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Goal 

•  Information extraction system for 
biomedical information 
– Learn a wide range of  sub domains 

•  Approach 
– Adapt existing general purpose system (NELL) 

to biomedical domain 



Never Ending Language Learner (NELL) 

Semi-supervised learning system for extraction 
of  information from the Web 

Manually compiled 
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categories + seeds 
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Challenges 

•  Creating a biomedical ontology 
– Categories: interesting concepts 

– Seeds: examples for each category 

– Domain knowledge needed to build manually 

•  Ambiguity in biomedical terminology lead 
to semantic drift in KB 



Ambiguity in Biomedical 
Terminology 

•  Sources of  ambiguity: 
– Short form names and abbreviations  

•  Non-meaningful morphological structure 

•  Limited number of  short abbreviations - overlap 

– Ambiguous names for genes, organisms, systems 
•  “white” gene mutation 
•  “peanut” is a plant and gene 

•  Gene names often shared across species 

M. Krallinger, A. Valencia, and L. Hirschman. 2008. Linking genes to literature: text mining, information extraction, and 
retrieval applications for biology. Genome Biol  

Confusing training 
examples 
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Ontology 

•  Based on 6 common ontologies 
•  Cover a wide range of  sub-domains 
–  Gene Ontology (GO) 
–  NCBI Taxonomy for model organisms 
–  Chemical Entities of  Biological Interest (ChEBI)  
–  Sequence Ontology 
–  Cell Type Ontology  
–  Human Disease Ontology  

•  Source ontologies provide  
term hierarchy 

Base Ontology 



Ontology 

Base Ontology Base Ontology Base Ontology 



Ontology 



Ontology 

•  High level terms -- Categories/concepts 
•  Specific terms – Seeds/examples 

•  109 categories 



Ontology Stats 

•  Full tree: over 1 million terms 
– 856 K terms 

– 154 K synonyms  

•  In this study: 
– 109 categories (20 high-level terms from each 

ontology) 

– This leaves over 1 M seeds! 



Seed Set Refinement 

•  Based on collocation of  seed and a target category 
•  Using Pointwise Mutual Information 

•  PMI-Rank(“white”, “Gene”) ≈ 0 

        Seed = “white” 
 Category = “Gene” 
             D = document corpus (Web) 
      D(cat) = documents that mention Category 

 
 
PMI(Seed, Category)   � | Occurrence ( Seed, D(cat) ) | 

| Occurrence ( Seed, D ) | 



Ranking Gene Names 

•  Ranking D. Melanogaster Genes 
– Data taken from the BioCreative Challenge 

High PMI-Rank Genes 
SoxN   achaete 
Pax-6   Drosomycin  
BX-C   Ultrabithorax  
D-Fos   sine oculis  
Abd-A  dCtBP 
PKAc    huckebein  

Random Sample 
section 33  crybaby  
hv   Bob  
ael   LRS  
dip   chm  
arm   3520  
 



Evaluation 

•  All tested systems: 
– Run for 50 iterations 
– Use biomedical ontology & corpus 
– 50 initial seeds 

Learning System Bootstrapping Algorithm Initial Seeds Corpus 

BioNELL Rank-and-Learn PMI PubMed 

NELL NELL’s algo Random PubMed 

BioNELL+Random Rank-and-Learn Random PubMed 



Learning Biomedical Lexicons 
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D. Melanogaster Genes Lexicon 
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(a) Precision
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(b) Cumulative correct items
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(c) Cumulative incorrect items

Figure 1: Performance per learning iteration for gene lexicons learned using BioNELL and NELL.

Learning System Precision Correct Total

BioNELL .83 109 132
NELL .29 186 651
BioNELL+Random .73 248 338

NELL by size 132 .72 93 130

Table 3: Precision, total number of instances (Total),
and correct instances (Correct) of gene lexicons learned
with BioNELL and NELL. BioNELL significantly im-
proves the precision of the learned lexicon compared with
NELL. When examining only the first 132 learned items,
BioNELL has both higher precision and more correct in-
stances than NELL (last row, NELL by size 132).

D. Melanogaster, a model organism used to study
genetics and developmental biology. Two samples
of genes from the full fly gene dictionary are shown
in Table 1: High PMI Seeds are the top 50 dictio-
nary terms selected using PMI ranking, and Random
Seeds are a random draw of 50 terms. Notice that the
random set contains many seeds that are not distinct
gene names including arm, 28, and dad. In con-
trast, high PMI seeds exhibit much less ambiguity.
We learned gene lexicons using the test systems de-
scribed in Section 4.1.1 with the high-PMI and ran-
dom seed sets shown in Table 1. We measured the
precision, total number of instances, and correct in-
stances of the learned lexicons against the full dic-
tionary of genes. Table 3 summarizes the results.

BioNELL, initialized with PMI-ranked seeds, sig-
nificantly improved the precision of the learned
lexicon over NELL (29% for NELL to 83% for
BioNELL). In fact, the two learning systems us-
ing Rank-and-Learn bootstrapping resulted in higher
precision lexicons (83%, 73%), suggesting that con-

strained bootstrapping using iterative seed ranking
successfully eliminates noisy and ambiguous seeds.

BioNELL’s bootstrapping methodology is highly
restrictive and it affects the size of the learned lexi-
con as well as its precision. Notice, however, that
while NELL’s final lexicon is 5 times larger than
BioNELL’s, the number of correctly learned items in
it are less than twice that of BioNELL. Additionally,
BioNELL+Random has learned a smaller dictionary
than NELL (338 and 651 terms, respectively) with a
greater number of correct instances (248 and 186).

We examined the performance of NELL after the
7th iteration, when it has learned a lexicon of 130
items, similar in size to BioNELL’s final lexicon (Ta-
ble 3, last row). After learning 130 items, BioNELL
achieved both higher precision (83% versus 72%)
and higher recall (109 versus 93 correct lexicon
instances) than NELL, indicating that BioNELL’s
learning method is overall more accurate.

After running for 50 iterations, all systems re-
cover only a small portion of the complete gene dic-
tionary (109-248 instances out of 7151), suggesting
either that, (1) more learning iterations are required,
(2) the biomedical corpus we use is too small and
does not contain (frequent) mentions of some gene
names from the dictionary, or (3) some other limita-
tions exist that prevent the learning algorithm from
finding additional class examples.

Lexicons learned using BioNELL show persis-
tently high precision throughout the 50 iterations,
even when initiated with random seeds (Figure 1A).
By the final iteration, all systems stop accumulating
further significant amounts of correct gene instances
(Figure 1B). Systems that use PMI-based Rank-
and-Learn bootstrapping also stop learning incorrect

BioNELL has 
high precision 

Precision is high 
throughout 50 

iterations 

Recall is low for 
all systems 

BioNELL 

NELL 

BioNELL+Random 



More Biomedical Lexicons 

•  More Categories:  
– Chemical Component (CC), Disease, Drug 

•  BioNELL has higher precision on all categories 

•  Recall is comparable 

System Precision Correct 

CC Drug Disease CC Drug Disease 

BioNELL .66 .52 .43 63 508 276 

NELL .15 .40 .37 74 522 288 



Named Entity Recognition 

BioNELL 

Genes 
SoxN  
achaete 
Pax-6 
Drosomycin 
…  

We present strong 
evidence that the early 
SoxN neuroectoderm 
expression is controlled 

by … 

One of  the proneural 
genes, achaete (ac), is 

responsible for the 
formation of  … 

… the evolutionarily 
ancient role of  Pax-6 

was to regulate 
structural genes (e.g., 

rhodopsin) in … 

PubMed Abstracts 

… recessive and cell 
mutation armadillo 

(arm), detected by …  

… on the left arm of  
the third chromosome 

…  

“arm” not in lexicon “arm” is in lexicon 
Ambiguous 

terms in lexicon ? 
“arm” 



Named Entity Recognition 

•  Used learned lexicons for NER in text 

•  Simple method: string matching 

•  BioNELL: Significantly higher precision 

Out of   
1616 

Lexicon Precision Correct 

BioNELL .90 18 

NELL .02 5 

BioNELL+Random .03 3 



BioNELL: Main Advantages 

•  Automatically derived ontology 

•  Wide range of  biomedical concepts 

•  Significantly reduces ambiguity in learned 
lexicons 
– Rank-and-Learn bootstrapping 

– PMI-based seed refinement 

dma@cs.cmu.edu 
www.cs.cmu.edu/~dmovshov 


