene parsing

from multiple modalities. While our approach could be applied to multiple sensors,

for clarity, we henceforth focus on parsing scenes from images and 3-D point clouds;

however, our approach is not specific to this application and relies on general definitions

and operators. In our application, we are given an image, a 3-D point cloud, and the

camera parameters to project the 3-D points into the image plane. Our approach will

simultaneously assign a semantic category (e.g., building, car, etc.) to all elements in

both domains, as illustrated in Figure 7.1. The main contribution of this work is a

technique for performing simultaneous/co-inference across domains when there is not a

unique correspondence between modalities. We evaluate the efficacy of our approach on

our CMU Image+Laser dataset (Section 2.3.1).

68 CHAPTER 7. CO-INFERENCE MACHINES

— Road — Sidewalk — Ground — Shrub
— Tree-trunk — Tree-top — Building

Figure 7.1: Multimodal scene parsing. The reference scene (left) is observed with a
camera and laser scanner and simultaneously classified in the image (middle) and 3-D
point cloud (right).

7.2 Background

7.2.1 Motivation

Two spatially adjacent scenes from the CMU Image+Laser dataset are shown in

Figure 7.2 to highlight the challenges of this problem. Our CMU Image+Laser dataset

was collected with a laser scanner and camera mounted on a vehicle driving in an urban

environment. As the vehicle moves, the laser scanner continuously collects and maps the

3-D points to a global reference frame. Because the laser scanner operates in a push-

broom mode, the displacement is often on the order of tens of meters between the location

of the scanner when it observes a 3-D point versus the location of the corresponding

camera(s) into which the 3-D point is projected. Hence, there are often multiple 3-D

points of different objects along the ray of the camera’s (occluded) viewpoint, e.g., the

building behind the trees. In addition, the laser scanner samples the scene at a much

sparser rate, i.e., we have many more pixels than number of points. Currently, many

datasets with combined image and depth data are post-processed in order to obtain a

full-resolution depth image (Liu et al., 2010, Silberman and Fergus, 2011, Janoch et al.,

2011). While interpolation might work well under appropriate conditions, an accurate

and complete interpolation is impossible in general, especially in outdoor environments

(e.g., there is no depth for pixels past the maximum range of the sensor, and the density

of measured points in 3-D varies substantially).

7.2.2 Related Work

The problem of analyzing scenes in combined 2-D and 3-D data has been investigated

early in the literature (Nitzan et al., 1977, Besl and Jain, 1986, Kweon et al., 1988);

7.2. BACKGROUND 69

Figure 7.2: Example images and point cloud from our CMU Image+Laser dataset.
The point cloud is colored by elevation. Colored circles are drawn to help the reader
make correspondences between the domains.

however, the problem has received a considerable increase in attention due to the broad

availibility of inexpensive sensors (Matthies et al., 2003, Dima et al., 2004, Douillard

et al., 2011a). The conventional way to approach this problem is to constrain the rep-

resentation into only one of the modalities while integrating information from the other

discarded domain as features. That is, the approach can be 2-D driven (Kweon et al.,

1988, Dima et al., 2004, Baseski et al., 2007, Brostow et al., 2008, Gould et al., 2008a,

Xiao and Quan, 2009, Zhang et al., 2010, Collet et al., 2011b, Silberman and Fergus,

2011), in that reasoning is done in the image while integrating 3-D features, or the

approach can be 3-D driven (Koppula et al., 2011, Tombari and Stefano, 2011, Douil-

lard et al., 2011a, Lai et al., 2012), in that the predictions are made on the 3-D data

while integrating 2-D features. These approaches are typically only applicable when the

two modalities are in correspondence. In the commonly occurring case when there is a

disparity between domains, constraining the modalities into a single representation can

have negative consequences, as illustrated in Figure 7.3.

70 CHAPTER 7. CO-INFERENCE MACHINES

Figure 7.3: The effects of constraining the representation into a single domain. Top (a):
Reference scene. Middle (b): 2-D driven approach. The image is segmented (left) and
then back-projected into the 3-D point cloud (right) using occlusion reasoning. The 3-D
region colors correspond to the 2-D segmentation, except the 3-D points colored black
which are occluded with respect to the camera’s viewpoint and are not associated with
any 2-D region. Bottom (c): 3-D driven approach. The original 3-D point cloud is seg-
mented (left) and then projected into the image plane (right) using occlusion reasoning.
Note that not every pixel is associated with a 3-D region and that the the resulting 2-D
regions are not connected due to occlusions, and sampling rates.

7.3. REASONING WITH MULTIPLE MODALITIES 71

In the presence of this data mismatch, we instead propose to treat both modalities

as first class objects, that is, we never discard data from either domain and we perform

joint inference over all modalities. By coupling the inference over all modalities, we

can propagate contextual information to and from data without correspondences, which

would be discarded with the canonical approach, in order to aid predictions.

7.3 Reasoning with Multiple Modalities

7.3.1 Inference in One Modality

We wish to infer semantic labelings in both modalities simultaneously. In principle, we

might define a single graphical model with edges linking nodes between modalities as

well as high-order cliques over regions. Optimizing and learning parameters in such a

graphical model is difficult because of the exponential number of label configurations

and intractable structure. Instead, we build upon the hierarchical inference machine

framework for scene parsing from the previous chapter (Chapter 6). To simplify the

presentation of our multi-modal scene parsing approach, we first revisit and modify four

notations used in Section 6.3.

First, we denote Xt to be the set of regions at level t (which was previously denoted

as Rt(·)).
Second, we denote q : X → R|K| to be the MaxEnt probability distribution that

predicts each class’ probability for the region, i.e.,

bi,t[k] = qt(xi)[k] (7.1)

= Pt(Yi = k|xi), (7.2)

where Pt is defined in Equation (6.3). Hence, the learning problem can be re-written as

arg min
qt

∑
xi∈Xt

DKL(b̃i||qt(xi)), (7.3)

where DKL is the KL divergence and b̃i is the ground truth, empirical label distribution

for region xi.

Third, we denote

Bt = ⊕t−1
τ=1 ⊕xi∈Xτ {bi,τ}, (7.4)

where ⊕ denotes the list concatenation operator, to be all previous predictions made

over all regions in the hierarchy up to level t.

Fourth, we denote φ(xi)→ Rd1 to be the domain-specific features computed for region

xi, e.g., the RShape2D descriptor for images described in Section 3.3. Furthermore, we

denote φ̆t(xi,Bt−1) → Rd1+d2 to be the region features augmented with the contextual

features, as described in Equation (6.10).

72 CHAPTER 7. CO-INFERENCE MACHINES

7.3.2 Co-inference in Multiple Modalities

We denote by X (1) and X (2) the set of regions in the hierarchical segmentations gener-

ated from two modalities, images and 3-D point clouds, respectively. A straightforward

approach to analyze the modalities would be to construct two independent region hi-

erarchies and to perform independent inference. However, instead of predicting over

each domain separately, we want to couple the predictions so that information from one

modality is propagated to the other. This is important because some domains are more

apt at predicting certain categories than others. For example, as our experiments show,

images are better for discriminating between physically similar things but with different

texture (e.g., road vs. sidewalk), and 3-D point clouds are better for semantically simi-

lar objects but at different scales (e.g., buses vs cars). In order to use this inter-domain

context, the predictors must incorporate this information at training-time. We now dis-

cuss how to modify the unimodal inference procedure to use information from multiple

modalities.

Inter-domain Co-neighborhoods

First, we need a notion of correspondence between regions in different domains. We

define an inter-domain co-neighborhood function ηj : X (i) → ℘(X (j)), where ℘ is the

power set operator. Given a region in one domain, this function simply returns a (po-

tentially empty) set of neighboring regions in the other domain; we refer to this set of

corresponding neighbors in the other domain as co-neighbors.

As previously discussed for our application, it would be unwise to directly use pixel

and 3-D point correspondences; instead, we use the following approach. For each 3-D

region in the 3-D segmentation X (2) , we project its points into the image plane, using

z-buffering to maintain closest-to-camera ordering, resulting in a (partial) projected 2-D

segmentation. Now, for any 3-D region x(2) ∈ X (2), η1(x(2)) returns all the 2-D regions

that the projected segmentation of x(2) touches in the 2-D segmentation, and for any

2-D region x(1) ∈ X (1), η2(x(1)) returns all 3-D regions that x(1) touches in the projected

segmentation. Figure 7.4 illustrates our co-neighborhoods.

Inter-domain Overlap

Next, we need a notion of how much a region in one modality should influence a re-

gion in the other. We define an inter-domain overlap function ν : X (i) × X (j) → R+,

which assigns a non-negative value indicating a degree of correspondence between two

regions in different modalities. We use the intersections of regions in the projected 3-D

segmentation and the 2-D segmentation to define this overlap. Figure 7.4 illustrates

inter-domain overlap.

7.3. REASONING WITH MULTIPLE MODALITIES 73

xi
(1)

xj
(2)

A

B C

D

E xk
(2)

η2(x
(1)
i) = x

(2)
j

η1(x
(2)
k) = ∅

ν(x
(1)
i , x

(2)
j) = B

|x(1)
i | = A+B

|x(2)
j | = B + C +D

Figure 7.4: Synthetic example of inter-domain co-neighborhoods and overlaps. The solid

outline is the only 2-D region x
(1)
i , and the dashed outlines are 2-D projections of the

3-D regions x
(2)
j and x

(2)
k ; note that the projection of x

(2)
j is not simply connected.

Inter-domain Context Features

Using the above definitions, we define the fixed-length, inter-domain context feature

function h
(i,j)
t : X (i) × B(j) → RK+1, which, for a given region in one domain, computes

a contextual feature vector using its co-neighboring K-class predictions in the other

domain. Formally,

h
(i,j)
t (x

(i)
k , B

(j)
t) =

∑
x
(j)
l ∈ηj(x

(i)
k)

ν(x
(i)
k , x

(j)
l)

|x(i)
k |

[
b
(j)
l,t−1 , 1

]T
, (7.5)

where |x| is the area of the (projected) region as used in ν. In words, the first K values

of this vector are the weighted average of the predictions of the co-neighboring regions in

the other domain, where the weight is based on inter-domain overlap; and the last value

is in [0, 1] and is the fraction of overlap with the co-neighboring region(s). It is 0 when

the first K values are 0, which happens when a region is observed in only one modality,

and it is 1 when the first K values sum to 1, which happens when a region fully overlaps

with co-neighbor region(s). This value is needed to disambiguate how much a region

should trust its co-neighbors’ predictions. For example, a co-context feature value of 0.2

could be due to high predicted probability and low overlap, or vice versa.

Putting It Together

Given two hierarchical segmentations and a procedure for propagating information be-

tween regions in the different modalities, we can now jointly train the entire procedure.

For simplicity in the explanation, we assume that the two hierarchies have the same

number of levels. We train two sets of predictors {q(1)
t }, {q

(2)
t }, one set for each hierar-

chy. Instead of training all the predictors for one domain first before starting to train

the other, we instead train pairs of predictors at a time as we iterate over the levels.

74 CHAPTER 7. CO-INFERENCE MACHINES

Algorithm 4 train co inference

1: Inputs: Labeled region hierarchies over N different modalities {X (i)}Ni=1, Traversal
sequence [t1, . . . , tT].

2: Q(i) = ∅, ∀i // predictors for each modality
3: B = ∅, ∀i // predictions over all regions, in all domains encountered so far
4: for t = t1 . . . tT do
5: Bt = ∅
6: for i = 1 . . . N do
7: q

(i)
t = train predictor(X (i)

t , B) // Solve Equation (7.3) using Equation (7.6)

8: Q(i) ← Q(i) ⊕ {q(i)
t } // Save for test-time

9: [U ,V] = split data(X (i)
t) // U ∪ V = X (i)

t , U ∩ V = ∅
10: qU = train predictor(U , B)
11: qV = train predictor(V, B)
12: for x ∈ U do
13: Bt ← Bt ⊕ {qV (x)}
14: end for
15: for x ∈ V do
16: Bt ← Bt ⊕ {qU (x)}
17: end for
18: end for
19: B ← B ⊕Bt // Use the stacked predictions to couple the modalities
20: end for
21: Return: Trained test-time predictors for each modality {Q(i)}Ni=1

That is, we first train q
(1)
t−1 and q

(2)
t−1 before training q

(1)
t and q

(2)
t . In order to couple the

predictions and propagate context across domains, we augment our feature representa-

tion with the respective co-neighbors’ predictions. That is, when training q
(i)
t over the

regions x(i) ∈ X (i)
t , we use the fixed-length region feature representation

˘̆
φ

(i)
t (x(i), B

(j)
t) = [φ̆

(i)
t (x(i)) ; h

(i,j)
t (x(i), B

(j)
t)] ∈ Rd1+d2+K+1, (7.6)

where φ̆
(i)
t (x(i)) ∈ Rd1+d2 is the feature representation augmented with context features

derived only from the previous predictions in modality i. Using the features computed

from
˘̆
φ

(i)
t couples the contextual information from the other modality j’s previous predic-

tions when training q
(i)
t . Algorithm 4 summarizes the training procedure in the simplest

case of one example/region hierarchy (observed with N modalities) and using 2-fold

stacking (Wolpert, 1992); it is implied that each region xi is associated with its ground

truth empirical distribution b̃i. The test-time inference follows similarly, except we re-

place lines 7-17 with Bt ← Bt ⊕ {q(i)
t (x)},∀x ∈ X (i)

t , where q
(i)
t = Q(i)[t].

Although the presentation has focused on the image and point cloud setting, the

general definitions of η and ν can be applied to any multi-modality scenario for which

there is an operational definition of the projection from one modality to another, which,

7.4. EXPERIMENTAL ANALYSIS 75

in order to leverage information, must exist. For example, co-neighborhoods can be

defined between samples that correspond to the same physical space (e.g., in images and

infrared) and/or time (e.g., in audio and video). The key benefit of our approach is that

we eliminate the constraint of requiring a unique correspondence between domains and

that we can pass information in a softer manner through contextual features.

7.4 Experimental Analysis

7.4.1 Models

Given an image and a point cloud, our approach returns a complete labeling of both

modalities simultaneously. We compare this approach with the natural baselines of

using one modality in isolation and with augmented features computed in the other

modality. That is, we compare with the single-domain representations of the state-of-

the-art hierarchical inference framework, analyzed in Chapter 6. Controlling for the

same hierarchical representation, features, and predictors facilitates a fair comparison

among six possible models:

1. 2D: Hierarchical segmentation and features are computed only in the image (Sec-

tion 6.3). No 3-D data can be classified.

2. 2D+A: Hierarchical segmentation and features are computed in the image. In

addition, the 2-D regions are back-projected into the point cloud (Figure 7.3(b))

and 3-D features are computed over these 3-D regions and appended to the feature

descriptor. No 3-D data is classified with this model.

3. 3D: Hierarchical segmentation and features are computed only in the point cloud

(Section 6.5). No 2-D data can be classified.

4. 3D+A: Hierarchical segmentation and features are computed in the point cloud.

In addition, the 3-D regions are projected into the image (Figure 7.3(c)) and 2-D

features are computed over these 2-D regions and appended to the feature descrip-

tor. No 2-D data is classified with this model.

5. Co: Our proposed approach. Two hierarchical segmentations are separately con-

structed in the image and point cloud, with the same features computed over the

regions as in 2D and 3D, respectively.

6. Co+A: Same as Co, but with each region’s features augmented across domains

as done in 2D+A and 3D+A

76 CHAPTER 7. CO-INFERENCE MACHINES

7.4.2 Inference Machine Setup

All of the models require 1) a hierarchical segmentation, 2) region features, and 3)

MaxEnt predictors. We instantiate the (co-)inference machines using the specifications

similar to those used in the experiments of Chapter 6. We use the F-H (Felzenszwalb

and Huttenlocher, 2004) algorithm to create 4-level segmentation hierarchies in images

and 3-D point clouds, as described in Section 3.2. For the 2-D region features, we

compute the RShape2D descriptor and averaged RCodes (Section 3.3) over quantized

per-pixel TXT, LBP, I-SIFT, and C-SIFT descriptors (Section 3.1.1). For the 3-

D region features, we compute the RShape3D region-Elev, region-Geom descriptors

and averaged RCodes (Section 3.3) over quantized per-point SpinImage and combined

[Geom , Orient] descriptors (Section 3.1.2). Furthermore, we purposely do not use the

point’s distance from the laser sensor to help reduce dataset bias of observing scenes from

a vehicle on the road. Finally, we use boosting (Section 4.4) to optimize Equation (7.3)

where the weak learners are vector regression trees, and are sequentially trained using

10-fold stacking (Wolpert, 1992). We iterate over the hierarchy from bottom → top →
bottom with the sequence: [`1, `1, `2, `2, `3, `3, `4, `4, `3, `3, `2, `2, `1, `1], where `1, `4 are

the leaf and root levels, respectively.

7.4.3 Analysis

We evaluate on the CMU Image+Laser dataset (Section 2.3.1). As the models defined

only over a single modality cannot make predictions on the other, we evaluate the per-

formance on the points and pixels that correspond so that the comparisons between Co

vs. 2D/3D are consistent. However, note that Co will make predictions over the entire

image and point cloud. As there is a severe (and unavoidable) imbalance in the number

of samples per class, we evaluate the the per-class F1 score, computed separately over

pixels/voxels in each domain.

In Figure 7.5, we present performance for each of the 6 models on the 3-D point

clouds and images. We immediately see that feature augmentation in both domains

is beneficial, especially in the 3-D point cloud. This result is expected as texture can

help disambiguate among road, sidewalk, and ground in 3-D. Next, we see that in both

domains Co ≥ Co+A, indicating that the information from the other domains can be

encoded as our contextual features without a loss of representation power and avoids

overfitting due to a larger, augmented feature representation. This is important as it

simplifies the representation and computation time, i.e., we do not need to duplicate the

feature computation.

Figure 7.5-c shows an improvement in F1 on all except one rare class in the 3-D

point clouds. This improvement is due to the robustness of the representation: 1) There

7.4. EXPERIMENTAL ANALYSIS 77

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ro
ad

si
de

w
al
k

gr
ou

nd

bu
ild

in
g

ba
rri

er

bu
s−

st
op

st
ai
rs

sh
ru

b

tre
e−

tru
nk

tre
e−

to
p

sm
al
l−

ve
hi
cl
e

bi
g−

ve
hi
cl
e

pe
rs

on

ta
ll−

lig
ht

Co

Co+A

3D+A

3D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ro
ad

si
de

w
al
k

gr
ou

nd

bu
ild

in
g

ba
rri

er

bu
s−

st
op

st
ai
rs

sh
ru

b

tre
e−

tru
nk

tre
e−

to
p

sm
al
l−

ve
hi
cl
e

bi
g−

ve
hi
cl
e

pe
rs

on

ta
ll−

lig
ht

po
st

si
gn

ut
ilit

y−
po

le
w
ire

tra
ffi
c−

si
gn

al

Co

Co+A

2D+A

2D

(a) (b)

Label Co 3D+A Diff.

Road .827 .802 .026
Sidewalk .731 .697 .034
Barrier .464 .438 .026
Bus-stop .112 .061 .051
Stairs .386 .239 .147
Tree-trunk .284 .268 .015
Small-vehicle .735 .684 .051
Big-vehicle .568 .266 .302
Person .260 .241 .019
Tall-light .103 .120 -.017

Label Co 2D+A Diff.

Barrier .509 .521 -.012
Bus-stop .163 .138 .025
Stairs .339 .297 .042
Small-vehicle .844 .825 .019
Big-vehicle .502 .391 .111
Person .474 .465 .010
Tall-light .020 .005 .015
Post .097 .072 .025
Wire .015 .066 -.050
Traffic-signal .178 .282 -.104

(c) (d)

Figure 7.5: Per-class F1 scores on our Image+Laser dataset. (a) Comparisons on the
3-D point clouds. (b) Comparisons on the images. Categories from (a) and (b) with at
least a difference of 0.01 in F1 are show in (c) and (d), respectively; differences of at least
0.02 are bolded. Categories not shown in (a) and (b) achieved 0.0 F1 for all methods.

is bound to be back-projection errors when converting the 3-D point cloud into a 2-D

segmentation from which 2-D features are computed. With the co-inference approach,

we are more robust to these errors due to passing information as a distribution of labels,

rather that encoding information in a large feature descriptor for which the spatial

support could be poor. 2) As there is more image data than point cloud data, co-inference

is indirectly passing larger amounts of global information to the 3-D point cloud, which

is unavailable to 3D+A. For example, the image component of Co examines the global

context of all regions in the image, some of which might not have 3-D data. 3) As Co

78 CHAPTER 7. CO-INFERENCE MACHINES

(a) (b)

— Road — Sidewalk — Ground — Shrub — Small-vehicle
— Tree-trunk — Tree-top — Building — Big-vehicle

Figure 7.6: Qualtitative comparisons of multi-model parsings 2D+A (a-top), 3D+A
(a-bottom) vs. Co (b). The proposed co-inference approach does a much better job of
identifying the big-vehicles (buses).

does not augment the features across domains, its feature dimension is smaller and less

susceptible to overfitting (for Co/3D, φ(2)(x) ∈ R98 and for 3D+A, φ(2)(x) ∈ R693).

For images, Figure 7.5-d shows a big gain in the big-vehicle class, modest improve-

ments in 3 other classes and slightly better overall. The large improvement in the

big-vehicle class can be explained through Figure 7.6. For 2-D regions on the bus, corre-

sponding 3-D regions have a large planar structure, similar to buildings for which they

are often confused. Hence, simply augmenting the 3-D geometric features is not enough

to disambiguate. By simultaneously reasoning in 3-D space, correct context can be prop-

agated back into the image. Furthermore, we improve upon the vegetation that occlude

each other. Figure 7.5 also shows a decrease in performance in the wire and traffic-signal

classes because they are particularly hard classes to discriminate in 3-D point cloud

data. As these two classes are physically very small and constitute a small fraction of

the dataset, none of the 3-D models are currently able to detect them. Hence, since they

cannot be discerned in the 3-D point cloud, co-inference cannot provide correct context

7.5. SUMMARY 79

Table 7.1: Comparison of average (co-)inferences times per scene. Segmentation and
feature computation time is held constant.

Co 2D+A 3D+A 2D 3D

Time (s) 0.463 0.452 0.385 0.421 0.123

for these classes. Note that the remaining classes which the 3-D models can predict are

improved upon, on average.

In addition to achieving improved performance and complete understanding in both

domains simultaneously, co-inference is more efficient in practice. Table 7.1 summarizes

the inference times for processing the entire scene, i.e., the entire image and point cloud,

with the different models. On average, Co takes 0.46 s to classify the entire scene

whereas using 2D+A and 3D+A takes 0.45 s + 0.39 s = 0.84 s. Furthermore, from a

practical viewpoint, co-inference is simpler to implement than feature augmentation due

to the special cases which must be accounted for, e.g., the special case when a region is

observed in only one modality and the features cannot be computed for it in the other

modality.

7.5 Summary

This chapter addresses the problem of parsing scenes from multiple modalities when

there is not a unique correspondence between data points across modalities. Instead

of restricting our representation to a single modality and integrating information from

the unselected ones, we treat both modalities as first class objects and propose a joint

inference procedure that couples the predictions among all of the modalities. Our ex-

periments demonstrate that our co-inference approach obtains improved predictions in

all modalities compared to multiple, decoupled representations with the added benefit

of efficiency and simplicity.

Chapter 8

Temporal Consistency in

Streaming Video

8.1 Introduction

In this chapter, we address the problem of generating spatially and temporally consistent

predictions from streaming video, as illustrated in Figure 8.1, that would be seen from

a moving platform. Simply applying a scene parsing algorithm to each image indepen-

dently is not sufficient because it does not properly enforce consistent predictions over

time. In practice, the temporally inconsistent predictions result in “flickering” classifi-

cations. This effect is not solely due to the motion of the camera through the 3-D scene:

we often observe this behavior even on a sequence of images from a static scene due

to subtle illumination changes. These inconsistencies in predictions can have a major

impact on robotic tasks in practice, e.g., predicted obstacles may suddenly appear in

front of the robot in one frame and then vanish in the next. The situation is further

complicated by the need for online/causal algorithms in robotics applications, in which

the system does not have access to future frames, unlike video interpretation systems

which can proceed in batch mode by using all the available frames either through a

spatio-temporal graphical model or segmentation of the video.

Inspired by early work in robotics using linear filters (Giachetti et al., 1998), we

consider a simple, causal filtering technique for maintaining temporally consistent pre-

dictions. Our approach is a meta-algorithm in the sense that it is agnostic to the specific

way in which predictions are generated, so that it can be used with any per-frame scene

analysis technique. Our only requirement is that the per-frame scene analysis technique

predicts a per-pixel probability distribution over semantic labels, instead of a single label.

Our algorithm is illustrated in Figure 8.2. At the current frame I(t), each pixel i is

associated with a label probability distribution y
(t)
i , which is produced by a scene analysis

82 CHAPTER 8. TEMPORAL CONSISTENCY IN STREAMING VIDEO

Figure 8.1: Parsing scenes from video. Classified videos from this work are available at
http://www.cs.cmu.edu/~dmunoz/.

algorithm. Our goal is to ensure that the final label distribution that we return for pixel

i is consistent with the temporal prediction ŷ
(t−1)
j from its corresponding pixel j in the

previous frame I(t−1), which we do not know. Hence, we use optical flow (Werlberger

et al., 2009) to estimate a neighborhood of candidate correspondences in the previous

frame. Giving all neighbors equal weight and defining the smoothed prediction based

on the average of the neighborhood’s predictions is unwise because the neighborhood

could include pixels of completely different objects. Therefore, between pixels i ∈ I(t)

and j ∈ I(t−1), we propose to learn a data-driven, visual similarity function to assign

a high weight wij between pixels that are likely to correspond to each other (and low

weight for those that are not) in order to select correct correspondences and accurately

propagate predictions over time.

Before discussing how predictions are combined between two frames, in Section 8.3,

we first demonstrate the importance of using a data-driven function for measuring vi-

sual similarity between candidate pixels and present an efficient algorithm to learn this

similarity function. In Section 8.4, we discuss how candidate pixels between frames

are generated and how to combine the previous frame’s predictions using the learned

similarity function. In Section 8.5, we validate our proposed method over three dis-

tinct semantic labeling algorithms on three different datasets. Our experiments confirm

that this natural approach yields temporally consistent predictions, with the additional

important benefits of being very efficient and simple to implement.

http://www.cs.cmu.edu/~dmunoz/

8.1. INTRODUCTION 83

(a
)

(b
)

(c
)

(d
)

(e
)

F
ig

u
re

8
.2

:
T

em
p

o
ra

l
co

n
si

st
en

cy
ov

er
v
ie

w
.

(a
)

F
ra

m
e
I

(t
−

1
) .

(b
)

F
ra

m
e
I

(t
) .

T
h

e
d

is
tr

ib
u

ti
o
n

o
f

la
b

el
s

a
t

a
p
ix

el
in

fr
a
m

e
I

(t
)

is
co

m
b

in
ed

w
it

h
a

w
ei

gh
te

d
av

er
a
ge

of
th

e
d

is
tr

ib
u

ti
on

s
of

la
b

el
s

in
a

n
ei

gh
b

or
h

o
o
d

of
p

ix
el

s
(t

h
e

3
×

3
o
ra

n
g
e

g
ri

d
)

in
th

e
p

re
v
io

u
s

fr
a
m

e
I

(t
−

1
) .

T
h

is
n

ei
gh

b
o
rh

o
o
d

is
in

it
ia

li
ze

d
u

si
n

g
op

ti
ca

l
fl

ow
te

ch
n

iq
u
es

(c
).

W
e

p
ro

p
ag

at
e

p
re

d
ic

ti
o
n

s
a
cr

o
ss

ti
m

e
b
y

le
a
rn

in
g

a
si

m
il

a
ri

ty
fu

n
ct

io
n

b
et

w
ee

n
p

ix
el

s
i
∈
I

(t
)

(e
)

an
d
j
∈
I

(t
−

1
)

(d
).

T
h

is
si

m
il
ar

it
y

as
si

gn
s

h
ig

h
va

lu
es
w
ij

b
et

w
ee

n
v
is

u
a
ll

y
si

m
il

a
r

p
ix

el
s

(g
re

en
ce

ll
s)

an
d

lo
w

va
lu

es
ov

er
v
is

u
al

ly
d

iff
er

en
t

p
ix

el
s

(r
ed

ce
ll

s)
.

84 CHAPTER 8. TEMPORAL CONSISTENCY IN STREAMING VIDEO

8.2 Background

One popular way to incorporate temporal information is to compute Structure from

Motion (SfM) between consecutive frames in order to compute geometric/motion-based

features (Brostow et al., 2008, Sturgess et al., 2009, Micusik et al., 2012). One drawback

of this approach is that accurate SfM computation may be slow or may require a large

buffer of previous frames to process. Alternatively, or in addition, a large graphical

model can be defined among multiple frames, where edges between frames propagate

predictions over time (Wojek et al., 2010, Ess et al., 2009, Xiao and Quan, 2009, de Nijs

et al., 2012, Badrinarayanan et al., 2010, Chen and Corso, 2011). Performing bounded,

approximate inference over such large models remains a challenging problem. Further-

more, in order to efficiently compute approximate solutions, only an estimate of the MAP

distribution is returned, i.e., there is no uncertainty in the labeling or marginal distribu-

tions. To further improve efficiency in practice, techniques make further approximations

at the cost of loss of guarantees on the solution quality. By returning label probabilities,

our approach may be more useful as input for subsequent robotic algorithms, such as

reasoning about multiple interpretation hypotheses. Another technique for maintaining

temporal consistency, which is similar to defining a spatio-temporal graphical model,

is to analyze volumes from a spatio-temporal segmentation (Grundmann et al., 2010,

Brendel and Todorovic, 2011, Xu et al., 2012). This batch approach is omniscient in the

sense that it requires processing the entire video sequence, which is typically not suitable

for most robotic applications.

8.3 Learning Similarity

8.3.1 Metric Learning

In order to selectively propagate predictions from the previous frame, we assign high

weight between pixels that are visually similar. One standard way to measure similarity

wij between two pixels is through a radial basis kernel

wij = exp

(
−d(fi, fj)

σ2

)
, (8.1)

where fi ∈ Rd is the vector of visual features of pixel i, σ = 0.4 controls the bandwidth

of the kernel, and d : Rd ×Rd → R+ is a distance function. Only using the pixels’ RGB

values for the feature representation is not discriminative enough to correctly match

correspondences. We instead augment RGB values with the responses from 17 gradient

filters and a 11× 11 local binary pattern window, resulting in a feature descriptor fi ∈

8.3. LEARNING SIMILARITY 85

R140. Because of the increase in dimensionality, the standard squared Euclidean distance

d(fi, fj) = (fi − fj)T (fi − fj) = Tr(∆ij), (8.2)

where ∆ij = (fi − fj)(fi − fj)T , is typically large between most samples in the feature

space and is not discriminative between different types of objects, as illustrated in Fig-

ure 8.3-a,b. Alternatively, we can learn a distance that has the desirable properties for

our application. That is, for a pair of pixels (i, j) from the set of pairs of pixels that

truly correspond to each other, Ep, we want d(fi, fj) to be small, and for a pair of pixels

(i, k) from the set that do not correspond, En, we want d(fi, fk) to be large. Learning

a distance, or metric, also remains an active area of research (Xing et al., 2003, Davis

et al., 2007, Goldberger et al., 2004, Hadsell et al., 2006, Weinberger and Saul, 2009,

Chechik et al., 2010), and a variety of techniques could be used to learn d. As we are

concerned with efficiency in the predictions, we use a simple Mahalanobis distance

dM (fi, fj) = (fi − fj)TM(fi − fj) = Tr(MT∆ij), (8.3)

and propose an efficient method to learn the parameters M offline from training data.

We follow the max-margin learning strategy and learn a metric such that the distances

between pixels that do not correspond (i, k) ∈ En are larger by a margin than the

distances between pixels that do correspond (i, j) ∈ Ep. This can be formulated as the

convex, semidefinite program

min
M,ξ,ζ

‖M‖2F + α
∑

(i,j)∈Ep

ξij + β
∑

(i,k)∈En

ζik (8.4)

s.t. dM (fi, fj) ≤ 1 + ξij , ∀(i, j) ∈ Ep
dM (fi, fk) ≥ 2 + ζik, ∀(i, k) ∈ En
M ∈M,

whereM = {M |M � 0,M = MT } is the convex cone of symmetric positive-semidefinite

matrices, and α and β penalize violating the margins. This program can be equivalently

rewritten as the unconstrained, convex minimization

min
M∈M

Tr(MTM) + α
∑

(i,j)∈Ep

max(0,Tr(MT∆ij)− 1) (8.5)

+ β
∑

(i,k)∈En

max(0, 2− Tr(MT∆ik)),

and can be efficiently optimized using the projected subgradient method (Ratliff et al.,

2007).

86 CHAPTER 8. TEMPORAL CONSISTENCY IN STREAMING VIDEO

(a)

(b)

(c)

Figure 8.3: Comparing similarity metrics. (a) A scene with two pixels of interest selected.
(b) The inverted heatmaps of Euclidean distances of the respective pixel of interest to
every other pixel in the image (bright means small distance). (c) The inverted heatmaps
from our learned Mahalanobis metric.

8.3. LEARNING SIMILARITY 87

We define Υij and Ψik to be subgradients of the respective summands:

Υij =

{
∆ij , Tr(MT∆ij)− 1 > 0

0, otherwise,
, (8.6)

Ψik =

{
−∆ik, 2− Tr(MT∆ik) > 0

0, otherwise.
(8.7)

The subgradient update, with small step-size ηt, is then

Mt+1 ← PM(Mt − ηt(Mt + α
∑

(i,j)∈Ep

Υij + β
∑

(i,k)∈En

Ψik)), (8.8)

where PM projects to the closest matrix on the convex cone M. Since Υij and Ψik are

symmetric by construction, the closest projection, with respect to the Frobenius norm, is

computed by reconstructing the matrix with its negative eigenvalues set to zero (Golub

and Van Loan, 1996). To further improve run-time efficiency, we also constrain M to be

a diagonal matrix.

As illustrated in Figure 8.3-c, our learned metric measures visual similarity much

better than Euclidean distance. Although the computed distances may not be optimal

across the entire image, we observe correct behavior over a local area. Thus, we use

optical flow to initialize the area in which to compute distances over.

8.3.2 Obtaining Training Data

Learning the metric requires annotated examples of pairs of pixels that do and do not

correspond. One way to generate these examples is to use the annotated images and

sample pairs of pixels that belong to the same semantic category to create Ep and use

pairs between the different categories to create En. The result will be general metric for

measuring similarity between generic object categories, which is a much harder problem

than measuring similarities between instances of paired pixel correspondences. Further-

more, our similarity metric should work well between correspondences under different

viewpoints, as this is the mode of operation while the robot is moving.

We instead generate our pairs of training data using pixel correspondences across

multiple frames and viewpoints. These correspondences can be easily obtained through a

variety of different keypoint-based algorithms. Specifically, we use the publicly available

SfM package, Bundler (Snavely et al., 2006). Given a collection of images, Bundler

produces a 3-D reconstruction of the scene (which we ignore) as well as the corresponding

pixels across multiple frames. As illustrated in Figure 8.4, we use pairs of pixels from the

same correspondence to construct Ep and use pairs that do not correspond to construct

En when learning the metric offline. In addition to hard margin constraints, it may be

88 CHAPTER 8. TEMPORAL CONSISTENCY IN STREAMING VIDEO

Figure 8.4: Generating data for training the metric. Pairs of pixels of true correspon-
dences (along the same colored line) form Ep and pairs of pixels that do not correspond
(between different colors lines) form En.

beneficial to also incorporate (convex) relative margin constraints over triplets of pixels

i, j, k

dM (fi, fj) ≤ dM (fi, fk) + δijk, (8.9)

where δijk ∈ R+ encodes the relative benefit (e.g., distance) of true correspondences (i, j)

over incorrect correspondences (i, k). These relative constraints also enable easy access

to additional training data which can be used to learn more powerful metrics in higher

dimensional spaces; we leave this for future work. Now that we can accurately measure

visual similarity, in the following section we describe how to combine predictions over

time.

8.4 Temporal Consistency

8.4.1 Optical Flow for Data Propagation

We are interested in general scene analysis without making strong assumptions on the

movement/frame-rate of the camera and/or the type of object motions in the scene.

Furthermore, we require the procedure to be as efficient as possible so it can potentially

be used onboard a mobile robot. To generate initial hypothesis between frames, we use

the efficient Anisotropic Huber-L1 dense optical flow algorithm from (Werlberger et al.,

2009) to obtain flow fields1 ←−Vx,
←−
Vy that project pixel coordinates from (u(t), v(t)) ∈ I(t)

to (u(t−1), v(t−1)) ∈ I(t−1) via[
u(t−1)

v(t−1)

]
=

[
u(t)

v(t)

]
+

[←−
Vx(u(t), v(t))
←−
Vy(u

(t), v(t))

]
. (8.10)

Although we use a state-of-the-art optical flow algorithm, it is not perfect and some

velocity vectors may not match exactly and/or some correspondences between frames
1Here, the subscripts x, y are overloaded to indicate direction and are not related to features nor

labels.

8.4. TEMPORAL CONSISTENCY 89

Algorithm 5 Causal Temporal Smoothing

1: Inputs: Metric M , previous frame I(t−1) with its temporally smoothed predictions
ŷ(t−1), and current frame I(t) with its independent predictions y(t).

2: Compute
−→
V and

←−
V between I(t−1) and I(t) using (Werlberger et al., 2009)

3: Use
←−
V to warp I(t−1) → Ĩ(t) and ŷ(t−1) → ỹ(t), except for invalid locations as defined

by Equation (8.11)
4: Compute per-pixel features for Ĩ(t) and I(t)

5: for i ∈ I(t) do
6: Define ŷ

(t)
i using Equation (8.12) (and, implicitly, Equations 8.1 and 8.3)

7: end for
8: return Temporally smoothed predictions ŷ(t)

might be missing. To help recover from missing flow information, we warp/transfer small

patches of data at a time, instead of a single pixel. That is, for each pixel (u(t), v(t)) ∈
I(t) and its correspondence (u(t−1), v(t−1)) ∈ I(t−1), we use the forward-in-time flow

vector [−
←−
Vx(u(t), v(t)),−

←−
Vy(u

(t), v(t))]T to transfer both the RGB values and temporally

smoothed predictions, ŷ(t−1), of each pixel in a 5 × 5 patch centered at (u(t−1), v(t−1)).

For each warped pixel, we accumulate RGB values and previous temporal predictions

into the respective coordinates. After all pixels from the previous frame have been

warped, the RGB values and predictions are appropriately averaged by the number of

projections that fell into each coordinate, resulting in a warped RGB image Ĩ(t) and

warped predictions ỹ(t) into the current time t.

Estimated optical flows are imperfect, and in these scenarios we do not want to

propagate label predictions over time. A standard method to detect optical flow failures

is to ensure that the flows forward and backward in time are consistent. We consider

the flow at pixel (u(t), v(t)) to be invalid if∥∥∥∥∥
[−→
Vx(u(t−1), v(t−1))
−→
Vy(u

(t−1), v(t−1))

]
+

[←−
Vx(u(t), v(t))
←−
Vy(u

(t), v(t))

]∥∥∥∥∥
2

≥ κ, (8.11)

where
−→
V is the flow from I(t−1) to I(t) and κ = 13 is a small threshold which is related

to the size of the neighborhood used in the update described in the following subsection.

8.4.2 Causal Temporal Smoothing

Now we have all the necessary components for recursive temporal smoothing: a metric for

measuring visual similarity between two pixels, wij , and a method to warp pixels between

frames. At the recursive step of our procedure, we have the warped RGB image, Ĩ(t), its

warped temporally smoothed predictions, ỹ(t), and the predicted per-pixel probabilities

from the scene analysis algorithm ŷ(t) for current frame I(t). For each pixel i ∈ I(t) and

j ∈ Ĩ(t), we compute the pixel features (RGB, texture gradients, local binary pattern)

90 CHAPTER 8. TEMPORAL CONSISTENCY IN STREAMING VIDEO

fi, fj that were used to learn our metric. Using an exponential smoothing update, we

define a pixel’s new temporally smoothed predictions using the update rule

ŷ
(t)
i =

1

Zi

 ∑
j∈N(t)

i

wij ỹ
(t)
j + cy

(t)
i

 , (8.12)

where N
(t)
i is a 5 × 5 spatial neighborhood in I(t) centered at pixel i, c = 0.25 is our

prior belief on the independent prediction from the scene analysis algorithm, and

Zi =
∑
j∈N(t)

i

wij + c, (8.13)

ensures that ŷ
(t)
i sums to one. The procedure then repeats to smooth predictions y(t+1)

using ŷ(t). The entire procedure is summarized in Algorithm 5.

8.5 Experimental Analysis

We evaluate our approach over three sophisticated scene analysis algorithms over three

different datasets (Chapter 2). All results were obtained using the same smoothing pa-

rameters across the different algorithms/datasets, and classified videos from each dataset

are available at http://www.cs.cmu.edu/~dmunoz/.

8.5.1 Algorithms and Datasets

Firstly, we analyze the CamVid dataset where the per-frame predictions come from HIM

(Chapter 6), which does not use any temporal information or additional detectors and

is comparable (Sturgess et al., 2009) or exceeds (Brostow et al., 2008) other techniques

which use these additional sources of information. For evaluating temporal consistency,

we trained two separate models. The first is trained on the standard CamVid training

fold and then evaluated on the test sequence 05VD. The second model is evaluated on

the 16E5 sequence and trained on the remaining images not from this sequence.

Secondly, we analyze the NYU Scenes dataset where the per-frame predictions

come from a deep learning architecture (Farabet et al., 2013), which were provided by

the authors. This algorithm learns features using a multi-scale convolutional neural

network and then performs inference by selecting labels based on a purity criterion over

regions in a hierarchical segmentation.

Thirdly, we analyze the MPIVehicleScenes dataset where the per-frame predic-

tions come from a per-pixel, boosting classifier (Wojek and Schiele, 2008), which were

provided by the authors and is based on JointBoost (Torralba et al., 2007).

http://www.cs.cmu.edu/~dmunoz/

8.5. EXPERIMENTAL ANALYSIS 91

Table 8.1: Breakdown of computation time for temporal smoothing.

Computation Time (s)

Optical flows (GPU) 0.02
Smoothing (CPU) 0.75

Total 0.77

Table 8.2: Per-class F1 scores and accuracy on CamVid

05VD 16E5

Class Per-frame Temporal Per-frame Temporal

sky .303 .682 .237 .639
tree .352 .563 .336 .518
road .197 .546 .150 .529
sidewalk .277 .512 .188 .357
building .165 .232 .275 .395
car .127 .456 .304 .597
pole .201 .386 .252 .285
person .138 .218 .324 .193
bicycle .323 .165 .348 .043
fence .325 .712 .335 .668
sign .367 .029 .378 .039

Accuracy .261 .591 .286 .530

8.5.2 Efficiency

There are two main components of our approach: 1) forward and backward, dense optical

flow computation and 2) temporal smoothing (which includes warping, pixel features,

and the weighted averaging). The average computation times between two frames are

shown in Table 8.1. The experiments were performed using a GeForce GTX 590 GPU

and an Intel X5670 CPU. We observe that dense optical flow computation time can be

brought down from the order of seconds with using a CPU to 10s of milliseconds with

using a GPU. As our approach relies on many, simple numeric computations, we would

expect a similar efficiency improvement with a GPU implementation.

In practice, the computational bottleneck is often from the scene analysis algorithm,

depending on how expressive the features and/or model are. For example, both of the

structured prediction algorithms take about one second to process a frame, which also

includes feature computation. However, we demonstrate with the third dataset that we

can maintain temporally consistent predictions with a simple per-pixel classifier.

92 CHAPTER 8. TEMPORAL CONSISTENCY IN STREAMING VIDEO

Table 8.3: Per-class F1 scores and accuracy on NYU Scenes

Class Per-frame Temporal

building .231 .547
car .207 .630
door .046 .000
person .094 .080
pole .169 .139
road .152 .575
sidewalk .373 .274
sign .127 .000
sky .002 .019
tree .353 .630
window .102 .101

Accuracy .209 .500

Table 8.4: Per-class F1 scores and accuracy on MPIVehicleScenes

Class Per-frame Temporal

background .420 .730
road .503 .321
lane-marking .779 .319
vehicle .075 .276
sky .206 .571

Accuracy .407 .533

8.5.3 Analysis

Videos comparing per-frame and the temporally smoothed classifications for the se-

quences are available in the supplementary multimedia attachment; qualitative exam-

ples from each sequence are shown in Figure 8.5, Figure 8.6, and Figure 8.7. The

videos demonstrate the substantial benefit of using temporal smoothing, especially on

the CamVid sequences which are captured at a much higher frame rate.

It is important to remember that our approach relies on the output of the inner scene

analysis algorithm and cannot fix misclassifications due to the biases of the base algo-

rithm. Hence, for quantitative evaluation we first only consider pixels from which the

prediction obtained by the scene analysis algorithm differs with our temporal smoothing.

We compute a confusion matrix over these differing pixels and report the per-class F1

scores as well as the per-pixel accuracy in Table 8.2, Table 8.3, and Table 8.4; improve-

ments greater than 0.03 are bolded. This evaluation measures whether we are worse or

better off with using temporal smoothing.

The behavior across datasets is consistent: categories which occupy large areas of the

8.6. SUMMARY 93

Table 8.5: Overall pixel accuracies (%)

Dataset Independent Smoothed

CamVid-05VD 84.60 86.85
CamVid-16E5 87.37 88.84
NYU Scenes 71.11 75.31

MPIVehicleScenes 93.10 93.55

image (e.g., sky, trees, cars, buildings) are significantly improved upon and predictions

on some of the smaller objects (e.g., signs, people, lane-markings) are sometimes over-

smoothed. There are various reasons as to why performance may decrease. 1) Optical

flow estimation on small objects may fail due to large displacements and/or excessive

blurring, resulting in neighborhoods that are not adequately initialized. 2) As these

objects occupy a small number of pixels, over-smoothing from spatially adjacent objects

will cause a large drop in performance. Similarly, it is challenging to accurately anno-

tated these intricate objects, and imperfections in the ground truth can further skew

evaluation. 3) These small object categories are typically challenging to classify. When

the predicted label distributions from the scene analysis algorithm are less confident, i.e.,

have high entropy, the resulting weighted combination may be incorrect. Nonetheless,

the overall improvement in accuracy shows a clear benefit of using temporal smoothing

rather than per-frame classification.

The comparisons of overall per-pixel accuracy for each sequence are shown in Ta-

ble 8.5. Due to the sparseness of the CamVid annotations, the quantitative improve-

ments are not as drastic as we would expect, however, there is a noticeable gain. We

also observe a large quantitative improvement in the NYU Scenes sequence, even in the

presence of large camera motion. The improvement in the MPIVehicleScenes dataset

is modest, however, this can be attributed to a small label set of 5 categories (vs. 11

and 33 from the other two) which often have little confusion. Furthermore, we note the

predictions are qualitatively much smoother in appearance, even from using a per-pixel

classifier.

8.6 Summary

This chapter proposes an efficient meta-algorithm for the problem of spatio-temporal

consistent 2-D scene parsing from streaming video. Our approach is based on recursive

weighted filtering in a small neighborhood, where large displacements are captured by

dense optical flow, and we propose an efficient algorithm to learn image-based similar-

ities between pixels. As we do not require information about future frames, our causal

algorithm can handle streaming images in a very efficient manner. Furthermore, we

94 CHAPTER 8. TEMPORAL CONSISTENCY IN STREAMING VIDEO

demonstrate that our approach can be wrapped around various structured prediction al-

gorithms to improve predictions without a difficult redefinition of an inference process.

8.6. SUMMARY 95

—
S

k
y

—
T

re
e

—
R

oa
d

—
S

id
ew

al
k

—
B

u
il

d
in

g
—

C
a
r

—
C

ol
u

m
n

/P
ol

e
—

P
ed

es
tr

ia
n

—
B

ic
y
cl

e
—

F
en

ce
—

S
ig

n
/S

y
m

b
ol

F
ig

u
re

8.
5:

T
em

p
or

al
cl

as
si

fi
ca

ti
on

s
on

C
a
m
V
id
-0
5
V
D

fr
am

es
18

72
-1

87
6.

T
op

:
p

er
-f

ra
m

e.
B

ot
to

m
:

te
m

p
o
ra

ll
y

sm
o
o
th

ed
.

In
co

n
si

st
en

t
p

re
d
ic

ti
on

s
ar

e
h

ig
h

li
gh

te
d

.

96 CHAPTER 8. TEMPORAL CONSISTENCY IN STREAMING VIDEO

—
A

w
n

in
g

—
B

al
co

n
y

—
B

u
il

d
in

g
—

C
ar

—
D

o
or

—
P

er
so

n
—

R
oa

d
—

W
in

d
ow

—
T

re
e

—
S

u
n

—
S

tr
ee

t-
li

gh
t

—
S

k
y

—
S

ig
n

—
S

id
ew

a
lk

F
ig

u
re

8.
6:

T
em

p
or

al
cl

as
si

fi
ca

ti
on

s
on

N
Y
U

S
c
e
n
e
s

fr
am

es
55

-5
9.

T
op

:
p

er
-f

ra
m

e.
B

ot
to

m
:

te
m

p
or

al
ly

sm
o
o
th

ed
.

In
co

n
si

st
en

t
p

re
d

ic
ti

on
s

ar
e

h
ig

h
li
gh

te
d

.

8.6. SUMMARY 97

—
V

oi
d

—
R

oa
d

—
L

an
e-

m
ar

k
in

g
—

V
eh

ic
le

—
S

k
y

F
ig

u
re

8.
7:

T
em

p
or

al
cl

as
si

fi
ca

ti
on

s
on

M
P
IV

e
h
ic
l
e
S
c
e
n
e
s

fr
am

es
26

5-
26

9.
T

op
:

p
er

-f
ra

m
e.

B
ot

to
m

:
te

m
p

o
ra

ll
y

sm
o
o
th

ed
.

In
co

n
si

st
en

t
p

re
d
ic

ti
on

s
ar

e
h

ig
h

li
gh

te
d

.

Chapter 9

Efficient 3-D Scene Parsing from

Streaming Data

9.1 Introduction

In this chapter, we address the problem of scene parsing from 3-D data when the data

is continuously streamed from a sensor on a moving vehicle, as shown in Figure 9.1. In

order to obtain high performance predictions, it has been shown that is necessary to use

models that encode the structure/relationships of the predictions (Anguelov et al., 2005,

Munoz et al., 2009a, Koppula et al., 2011). However, in the streaming-data setting, the

efficient use of these structured models is a challenging problem due to both theoretical

and practical issues. As these algorithms rely on analyzing the entire scene, rather

than individual points/voxels, it is unclear how to update the various components of

the inference process when 3-D points are being continuously streamed from the sensor.

For example, many approaches (Xiong et al., 2011, Douillard et al., 2011b, Lai and

Fox, 2010, Golovinskiy et al., 2009) rely on representing the scene with a segmentation

and analyzing the resulting groups/regions/segments instead of points. When data is

streaming from the sensor, it is unclear how to efficiently insert new data into an existing

segmentation without having to recompute the solution from scratch. Furthermore,

structured prediction techniques rely on analyzing the entire scene at once, and it is

difficult to efficiently update, rather than recompute, the joint solution with the newly

streamed data (Kohli and Torr, 2007).

In practice, we are often forced to make a compromise in the inference process for

the sake of efficient predictions. For example, instead of using a segmentation that

obeys object boundaries, we might choose a technique that is less precise but more

efficient. Additionally, instead of using expressive contextual models, we might limit

ourselves to less expressive models with efficient approximate inference algorithms, or

100 CHAPTER 9. EFFICIENT 3-D SCENE PARSING FROM STREAMING DATA

— Ground — Car — Tree trunk — Veg. — Pole — Facade

Figure 9.1: A screenshot of classifying streaming 3-D data, where the white ball is the
sensor location. Many videos are available at http://www.cs.cmu.edu/~dmunoz/

even use a simple classifier. In this work, we demonstrate that we do not need to

compromise efficiency for performance, or vice versa, and that we can generate state-of-

the-art contextual classifications at a high enough rate to handle streamed sensor data

on a mobile robot. Specifically, we demonstrate that a simple and efficient, yet imprecise,

representation of the scene, when used in conjunction with the region-based scene parsing

technique from Chapter 6 is able to efficiently predict state-of-the-art classifications.

The descriptions of our approach are broken down as follows. In Section 9.2, we

describe a data structure that will enable us to efficiently extract regions, perform con-

textual neighborhood searches, and classify data over large regions of interest around

the robot. In Section 9.3, we describe our representations of the scene and how they are

used by the scene parsing algorithm. And in Sections 9.4, 9.5, and 9.6, we thoroughly

analyze the different aspects of our approach and demonstrate its efficiency and efficacy

on real-world datasets.

9.1.1 Related Work

In contrast to techniques that perform efficient object detection/classification from stream-

ing 3-D data (Himmelsbach et al., 2009, Mertz et al., 2012, Teichman and Thrun, 2012),

which often filter out a large portion of the data, we address the problem of efficiently

understanding entire 3-D point cloud scenes. Related works (Lalonde et al., 2007, Bansal

et al., 2011, Wellington and Stentz, 2003) have similarly focused on scene analysis for

http://www.cs.cmu.edu/~dmunoz/

9.2. DATA STRUCTURES FOR STREAMING DATA 101

robot mobility; however, we address longer range scene understanding, which is im-

portant for urban-scale semantic mapping. Additionally, recent works (Hadjiliadis and

Stamos, 2010, Stamos et al., 2012) have investigated efficient techniques for classifying

streaming point cloud data based on hand-designed filters. The key difference of our

work from all the above is that we address the problem of efficient structured prediction

and can use context in our predictions from a rich set of semantic object categories that

would otherwise be difficult to encode using only point cloud descriptors. This work

greatly improves upon our earlier work (Munoz et al., 2009b) on structured prediction

from streaming data that uses a graphical model. We use a completely different data

representation and adapt the hierarchical inference machine framework (Chapter 6) for

improved efficiency.

The two key ingredients of this approach that affect its implementation as an online

algorithm are 1) the set of 3-D operations that need to be performed on the point cloud,

and 2) the representation of the scene that is fed to the scene parsing algorithm. We

stress that the operations and representation are essential and universal to any 3-D

scene parsing technique. First, in order to efficiently compute feature descriptors from

the point cloud, it is necessary to have a data structure that can perform efficient range

search operations over a subvolume in the space. Example standard descriptors, which

we also use in our experiments, that require this operation are spin images (Johnson

and Hebert, 1999) and local curvature statistics (Medioni et al., 2000). Second, many

techniques use a segmentation algorithm to analyze over 3-D regions, instead of individual

points (Golovinskiy et al., 2009, Lai and Fox, 2010, Xiong et al., 2011, Koppula et al.,

2011). With our inference algorithm, we use multiple (four) segmentations of the point

cloud to form a hierarchical segmentation as input. We address these two topics for the

streaming data scenario in the following two sections.

9.2 Data Structures for Streaming Data

9.2.1 Scrolling Grids

One of the prevalent data structures for classifying streaming 3-D data is a scrolling grid

representation (Wellington and Stentz, 2003, Lalonde et al., 2007, Bansal et al., 2011).

Briefly, this data structure quantizes a pre-specified fixed volume of space into a grid

composed of n3 small voxels of prespecified resolution. When robot moves, the indices

of the voxels are shifted/scrolled using a circular buffer. As the size of the grid and

resolution of the voxels are known, it is straightforward to insert a point into a voxel

inside the grid. Similarly, determining the voxels that constitute a queried subvolume

of space can be computed by calculating the min and max extrema voxels and iterating

102 CHAPTER 9. EFFICIENT 3-D SCENE PARSING FROM STREAMING DATA

x

y z

Figure 9.2: Visualizations of our data structures. Left: the world is sparsely quantized
into infinitely tall pillars. Middle: each pillar is sparsely quantized into coarse blocks.
Right: each block contains a linked list of its occupied voxels.

over the subvolume. This data structure is efficient for querying small subvolumes of

space; however, when making long-range queries, which is necessary to model contextual

interactions among physical objects in the scene, the queried, typically sparse, subvolume

becomes computationally expensive to densely iterate over.

9.2.2 Sparse Global Grids

Because we need to randomly query very large subvolumes of space, most of which are

sparse, we designed a voxel-based data structure to handle this sparsity and still enable

efficient long-range query operations. Instead of maintaining a subset of streamed data

within a fixed volume, we propose to store all streamed data in a sparse, voxel-based

global map. To classify a local map of interest around the robot, we can efficiently query

a large subvolume of the space to process with the scene parsing algorithm. Further-

more, as this local map is a subset of the data structure, it still maintains the efficient

range search operations necessary for local neighborhood operations needed for feature

computation.

In addition to large subvolume queries, we also require efficient insertion of streamed

data over time. Similar to an octree, we consider multiple partitions of the 3-D space

to efficiently ignore empty space. Figure 9.2 illustrates the following explanation. In

this work, we use (0.25 m)3 voxels as the atomic unit which we assign object categories

to. We coarsely partition the 3-D space of voxels into cube-shaped blocks, each of which

9.3. SEGMENTATION 103

(a) (b)

Figure 9.3: Comparison of (a) F-H and (b) grid segmentations.

is uniquely indexed based on its global location and stored in a hash map. We can

loop over these coarse blocks and retrieve the voxels within to perform queries over

large subvolumes, skipping over empty blocks which can reduce search time when the

space is sparse. As the block resolution will affect efficiency, we analyze this parameter in

Section 9.4. We specify the block resolution as an integer multiple of the voxel resolution.

As we want to classify potentially very tall structures in the scene, we want to query

local maps of infinite height (z-axis) around the robot. Again, because the space is sparse

over large volumes of space, we further group the blocks into pillars, each of which is

a linked list of non-empty blocks of the same x-y indices and is stored on a hash map.

Thus we can efficiently form a local map around a robot by looping over pillars based

on an x-y value to retrieve only the non-empty blocks and, thus, the voxels within.

To summarize: each pillar contains a linked list of blocks of the same x-y indices;

each block contains a constant-sized 3-D array of voxels and a linked list of non-empty

voxels within the block; each voxel contains accumulated statistics of the respective 3-D

points that fell within the voxel. In our implementation a global map contains a list of

non-empty voxels, a hash map of blocks, and a hash map of pillars. Voxels, blocks, and

pillars are created and updated as new 3-D points are inserted into the global map.

9.3 Segmentation

The input to many scene analysis algorithms is a 3-D segmentation. The F-H (Felzen-

szwalb and Huttenlocher, 2004) segmentation algorithm (described in Section 3.2) is

efficient and prevalent for segmenting 3-D point clouds in batch (Strom et al., 2010,

Triebel et al., 2010); an example F-H segmentation is shown in Figure 9.3-a. While F-H

is efficient in theory and practice, it does require non-negligible computational costs.

First, the algorithm relies on a graph representation, and constructing edges among

neighboring nodes in 3-D space relies on local range searches which require non-trivial

amounts of time. Second, a notion of similarity between nodes is needed and requires

104 CHAPTER 9. EFFICIENT 3-D SCENE PARSING FROM STREAMING DATA

(a) (b) (c) (d) (e)

Figure 9.4: Visualization of a multi-grid segmentation. (a) An image of the scene. (b)
A gridded segmentation of the scene, where each dot represents a voxel and regions are
colored. (c,d) Two grids spatially offset from (b). (e) A multi-grid formed by the union
of the (b,c,d), where the boundary colors (red, blue, orange) indicate the respective
originating grid.

some form of feature computation. Third, in order to incorporate context in predictions,

many algorithms (Koppula et al., 2011, Xiong et al., 2011) rely on using contextual

neighborhoods, i.e., adjacencies between regions within some fixed radius. As illustrated

in Figure 9.3-a, regions resulting from F-H can be irregularly shaped, and accurately

computing adjacent regions involves additional range searches. Note that an expanded

bounding box approximation would be too crude as regions can be non-convex and/or

span extremely large areas of space. Furthermore, filtering points that do lie within

some radius of any point within the free-form region may also be costly. Finally, in the

streaming data scenario, it is unclear how to efficiently update the previous segmenta-

tion with each newly inserted node without having to recompute the segmentation from

scratch1.

Instead of performing a precise segmentation that attempts to obtain object bound-

aries, we use regions extracted from fixed, gridded partitions of the 3-D space, as shown

in Figure 9.3-b. We refer to this gridded segmentation as a grid. This simple ap-

proach addresses all of the previous computational concerns: there are no associated

setup/construction/feature computations, contextual neighbors can be efficiently found

due to all regions having bounded shape, and newly inserted points do not affect the

existing segmentation.

When we arbitrarily partition the space, the resulting grid-regions may contain more

than one object and/or cut through the boundary of another object. As the per-voxel

classification is generated from the finest level segmentation, there will be unrecoverable

1Although there exists efficient data structures for modifying minimum spanning trees that have
complexity sublinear in the number of edges for each online update (Frederickson, 1983), this would be
impractical with streaming 3-D data.

9.4. EFFICIENCY ANALYSIS 105

Figure 9.5: Example 3-D point cloud classifications from the VMR Oakland-v2 (Xiong
et al., 2011) (left) and Freiburg (Behley et al., 2012) (right) datasets.

errors if there exist multiple objects within one region. To address this quantization

artifact, similar to how we use a hierarchical segmentation that consists of multiple seg-

mentations at different resolutions in scale, we also consider grids at multiple spatial

displacements/offsets from each other. That is, for a grid of fixed resolution, we create

multiple grids whose region boundaries are spatially offset from each other in the fol-

lowing way. Suppose an initial grid is constructed with l × l × l m3 resolution regions

and that we are considering γ different displacements of the initial grid. In the ith grid,

for i ∈ {0, . . . , γ}, each of the 3 world coordinates for any region corner has the value

o+ il
γ + kl, where o ∈ R is the choice of origin and k ∈ Z specifies the corner. We refer

to the union of the regions from each grid as a multi-grid. Although a multi-grid is not a

proper “segmentation” due to elements (voxels) being contained within multiple regions,

we refer to one multi-grid as a single segmentation in that it is a set of (overlapping)

regions. Finally, since a voxel may be contained within multiple regions across displaced

grids, the voxel’s final label distribution is the unweighted average over all the label

distributions of the respective regions it falls into. Figure 9.4. illustrates a multi-grid

with γ = 2.

9.4 Efficiency Analysis

In the remaining sections, we compare various performance metrics with using F-H

segmentation vs. simple (multi-)grids. Our analysis is performed on the 3-D point

cloud datasets VMR Oakland-v2 (Xiong et al., 2011) and Freiburg (Behley et al.,

2012). Examples of classified scenes from each dataset are shown in Figure 9.5. For the

computation analysis in this section, we use the training and validation folds from the

VMR Oakland-v2 dataset. For classification analysis, we evaluate voxel classification

error and assign the ground truth label to each voxel as the mode ground truth label from

its respective points. All timing results were obtained on an Intel i7-2960XM processor.

106 CHAPTER 9. EFFICIENT 3-D SCENE PARSING FROM STREAMING DATA

0 3 6 9 12 15
0

0.2

0.4

0.6

0.8

1

Block Factor

H
ie

ra
rc

h
y
 C

re
a
ti
o
n
 T

im
e
 (

s
)

Figure 9.6: Average region hierarchy construction time, on validation data, with respect

to block factor (block-resolution
voxel-resolution

).

9.4.1 Setup

For each segmentation algorithm, F-H and (multi-)grids, we construct a 4-level hierarchy,

from fine to coarse, by varying parameters that affect scale. When constructing the

graph for F-H we use a spatial neighborhood of 0.5 m radius to create edges between

two voxels, and we use the Euclidean distance between two feature vectors that encode

local geometry and orientation (Medioni et al., 2000). The specifics of the grid partitions

are discussed in the following subsections.

We compute the same four types of region features over the two different hierarchical

segmentations. 1) A bag-of-words representation through feature quantization using soft

k-means assignment (Coates et al., 2011) over two per-voxel descriptors: a) 5 × 5 spin

images of (0.2 m)2 cell resolution, b) local geometry and orientation features computed

over three local neighborhoods of radii 0.5 m, 0.8 m, and 1.1 m, respectively. 2) Relative

elevations using a 2.5-D elevation map. 3) The shape of the region through spectral

analysis of the voxel coordinates that constitute the region, weighted by the number

of points that fell into the voxel (Xiong et al., 2011). 4) The region’s bounding box

statistics (Xiong et al., 2011).

9.4.2 Block Resolution

Our global grid uses (0.25 m)3 voxels as the atomic element for classification. As previ-

ously mentioned, we perform efficient range searches using coarse neighboring blocks to

skip over empty volumes of space. We select the resolution of the blocks by analyzing the

construction time of our region grid hierarchy, which is a function of the range searches

needed to compute the feature descriptors and contextual neighborhoods. In Figure 9.6

we plot the average computation time with respect to coarsening block resolution, which

9.4. EFFICIENCY ANALYSIS 107

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Grid Region Cell Size (m)

E
n

tr
o

p
y
 o

f
L

a
b

e
ls

 i
n

 R
e

g
io

n

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2000

4000

6000

8000

10000

12000

Grid Region Cell Size (m)

N
u
m

b
e
r

o
f
L
e
a
f
L
e
v
e
l
R

e
g
io

n
s

(a) (b)

Figure 9.7: Analysis, on validation data, of region grid resolution at the finest level. (a)
Ground truth label entropy vs. region size. (b) Number of regions vs. region size.

is quantified by the ratio block-resolution
voxel-resolution

and is referred to as a “block factor”. As

expected, we observe a block factor of 1, meaning iterating over every neighboring voxel,

is the slowest. In contrast, we see computation time start to increase when the block

resolution coarsens to a factor more than 5. Hence, we use a block factor of 5 in the

remaining experiments.

9.4.3 Finest Segmentation Resolution

The final voxel classifications are generated from the finest level in the region hierarchy.

Ideally, we would choose the finest segmentation so that each voxel is a unique region

in order to avoid any quantization artifacts; however, this precision comes at the cost of

more samples to classify and increases inference time. On the other hand, using larger

regions runs the risk of grouping together different labels within one region. To quantify

this mixture of labels within a region, we can compute the average ground truth label

entropies for regions with different sizes (from the training set). This value directly

relates to the error rate for assigning a single label to a region containing a mixture of

labels. In Figure 9.7 we plot the trade-offs of entropies (a) and number of generated

regions (b) for different region grid sizes. We observe an exponential drop in the number

of regions as the cell size increases, which is good for efficiency, and an increasing entropy,

which hurts performance. As a compromise to balance efficiency and accuracy, we choose

(1.5 m)3 as the grid region resolution in our finest level segmentation. The resolutions of

the three coarser segmentations in the hierarchy are less sensitive as it is only the finest

level segmentation that assigns the per-voxel labels. We use increasingly coarse regions

of (3.5 m)3, (7.5 m)3, (10 m)3 resolution, respectively, for the remaining levels.

108 CHAPTER 9. EFFICIENT 3-D SCENE PARSING FROM STREAMING DATA

0.7

0.72

0.74

0.76

0.78

0.8

Multi−Grid Configuration
[1

,1
,1

,1
]

[2
,1

,1
,1

]

[3
,1

,1
,1

]

[4
,1

,1
,1

]

[2
,2

,1
,1

]

[2
,2

,2
,1

]

[2
,2

,2
,2

]

M
a

c
ro

 F
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Multi−Grid Configuration

C
la

ss
ifi

ca
tio

n
 T

im
e

 (
s)

[1
,1

,1
,1

]

[2
,1

,1
,1

]

[3
,1

,1
,1

]

[4
,1

,1
,1

]

[2
,2

,1
,1

]

[2
,2

,2
,1

]

[2
,2

,2
,2

]

(a) (b)

Figure 9.8: Analysis, on validation data, of (a) classification performance and (b) com-
putation time with respect to different multi-grid configurations.

9.4.4 Multi-grid Configuration

A multi-grid is the union of multiple grids of the same resolution with spatial displace-

ment from each other. The more grids we have, the more robust we are to arbitrary

quantization artifacts. However, this improvement in precision comes at the cost of hav-

ing more regions in the scene to analyze. In Figure 9.8, we analyze, on the validation

fold, the behavior of using multi-grids (with various sizes) at different levels in the region

hierarchy. As our hierarchy contains four levels, we specify the multi-grid configuration of

each level with a 4-tuple [γ1, γ2, γ3, γ4], where γ` is the number of grids in the multi-grid

of level ` in the hierarchy and ` = 1 is the finest segmentation level. From Figure 9.8-a,

we observe a large improvement in performance when simply using 2 grids in the leaf

level ([2, 1, 1, 1]) vs. using only one ([1, 1, 1, 1]) multi-grid. Figure 9.8-b shows that this

improvement in performance comes at an extra cost of 0.14 s when classifying a scene,

on average. However, we also observe diminishing returns in average/macro per-class

F1 performance as we increase the number of grids with respect to computation time.

Therefore, we use the [2, 1, 1, 1] multi-grid configuration in the remaining experiments.

The most costly computation in constructing the region hierarchy is determining

the contextual neighborhoods for each region. Typically, we perform very large range

searches, up to 10 m, in order to model long-range interactions. If we consider the num-

ber of grids in a multi-grid, γ, the overall computation time for determining neighboring

context over all regions is roughly raised by the number of additional offset grids. To

avoid this extra cost, when computing contextual neighborhoods in multi-grids on the

regions that are offset by a relatively small distance, we perform the following approxi-

9.5. CLASSIFICATION ANALYSIS 109

Table 9.1: Breakdown of average computation times for constructing the hierarchical
regions for a Grid (a) and a [2, 1, 1, 1] Multi-grid (b).

Level Number of Segmentation Features Context Total Context
Regions (ms) (ms) (ms) (ms) (%)

0 1862.6 10.0 13.8 54.1 77.9 69.45
1 426.7 10.0 10.0 26.1 46.1 56.62
2 107.3 8.2 8.8 12.3 29.3 41.98
3 63.6 6.4 8.4 12.6 27.4 45.99

Total 2460.2 34.6 41.0 105.1 180.7 58.16

(a) Grid

Level Number of Segmentation Features Context Total Context
Regions (ms) (ms) (ms) (ms) (%)

0 3748.3 19.7 27.7 69.2 116.6 59.35
1 426.7 10.5 10.3 26.4 47.2 55.93
2 107.3 7.4 9.0 12.5 28.9 43.25
3 63.6 6.6 8.5 12.8 27.9 45.88

Total 4345.9 44.2 55.5 120.9 220.6 54.81

(b) Multi-grid

mation. We know that regions that overlap have some fixed, equally spaced offset from

each other, and that the offsets are small with respect to the context range. Therefore,

for regions that overlap each other, the contextual neighborhoods cover essentially the

same 3-D space. Hence, instead of computing multiple neighborhoods for every offset

region, we compute one contextual neighborhood and share it with its overlapping re-

gions. In Table 9.1, we decompose the average timings for constructing a 4-level region

hierarchy using a grid and a [2, 1, 1, 1] multi-grid segmentation. We demonstrate that

the use of the neighborhood approximation achieves comparable timing as with using a

single grid.

9.5 Classification Analysis

9.5.1 Addressing Quantization Artifacts

Because our grid representation uses a fixed partitioning of the space, the segmentation

is not invariant under rotations/translations of the scene. Note that although precise

segmentation algorithms, such as F-H, are invariant to these transformations, the quan-

tized voxels may not be if they are too coarse. We address this problem when training

the models for both the F-H and (multi-)grid hierarchies. For each training point cloud,

we generate additional training scenes by rotating the original scene around the z-axis

110 CHAPTER 9. EFFICIENT 3-D SCENE PARSING FROM STREAMING DATA

0 1 2 3 4 5
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Number of Rotations

M
a

c
ro

 F
1

Figure 9.9: Average per-class F1, on validation data, with respect to the number of times
the training data is rotated.

with equally spaced angles between [0, π/2]. In Figure 9.9, we quantify on the VMR

Oakland-v2 validation set the performance with respect to the number of times we

rotate each training scene; we use 3 rotations in the remaining experiments.

9.5.2 Classification Performance

We now evaluate, on the evaluation folds from each dataset, the efficiency and classifica-

tion performances of the 3 models trained on different hierarchical region representations:

1) F-H, 2) Grid, and 3) [2, 1, 1, 1] Multi-grid.

In Figure 9.10, we break down the computation for each model on the two different

datasets. We observe that the grid-based model timings are inversely related with the

F-H model. That is, the grid-based region constructions are much faster than F-H;

however, F-H compresses the scene into a smaller number of regions which results in a

faster inference time. Overall, we observe the average computation time with a multi-grid

is 2.5-3x faster than using the more precise F-H segmentation, per static scene.

In Figure 9.11, we present the classification rates for the different models, in terms of

F1 scores for each class. We observe that using a grid-based segmentation can exceed the

performance of using a precise F-H segmentation. This follows from the property that

the scene analysis algorithm (Munoz et al., 2010b) is robust to imperfect segmentations

due to explicitly modeling the distributions of labels within regions. Additionally, we can

further improve performance by using a multi-grid to account for discretization artifacts

from a single grid. In conjunction with the previous timing information, we conclude

that this is an efficient and effective approach to perform full 3-D scene analysis.

9.6. STREAMING CLASSIFICATION 111

F−H Grid Multi−grid
0

0.5

1

1.5

2

2.5

3

3.5
T

im
e
 (

s
)

(a) VMR Oakland-v2

F−H Grid Multi−grid
0

0.5

1

1.5

2

2.5

T
im

e
 (

s
)

(b) Freiburg

— Hierarchy — Inference — F-H setup

Figure 9.10: Average timings of each component during the entire inference procedure.
Hierarchy construction includes feature computation time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
ire

po
le

gr
ou

nd

fo
lia

ge

tru
nk

fa
ca

de

ve
hi
cl
e

av
er

ag
e

(a) VMR Oakland-v2

linear ground foliage facade average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Freiburg

— F-H — Grid — Multi-grid

Figure 9.11: Per-class F1 for the datasets. “average” is the mean over the classes.

9.6 Streaming Classification

We demonstrate the practical benefits of using our efficient representation in the stream-

ing data scenario. Both datasets contain sensor logs collected while the robot was moving.

The VMR Oakland-v2 log was collected from a push-broom laser scanner mounted

on the side of a moving vehicle, and the sequence is broken down into three smaller logs.

The Freiburg log was collected on a wheeled robot moving in a campus environment.

The sensor was a pan-tilt laser that scans a 360◦ field of view, and data was collected in

112 CHAPTER 9. EFFICIENT 3-D SCENE PARSING FROM STREAMING DATA

Table 9.2: Video sequence statistics

VMR Oakland-v2 Freiburg

Avg. Number of 3-D Points / Scene 44,198 452,330
Avg. Number of Voxels / Scene 10,904 34,031

Total Number of Classified Scenes 398 1,059
Total Distance Traveled (m) 2,950 723

VMR−OAKLAND Freiburg
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

Dataset

C
la

s
s
if
ic

a
ti
o
n
 T

im
e
 (

s
)

Multi−Grid

F−H

Figure 9.12: Average classification time per scene using multi-grid and F-H segmentation
on streams of VMR Oakland-v2 and Freiburg datasets.

a stop-and-go manner from 77 different scanning locations. Real-time classifications of

each dataset are available at http://www.cs.cmu.edu/~dmunoz/.

We process each log in the same manner: after inserting the last 10, 000 streamed

3-D points into the global voxel grid, we construct a local map of 20 m L∞ radius, in the

x-y plane, centered at the mean coordinate of the newly inserted 10, 000 points. Due to

the profile scanning pattern in the VMR Oakland-v2 dataset, the resulting local map

is approximately 20× 20 m2; however, it is a full 40× 40 m2 in the Freiburg dataset.

We refer to this local map as a “scene” and then construct the region hierarchy and

classify the scene with our scene analysis algorithm.

In Table 9.2, we break down the average number of 3-D points and voxels contained

within each scene for each dataset, as well as the total number of classifications needed

to process each sequence and how far the robot traveled. On average, the Freiburg

scenes contains 3x the number of voxels to classify than in VMR Oakland-v2 and each

scene covers a much larger area of space. The supplementary video shows the processing

of each log using the multi-grid model. The video is screen captured in real-time and

demonstrates the ability of our approach to efficiently process data for use on board

mobile robots. In Figure 9.12, we compare the average classification time, per scene,

http://www.cs.cmu.edu/~dmunoz/

9.7. SUMMARY 113

when using a simple multi-grid representation vs. F-H segmentation. Using the F-H

representation is 3-5x more expensive than using the efficient multi-grid representation

and would greatly limit a robot’s speed in practice.

9.7 Summary

This chapter describes a simple modification of the segmentation algorithm used in Chap-

ter 6 for 3-D scene parsing from streaming data. At its heart, we demonstrated that

we do not use sophisticated segmentations that attempt to model the object disconti-

nuities. Instead, we can simply use multiple, overlapping, fixed-sized partitionings of

the 3-D space while modeling the distribution of object categories inside each resulting

region/block. The main benefit of this segmentation is that it is agnostic to whether

the data processed in a batch or online setting. Hence, the resulting segmentation can

easily facilitate data that is streaming in from the sensor. We demonstrated that we

can use this simple gridded segmentation approach to achieve the best of both worlds:

state-art-of-the-art classifications with extremely efficient computations.

Chapter 10

Future Directions

This thesis proposes a structured prediction framework for accurate and efficient scene

parsing from images and/or 3-D point clouds. The proposed sequential decoding ap-

proach enables the computation of rich intermediate representations of the scene and

breaks down the complex inference procedure to a series of simpler subproblems. How

to improve upon this framework raises some challenging problems.

10.1 Learning Structure

The hierarchical structure and representation of the scene is inspired by many works

in vision for scene parsing (Ohta et al., 1978, Bouman and Shapiro, 1994, Feng et al.,

2002, He et al., 2004, Kumar and Hebert, 2005). However, the hierarchical regions we

use are often redundant due to multiple, inexact segmentations. Anecdotally, we have

investigated how to improve the segmentation over the sequence of predictions to limit

this redundancy. Unfortunately, despite a quantitative improvement in the segmentation

performance (with respect to object boundaries), this do not result an improvement in

classification performance. Alternatively, instead of always using all of these regions,

it might be more efficient and effective to have the model automatically identify the

portions of the scene that require additional processing. That is, the model incorporates

its current beliefs of the scene to guide its future processing.

10.2 Learning Context

The way we encoded neighboring predictions was designed with a priori knowledge of

the world, e.g., in 3-D point clouds we discretized the predictions by elevation. When

applying this framework to other domains, it may be unclear the best way to encode

the context information. Alternatively, it would be more powerful to remove this hand-

116 CHAPTER 10. FUTURE DIRECTIONS

Figure 10.1: Example ground truth annotation of an urban scene using the LabelMe
tool (Russell et al., 2007).

designed representation as a prerequisite, and instead have the model learn how to

compress the neighboring context/predictions into a more discriminative representation.

10.3 Learning Features

As we saw in Chapter 6, feature descriptors can have a major impact in the overall

classification performance. Indeed, if we were able to compute local features that lin-

early separated each class, we could use simple predictors such as linear regression or

SVMs. This general problem of feature learning for scene parsing has shown to produce

promising results (Socher et al., 2011, Ren et al., 2012, Farabet et al., 2013). However,

many techniques decouple the procedure of learning an intermediate representation and

then defining a pooled/meta representation on top, e.g., pooling the activation codes to

train another classifier. Coupling the predictions with the representation may net more

accurate predictions.

10.4. SEMI-SUPERVISED STRUCTURED PREDICTION 117

10.4 Semi-supervised Structured Prediction

The stacking trick (Wolpert, 1992) can be thought of as an agnostic technique to regular-

ize any model in a way that might not be possible through canonical regularization of its

parameters. However, in the presence of increasing amounts of data, the benefit of regu-

larizing the model diminishes and there may be no need to use stacking. Unfortunately,

obtaining large amounts of annotated scenes can be difficult in practice, especially in

cases of complex scenes as illustrated in Figure 10.1. Semi-supervised learning for struc-

tured prediction (Altun et al., 2005, Brefeld and Scheffer, 2006, Lee et al., 2006) is an

attractive class of techniques to use. Unfortunately, our experience with these techniques

applied to scene parsing led to negative results (Munoz et al., 2010a), which also follows

others’ observations in both theory (Lafferty and Wasserman, 2007) and practice (Li and

Zhou, 2011). Personally, I believe how to effectively leverage large amounts of unlabeled

data for scene parsing is the most important problem to address for actual usage of these

techniques in the field. In practice, how to effectively use abundant amounts of data to

regularize the model or lower the sample complexity (Kakade and Foster, 2007) remains

difficult.

10.5 Task-based Scene Parsing

The vast majority of current evaluation methods for scene parsing examine the per-

pixel/point classification performance. This is not too useful in the real-world for a

couple of reasons. First, this metric does not consider the spatial extent of specific

object instances, but rather an agglomeration of pixels/points. Secondly, and more

fundamentally, many current techniques only vary in a few percentage points in terms of

classification accuracy on the pixels – do these extra bits really translate into a superior

understanding of the scene? Alternatively, the evaluation can shift towards scoring

whether the parsed scene sufficiently enables the completion of a task, e.g., did the

robot succeed to getting from point A to point B? This raises the question of how

specific of a representation of the scene is necessary to complete a task? Does knowing

that an “object” is specifically a “chair” make any difference? Furthermore, can we do

away with a priori classes/categories (Malisiewicz, 2011) and using interaction with the

world to automatically learn the sufficient representation needed to complete a task?

Bibliography

Michal Aharon, Michael Elad, , and Alfred Bruckstein. K-SVD: An Algorithm for De-

signing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on

Signal Processing, 54(11), 2006.

Yasemin Altun, David McAllester, and Mikhail Belkin. Maximum Margin Semi-

Supervised Learning for Structured Variables. In Advances in Neural Information

Processing Systems, 2005.

Dragomir Anguelov, Ben Taskar, Vassil Chatalbashev, Daphne Koller, Dinkar Gupta,

Geremy Heitz, and Andrew Y. Ng. Discriminative Learning of Markov Random Fields

for Segmentation of 3D Range Data. In IEEE Conference on Computer Vision and

Pattern Recognition, 2005.

Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. From Contours

to Regions: An Empirical Evaluation. In IEEE Conference on Computer Vision and

Pattern Recognition, 2009.

David Arthur and Sergei Vassilvitskii. k-means++: The Advantages of Careful Seeding.

In ACM-SIAM Symposium on Discrete Algorithms, 2007.

Vijay Badrinarayanan, Fabio Galasso, and Roberto Cipolla. Label Propagation in Video

Sequences. In IEEE Conference on Computer Vision and Pattern Recognition, 2010.

Mayank Bansal, Bogdan Matei, Ben Southall, Jayan Eledath, and Harpreet Sawhney. A

LIDAR Streaming Architecture for Mobile Robotics with Application to 3D Structure

Characterization. In IEEE International Conference on Robotics and Automation,

2011.

Adrian Barbu. Training an Active Random Field for Real-Time Image Denoising. IEEE

Transactions on Image Processing, 18(11), 2009.

Emre Baseski, Nicolas Pugeault, Sinan Kalkan, Dirk Kraft, Florentin Worgotter, and

Norbert Kruge. Indoor Scene Segmentation using a Structured Light Sensor. In

120 BIBLIOGRAPHY

International Conference on Computer Vision Workshops (3D Representation and

Recognition), 2007.

Jens Behley, Volker Steinhage, and Armin B. Cremers. Performance of Histogram De-

scriptors for the Classification of 3D Laser Range Data in Urban Environments. In

IEEE International Conference on Robotics and Automation, 2012.

Yoshua Bengio. Learning Deep Architectures for AI. Foundations and Trends in Machine

Learning, 2(1), 2009.

Paul J. Besl and Ramesh C. Jain. Invariant Surface Characteristics for 3D Object

Recognition in Range Images. Computer Vision, Graphics, and Image Processing, 33

(1), 1986.

Leon Bottou and Yann LeCun. Large Scale Online Learning. In Advances in Neural

Information Processing Systems, 2004.

Charles A. Bouman and Michael Shapiro. A Multiscale Random Field Model for Bayesian

Image Segmentation. IEEE Transactions on Image Processing, 3(2), 1994.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, 2004.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast Approximate Energy Minimization

via Graph Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,

23(1), 2001.

Ulf Brefeld and Tobias Scheffer. Semi-Supervised Learning for Structured Output Vari-

ables. In International Conference on Machine Learning, 2006.

Leo Breiman. Random Forests. Machine Learning, 45(1), 2001.

William Brendel and Sinisa Todorovic. Learning Spatiotemporal Graphs of Human

Activities. In IEEE International Conference on Computer Vision, 2011.

Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. Segmentation

and Recognition Using Structure from Motion Point Clouds. In European Conference

on Computer Vision, 2008.

Gabriel J. Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic Object Classes in

Video: A High-Definition Ground Truth Database. Pattern Recognition Letters, 30

(2), 2009.

BIBLIOGRAPHY 121

Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. Large Scale Online Learning

of Image Similarity Through Ranking. Journal of Machine Learning Research, 11,

2010.

Albert Y. C. Chen and Jason J. Corso. Temporally Consistent Multi-class Video-object

Segmentation with the Video Graph-Shifts Algorithm. In IEEE Workshop on Appli-

cations of Computer Vision, 2011.

Stanley F. Chen and Ronald Rosenfeld. A Survey of Smoothing Techniques for ME

Models. IEEE Transactions on Speech and Audio Processing, 8(1), 2000.

Adam Coates, Honglak Lee, and Andrew Y. Ng. An Analysis of Single-Layer Networks in

Unsupervised Feature Learning. In International Conference on Artificial Intelligence

and Statistics, 2011.

William W. Cohen and Vitor R. Carvalho. Stacked Sequential Learning. In International

Joint Conference on Artificial Intelligence, 2005.

Alvaro Collet, Manuel Martinez, and Siddhartha S. Srinivasa. The MOPED Framework:

Object Recognition and Pose Estimation for Manipulation. The International Journal

of Robotics Research, 30(10), 2011a.

Alvaro Collet, Siddhartha S. Srinivasa, and Martial Hebert. Structure Discovery in

Multi-modal Data: a Region-based Approach. In IEEE International Conference on

Robotics and Automation, 2011b.

Corinna Cortes and Vladimir Vapnik. Support-vector Networks. Machine Learning, 20

(3), 1995.

Antonio Criminisi and Jamie Shotton. Decision Forests for Computer Vision and Medical

Image Analysis. Springer, 2013.

Mark Cummins and Paul Newman. Appearance-only SLAM at Large Scale with FAB-

MAP 2.0. The International Journal of Robotics Research, 30(9), 2011.

Hal Daume III, John Langford, and Daniel Marcu. Search-based Structured Prediction.

Machine Learning, 75(3), 2009.

Jason Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit Dhillon. Information-

theoretic Metric Learning. In International Conference on Machine Learning, 2007.

Roderick de Nijs, Sebastian Ramos, Gemma Roig, Xavier Boix, Luc van Gool, and Kolja

Kuhnlenz. On-line Semantic Perception Using Uncertainty. In IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2012.

122 BIBLIOGRAPHY

Chaitanya Desai, Deva Ramanan, and Charless C. Fowlkes. Discriminative Models for

Multi-Class Object Layout. International Journal of Computer Vision, 95(1), 2011.

Thomas G. Dietterich, Adam Ashenfelter, and Yaroslav Bulatov. Training Conditional

Random Fields via Gradient Tree Boosting. In International Conference on Machine

Learning, 2004.

Cristian Dima, Nicolas Vandapel, and Martial Hebert. Classifier Fusion for Outdoor

Obstacle Detection. In IEEE International Conference on Robotics and Automation,

2004.

Bertrand Douillard, Dieter Fox, Fabio T. Ramos, and Hugh F. Durrant-Whyte. Clas-

sification and Semantic Mapping of Urban Environments. International Journal on

Robotics Research, 30(1), 2011a.

Bertrand Douillard, James Patrick Underwood, Noah Kuntz, Vsevolod Vlaskine, Alas-

tair James Quadros, Peter Morton, and Alon Frenkel. On the segmentation of 3D

LIDAR Point Clouds. In IEEE International Conference on Robotics and Automa-

tion, 2011b.

Miroslav Dudik, Steven J. Phillips, and Robert E. Schapire. Maximum Entropy Density

Estimation with Generalized Regularization and an Application to Species Distribu-

tion Modeling. Journal of Machine Learning Research, 8, 2007.

Andreas Ess, Tobias Muller, Helmut Grabner, and Luc van Gool. Segmentation-based

Urban Traffic Scene Understanding. In British Machine Vision Conference, 2009.

Scott E. Fahlman and Christian Lebiere. The Cascade-Correlation Learning Architec-

ture. In Advances in Neural Information Processing Systems, 1990.

Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning Hier-

archical Features for Scene Labeling. In IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2013.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient Graph-Based Image Seg-

mentation. International Journal of Computer Vision, 59(2), 2004.

Xiaojuan Feng, Christopher K. I. Williams, and Stephen N. Felderhof. Combining Belief

Networks and Neural Networks for Scene Segmentation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24(4), 2002.

Thomas Finley and Thorsten Joachims. Training Structural SVMs when Exact Inference

is Intractable. In International Conference on Machine Learning, 2008.

BIBLIOGRAPHY 123

Greg N. Frederickson. Data Structures for On-line Updating of Minimum Spanning

Trees. In ACM Symposium on Theory of Computing, 1983.

Yoav Freund and Robert E Schapire. A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting. Journal of Computer and System Sciences,

55(1), 1997.

Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine.

Annals of Statistics, 29(5), 2001.

Andrea Giachetti, Marco Campani, and Vincent Torre. The Use of Optical Flow for

Road Navigation. In IEEE International Conference on Robotics and Automation,

1998.

Jacob Goldberger, Sam Roweis, Geoff Hinton, and Ruslan Salakhutdinov. Neighbour-

hood Components Analysis. In Advances in Neural Information Processing Systems,

2004.

Aleksey Golovinskiy, Vladimir G. Kim, and Thomas Funkhouser. Shape-based Recogni-

tion of 3D Point Clouds in Urban Environments. In IEEE International Conference

on Computer Vision, 2009.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. John Hopkins University

Press, 1996.

Stephen Gould, Paul Baumstarck, Morgan Quigley, Andrew Y. Ng, and Daphne Koller.

Integrating Visual and Range Data for Robotic Object Detection. In European Confer-

ence on Computer Vision Workshops (Multi-camera and Multi-modal Sensor Fusion

Algorithms and Applications), 2008a.

Stephen Gould, Jim Rodgers, David Cohen, Gal Elidan, and Daphne Koller. Multi-

Class Segmentation with Relative Location Prior. International Journal of Computer

Vision, 80(3), 2008b.

Stephen Gould, Richard Fulton, and Daphne Koller. Decomposing a Scene into Geo-

metric and Semantically Consistent Regions. In IEEE International Conference on

Computer Vision, 2009.

Alexander Grubb and J. Andrew Bagnell. Generalized Boosting Algorithms for Convex

Optimization. In International Conference on Machine Learning, 2011.

Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. Efficient Hierarchi-

cal Graph-based Video Segmentation. In IEEE Conference on Computer Vision and

Pattern Recognition, 2010.

124 BIBLIOGRAPHY

Abhinav Gupta, Alexei A. Efros, and Martial Hebert. Blocks World Revisited: Image

Understanding Using Qualitative Geometry and Mechanics. In European Conference

on Computer Vision, 2010.

Olympia Hadjiliadis and Ioannis Stamos. Sequential Classification in Point Clouds of

Urban Scenes. In International Conference on 3D Imaging, Modeling, Processing,

Visualization and Transmission, 2010.

Raia Hadsell, Sumit Chopra, and Yann Lecun. Dimensionality Reduction by Learning an

Invariant Mapping. In IEEE Conference on Computer Vision and Pattern Recognition,

2006.

Peter L. Hammer. Some Network Flow Problems Solved With Pseudo-Boolean Pro-

gramming. Operations Research, 13, 1965.

Xuming He, Richard S. Zemel, and Miguel A. Carreira-Perpinan. Multiscale Conditional

Random Fields for Image Labeling. In IEEE Conference on Computer Vision and

Pattern Recognition, 2004.

Geremy Heitz, Stephen Gould, Ashutosh Saxena, and Daphne Koller. Cascaded Classi-

fication Models: Combining Models for Holistic Scene Understanding. In Advances in

Neural Information Processing Systems, 2008.

Ralf Herbrich and Thore Graepel. A PAC-Bayesian Margin Bound for Linear Classifiers:

Why SVMs Work. In Advances in Neural Information Processing Systems, 2000.

Michael Himmelsbach, Thorsten Luettel, and Hans-Joachim Wuensche. Real-time Object

Classification in 3D Point Clouds Using Point Feature Histograms. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2009.

Derek Hoiem, Alexei A. Efros, and Martial Hebert. Recovering Surface Layout from an

Image. International Journal of Computer Vision, 75(1), 2007.

Hanzhang Hu, Daniel Munoz, J. Andrew Bagnell, and Martial Hebert. Efficient 3-D

Scene Analysis from Streaming Data. In IEEE International Conference on Robotics

and Automation, 2013.

Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T. Barron, Mario Fritz, Kate

Saenko, and Trevor Darrell. A Category-Level 3-D Object Dataset Putting the Kinect

to Work. In International Conference on Computer Vision Workshops (Consumer

Depth Cameras in Computer Vision), 2011.

BIBLIOGRAPHY 125

Edwin T. Jaynes. Information Theory and Statistical Mechanics. Physical Review, 106

(4), 1957.

Andrew E. Johnson and Martial Hebert. Using Spin-Images for Efficient Object Recog-

nition in Cluttered 3D Scenes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 21(5), 1999.

Vladimir Jojic, Stephen Gould, and Daphne Koller. Accelerated Dual Decomposition

for MAP Inference. In International Conference on Machine Learning, 2010.

Sham Kakade, Yee Whye Teh, and Sam Roweis. An Alternate Objective Function for

Markovian Fields. In International Conference on Machine Learning, 2002.

Sham M. Kakade and Dean P. Foster. Multi-View Regression via Canonical Correlation

Analysis. In Conference on Learning Theory, 2007.

Jyrki Kivinen and Manfred K. Warmuth. Exponentiated Gradient versus Gradient De-

scent for Linear Predictors. Information and Computation, 132(1), 1997.

Pushmeet Kohli and M. Pawan Kumar. Energy Minimization for Linear Envelope MRFs.

In IEEE Conference on Computer Vision and Pattern Recognition, 2010.

Pushmeet Kohli and Philip H. S. Torr. Dynamic Graph Cuts for Efficient Inference

in Markov Random Fields. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(12), 2007.

Pushmeet Kohli, Lubor Ladicky, and Philip H. S. Torr. Robust Higher Order Potentials

for Enforcing Label Consistency. International Journal of Computer Vision, 82(3),

2009.

Vladimir Kolmogorov. Convergent Tree-reweighted Message Passing for Energy Mini-

mization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10),

2006.

Vladimir Kolmogorov and Ramin Zabih. What Energy Functions Can Be Minimized via

Graph Cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26

(2), 2004.

Hema Swetha Koppula, Abhishek Anand, Thorsten Joachims, and Ashutosh Saxena.

Semantic Labeling of 3D Point Clouds for Indoor Scenes. In Advances in Neural

Information Processing Systems, 2011.

Zhenzhen Kou and William W. Cohen. Stacked Graphical Models for Efficient Inference

in Markov Random Fields. In SIAM International Conference on Data Mining, 2007.

126 BIBLIOGRAPHY

Daniel Kuettel, Matthieu Guillaumin, and Vittorio Ferrari. Segmentation Propagation

in ImageNet. In European Conference on Computer Vision, 2012.

Alex Kulesza and Fernando Pereira. Structured Learning with Approximate Inference.

In Advances in Neural Information Processing Systems, 2007.

Sanijv Kumar and Martial Hebert. Discriminative Random Fields. International Journal

of Computer Vision, 68(2), 2006.

Sanjiv Kumar and Martial Hebert. A Hierarchical Field Framework for Unified Context-

Based Classification. In IEEE International Conference on Computer Vision, 2005.

Sanjiv Kumar, Jonas August, and Martial Hebert. Exploiting Inference for Approximate

Parameter Learning in Discriminative Fields: An Empirical Study. In International

Conference on Energy Minimization Methods in Computer Vision and Pattern Recog-

nition, 2005.

In So Kweon, Martial Hebert, and Takeo Kanade. Sensor Fusion of Range and Re-

flectance Data for Outdoor Scene Analysis. In NASA Workshop on Space Operations,

Automation, and Robotics, 1988.

Lubor Ladicky. Global Structured Models Towards Scene Understanding. PhD Thesis,

Oxford Brookes University, 2011.

Lubor Ladicky, Chris Russell, Pushmeet Kohli, and Philip H. S. Torr. Associative Hierar-

chical CRFs for Object Class Image Segmentation. In IEEE International Conference

on Computer Vision, 2009.

Lubor Ladicky, Paul Sturgess, Karteek Alahari, Chris Russell, and Philip H. S. Torr.

What, Where & How Many? Combining Object Detectors and CRFs. In European

Conference on Computer Vision, 2010.

John Lafferty and Larry Wasserman. Statistical Analysis of Semi-Supervised Regression.

In Advances in Neural Information Processing Systems, 2007.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. In International

Conference on Machine Learning, 2001.

Kevin Lai and Dieter Fox. Object Recognition in 3D Point Clouds Using Web Data and

Domain Adaptation. International Journal on Robotics Research, 29(8), 2010.

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Detection-based Object Labeling

in 3D Scenes. In IEEE International Conference on Robotics and Automation, 2012.

BIBLIOGRAPHY 127

Jean-Francois Lalonde, Nicolas Vandapel, and Martial Hebert. Data Structures for Effi-

cient Dynamic Processing in 3-D. International Journal on Robotics Research, 26(8),

2007.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based Learn-

ing Applied to Document Recognition. Proceedings of the IEEE, 86(11), 1998.

Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu-Jie Huang. A

Tutorial on Energy-Based Learning. In Predicting Structured Data. MIT Press, 2006.

Chi-Hoon Lee, Shaojun Wang, Feng Jiao, Dale Schuurmans, and Russell Greiner. Learn-

ing to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields. In

Advances in Neural Information Processing Systems, 2006.

Victor Lempitsky, Andrea Vedaldi, and Andrew Zisserman. A Pylon Model for Semantic

Segmentation. In Advances in Neural Information Processing Systems, 2011.

Thomas Leung and Jitendra Malik. Representing and Recognizing the Visual Appear-

ance of Materials using Three-dimensional Textons. International Journal of Computer

Vision, 43(1), 2001.

Yu-Feng Li and Zhi-Hua Zhou. Towards Making Unlabeled Data Never Hurt. In Inter-

national Conference on Machine Learning, 2011.

Lin Liao, Tanzeem Choudhury, Dieter Fox, and Henry Kautz. Training Conditional

Random Fields using Virtual Evidence Boosting. In International Joint Conference

on Artificial Intelligence, 2007.

Joseph J. Lim, Pablo Arbelaez, Chunhui Gu, and Jitendra Malik. Context by Region

Ancestry. In IEEE International Conference on Computer Vision, 2009.

Beyang Liu, Stephen Gould, and Daphne Koller. Single Image Depth Estimation from

Predicted Semantic Labels. In IEEE Conference on Computer Vision and Pattern

Recognition, 2010.

Ce Liu, Jenny Yuen, and Antonio Torralba. SIFT Flow: Dense Correspondence Across

Scenes and Its Applications. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 33(5), 2011.

Stuart P. LLoyd. Least Squares Quantization in PCM. IEEE Transactions on Informa-

tion Theory, 28(2), 1982.

David G. Lowe. Distinctive Image Features from Scale-invariant Keypoints. International

Journal of Computer Vision, 60(2), 2004.

128 BIBLIOGRAPHY

Julien Mairal, Francis Bach, and Jean Ponce. Task-Driven Dictionary Learning. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 32(4), 2012.

Tomasz Malisiewicz. Exemplar-based Representations for Object Detection, Association

and Beyond. PhD Thesis, Carnegie Mellon University, 2011.

Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Functional Gradient

Techniques for Combining Hypotheses. In Advances in Large Margin Classifiers. MIT

Press, 1999.

Larry Matthies, Chuck Bergh, Andres Castano, Jose Macedo, and Roberto Manduchi.

Obstacle Detection in Foliage with Ladar and Radar. In International Symposium on

Robotics Research, 2003.

Gerard Medioni, Mi-Suen Lee, and Chi-Keung Tang. A Computational Framework for

Segmentation and Grouping. Elsevier, 2000.

Christoph Mertz, Luis Ernesto Navarro-Serment, David Duggins, Jay Gowdy, Robert

MacLachlan, Paul Rybski, Aaron Steinfeld, Arne Suppe, Christopher Urmson, Nicolas

Vandapel, Martial Hebert, and Chuck Thorpe. Moving Object Detection with Laser

Scanners. Journal of Field Robotics, 30(1), 2012.

Branislav Micusik, Jana Kosecka, and Gautam Singh. Semantic Parsing of Street Scenes

from Video. International Journal on Robotics Research, 31(4), 2012.

Ondrej Miksik, Daniel Munoz, J. Andrew Bagnell, and Martial Hebert. Efficient Tempo-

ral Consistency for Streaming Video Scene Analysis. In IEEE International Conference

on Robotics and Automation, 2013.

Daniel Munoz, J. Andrew Bagnell, Nicolas Vandapel, and Martial Hebert. Contextual

Classification with Functional Max-Margin Markov Networks. In IEEE Conference on

Computer Vision and Pattern Recognition, 2009a.

Daniel Munoz, Nicolas Vandapel, and Martial Hebert. Onboard Contextual Classifica-

tion of 3-D Point Clouds with Learned High-order Markov Random Fields. In IEEE

International Conference on Robotics and Automation, 2009b.

Daniel Munoz, J. Andrew Bagnell, and Martial Hebert. On Two Methods for Semi-

Supervised Structured Prediction. Technical Report CMU-RI-TR-10-02, Robotics In-

stitute, Carnegie Mellon University, 2010a.

Daniel Munoz, J. Andrew Bagnell, and Martial Hebert. Stacked Hierarchical Labeling.

In European Conference on Computer Vision, 2010b.

BIBLIOGRAPHY 129

Daniel Munoz, J. Andrew Bagnell, and Martial Hebert. Co-inference for Multi-modal

Scene Analysis. In European Conference on Computer Vision, 2012.

Elizbar A. Nadaraya. On Estimating Regression. Theory of Probability and Its Applica-

tions, 9(1), 1964.

David Nitzan, Alfred E. Brain, and Richard O. Duda. The Measurement and Use of

Registered Reflectance and Range Data in Scene Analysis. Proceedings of the IEEE,

65(2), 1977.

Yu-ichi Ohta, Takeo Kanade, and Toshiyuki Sakai. An Analysis System for Scenes

Containing Objects with Substructures. In International Joint Conference on Pattern

Recognitions, 1978.

Nathan Ratliff. Learning to Search: Structured Prediction Techniques for Imitation

Learning. PhD Thesis, Carnegie Mellon University, 2009.

Nathan Ratliff, J. Andrew Bagnell, and Martin Zinkevich. Online Subgradient Methods

for Structured Prediction. In International Conference on Artificial Intelligence and

Statistics, 2007.

Xiaofeng Ren, Liefeng Bo, and Dieter Fox. RGB-(D) Scene Labeling: Features and

Algorithms. In IEEE Conference on Computer Vision and Pattern Recognition, 2012.

Stephane Ross and J. Andrew Bagnell. Efficient Reductions for Imitation Learning. In

International Conference on Artificial Intelligence and Statistics, 2010.

Walter Rudin. Functional Analysis. McGraw-Hill, 1991.

Bryan Russell, Antonio Torralba, Kevin Murphy, and William T. Freeman. LabelMe:

A Database and Web-based Tool for Image Annotation. International Journal of

Computer Vision, 77(1-3), 2007.

Sunita Sarawagi and Rahul Gupta. Accurate Max-Margin Training for Structured Out-

put Spaces. In International Conference on Machine Learning, 2008.

Ashutosh Saxena, Min Sun, and Andrew Y. Ng. Make3D: Learning 3-D Scene Struc-

ture from a Single Still Image. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 31(5), 2008.

Roman Shapovalov, Alexander Velizhev, and Olga Barinova. Non-associative Markov

networks for 3D Point Cloud Classification. In Photogrammetric Computer Vision

and Image Analysis, 2010.

130 BIBLIOGRAPHY

Naum Zuselevich Shor. Minimization Methods for Non-Differentiable Functions and

Applications. Springer-Verlag, 1985.

Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. TextonBoost for

Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly

Modeling Texture, Layout, and Context. International Journal of Computer Vision,

81(1), 2009.

Nathan Silberman and Rob Fergus. Indoor Scene Segmentation using a Structured Light

Sensor. In International Conference on Computer Vision Workshops (3D Representa-

tion and Recognition), 2011.

Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo Tourism: Exploring Photo

Collections in 3D. ACM Transactions on Graphics, 25(3), 2006.

Richard Socher, Cliff Lin, Andrew Y. Ng, and Christopher D. Manning. Parsing Natu-

ral Scenes and Natural Language with Recursive Neural Networks. In International

Conference on Machine Learning, 2011.

Boris Sofman, Ellie Lin, J. Andrew Bagnell, John Cole, Nicolas Vandapel, and Anthony

Stentz. Improving Robot Navigation Through Self-Supervised Online Learning. Jour-

nal of Field Robotics, 23(12), 2006.

Nathan Srebro and Adi Shraibman. Rank, Trace-Norm and Max-Norm. In Conference

on Learning Theory, 2005.

Ioannis Stamos, Olympia Hadjiliadis, Hongzhong Zhang, and Thomas Flynn. Online

Algorithms for Classification of Urban Objects in 3D Point Clouds. In International

Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission,

2012.

Bastian Steder, Giorgio Grisetti, and Wolfram Burgard. Robust Place Recognition for 3D

Range Data Based on Point Features. In IEEE International Conference on Robotics

and Automation, 2010.

Johannes Strom, Andrew Richardson, and Edwin Olson. Graph-based Segmentation for

Colored 3D Laser Point Clouds. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2010.

Paul Sturgess, Karteek Alahari, Lubor Ladicky, and Philip H. S. Torr. Combining

Appearance and Structure from Motion Features for Road Scene Understanding. In

British Machine Vision Conference, 2009.

BIBLIOGRAPHY 131

Rick Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler, Vladimir Kolmogorov,

Aseem Agarwala, Mashall Tappen, and Carsten Rother. A Comparative Study of

Energy Minimization Methods for Markov Random Fields. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 30(6), 2007.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-Margin Markov Networks. In

Advances in Neural Information Processing Systems, 2003.

Ben Taskar, Vassil Chatalbashev, and Daphne Koller. Learning Associative Markov

Networks. In International Conference on Machine Learning, 2004.

Alex Teichman and Sebastian Thrun. Tracking-Based Semi-Supervised Learning. Inter-

national Journal on Robotics Research, 31(7), 2012.

Federico Tombari and Luigi Di Stefano. 3D Data Segmentation by Local Classification

and Markov Random Fields. In International Conference on 3D Imaging, Modeling,

Processing, Visualization and Transmission, 2011.

Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Contextual Models for

Object Detection using Boosted Random Fields. In Advances in Neural Information

Processing Systems, 2004.

Antonio Torralba, Kevin P Murphy., and William T. Freeman. Sharing Visual Fea-

tures for Multiclass and Multiview Object Detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 29(5), 2007.

Rudolph Triebel, Jiwon Shin, and Roland Siegwart. Segmentation and Unsupervised

Part-based Discovery of Repetitive Objects. In Robotics: Science and Systems Con-

ference, 2010.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun.

Large Margin Methods for Structured and Interdependent Output Variables. Journal

of Machine Learning Research, 6, 2005.

Zhuowen Tu and Xiang Bai. Auto-context and Its Application to High-level Vision

Tasks and 3D Brain Image Segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 32(10), 2010.

Olga Veksler. Efficient Graph-based Energy Minimization Methods in Computer Vision.

PhD Thesis, Cornell University, 1999.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine

Manzagol. Stacked Denoising Autoencoders: Learning Useful Representations in a

132 BIBLIOGRAPHY

Deep Network with a Local Denoising Criterion. Journal of Machine Learning Re-

search, 11, 2010.

Paul A. Viola and Michael J. Jones. Robust Real-time Face Detection. International

Journal of Computer Vision, 57(2), 2004.

Martin J. Wainwright. Estimating the “Wrong” Graphical Model: Benefits in the

Computation-Limited Setting. Journal of Machine Learning Research, 7, 2006.

Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families,

and Variational Inference. Foundations and Trends in Machine Learning, 1(1-2), 2008.

Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. MAP Estimation via

Agreement on Trees: Message-passing and Linear Programming. IEEE Transactions

on Information Theory, 51(11), 2005.

Kilian Q. Weinberger and Lawrence K. Saul. Distance Metric Learning for Large Margin

Nearest Neighbor Classification. Journal of Machine Learning Research, 10, 2009.

Carl Wellington and Anthony Stentz. Learning Predictions of the Load-Bearing Surface

for Autonomous Rough-Terrain Navigation in Vegetation. In International Conference

on Field and Service Robotics, 2003.

Paul J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. PhD Thesis, Harvard University, 1974.

Manuel Werlberger, Werner Trobin, Thomas Pock, Andreas Wedel, Daniel Cremers,

and Horst Bischof. Anisotropic Huber-L1 Optical Flow. In British Machine Vision

Conference, 2009.

Christian Wojek and Bernt Schiele. A Dynamic Conditional Random Field Model for

Joint Labeling of Object and Scene Classes. In European Conference on Computer

Vision, 2008.

Christian Wojek, Stefan Roth, Konrad Schindler, and Bernt Schiele. Monocular 3D Scene

Modeling and Inference: Understanding Multi-Object Traffic Scenes. In European

Conference on Computer Vision, 2010.

David H. Wolpert. Stacked Generalization. Neural Networks, 5(2), 1992.

Jianxiong Xiao and Long Quan. Multiple View Semantic Segmentation for Street View

Images. In IEEE International Conference on Computer Vision, 2009.

BIBLIOGRAPHY 133

Eric Xing, Andrew Y. Ng, Michael Jordan, and Stuart Russell. Distance Metric Learn-

ing, with Application To Clustering with Side-information. In Advances in Neural

Information Processing Systems, 2003.

Xuehan Xiong, Daniel Munoz, J. Andrew Bagnell, and Martial Hebert. 3-D Scene

Analysis via Sequenced Predictions over Points and Regions. In IEEE International

Conference on Robotics and Automation, 2011.

Chenliang Xu, Caiming Xiong, and Jason J. Corso. Streaming Hierarchical Video Seg-

mentation. In European Conference on Computer Vision, 2012.

Chenxi Zhang, Liang Wang, and Ruigang Yang. Semantic Segmentation of Urban Scenes

Using Dense Depth Maps. In European Conference on Computer Vision, 2010.

Lei Zhang and Qiang Ji. Image Segmentation with a Unified Graphical Model. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 32(8), 2010.

	1 Introduction
	1.1 Problem
	1.2 Approach
	1.3 Overview and Contributions

	2 Datasets
	2.1 Image Datasets
	2.2 3-D Point Cloud Datasets
	2.3 Registered Image and 3-D Point Cloud Datasets
	2.4 Evaluation

	3 Computer Vision Tools
	3.1 Low-level Features
	3.2 Segmentation
	3.3 Region Features
	3.4 Normalization

	4 Machine Learning Tools
	4.1 Regression
	4.2 Classification
	4.3 The Subgradient Method
	4.4 Boosting

	5 Parsing Scenes with Graphical Models
	5.1 Introduction
	5.2 Background
	5.3 Smoothing-based Markov Networks
	5.4 Experimental Analysis
	5.5 Summary

	6 Hierarchical Inference Machines
	6.1 Motivation
	6.2 Approach
	6.3 Parsing Images with Inference Machines
	6.4 Experimental Analysis on Images
	6.5 Parsing 3-D Point Clouds with Inference Machines
	6.6 Experimental Analysis on 3-D Point Clouds

	7 Co-inference Machines
	7.1 Introduction
	7.2 Background
	7.3 Reasoning with Multiple Modalities
	7.4 Experimental Analysis
	7.5 Summary

	8 Temporal Consistency in Streaming Video
	8.1 Introduction
	8.2 Background
	8.3 Learning Similarity
	8.4 Temporal Consistency
	8.5 Experimental Analysis
	8.6 Summary

	9 Efficient 3-D Scene Parsing from Streaming Data
	9.1 Introduction
	9.2 Data Structures for Streaming Data
	9.3 Segmentation
	9.4 Efficiency Analysis
	9.5 Classification Analysis
	9.6 Streaming Classification
	9.7 Summary

	10 Future Directions
	10.1 Learning Structure
	10.2 Learning Context
	10.3 Learning Features
	10.4 Semi-supervised Structured Prediction
	10.5 Task-based Scene Parsing

	Bibliography

