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Abbreviations are Abundant in  
Bio-literature 

•  Commonly used for 
– Proteins/Genes/Molecules 

– Diseases 

– Experimental methods and other common terms 

•  Definitions change with context 
– APC matches over 100 unique abbreviations in 

MEDLINE  

 



Two Main Uses of  Abbreviations 

•  Common 
< AIDS, acquired immunodeficiency syndrome > 
< DNA, deoxyribonucleic acid > 

–  Often not explicitly defined 
–  Widely accepted as synonyms 
–  More common in the abbreviated form 

•  Dynamic 
–  Defined by the author 
–  May be specific to one article 
–  May overlap with other dynamic abbreviations 

•  APC 

Yu, H., Hripcsak, G., and Friedman, C. Mapping abbreviations to full forms in biomedical articles. JAMIA 



Task 

•  Extract dynamic abbreviations explicitly defined in 
the text 

•  Output 
–  Abbreviation definition pair 

⟨ short form, long form ⟩  
–  Alignment 
–  Score 

We earlier reported that when phenylalanine ammonialyase (PAL) activity in radish 

seedlings was inhibited by the competitive inhibitor 2-aminoindan-2-phosphonic acid 
(AIP), … The syringyl to guaiacyl (S/G) ratio in the lignin of  AIP-grown plants, as 

determined by alkaline cupric oxidation and from Fourier-transform infrared (FT-IR) 
spectra, was higher in cotyledons, … 

1.  < PAL, phenylalanine ammonia-lyase > 
2.  < AIP, 2-aminoindan-2-phosphonic acid > 
3.  < S/G, syringyl to guaiacyl > 
4.  < FT-IR, Fourier-transform infrared> 



Types of  Abbreviations 

•  Standard acronyms 
< AMS, Associated Medical Services > 

•  Missing letters 
< EDI-2, Eating Disorders Inventory > 

•  Chemical formulas 
< MTIC, 5-(3-N-methyltriazen-1-yl)-imidazole-4-carboxamide > 

•  Substitutions: word ⟷ symbol 
< NaB, sodium butyrate > 

•  Out-of-order 
< NTx, cross-linked N-telopeptides > 

•  Synonyms 
< anti-Tac, antibody to the alpha subunit of  the IL-2 receptor > 

1.  Schwartz and Hearst. 2002. A simple algorithm for identifying abbreviation definitions in biomedical text. PSB. 
2.  Chang, Schutze, and Altman. 2002. Creating an online dictionary of  abbreviations from medline. JAMIA. 



Extraction Method 

•      Parse text and extract candidate definitions 

•      Align candidate definitions 

•      Predict abbreviation 
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Extraction Method 

•      Parse text and extract candidate definitions 

 
anti-sperm antibodies were studied by indirect 

mixed anti-globulin reaction test (MAR) 

1 

⟨ MAR, by indirect mixed anti-globulin reaction test ⟩ 

•  long form (short form)  
•  short form (long form)  
•  Patterns of  multiple abbreviations 

•  “anti-sperm (ASA), anti-phospholipid (APA), and 
antizonal (AZA) antibodies”  



Extraction Method 

•      Parse text and extract candidate definitions 

 
anti-sperm antibodies were studied by indirect 

mixed anti-globulin reaction test (MAR) 

1 

⟨ MAR, by indirect mixed anti-globulin reaction test ⟩  

•  Length of  long form is estimated 

Schwartz and Hearst. 2002. A simple algorithm for identifying abbreviation definitions in biomedical text. PSB. 



Extraction Method 

•      Align candidate definitions 
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⟨ MAR, by indirect mixed anti-globulin reaction test ⟩  

Alignment-HMM suited for abbreviation extraction 

LG LG LG LG M M M M IG M M M IG 

M A R 

by indirect mixed anti - globulin reaction test 



Alignment HMM 

•  Model an alignment of  long and short form 

•  Series of  edit operations 

•  Edit operations are emitted by an HMM 

•  Previously used for string edit distance 

 

 

Operation Short form Long form 

Deletion �  Alpha-numeric char 

Match character (partial) word 

Substitution 1 one 

Substitution Na Sodium 

2 

Ristad, E.S. and Yianilos, P.N. Learning string-edit distance. Pattern Analysis and Machine Intelligence . 
Bilenko, M. and Mooney, R.J. Adaptive duplicate detection using learnable string similarity measures.  ACM. 



Alignment HMM 

•  Affine gap cost model 
cost(gap) = start + extend · length  

•  Leading (LG) and inner gaps (IG) 

•  Unsupervised: EM training on candidates 

•  We get P(align) with Viterbi 
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Extraction Method 

•      Align candidate definitions 
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⟨ MAR, by indirect mixed anti-globulin reaction test ⟩  

Top:         Short form 
Bottom:  Long form 

LG IG IG 

Artifact of  
extraction 
method 

Quality of  
alignment 

LG LG LG LG M M M M IG M M M IG 

M A R 

by indirect mixed anti - globulin reaction test 



Extraction Method 

•      Predict abbreviation 
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⟨ MAR, mixed anti-globulin reaction test ⟩  

•  Abbreviations are predicted only from valid 
alignments 

LG LG LG LG M M M M IG M M M IG 

M A R 

by indirect mixed anti - globulin reaction test 



Popular Extraction Algorithms 

•  SH (Schwartz and Hearst, 2002) 
– Widely used 
– Fast and simple rule-based algorithm 
– Hard to extend 
– Relatively Low recall 

•  Chang (Chang et al., 2002) 
– Alignment-based (Longest Common Subsequence) 
– Feature vector is extracted from the alignment 
– Used to train binary logistic regression 
– Processing of  alignment leads to slow algorithm 

1.  Schwartz and Hearst. 2002. A simple algorithm for identifying abbreviation definitions in biomedical text. PSB. 
2.  Chang, Schutze, and Altman. 2002. Creating an online dictionary of  abbreviations from medline. JAMIA. 



Comparison with Popular Methods 

•  lsdk  

Data Set Name Abstracts Abbreviations Testing Method

Development (D) Medstract 400 483 10-fold cross validation.
Validation (V) PubMed Sample 50 76 Training on set D and testing on set V.

Table 4: Evaluation Data Sets.

Model D (average %) V (%)

P R F1 P R F1

Alignment HMM 98 93 96 95 91 93
SH 96 88 91 97 83 89
Chang 0.88 99 46 62 97 47 64
Chang 0.14 94 89 91 95 91 93
Chang 0.03 92 91 91 88 93 90
Chang 0 49 92 64 53 93 67

Table 5: Results on validation (V) and development (D)
sets. Average results are shown for D set, which was
tested using 10-fold cross-validation (results rounded to
nearest percent, all standard deviations were < 0.1)

10 fold cross-validation over the publicly available
Medstract corpus (Pustejovsky et al., 2002) which
includes 400 Medline abstracts. The online version
of the corpus was missing the Gold Standard annota-
tions throughout the development of our algorithm,
nor was it possible to get them through communica-
tion with the authors. We therefore hand-annotated
the Medstract data, yielding 483 abbreviation defi-
nitions in the form of hshort form, long formi pairs.
In order to be consistent with previous evaluations
over Medstract, our annotations include only defini-
tions in which either the short or the long form ap-
pear in parenthesis, and it is assumed that there are
no trailing gaps in the term preceding the parenthe-
sis, although our model does detect such gaps.

We compare our results with two algorithms
available for download: the Schwartz and Hearst
(SH; (2002)) algorithm1, and the Chang et al. (2002)
algorithm2 used at three score cutoffs reported in
their paper (0.88, 0.14, 0.03). We also use a fourth
score cutoff of 0 to account for any legal alignments
produced by the Chang model.

In Table 5 we report precision (P), recall (R) and

1Taken from http://biotext.berkeley.edu/software.html
2Taken from http://abbreviation.stanford.edu

F1 scores for all methods, calculated by

P =
correct predicted abbreviations

all predicted abbreviations
(4)

R =
correct predicted abbreviations

all correct abbreviations
(5)

On the development set, our alignment model
achieves 98% precision, 93% recall and 96% F1 (av-
erage values over cross-validation iterations, with
standard deviations all under 0.03).

To test the final model we used a validation
dataset consisting of 50 abstracts, randomly selected
out of a corpus of 200K full-text biomedical articles
taken from the PubMed Central Open Access Sub-
set (extracted in October 2010)3. These were hand-
annotated, yielding 76 abbreviation definitions.

On the validation set, we predicted 69 out of 76
abbreviations, with 4 false predictions, giving 95%
precision, 91% recall and 93% F1. Our alignment
model results in higher F1 score over all baselines
in both datasets (with Chang0.14 giving equal results
on the validation set). Our results are most compa-
rable with the Chang model at a score cutoff of 0.14,
though our model does not require selecting a score
cutoff, and as we will show, it is considerably faster.
Interestingly, our model results in lower recall than
precision on both data sets. This may be due to a
limited scope of edit operations.

In order to evaluate the usability of our method,
we used it to scan the 200K full-text documents of
the PubMed Central Open Access Subset corpus.
The process completed in under 3 hours, yielding
over 1.4 million abbreviations, including 455,844
unique definitions. A random sample of the ex-
tracted abbreviations suggests a low rate of false
positive predictions.

4.2 Error Analysis
Our model makes 4 incorrect predictions on the val-
idation set, 3 of which are partial matches to the

3http://www.ncbi.nlm.nih.gov/pmc/

MEDSTRACT 
(Development) 

483 abbreviations 

PubMed Sample 
(Validation) 

76 abbreviations 

Metrics 

Data Set Name Abstracts Abbreviations Testing Method

Development (D) Medstract 400 483 10-fold cross validation.
Validation (V) PubMed Sample 50 76 Training on set D and testing on set V.

Table 4: Evaluation Data Sets.

Model D (average %) V (%)

P R F1 P R F1

Alignment HMM 98 93 96 95 91 93
SH 96 88 91 97 83 89
Chang 0.88 99 46 62 97 47 64
Chang 0.14 94 89 91 95 91 93
Chang 0.03 92 91 91 88 93 90
Chang 0 49 92 64 53 93 67

Table 5: Results on validation (V) and development (D)
sets. Average results are shown for D set, which was
tested using 10-fold cross-validation (results rounded to
nearest percent, all standard deviations were < 0.1)

10 fold cross-validation over the publicly available
Medstract corpus (Pustejovsky et al., 2002) which
includes 400 Medline abstracts. The online version
of the corpus was missing the Gold Standard annota-
tions throughout the development of our algorithm,
nor was it possible to get them through communica-
tion with the authors. We therefore hand-annotated
the Medstract data, yielding 483 abbreviation defi-
nitions in the form of hshort form, long formi pairs.
In order to be consistent with previous evaluations
over Medstract, our annotations include only defini-
tions in which either the short or the long form ap-
pear in parenthesis, and it is assumed that there are
no trailing gaps in the term preceding the parenthe-
sis, although our model does detect such gaps.

We compare our results with two algorithms
available for download: the Schwartz and Hearst
(SH; (2002)) algorithm1, and the Chang et al. (2002)
algorithm2 used at three score cutoffs reported in
their paper (0.88, 0.14, 0.03). We also use a fourth
score cutoff of 0 to account for any legal alignments
produced by the Chang model.

In Table 5 we report precision (P), recall (R) and

1Taken from http://biotext.berkeley.edu/software.html
2Taken from http://abbreviation.stanford.edu

F1 scores for all methods, calculated by

P =
correct predicted abbreviations

all predicted abbreviations
(4)

R =
correct predicted abbreviations

all correct abbreviations
(5)

On the development set, our alignment model
achieves 98% precision, 93% recall and 96% F1 (av-
erage values over cross-validation iterations, with
standard deviations all under 0.03).

To test the final model we used a validation
dataset consisting of 50 abstracts, randomly selected
out of a corpus of 200K full-text biomedical articles
taken from the PubMed Central Open Access Sub-
set (extracted in October 2010)3. These were hand-
annotated, yielding 76 abbreviation definitions.

On the validation set, we predicted 69 out of 76
abbreviations, with 4 false predictions, giving 95%
precision, 91% recall and 93% F1. Our alignment
model results in higher F1 score over all baselines
in both datasets (with Chang0.14 giving equal results
on the validation set). Our results are most compa-
rable with the Chang model at a score cutoff of 0.14,
though our model does not require selecting a score
cutoff, and as we will show, it is considerably faster.
Interestingly, our model results in lower recall than
precision on both data sets. This may be due to a
limited scope of edit operations.

In order to evaluate the usability of our method,
we used it to scan the 200K full-text documents of
the PubMed Central Open Access Subset corpus.
The process completed in under 3 hours, yielding
over 1.4 million abbreviations, including 455,844
unique definitions. A random sample of the ex-
tracted abbreviations suggests a low rate of false
positive predictions.

4.2 Error Analysis
Our model makes 4 incorrect predictions on the val-
idation set, 3 of which are partial matches to the

3http://www.ncbi.nlm.nih.gov/pmc/

Four thresholds over 
regression score 
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The process completed in under 3 hours, yielding
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3http://www.ncbi.nlm.nih.gov/pmc/

1. Highest F1 on both data sets 
2. Comparable results with Chang 0.14  
•  No need to select a threshold 
•  Slow due to extra alignment processing 

3. Recall is lower than precision – could improve using more 
edit operations 
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3http://www.ncbi.nlm.nih.gov/pmc/



Main Advantages 

1.  High performance on standard dataset 

2.  Naturally generalizable to genres of  
abbreviations, using edit operations. 

3.  Associates probability with predicted 
definition 

4.  Unsupervised 

dma@cs.cmu.edu 
www.cs.cmu.edu/~dmovshov 


