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Abstract

We describe an open information extraction system for biomedical text based on NELL (the Never-
Ending Language Learner) [7], a system designed for extraction from Web text. NELL uses a cou-
pled semi-supervised bootstrapping approach to learn new facts from text, given an initial ontology
and a small number of “seeds” for each ontology category. In contrast to previous applications of
NELL, in our task the initial ontology and seeds are automatically derived from existing resources.
We show that NELL’s bootstrapping algorithm is susceptible to ambiguous seeds, which are fre-
quent in the biomedical domain. Using NELL to extract facts from biomedical text quickly leads
to semantic drift. To address this problem, we introduce a method for assessing seed quality, based
on a larger corpus of data derived from the Web. In our method, seed quality is assessed at each
iteration of the bootstrapping process. Experimental results show significant improvements over
NELL’s original bootstrapping algorithm on two types of tasks: learning terms from biomedical
categories, and named-entity recognition for biomedical entities using a learned lexicon.





1 Introduction
NELL (the Never-Ending Language Learner) [7] is a semi-supervised learning system, designed
for extraction of information from the Web. The system uses a coupled semi-supervised boot-
strapping approach to learn new facts from text, given an initial ontology and a small number of
“seeds”, i.e., labeled examples for each ontology category. The new facts are stored in a growing
structured knowledge base.

One of the concerns about using data gathered from the Web is that it comes from various
un-authoritative sources, and may not be reliable. This is especially true when gathering scientific
information. Data that comes from non-experts may be inaccurate. Sources of facts are not always
cited and it is difficult to verify their integrity. The problem is amplified when a wrong fact, stated
by one source, is repeated by others, like a “rumor”. Detecting this type of duplicated information
is not trivial, especially when the content is presented in varied forms.

In contrast to Web data, scientific text is potentially more reliable, as it is guided by the peer-
review process. Facts in published papers are written by experts in their field. Not only that,
claims are supported by experimental evaluations so that authors may convince their peers of the
validity of their findings. Open access scientific archives make this information available for all,
and they are continually updated with newly published materials. Other sources of public scientific
data include databases of experimental results as well as human-curated structured information. In
fact, the production rate of publicly available scientific data far exceeds the ability of researchers
to “manually” process it, when they are searching for information. There is a growing need for
automation of this process in a way that combines available resources.

The biomedical field presents a great potential for text mining applications. An integral part
of Life Science research involves the production and publication of large collections of data by
curators, and as part of a collaborative community effort. Prominent examples include: publication
of genomic sequence data, for example, by the Human Genome Project; online collections of the
three-dimensional coordinates of protein structures; and databases holding data on genes, including
descriptions of gene functions, and the pathways in which they are involved (if known). These
are updated by a wide community of researchers. An important biomedical resource, initiated
as a means of enforcing data standardization, is the varied collection of ontologies describing
biological, chemical and medical terms. These are maintained as part of large scale projects,
spanning many years and considerable human effort, and are therefore heavily used by the research
community. With this wealth of data available through online tools, databases, ontologies, and
literature, the biomedical field holds many information extraction opportunities.

We describe an open information extraction system adapting NELL to the biomedical domain,
using scientific resources available from the Web. We present an implementation of our approach,
named BioNELL, which uses three main sources of information: (1) a public corpus of biomed-
ical scientific text, (2) existing, commonly used biomedical ontologies, and (3) a corpus of Web
documents.

NELL’s ontology, including both categories and seeds, has been manually designed during
the system development. Ontology design involves assembling a set of interesting categories,
gathering these categories into a meaningful hierarchical structure, and providing representative
examples (seeds) for each category. Redesigning a new ontology for a technical domain is difficult
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High PMI Seeds Random Seeds

SoxN achaete cycA cac section 33 28
Pax-6 Drosomycin Zfh-1 crybaby hv Bob
BX-C Ultrabithorax GATAe ael LRS dip
D-Fos sine oculis FMRFa chm sht 3520
Abd-A dCtBP Antp M-2 AGI tou
PKAc huckebein abd-A shanti disp zen
Hmgcr Goosecoid knirps Buffy Gap Scm
fkh decapentaplegic Sxl lac Mercurio REPO
abdA naked cuticle BR-C subcosta mef Ferritin
zfh-1 Kruppel hmgcr Slam dad dTCF
tkv gypsy insulator Dichaete Cbs Helicase mago
CrebA alpha-Adaptin Abd-B Sufu ora Pten
D-raf doublesex gusA pelo vu sb
MtnA FasII AbdA sombre domain II TrpRS
Dcr-2 GAGA factor dTCF TAS CCK ripcord
fushi
tarazu

kanamycin
resistance

Ecdysone
receptor

GABAA
receptor

diazepam
binding
inhibitor

yolk
protein

Tkv dCBP Debcl arm

Table 1: Two samples of genes of the fruit-fly, taken from the complete dictionary of fly genes.
High PMI Seeds are the top 50 terms selected using PMI ranking, and Random Seeds are a random
draw of 50 terms from the gene dictionary. These sets of genes are used as seeds for the Fly Gene
category (described in Section 4.3). Notice that the random set contains many terms that are often
not used as gene names including arm, 28, and dad. Using these as seeds can lead to semantic
drift. In contrast, high PMI seeds exhibit much less ambiguity.

without non-trivial knowledge of the domain. We describe an automatic process of merging source
ontologies into one hierarchical structure of categories, with seed examples for every category. The
ontologies we use cover a wide range of terms from biology, chemistry, and medicine, and they
potentially allow for an interesting knowledge base to be acquired.

However, as we will show, using NELL’s existing bootstrapping algorithm to extract facts from
a biomedical corpus is highly susceptible to noisy and ambiguous terms. Such ambiguities are
common in biomedical terminology (some examples can be seen in Table 1 and Figure 1), and
some ambiguous terms are heavily used in the literature. For example, in the sentence

“We have cloned an induced white mutation and characterized the insertion sequence
responsible for the mutant phenotype”

white refers to the name of a gene, or more specifically, a gene mutation causing a white-eye phe-
notype in male flies. Using white in the KB, as an example of a gene, may eventually lead to
learning that green and gray are also genes, and they may not be. In NELL, ambiguity is limited
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BioCrea4ve'data'example:'BIGGER'

Gene ID! Name 1! Name 2! Name 3!
FBgn0000011! white! enhancer of garnet! e(g)!
FBgn0002545! section 9! 9! lf!
FBgn0003204! raspberry! IMP dehydrogenase! ras-l!
FBgn0004034! yellow! y! T6!
FBgn0012326! Antp! Antennapedia! Dgua\Antp!
FBgn0020493! dad! Daughters against dpp! Dad1!

A"

B"
Abstract! Gene IDs!
In Drosophila, MR (male recombination) second 
chromosomes are known to act as mutators and 
recombination inducers in males. The induction of visible 
mutations by MR is observed at only a limited number of 
genes, such as singed bristle (sn), raspberry eye colour (ras), 
yellow body colour (y) and a carmine eye colour (car) …!

FBgn0003204!
FBgn0004034!

Figure 1: A sample from the BioCreative data set: (A) a list of gene identifiers (first column)
as well as alternative common names and symbols used to describe each gene in the literature
(second to last columns). The full data contains 7151 terms; and (B) sample abstract and two
IDs of genes that have been annotated as being discussed in the text. In this example, the gene
IDs FBgn0003204 and FBgn0004034 (can be found in the table) refer to the raspberry and yellow
genes which are mentioned in the abstract. The full data contains 108 abstracts.

using coupled semi-supervised learning [6]: if two categories in the ontology are declared as mu-
tually exclusive, instances of one category are used as negative examples for the other. This means
that two mutually exclusive categories cannot share any instances. Thus, to resolve the ambiguity
of the white gene using mutual exclusion, we would have to include a Color category somewhere
in the ontology, and declare it mutually exclusive with the Gene category. Then, instances of
Color, like white or green, will no longer be able to refer to genes in the KB. It is hard to estimate
what additional categories should be added, and building a “complete” ontology tree is practically
infeasible.

NELL also includes a method for detecting and compensating for ambiguity. A polysemy res-
olution component has been added that acknowledges that one term, for example white, may refer
to two distinct concepts, say a color and a gene, that map to different ontology categories, such as
Color and Fly Gene [23]. By adding a Color category to the ontology, this component can identify
that white is indeed polysemous. It is both a color and a gene. While polysemy resolution is an
important ambiguity resolver in NELL, the question remains, what other overlapping categories
could there be for names of genes, diseases or molecules? Additionally, it is unclear how to avoid
the use of polysemous terms as category seeds, and no method has been suggested for selecting
seeds that are representative of a single specific category.

To address the problem of ambiguity, we introduce a method for assessing the desirability of
noun phrases to be used as seeds for a specific target category. We propose ranking seeds using a
Pointwise Mutual Information (PMI) -based collocation measure for a seed and a category name.
Collocation is measured based on a large corpus of domain-independent data derived from the
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Web, accounting for uses of the seed in many different contexts.
NELL’s bootstrapping algorithm uses the morphological and semantic features of seeds to pro-

pose new facts, which are added to the knowledge base, and used as seeds in the next bootstrapping
iteration to learn more facts. This means that ambiguous terms may be introduced into the system
at any learning iteration. White really is a name of a gene, and it may very well be used in the same
context as other genes that have more “traditional” names (such as, Helicase, SoxN or dTCF).
An extraction system that is based on semantic context would be right in suggesting that white be
added as a gene in the knowledge base, although it is more frequently used to name a color. To
resolve this problem, we propose using seed quality measures in a Rank-and-Learn bootstrapping
methodology. After every bootstrapping iteration, we rank all the instances that have been added
to the knowledge base by their quality as potential category seeds. Only high-ranking instances
are added to the collection of seeds that are used in the next bootstrapping iteration. Low-ranking
instances are stored in the knowledge base and “remembered” as true facts, but they are not used
for learning new information. This is in contrast to NELL’s approach (and most other bootstrap-
ping systems), in which there is no distinction between acquired facts, and facts that are used for
learning.

The rest of this paper is organized as follows. In Section 2 we review related work, including a
review of the reasons for the high rate of ambiguity in biomedical terminology. Next, in Section 3,
we present our implementation of BioNELL. We describe the data and ontologies that have been
used, and we present our proposed seed quality collocation measure. An experimental evaluation
of the system is given in Section 4, including demonstrated use-cases. We conclude that using
ranking during bootstrapping significantly reduces ambiguity when learning biomedical concepts
(Section 5).

2 Related Work
Biomedical Information Extraction systems have traditionally targeted recognition of few dis-
tinct biological entities [30], focusing mainly on genes and proteins [24, 10, 29, 9]. Few systems
have been developed for fact-extraction of a larger set of biomedical predicates, and these are
relatively small scale [34], or they account for limited biomedical sub-domains [16] or corpora
concerning specific species [31]. We suggest a more general approach, using bootstrapping to ex-
tend existing biomedical ontologies, including a wide range of sub-domains and many categories.
The current implementation of BioNELL includes an ontology with over 100 categories. To the
best of our knowledge, such large-scale biomedical bootstrapping has not been done before.

Sources of Ambiguity in Biomedical Terminology. It has been shown that biomedical ter-
minology suffers from a higher level of ambiguity than what is found in ordinary English words,
with even greater ambiguity found in gene names [11, 22] (see examples in Table 1 and Figure 1).
This problem is manifested in two main forms. The first is the use of short-form names, lacking
meaningful morphological structure, including abbreviations of three or less letters as well as iso-
lated numbers. The second is ambiguous and polysemous terms used to describe names of genes,
organisms, and biological systems and processes. For examples, peanut is used as both the name
of a plant and a gene, and many gene names are often shared across species. What’s more, with
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a limited possible number of three-English-letter abbreviations, and an estimate of around 35,000
human genes alone, newly introduced abbreviations are bound to overlap existing ones. Krallinger
et al. [22] provide an in-depth review discussing the ambiguous nature of this domain-specific
terminology in greater detail.

Bootstrap Learning and Semantic Drift. Carlson et al. [7] use a coupled semi-supervised
bootstrap learning approach in NELL to learn a large set of category classifiers with high preci-
sion. One drawback of using iterative bootstrapping is the sensitivity of this method to the set
of initial seeds [26]. An ambiguous set of seeds can lead to the problem of “semantic drift”, i.e.,
accumulation of erroneous terms and contexts when learning a semantic class. Strict bootstrapping
environments reduce this problem by adding boundaries or limiting the learning process, including
learning mutual terms and contexts [27] and using mutual exclusion and negative class examples
[14]. In BioNELL, the initial seeds given to the bootstrapping system are taken from biomedical
ontology terms that exhibit this high ambiguity. By refining the automatically derived set of initial
seeds, we can remove ambiguous terms and minimize semantic drift.

Seed Set Refinement. Vyas et al. [32] suggest a method for reducing ambiguity in seeds
provided by human experts, by selecting the K tightest clusters based on context similarity, for a
pre-selected K. The method is described for groups in the order of 10 seeds. In a large ontology
containing hundreds of potential seeds per class, it is unclear how to estimate the correct number
of clusters to choose from. Another interesting approach, suggested by Kozareva et al. [21], is
using only constrained contexts where both seed and class are present in the sentence. Extending
this idea, we consider a more general collocation metric, looking at entire documents including
both the seed and its category. According to this metric we rank the initial set of seeds and all
learned facts, and we use the rank as a measure for their suitability to be used as seeds in later
bootstrapping rounds.

Word Collocation. Various collocation measures are used in the context of information ex-
traction, including pointwise mutual information (PMI) [13], the t-test [12], and binomial log-
likelihood ratio test (BLRT) [17]. A review of the benefits and short-comings of several collocation
methods can be found in [1]. We elaborate on the limitations of using BLRT for seed refinement
in Section 3.4.3.

3 Implementation
We have implemented BioNELL based on the system design and bootstrapping approach of NELL.
In this section we include a description of NELL’s bootstrapping algorithm. We then describe
the data used to build BioNELL, and describe a process for merging source ontologies into one
ontology including seeds. Finally, we define our seed ranking metric, and present how it is used in
BioNELL’s bootstrapping process. We also describe an alternative collocation measure, which we
compare with PMI.
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3.1 NELL’s Bootstrapping System
NELL’s bootstrapping algorithm is initiated with an input ontology structure and seeds, labeled
examples for every ontology category. These are used to populate a knowledge base of learned
facts. Three underlying sub-components operate to suggest candidate facts to the knowledge base:
One component extracts free text from the corpus using semantic patterns [8]; The second builds
Web queries using currently known facts from the knowledge base, and mines the results for new
candidate facts [33]; The final component classifies noun phrases according to their morpholog-
ical attributes. At every iteration, each component proposes new candidate facts, specifying the
supporting evidence for each candidate. Finally, the proposed candidates with the most strongly
supported evidence are promoted and added to the knowledge base. With this process, the KB of
facts grows. This process and all system sub-components are described in greater detail by Carlson
et al. [7] and Wang and Cohen [33].

At present, the Web version of NELL has accumulated a knowledge base of 986K asserted
instances of 266 categories and 199 relations.

3.2 Text Corpora
PubMed Corpus: We used a corpus of 200K full-text biomedical articles taken from the PubMed
Central Open Access Subset (extracted in October 2010)1, processed using the OpenNLP package2.
This is the main BioNELL corpus and it is used to extract category instances in all the experiments
presented in this paper.

Web Corpus: BioNELL’s seed-quality collocation measure (see Section 3.4) is based on a
domain-independent Web corpus, the English portion of the ClueWeb09 data set [5], which in-
cludes 500 million web documents.

3.3 Ontology
BioNELL’s ontology is composed of six base ontologies, covering a wide range of terms from
biology, chemistry, and medicine: the Gene Ontology (GO) [2], describing gene attributes; the
NCBI Taxonomy for model organisms [28]; Chemical Entities of Biological Interest (ChEBI) [15],
a dictionary of molecular entities and small chemical compounds; the Sequence Ontology [18],
describing biological sequences; the Cell Type Ontology [3]; and the Human Disease Ontology
[25]. Each ontology provides a hierarchy of terms but does not distinguish concepts from instances.

We used an automatic process for merging base ontologies into one ontology tree, as follows.
First, we group the six ontologies under one hierarchical structure, producing a tree of over 1 mil-
lion entities, including 856K terms and an additional 154K synonyms. We then separate these into
potential categories and potential seeds for the ontology categories. Categories are nodes that are
that are unambiguous (have a single parent in the ontology tree), and have at least 100 descendants
— these descendants are the category’s Potential seeds. This results in 4188 potential category

1http://www.ncbi.nlm.nih.gov/pmc/
2http://opennlp.sourceforge.net
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nodes. In the experiments of this paper we selected only the top (most general) 20 potential cat-
egories in the tree of each base ontology. We are left with 109 final categories, as some base
ontologies had less than 20 potential categories under these restrictions. Leaf categories are given
seeds from their descendants in the full tree of all terms and synonyms, giving a total of around 1
million potential seeds. Seed set refinement is described below. The seeds of leaf categories are
later extended by the bootstrapping process.

The ontologies we have chosen are mutually exclusive with respect to the domains they cover.
For this reason, categories from each base ontology are declared as mutually exclusive with the
categories of every other base ontology. Within each base ontology, categories are mostly not mu-
tually exclusive, with the exception of the top three categories of GO: Biological Process, Cellular
Component, and Molecular Function. These three categories are treated as base ontologies for the
purpose of mutual exclusion.

3.4 Extending BioNELL with Rank-and-Learn Bootstrapping
For each category in the BioNELL ontology we have at least a hundred potential seeds, derived
from a base ontology definition, and many of them are used ambiguously in the biomedical lit-
erature. Using them as initial examples to ontology categories, and using NELL’s bootstrapping
algorithm to expand that ontology, results in a fast growing set of facts that are irrelevant to the
category being learned (as is demonstrated in our evaluations below). We wish to define a method
for assessing seed quality, based on a large corpus of data derived from the Web. Seeds are ranked
according to their “quality”, and this ranking is used in a Rank-and-Learn bootstrapping process,
where only high-ranking seeds are incorporated in any further learning iterations. Below we use the
term seeds, not only with reference to initial labeled examples for a category, but also to learned
category instances that are used for learning and expanding a category at any of the subsequent
bootstrapping steps.

3.4.1 PMI Collocation with the Category Name

Let s and c be a seed and a target category, respectively. For example, we can take s = “white”, the
name of a gene of the fruit-fly, and c = “fly gene”. Now, let D be a document corpus (Section 3.2
describes the Web corpus used for ranking), and let Dc be a subset of the documents containing
a mention of the category name. We measure the collocation of the seed and the category by the
number of times s appears in Dc, |Occur(s,Dc)|. The overall occurrence of s in the corpus is
given by |Occur(s,D)|. Following the formulation of Church and Hanks [13], we compute the
PMI-rank of s and c as

PMI(s, c) =
|Occur(s,Dc)|
|Occur(s,D)| (1)

Since this measure is used to compare seeds of the same category, we omit the log from the original
formulation. In our example, as “white” is a highly ambiguous gene name, we find that it appears
in many documents that do not discuss the fruit fly, resulting in a PMI rank close to 0. This intuitive
and simple-to-calculate measure captures an important relationship between the category and seed,
and our experiments show that using it alleviates many ambiguities.
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We extend the seed rank definition by measuring the collocation of seeds with their three near-
est ancestors in BioNELL’s ontology tree. In other words, a Fly Gene is also a Gene, and this fact
is captured in the ontology structure by the fact that the Fly Gene category is a descendant of the
Gene category. We combine these ranks, placing an emphasis on collocation with the immediate
ancestor, the category, by

combined-PMI(s, c) = (2)
�1 · PMI(s, c) +
�2 · PMI(s, A(c)) +
�3 · PMI(s, A(A(c)))

where A(x) denotes the ancestor of x in the ontology structure, �1 =
1
2 , and �2,�3 =

1
4 . For cate-

gories with only a single ancestor the PMI ranks are averaged (effectively, �2 =
1
2 and the third term

is not used), and in the case of a category with no ancestors, only PMI(s, c) is used. BioNELL’s
ontology tree does not contain ambiguous categories with two parents (see Section 3.3). In the
following evaluations we use the combined-PMI rank for seeds and categories.

3.4.2 Rank-and-Learn Bootstrapping

We incorporate PMI ranking into BioNELL using a Rank-and-Learn bootstrapping methodology.
After every bootstrapping iteration, we rank all the new category instances that have been added
to the knowledge base. Only high-ranking instances are added to the collection of seeds that are
used in the next learning iteration. Instances with low PMI rank are stored in the knowledge base
and “remembered” as true facts, but they are not used for learning any new information. Using
this methodology, the bootstrapping system is initialized with an unambiguous set of category
examples, and no further ambiguous examples are added to it at any point. The learning sub-
components of the system can then use a “clean” set of examples from which they infer meaningful
morphological patterns and semantic context representative of the category. We consider a high-
ranking instance to be one with PMI rank higher than 0.25, which means it has a high collocation
rank with at least one of its early ancestors, or moderate collocation with the category itself.

3.4.3 Alternative Ranking Models Based on Binomial Log-Likelihood Ratio Test (BLRT)

We used the binomial log-likelihood ratio test (BLRT) [17] as an alternative collocation measure.
We use it to compare the occurrence of a seed, s in two sets of documents, Dc and D (as de-
fined above). The idea behind BLRT is to compare the ratio of occurrence of a word in two text
corpora, while assuming an underlying binomial distribution of words. Two possible hypotheses
are considered: (1) the two ratios are drawn from different distributions, and (2) from the same
distribution.

The BLRT rank for a seed s is given by

BLRT(s, c) = 2 log

L(p1, k1, n1)L(p2, k2, n2)

L(p, k1, n1)L(p, k2, n2)
(3)
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where

k1 = |Occur(s,Dc)| (4)
k2 = |Occur(s,D)| (5)
n1 = |Dc| (6)
n2 = |D| (7)

pi =

ki
ni

(8)

p =

k1 + k2
n1 + n2

(9)

L(p, k, n) = pk(1� p)n�k (10)

The main drawback of using this approach is the symmetry in considering the two random
variables being tested. Seeds that are highly frequent in the general corpus but not in the category
corpus (i.e., with p2 � p1) get a high score, simply because the ratios are very different. In viewing
this rank as a measure of relevance of a seed to a category, we can assume that such seeds would
make undesirable bootstrapping examples. To address this, we also consider a modified-BLRT rank
where a seed with higher occurrence ratio in the general corpus (p2 > p1) gets rank 0.

4 Experimental Evaluation
We start this section with suggestions of possible use-cases of BioNELL as a knowledge source for
two types of information extraction tasks: (1) extending a lexicon for a biomedical category, and (2)
named-entity recognition for biomedical entities using a learned lexicon. These tasks are described
in order to motivate our evaluation of the system. Next, we describe the experimental settings and
evaluation process. Finally, we evaluate the system’s performance over the two described tasks.
Through these evaluations we give a qualitative measure of the benefits of using PMI seed ranking
and Rank-and-Learn bootstrapping.

4.1 Use-Cases for BioNELL
BioNELL was designed to populate a KB of biomedical categories with facts extracted from sci-
entific text. The process begins with a partial lexicon (the seeds) for each pre-defined concept (the
categories). With every iteration, the lexicon of each concept is extended as new facts are added
by the bootstrapping algorithm. At the end of every iteration, BioNELL contains a collection of
lexicons of biomedical concepts organized in a hierarchical structure. These lexicons can be used
for a variety of applications including search and data discovery tools.

As an example, a lexicon for a concept can be used to recognize this concept in free text. One
simple strategy is matching words in the text with terms from the lexicon. Lexicons learned using
BioNELL can be used for this task when no complete lexicons are available for a concept. In our
evaluation we show that a gene lexicon learned with BioNELL is less ambiguous than a complete
gene lexicon and therefore achieves higher precision at this recognition task.

9



Learning System Bootstrapping Algorithm Initial Seeds Corpus

BioNELL Rank-and-Learn with PMI PMI top 50 PubMed
NELL NELL’s algorithm Random 50 PubMed

BioNELL+Random Rank-and-Learn with PMI Random 50 PubMed
BioNELL+BLRT Rank-and-Learn with BLRT BLRT top 50 PubMed
BioNELL+mBLRT Rank-and-Learn with mBLRT mBLRT top 50 PubMed

Table 2: Learning systems used in our evaluation, including the main system BioNELL, the orig-
inal NELL system, and three additional baseline configurations. All of the tested systems use the
PubMed biomedical corpus and the biomedical ontology described in Sections 3.2 and 3.3.

4.2 Experimental Settings
4.2.1 Configurations of the Algorithm

In our experiments, we ran BioNELL and NELL using the following system configurations (de-
scribed below and summarized in Table 2), all using the biomedical corpus and the ontology de-
scribed in Sections 3.2 and 3.3. All systems ran for 50 iterations, in order to evaluate the long term
effects of ranking on the KB. Section 4.3 includes a discussion on the learning rate of the tested
systems which motivates the reason for evaluating performance at the 50th iteration.

Under each system configuration we distinguish a test category for which we assess the quality
of the instances predicted by the system, comparing it against a Gold Standard dictionary. The
set of seeds used to initialize the test category as well as the bootstrapping algorithm used for
expansion are described below. The rest of the categories are initialized with a random set of
seeds and expanded with the baseline bootstrapping algorithm of NELL. This testing methodology
allows to evaluate the effect of ranking on one category in isolation of the rest of the ontology.

To expand the test category we used the following main systems: (1) the BioNELL system,
which uses Rank-and-Learn bootstrapping (see Section 3.4.2) initialized with the top 50 seeds us-
ing PMI ranking with the category name, and (2) the NELL system, which uses NELL’s original
bootstrapping algorithm (see Section 3.1 and [7] for more details) initialized with a random set of
50 seeds from the category’s potential seeds (NELL does not provide a seed selection method).
In order to distinguish the contribution of Rank-and-Learn bootstrapping over ranking the initial
seeds, we tested a third system, BioNELL+Random, using BioNELL’s Rank-and-Learn bootstrap-
ping initialized with 50 random seeds. As an alternative to the PMI ranking model, we tested two
additional systems using BioNELL’s bootstrapping methodology where PMI ranks were replaced
with BLRT and modified-BLRT ranks (see Section 3.4.3). These are named BioNELL+BLRT and
BioNELL+mBLRT. Table 2 contains a succinct summary of all configurations.

4.2.2 Evaluation Methodology

Using BioNELL we can learn lexicons, collections of terms, for categories in the ontology. A
lexicon is a collection of category instances learned after using the system.
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Figure 2: Precision (A), accumulative correct number of lexicon items (B), and accumulative incor-
rect number of lexicon items (C) per learning iteration for gene lexicons learned using BioNELL
and NELL.

One approach for evaluating a set of learned lexicons, the knowledge base, is to select some
set of learned instances and assess their correctness [7]. This is a relatively easy task when data is
extracted for general categories like City or Sports Team. For example, it is easy to evaluate the
statement “London is a City”. This task becomes more difficult when assessing domain-specific
facts such as “Beryllium is an S-block molecular entity” (in fact, it is). We cannot, for example, use
the help of Mechanical Turk for this task. This leads to a possible alternative evaluation approach,
asking an expert. On top of being a costly and slow approach, the range of topics covered by
BioNELL is large and a single expert is not likely be able to assess all of them.

We thus evaluated lexicons learned by BioNELL by comparing them to available semantic
resources. Lexicons of gene names for certain species are available, and the Freebase database
[19], an open repository holding data for millions of entities, includes some biomedical concepts.
For most biomedical categories, however, complete lexicons are scarce.

4.2.3 Data Sets

To estimate BioNELL’s ability in learning lexicons of biomedical categories, we compared the
final lexicons learned after 50 iterations, to category dictionaries, lists of terms for a concept taken
from the following sources, which we consider as a “Gold Standard”.

We used three lexicons of biomedical categories taken from the Freebase database [19]: Dis-
ease (9420 terms), Chemical Compound (9225 terms), and Drug (3896 terms).

To evaluate gene names we used data from the BioCreative Challenge [20], an evaluation com-
petition focused on annotations of genes and gene products. The data includes a dictionary of
genes of the fruit-fly, Drosophila Melanogaster. The dictionary specifies a list of gene identifiers,
and all possible alternative forms of the gene name, for a total of 7151 terms, which we consider
to be the complete dictionary. Figure 1A contains a sample from the fruit-fly gene dictionary.

We used additional data from BioCreative for performing a named-entity recognition task us-
ing learned lexicons. The data includes a set of 108 scientific abstracts, manually annotated by
BioCreative with gene IDs of fly genes that are discussed in the text. The abstracts may contain
the gene ID or any of the gene names. Figure 1B contains an excerpt from one of the abstracts in
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Learning System Precision Correct Total

BioNELL 83 109 132
NELL 29 186 651

BioNELL+Random 73 248 338
BioNELL+BLRT 40 173 430
BioNELL+mBLRT 45 155 348

NELL by size 132 72 93 130

Table 3: Precision, total number of instances (Total), and correct instances (Correct) of gene lexi-
cons learned with BioNELL and NELL. BioNELL’s bootstrapping methodology significantly im-
proves the precision of the learned lexicon compared with NELL. When examining only the first
132 learned items, BioNELL has both higher precision and more correct instances than NELL (last
row, NELL by size 132).

Learning System Precision Correct Total

CC Drug Disease CC Drug Disease CC Drug Disease

BioNELL 66 52 43 63 508 276 96 972 624
NELL 15 40 37 74 522 288 449 1300 782

NELL by size 58 47 37 58 455 232 100 968 623

Table 4: Precision, total number of instances (Total), and correct instances (Correct) of lexicons
of Chemical Compound (CC), Drug, and Disease, learned with BioNELL and NELL. BioNELL’s
lexicons have higher precision on all categories compared with NELL, while learning a similar
number of correct instances. When restricting NELL to a total lexicon size similar to BioNELL’s,
BioNELL has both higher precision and more correct instances (last row, NELL by size).

the data and two IDs of genes that have been annotated as being mentioned in the text.

4.3 Extending Lexicons of Biomedical Categories
4.3.1 Recovering a Closed Category Lexicon

We used BioNELL to learn the lexicon of a closed category, representing the genes of the fruit-fly,
D. Melanogaster, a long-established “model organism”, used to study genetics and developmental
biology. We added this new category to the ontology as a descendant of an existing category Gene.
As potential seeds we used the full dictionary of gene names from the BioCreative data set.

Two samples of genes from the full dictionary of fruit-fly genes are shown in Table 1: High
PMI Seeds are the top 50 dictionary terms selected using PMI ranking, and Random Seeds are a
random draw of 50 terms. Notice that the random set contains many seeds that are not distinct
gene names including arm, 28, and dad. In contrast, high PMI seeds exhibit much less ambiguity.
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We learned lexicons of gene names using BioNELL and the test systems described in Section 4.2.1
(also see Table 2), with initial PMI and random seed sets as shown in Table 1. All systems expanded
the initial sets using data from the PubMed biomedical corpus. We measured the precision, total
number of instances, and correct instances of the lexicons learned using each system against the
full dictionary of genes. Table 3 summarizes the results.

Using a Rank-and-Learn bootstrapping method, initialized with PMI-ranked seeds, signifi-
cantly improved the precision of BioNELL’s learned lexicon over NELL’s original bootstrapping
method (an increase from 29% for NELL to 83% for BioNELL). In fact, all the learning systems
that used Rank-and-Learn resulted in lexicons with higher precision than NELL (83%, 73%, 45%
and 40%), which suggests that constraining the bootstrapping process using iterative seed ranking
successfully eliminates noisy and ambiguous seeds. Using PMI proves more successful than using
the alternative ranking models, BLRT (with 40% precision versus 83% for PMI), and modified-
BLRT (with 45% precision).

Since BioNELL’s bootstrapping methodology is highly restrictive, it affects the learned lexicon
size as well as precision. Notice, however, that while NELL’s final lexicon is 5 times larger than
BioNELL’s, the number of correctly learned items in it are less than twice that of BioNELL. Ad-
ditionally, BioNELL+Random and BioNELL+mBLRT have learned lexicons of similar sizes (338
and 348 terms, respectively), though the precision of BioNELL+Random (73%), which uses PMI
for ranking, is significantly higher than that of the mBLRT alternative (45%).

We examined the performance of NELL after the 7th iteration, when it has learned a lexicon
of 130 items, similar in size to BioNELL’s final lexicon (Table 3, last row). After learning 130
items, BioNELL achieved both higher precision (83% versus 72%) and higher recall (109 versus
93 correct lexicon instances) than NELL, indicating that BioNELL’s learning method is overall
more accurate.

After running for 50 iterations, all systems recover only a small portion of the complete gene
dictionary (109-248 correct items out of 7151), suggesting either that, (1) more learning iterations
are required, (2) the biomedical corpus we use is too small and does not contain mentions (or at
least frequent mentions) of many genes in the dictionary, or (3) some other limitations exist that
prevent the learning algorithm from finding additional class examples.

Lexicons learned using BioNELL’s PMI ranking methodology show persistently high preci-
sion throughout the 50 iterations, even when the process was initiated using random initial seeds
(Figure 2A). By the final iteration, all the systems stop accumulating further significant amounts
of correct gene instances (Figure 2B). Systems that use PMI-based Rank-and-Learn bootstrapping
also stop learning incorrect instances (BioNELL and BioNELL+Random; Figure 2C). This is in
contrast to NELL and the BLRT based methods which continue learning incorrect examples.

Interestingly, the highest number of correct gene instances was learned by using Rank-and-
Learn bootstrapping with random initial seeds (248 items; BioNELL+Random) rather than PMI
ranked initial seeds (109 items; BioNELL). Both these systems use PMI ranks to determine which
learned instances are used during bootstrapping, and the only difference is in the starting set of
seeds. While BioNELL’s lexicon precision is higher during the entire learning process, in some
cases it may be desirable to achieve higher recall at some cost to precision, and these results
indicate that doing so may be possible by allowing a more expressive set of initial seeds. However,
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Lexicon Precision Correct Total

BioNELL 90 18 20
NELL 2 5 268

BioNELL+Random 3 3 82
BioNELL+BLRT 6 21 307
BioNELL+mBLRT 7 24 272

Complete Dictionary 9 153 1616
Filtered Dictionary 18 138 675

Table 5: Precision, total number of predicted genes (Total), and correct predictions (Correct), in
a named-entity recognition task using a complete lexicon, a manually-filtered lexicon, and lexi-
cons learned with BioNELL and NELL. BioNELL’s lexicon achieves the highest precision of all
lexicons, and makes more correct predictions than NELL.

there is no guarantee that any single random set will provide the required expressiveness. Note also
that BioNELL+Random was initiated with the same randomly sampled set of seeds as NELL, but
due to the more constrained Rank-and-Learn bootstrapping it is able to achieve both higher recall
(248 versus 186 correct instances) and higher precision (73% versus 29%).

4.3.2 Extending Lexicons of Open Categories

We evaluated learned lexicons for three open categories, Chemical Compound (CC), Drug, and
Disease, using dictionaries from Freebase. Since these categories are open — new drugs are being
developed every year, new diseases are discovered and named, and varied chemical compounds can
be created — the Freebase dictionaries are not likely to cover the “complete” current knowledge
of these categories. For our evaluation, however, we considered them to be complete.

We used BioNELL and NELL to learn these categories, and for all of them BioNELL’s lex-
icons achieved higher precision than NELL (Table 4). The number of correct learned instances
was similar in both systems (63 and 74 for CC, 508 and 522 for Drug, and 276 and 288 for Dis-
ease), however in BioNELL, the additional bootstrapping restrictions assist in rejecting incorrect
instances, resulting in a smaller, more accurate lexicon.

We examined NELL’s lexicons when they reached a size similar to BioNELL’s final lexicons
(at the 8th, 42nd and 39th iterations for CC, Drug, and Disease, respectively). BioNELL’s lexicons
have both higher precision and higher recall (more correct learned instances) than the comparable
NELL lexicons (Table 4, NELL by size, last row).

4.4 Named-Entity Recognition using a Learned Lexicon
We examined the use of gene lexicons learned with BioNELL and NELL for the task of recognizing
concepts in free text, using a simple strategy of matching words in the text with terms from the
lexicon. In our evaluation, we use data from the BioCreative challenge (see Section 4.2.3 and
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Figure 1), which includes text abstracts and the IDs of genes that appear in each abstract (an
example is given in Figure 1B). We show that BioNELL’s lexicon achieves both higher precision
and recall in this task than NELL’s.

We implemented an annotator for predicting what genes are discussed in text. The annotator
takes as input a lexicon of genes (this may be a manually-compiled list of genes or one that was
learned with BioNELL). Given sample text, if any of the terms in the lexicon appear in the text, the
corresponding gene is predicted by the annotator to be discussed in the text. Since BioCreative’s
gene annotations are given by gene IDs (see Figure 1B), the annotator emits as output the set of
gene IDs of the genes that were predicted for the sample text, based on the input lexicon. For
example, for the text in Figure 1B, given a lexicon that contains the word yellow, the annotator
would predict the gene ID FBgn0004034, which is the ID of the yellow gene, since the word
’yellow’ appears in the text.

We evaluated annotators that were given as input either: the complete fly-genes dictionary, a
manually-filtered version of that dictionary (filtering procedure is described below), or lexicons
learned using BioNELL and NELL (described in Section 4.3.1). Using these annotators we pre-
dicted gene mentions for all text abstracts in the data. We report the average precision (over 108
text abstracts) and number of total and correct predictions of gene IDs, compared with the labeled
annotations for each text (Table 5).

Many gene names are shared among multiple gene variants. For example, variants of the
Antennapedia gene are normally all referred to as Antennapedia, or by an alternative name that
describes the specific variation (e.g., Dgua\Antp, Dmed\Antp, and Dpse\Antp). A mention of
Antennapedia in text could refer to any of these. In our precision measurements for all annotators,
we consider a prediction of a gene ID as “true” if it is labeled as such by BioCreative, or if it shares
a synonym name with another true labeled gene ID.

Given a complete dictionary of fly genes, it is possible to use it in full for the recognition
task. Any gene from the dictionary that is mentioned in the text would be recovered (resulting in
high recall for the annotator). However, the full dictionary contains many ambiguous gene names,
including short abbreviations, numbers and polysemous gene names such as: Clueless, With and
Band (see more examples in Figure 1). These are occasionally used to refer to specific genes, but
are mostly used in different contexts. As a result, the ambiguous gene names contribute many false
predictions to the complete dictionary annotator, leading to a low precision of 9%.

Some ambiguous terms can be easily removed from the dictionary using filtering rules: for
instance, it is easy to remove short abbreviations and numbers. As an example, section 9 is the
name of a gene whose molecular function is currently unknown, and is therefore named after the
functional unit to which it belongs, commonly abbreviated simply by the symbol 9. Naturally,
9 can more commonly appear in text that does not refer to this gene, and thus removing 9 from
our lexicon should improve precision without great cost to recall. This filtering approach can
eliminate many noisy predictions, although it is not expected to remove polysemous terms which
are not easily recognized without more domain knowledge. We filtered the full dictionary by
removing one- and two-letter name abbreviations and terms composed only of numbers and non-
alphabetical characters, resulting in a filtered dictionary of 6253 terms. Using an annotator over the
filtered dictionary, precision has doubled (18%) with some compromise to the number of correct
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predictions (138 versus 153 for the full dictionary). However, the overall precision is still quite
low, leading to the conclusion that many false predictions remain due to polysemy in gene names.

Using complete or manually refined gene dictionaries for named-entity recognition has been
shown before to produce similar high-recall and low-precision results [4].

Finally, we evaluated annotators on fly gene lexicons learned with BioNELL and NELL.
BioNELL’s lexicon achieved significantly higher precision (90%) than all other lexicons (2%-
18%). It is evident that this lexicon contains few ambiguous terms as it leads to only 2 false
predictions. Note also, that BioNELL’s lexicon has both higher precision and higher recall (cor-
rectly predicted genes) than NELL’s lexicon.

5 Conclusions
We have proposed a methodology for an open information extraction system for biomedical scien-
tific text, using an automatically derived ontology of categories and seeds. Our implementation of
this system is based on constrained bootstrapping in which seeds are ranked at every iteration.

The benefits of continuous seed ranking have been demonstrated, showing that using this
method leads to significantly less ambiguous lexicons for all the evaluated biomedical concepts.
Using BioNELL we see an increase of 51% over NELL, in the precision of a learned lexicon of
chemical compounds, and an increase of 45% on a category of gene names. Importantly, when
BioNELL and NELL learn lexicons of similar size, BioNELL’s lexicons have both higher preci-
sion and higher recall. We have demonstrated the use of BioNELL’s learned gene lexicon as a high
precision annotator in an entity recognition task (with 90% precision). The results are promis-
ing, though it is currently difficult to provide a similar quantitative evaluation for a wider range of
concepts.

Many interesting improvements could be made in the current settings, including, a ranking
methodology that leverages the current state of the KB, and discovery of relations between ontol-
ogy categories.
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