Alignment-HMM-based Extraction of Abbreviations from Biomedical Text

Dana Movshovitz-Attias and William W. Cohen

Carnegie Mellon University June 8, 2012

Abbreviations are Abundant in Bio-literature

- Commonly used for
 - Proteins/Genes/Molecules
 - Diseases
 - Experimental methods and other common terms

- Definitions change with context
 - APC matches over 100 unique abbreviations in MEDLINE

Two Main Uses of Abbreviations

Common

- < AIDS, acquired immunodeficiency syndrome >
- < DNA, deoxyribonucleic acid >
- Often not explicitly defined
- Widely accepted as synonyms
- More common in the abbreviated form

Dynamic

- Defined by the author
- May be specific to one article
- May overlap with other dynamic abbreviations
 - APC

Task

• Extract dynamic abbreviations explicitly defined in the text

We earlier reported that when phenylalanine ammonialyase (PAL) activity in radish seedlings was inhibited by the competitive inhibitor 2-aminoindan-2-phosphonic acid (AIP), ... The syringyl to guaiacyl (S/G) ratio in the lignin of AIP-grown plants, as determined by alkaline cupric oxidation and from Fourier-transform infrared (FT-IR) spectra, was higher in cotyledons, ...

Output

Abbreviation definition pair

⟨ short form, long form ⟩

- Alignment
- Score

- 1. < PAL, phenylalanine ammonia-lyase >
- 2. < AIP, 2-aminoindan-2-phosphonic acid >
- 3. < S/G, syringyl to guaiacyl >
- 4. < FT-IR, Fourier-transform infrared>

Types of Abbreviations

- Standard acronyms
 - < AMS, Associated Medical Services >
- Missing letters
 - < EDI-2, Eating Disorders Inventory >
- Chemical formulas
 - < MTIC, 5-(3-N-methyltriazen-1-yl)-imidazole-4-carboxamide >
- Substitutions: word ↔ symbol
 - < NaB, sodium butyrate >
- Out-of-order
 - < NTx, cross-linked N-telopeptides >
- Synonyms
 - < anti-Tac, antibody to the alpha subunit of the IL-2 receptor >
- 1. Schwartz and Hearst. 2002. A simple algorithm for identifying abbreviation definitions in biomedical text. PSB.
- 2. Chang, Schutze, and Altman. 2002. Creating an online dictionary of abbreviations from medline. JAMIA.

- Parse text and extract candidate definitions
- 2 Align candidate definitions
- 3 Predict abbreviation

1 Parse text and extract candidate definitions

anti-sperm antibodies were studied by indirect mixed anti-globulin reaction test (MAR)

〈 MAR, by indirect mixed anti-globulin reaction test 〉

- long form (short form)
- short form (long form)
- Patterns of multiple abbreviations
 - "anti-sperm (ASA), anti-phospholipid (APA), and antizonal (AZA) antibodies"

1 Parse text and extract candidate definitions

anti-sperm antibodies were studied by indirect mixed anti-globulin reaction test (MAR)

〈MAR, by indirect mixed anti-globulin reaction test 〉

• Length of long form is estimated

2 Align candidate definitions

〈 MAR, by indirect mixed anti-globulin reaction test 〉

		M	A			R	
bу	indirect	mixed	anti	-	globulin	reaction	test

Alignment-HMM suited for abbreviation extraction

2

Alignment HMM

- Model an alignment of long and short form
- Series of edit operations
- Edit operations are emitted by an HMM

Operation	Short form	Long form
Deletion	ε	Alpha-numeric char
Match	character	(partial) word
Substitution	1	one
Substitution	Na	Sodium

• Previously used for string edit distance

2 Alignment HMM

• Affine gap cost model

```
cost(gap) = start + extend · length
```

- Leading (LG) and inner gaps (IG)
- Unsupervised: EM training on candidates
- We get P(align) with Viterbi

2 Align candidate definitions

(MAR, by indirect mixed anti-globulin reaction test)

LG

IG

IG

Artifact of extraction method

Top: Bottom: Short form Long form

Quality of alignment

3 Predict abbreviation

		М	А			R	
bу	indirect	mixed	anti		globulin	reaction	test
				,			

〈 MAR, mixed anti-globulin reaction test 〉

Abbreviations are predicted only from valid alignments

Popular Extraction Algorithms

- SH (Schwartz and Hearst, 2002)
 - Widely used
 - Fast and simple rule-based algorithm
 - Hard to extend
 - Relatively Low recall
- Chang (Chang et al., 2002)
 - Alignment-based (Longest Common Subsequence)
 - Feature vector is extracted from the alignment
 - Used to train binary logistic regression
 - Processing of alignment leads to slow algorithm
- 1. Schwartz and Hearst. 2002. A simple algorithm for identifying abbreviation definitions in biomedical text. PSB.
- 2. Chang, Schutze, and Altman. 2002. Creating an online dictionary of abbreviations from medline. JAMIA.

Comparison with Popular Methods

Model	D (a	ıverag	ge %)	V (%)			
	P	R	F1	P	R	F1	
Alignment HMM	98	93	96	95	91	93	
SH	96	88	91	97	83	89	
Chang _{0.88}	99	46	62	97	47	64	
Chang $_{0.14}$	94	89	91	95	91	93	
Chang $_{0.03}$	92	91	91	88	93	90	
Chang 0	49	92	64	53	93	67	

		Metrics
D		correct predicted abbreviations
Γ	_	all predicted abbreviations
R	_	correct predicted abbreviations
	_	all correct abbreviations

7 / -4 :: - -

Four thresholds over regression score

MEDSTRACT (Development)
483 abbreviations

PubMed Sample (Validation)
76 abbreviations

Comparison with Popular Methods

Model	D (a	averag	(e %)	V (%)			
	P	R	F1	P	R	F1	
Alignment HMM	98	93	96	95	91	93	
SH	96	88	91	97	83	89	
Chang _{0.88}	99	46	62	97	47	64	
Chang _{0.14}	94	89	91	95	91	93	
Chang 0.03	92	91	91	88	93	90	
Chang ₀	49	92	64	53	93	67	

			Metrics
	D		correct predicted abbreviations
	Γ	=	all predicted abbreviations
	R	_	correct predicted abbreviations
			all correct abbreviations

- 1. Highest F1 on both data sets
- 2. Comparable results with Chang 0.14
 - No need to select a threshold
 - Slow due to extra alignment processing
- 3. Recall is lower than precision could improve using more edit operations

Main Advantages

- 1. High performance on standard dataset
- 2. Naturally generalizable to genres of abbreviations, using edit operations.
- 3. Associates probability with predicted definition
- 4. Unsupervised

dma@cs.cmu.edu www.cs.cmu.edu/~dmovshov