Bootstrapping Biomedical Ontologies for Scientific Text using NELL

Dana Movshovitz-Attias and William W. Cohen

Carnegie Mellon University June 8, 2012

Goal

- Information extraction system for biomedical information
 - Learn a wide range of sub domains

- Approach
 - Adapt existing general purpose system (NELL) to biomedical domain

Never Ending Language Learner (NELL)

Semi-supervised learning system for extraction of information from the Web

Challenges

- Creating a biomedical ontology
 - Categories: interesting concepts
 - Seeds: examples for each category
 - Domain knowledge needed to build manually
- Ambiguity in biomedical terminology lead to semantic drift in KB

Ambiguity in Biomedical Terminology

- Sources of ambiguity:
 - Short form names and abbreviations
 - Non-meaningful morphological structure
 - Limited number of short abbreviations overlap
 - Ambiguous names for genes, organisms, systems
 - "white" gene mutation
 - "peanut" is a plant and gene

• Gene names often shared across species

Biomedical Resources

Rank-and-Learn Bootstrapping

Automatically derived
Biomedical
Ontology

Seeds

Categories

Biomedical Corpus (PubMed)

Seed Ranker Web Corpus **Ambiguous** Unambiguous "White is a Gene" "Drosomycin is a Gene" KB Learned General Bootstrapping facts Seeds Seeds

Coupled Bootstrapping

SEAL

CPL

Morphology

- Based on 6 common ontologies
- Cover a wide range of sub-domains
 - Gene Ontology (GO)
 - NCBI Taxonomy for model organisms
 - Chemical Entities of Biological Interest (ChEBI)
 - Sequence Ontology
 - Cell Type Ontology
 - Human Disease Ontology
- Source ontologies provide term hierarchy

Base Ontology

- High level terms -- Categories/concepts
- Specific terms Seeds/examples
- 109 categories

Ontology Stats

- Full tree: over 1 million terms
 - 856 K terms
 - 154 K synonyms

- In this study:
 - 109 categories (20 high-level terms from each ontology)
 - This leaves over 1 M seeds!

Seed Set Refinement

- Based on collocation of seed and a target category
- Using Pointwise Mutual Information

```
Seed = "white"

Category = "Gene"

D = \text{document corpus (Web)}

D(cat) = \text{documents that mention } Category
```

```
PMI(Seed, Category) \propto \frac{ | \text{Occurrence} ( Seed, D(cat) ) | }{ | \text{Occurrence} ( Seed, D ) | }
```

• PMI-Rank("white", "Gene") ≈ 0

Ranking Gene Names

- Ranking D. Melanogaster Genes
 - Data taken from the BioCreative Challenge

High PMI-Rank Genes		
SoxN	achaete	
Pax-6	Drosomycin	
BX-C	Ultrabithorax	
D-Fos	sine oculis	
Abd-A	dCtBP	
PKAc	huckebein	

Random Sample			
section 33	crybaby		
hv	Bob		
ael	LRS		
dip	chm		
arm	3520		

Evaluation

Learning System	Bootstrapping Algorithm	Initial Seeds	Corpus
BioNELL	Rank-and-Learn	PMI	PubMed
NELL	NELL's algo	Random	PubMed
BioNELL+Random	Rank-and-Learn	Random	PubMed

- All tested systems:
 - Run for 50 iterations
 - Use biomedical ontology & corpus
 - 50 initial seeds

Learning Biomedical Lexicons

D. Melanogaster Genes Lexicon

BioNELL has high precision

Precision is high throughout 50 iterations

Recall is low for all systems

More Biomedical Lexicons

- More Categories:
 - Chemical Component (CC), Disease, Drug

System	Precision		Correct			
	CC	Drug	Disease	CC	Drug	Disease
BioNELL	.66	.52	.43	63	508	276
NELL	.15	.40	.37	74	522	288

- BioNELL has higher precision on all categories
- Recall is comparable

Named Entity Recognition

Genes

SoxN achaete Pax-6 Drosomycin

PubMed Abstracts

"arm" not in lexicon

Ambiguous terms in lexicon? "arm"

... recessive and cell mutation armadillo (arm), detected by ...

"arm" is in lexicon

... on the left arm of the third chromosome

Named Entity Recognition

- Used learned lexicons for NER in text
- Simple method: string matching

Lexicon	Precision	Correct
BioNELL	.90	18
NELL	.02	5
BioNELL+Random	.03	3

Out of 1616

• BioNELL: Significantly higher precision

BioNELL: Main Advantages

- Automatically derived ontology
- Wide range of biomedical concepts
- Significantly reduces ambiguity in learned lexicons
 - Rank-and-Learn bootstrapping
 - PMI-based seed refinement

dma@cs.cmu.edu www.cs.cmu.edu/~dmovshov