Natural Language Models for
Predicting Programming Comments

Dana Movshovitz-Attias, William Cohen
Aug 5, 2013

Ty School of ACL 2013
V110 /el Computer
University fNef=lgles

Modeling Software Code

* Code follows syntax rules, but is written by humans

* |tis repetitive and predictable, similar to natural
language [Hindle et al. 2012]

i/j/k as variables in for/while

for (int ?=0; i<len; ?++) {
/[use?
code = code*31 + text[?];

}

Repeating println calls

System.out.printin("token start offset: " + offsetAtt.startOffset());
System.out.printIn(" token end offset: " + offsetAtt.endOffset());

[All code samples are taken from lucene-3.6.2]

NLP Applications for Software Code

Code token
completion

[Hindle et al., 2012; Han et
al., 2009; Jacob and Tairas,
2010]

Analysis of identifier
names in code (methods/
classes/variables)

[Lawrie et al., 2006; Binkley et al.,
2011]

Mining software repositories

[Gabel and Su, 2008; Linstead at al., 2009;
Gruska et al., 2010; Allamanis and Sutton

2013]

Code Comments are also Repetitive

/**

A Token is an occurrence of a term from the text of a field. It
consists of a term's text, the start and end offset of the term in
the text of the field, and a type string.

Provides a high level
description of the
code

A Token can optionally have metadata (a.k.a. Payload) in the form
of a variable length byte array. Use {@link
TermPositions#getPayloadLength()} and {@link
TermPositions#getPayload(byte[], int)} to retrieve the payloads
from the index.

Includes examples
and description of
use-cases

Tokenizers and TokenFilters should try to re-use a Token instance
when possible for best performance, by implementing the {@link
TokenStream#incrementToken()} API.

Refers to specific
class names/
methods/variables

@see org.apache.lucene.index.Payload
*/
public class Token extends TermAttributelmpl
implements TypeAttribute, PositionIncrementAttribute,
FlagsAttribute, OffsetAttribute, PayloadAttribute,
PositionLengthAttribute

Includes both
structured and
unstructured element
references

Predicting Code Comments

* |n this work we apply language models to the
task of predicting class comments

— N-grams
— LDA
— Link-LDA
e Evaluation metric: how much typing can we
save?
—26%-47% !

Uses of Comment Prediction

 Prediction of comment words can be useful
for a variety of linguistic tasks

— Document summarization

— Document expansion

— Code categorization / clustering
— Improved search over code bases

Data

* Source code from 9 open source JAVA projects

— Ant, Batik, Cassandra, Log4j, Lucene, Maven, Minor-Third, Xalan and Xerces

— 9019 source code files

* Document: source code including comments

package org.apache.lucene.index;
import java.io.lOException;
import java.io.Closeable;
/** Abstract class for enumerating terms.
<p>Term enumerations are always ordered by
Term.compareTo(). Each term in
the enumeration is greater than all that precede it. */
public abstract class TermEnum implements Closeable {
/** Increments the enumeration to the next element. True if
one exists.*/
public abstract boolean next() throws IOException;

}

Class
Comment

G Code Tokens
Q Text Tokens

More Data

* We include a source of data with a varying

amount of text versus code: StackOverflow
— 200K posts tagged with the JAVA’, including question and all answers

How to exclude transitive dependency

| use JavaMail in the same project with cxf. cxf brings an older version of
JavaMail which does not suit me. How to excluded? | did so:
compile (group: 'org.apache.cxf', name: 'cxf-rt-bindings-soap', version:
apacheCfxVersion) {

exclude module: 'geronimo-javamail_1.4_spec'
}
But it did not help. | find in the war WEB-INF \ lib \ geronimo-
javamail_1.4 spec-1.6.jar

Models

* N-grams(n=1, 2, 3)
— Trained over code + text tokens
d = {w; ff\;1
— Class comment predicted from the combined
model

— We use the Berkeley Language Model package
[Pauls and Klein, 2011] with Kneser-Ney
smoothing [Kneser-Ney, 1995]

Topic Models: Training

e LDA (topics=1, 5, 10, 20)
— Trained over code + text tokens
d = {wi}i2,
— Joint distribution

p(@, < w|&a ﬁ) —
p(0]e) | [p(210)p(w]z, B)

Topic Models: Training

* Link-LDA (topics =1, 5, 10, 20)
— Trained over mixed-membership documents
deCh text\ Th
= ({wi” b2, Aw ™ F2y)

— Joint distribution
p(0, z, wla, B) = p(f]a)-

H p teact|(9 text‘zteact 6)

wt ext

H p(zcode|9)p(wcode|zcode 6)

wcode

Topic Models: Testing

* LDA + Link-LDA

package org apache lucene index

import java io IOException
/ import java io Closeable

r Abstract class for enumerating terms.
w <p>Term enumerations are always ordered by Term.compareTo().

Each term in the enumeration is greater than all that precede it.
\ public abstract class TermEnum implements Closeable
Increments the enumeration to the next element. True if one exists.
public abstract boolean next throws IOException

1) Estimate document topics
p(0, 2" |w", a, B)
2) Infer probability of comment tokens

p(we|, B)

Evaluation Metric

* How much typing can we save? (comment
completion)

Train a named-entity extractor

1) Rank dictionary of comment tokens by probability
C 2) Is the next token in thetop 2?
3) If not —filter dictionary by next character

Three Training Scenarios

* I[N : Comments are generated in the middle of
project development

— Learn from same-project data

* OUT : Comments are generated at the
beginning of project development

— Learn from other/related projects
* SO : No documented code is available

— Learn from textual data source that combines text
with code segments

Main Results

Data 3-gram LDA Link-LDA
IN 47.1 34.20 35.81
ouT 32.96 26.86 28.03
SO 34.56 27.8 28.12

1) IN > OUT :in-project data improves predictions

2) N-gram > topic-models : sequential prediction

3) Link-LDA > LDA : distinguishing text from code
improves predictions

4) SO > OUT : Training on more English text is useful

Motivation for a Hybrid Model

* Avg. words per project better predicted by each
model

Data 3-gram Link-LDA
IN 2778.35 574.34
ouT 1865.67 670.34
SO 1898.43 638.55

 Sample comment:

IN 3-gram Train a named-entity extractor
IN link-LDA Train a named-entity extractor

6,

v’ Application of language models to software code
v’ Task: Predicting class comments

v’ Evaluation metric: How much typing can we
save?

* Almost half!

v’ Prediction is improved by In-project data, when
available

* Distinguishing code from text tokens
* Training on more English text

v’ Could be further improved using a hybrid model
dma@ecs.cmu.edu

WWW.CS.cmu.edu/~dmovshov/

Contributions

