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Abstract
Application layer proxies already play an important role in today’s networks, serving as firewalls

and HTTP caches and their role is being expanded to include encryption, compression, and mobility
support services. Current application layer proxies suffer major performance penalties as they spend
most of their time moving data back and forth between connections; context switching and crossing
protection boundaries for each chunk of data they handle. We present a technique called TCP Splice
that provides kernel support for data relaying operations which runs at near router speeds. In our lab
testing, we find SOCKS firewalls using TCP Splice can sustain a data throughput twice that of normal
firewalls, with an average packet forwarding latency 30 times less.
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1. INTRODUCTION

Many designs for Internet services use split-connection prozies, in which proxy machine is interposed
between the server and the client machines in order to mediate the communication between them. Split-
connection proxies have been used for everything from HTTP caches to security firewalls to encryption
servers.[17] Split-connection proxy designs are attractive because they are backwards compatible with
existing servers, allow administration of the service at a single point (the proxy), and typically are easy
to integrate with existing applications.

While attractive in design, modern split-connection proxies typically suffer from three related prob-
lems: they have poor performance; they add a significant latency to the client-server communication
path; and they potentially violate the end-to-end semantics of the transport protocol in use. In this
paper, we explain the details of a new, general technique called TCP Splice that improves the perfor-
mance of split-connection proxies, and we show the performance improvements we created by adding
TCP Splice to a SOCKS[9] application layer firewall.

Figure 1 shows the architecture of split-connection proxy system. When processes running on the
client attempt to connect to a server machine, a client library intercepts the connection attempt, redi-
recting it to first make a connection to the proxy machine. The proxy machine then makes a second
connection to the server, splitting the logical connection between server and client into two pieces. The
split nature forces all traffic between client and server to flow through the proxy, which allows the proxy
to manipulate the data and provide its service.

In order to move data from the server to the client, an application layer proxy process reads the data
intended for the client from the proxy-server connection and writes it into the proxy-client connection.
Proxies acting as firewalls or HTTP caches often need to operate at router speeds, and this copying
operation cannot be performed at the desired speeds using a general purpose operating system. The cost
of moving data twice through the TCP/IP stack, crossing the user/kernel protection boundaries, and the
latency of scheduling the processes are high enough to make proxies the bottleneck in the system. Many
researchers have improved the performance of such systems by adjusting the management and motion
of kernel buffers to reduce or eliminate the cost of data-movement [7, 8, 14]. Such techniques have the
advantage of being able to increase the performance of data moving between heterogeneous sub-systems
(i.e., data being read from disk and output via the network), but their generality prevents them from
taking maximum advantage of the optimizations available. Our approach is to maximize performance by
achieving the tightest possible coupling between the two TCP connections co-terminating at the proxy
via a technique we call TCP Splice.



To support application layer proxies, we add a simple, generic kernel service called TCP Splice which
has an easy-to-use application programming interface. The TCP Splice takes care of all data forwarding
operations directly in the kernel, leaving the set-up, tear-down and logging tasks specific to each type of
proxy in the user level application where they are easy to modify or amend as needed. The TCP Splice
technique improves the current state of the art in three ways:

e Performance: A proxy or firewall using TCP Splice acts like a layer 3.5 router; it does not incur
either transport or application layer protocol processing overhead for each packet it processes. The
reduced complexity and code path length dramatically improves throughput. There is no need to
touch all data bytes: even the TCP checksum can be updated directly.

e Less book keeping: Proxies using TCP Splice need to maintain less TCP state information for each
of the connections that pass through them, and the proxy does not have to buffer any packets.

e Better end-to-end semantics: TCP Splice enables two ends of the connection to communicate as
peers, allowing control information to flow end-to-end. Aside from other advantages, this provides
the connection with true TCP reliability semantics and correct urgent data handling.

In the sections that follow, we first provide an overview of SOCKS firewalls and application layer
proxies in general. We then give some background material on the innards of TCP needed for the
explanation of of TCP Splice, and present the technique along with its performance.

2. BACKGROUND

SOCKS [9] is a protocol for use by application layer proxies implementing a network firewall function,
and its implementation [4] is typical of all application layer proxies. Figure 2 shows pseudocode for a
typical SOCKS server. The implementation style requires at least two protection boundary crossings and
at least 4 passes over all the packet data® per chunk of data relayed, which greatly limits the performance
of the proxy.

The intuition behind TCP Splice is that we can change the headers of incoming packets as they are
received and immediately forward them, rather than passing packets up through the protocol stack to
user space, only to have them passed back down again. The effect is to have the proxy relay packets as if
it were a layer 3.5 router (see 1). Authentication, logging, and other tasks are done by the proxy in user
space as normal, but the data copying part of the proxy = where the performance is normally lost is
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Figure 1 Basic architecture of split connection application layer proxies. The client library redirects
connection attempts to the proxy, which relays data between client and server. With TCP splice, data
relay between the client and server is performed in-kernel.
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replaced by single ioct1() call to set up the splice. After the splice is initiated, the user level proxy can
go on to other tasks. Figure 3 shows the pseudo code for our splicing SOCKS server.

3. TCP SPLICE

The use of TCP Splice to support mobility is explained in [11], but that paper elides the details required
for a correct, high speed implementation. Figure 4 shows how the splice operations fit in to the normal
SOCKS message exchange. We focus on clients making connections to servers, but SOCKS and TCP
Splice also support clients accepting connections, such as used with FTP in active mode.

When a client application calls connect (), the client library traps the call and converts it to a call
to Sconnect (), which opens a connection to the proxy as shown. The proxy and client library engage
in an authentication negotiation (eliminated from the diagram), and the client then sends the proxy the
address of the server to which it wants to connect. The proxy opens a second socket, marked D in the
figure, and tells the transport layer it intends to splice the connection terminating at that socket with
the connection terminating at socket c using the INTEND.SPLICE ioctl(). This call also sets a TCP
Splice specific DONT_ACK flag bit on the socket, which marks the beginning of the server to client splice.
Any data sent by the server after the flag is set are queued at the proxy for relay to the client, rather
than being read and processed by the proxy application. The proxy then connects to the request server
using the normal connect () call.

c = accept() client connection;
<authenticate client>
s = socket();
connect(s) to server;
send(c) OK message;
while (1) {
read() from c, write() to s;
read() from s, write() to c;
if (c and s return EOF) {
close(c); close(s);
break;
}

<service next request>

Figure 2 Pseudocode for a SOCKS firewall, which is typical of most application layer proxies.

c = accept() client connection;
<authenticate client>

s = socket();

ioctl(s, INTEND_SPLICE, c);

connect(s) to server;

n = sizeof (0K message);

/* splice ¢ and s after n more
bytes of data are sent */

ioctl(c, PRESPLICE, {s, n})

send(c) OK message;

close(s);

close(c);

<service next request>

Figure 3 Pseudocode for a SOCKS firewall using TCP Splice for the data relay. The forwarding
loop is removed, allowing the proxy to immediately continue with other actions.
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Figure 4 Packets exchanged during a SOCKS connection
setup showing when splice operations take place.

When the proxy application has completed any exchanges it wishes to have with the client, it calls
ioctl() to initiate the splice specifying the two sockets to be spliced together (C and D) and the number
of additional data bytes the proxy application wishes to write on the A-C connection before it is spliced
and closed to the proxy application. For the SOCKS protocol, this is the length of the ‘connect succeeded’
message the proxy sends to client library; allowing the client to return from the Sconnect () call to the
client application. In our general model, we refer this final message from proxy to client as the ‘OK’
message. The ‘OK’ message acts as a synchronization point for the client — data received after it are
from the server, not the user level proxy process. Its length can be 0 if desired, in which case the splice
is completed immediately. Once the splice is set up, the splice code relays any queued packets from the
server and unsets the DONT _ACK flag. When an ACK of the OK message arrives at the proxy, the splice
is complete.

3.1. TCP Background

Before describing how segments are relayed by TCP Splice, some background on TCP is required (see
[16] for more detailed information). Each TCP segment is typically sent in a single IP packet containing
an IP header and TCP header followed by the TCP data. The IP header contains the IP address of the
packet’s source and its destination. The TCP header contains which port on the destination machine the
packet is intended for, and which source port it came from. These four pieces of information uniquely
identify which TCP connection the packet is part of. The TCP header also contains a sequence number
field which indicates where in the connection the data in this segment belong, and an acknowledgment
field indicating how many bytes of data the segment’s sender has received from its peer.

Figure 5 depicts a normal TCP connection with data in flight between endpoints. Each normal TCP
connection is point-to-point and terminates at a TCP socket which is named by an address and a port
number. A TCP connection is uniquely identified by the names of the two sockets at its endpoints.
For each TCP socket, the normal TCP state machine maintains the following three counters. Using the
counters, TCP assigns each byte of data sent over the connection a sequence number so TCP can detect
and recover from data loss or duplication.

e snd_nxt: The sequence number of the next data byte to be sent.

e snd_una: The sequence number of the first unacknowledged data byte (equivalent to the sequence
number of the greatest ACK received).

e rcv_nxt: The sequence number of the next byte of data the sockets expects to receive (equivalent
to one more than the greatest consecutive sequence number received so far).
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Figure 5 A normal TCP connection between sockets A and C with state counters labeled.

These counters define a sequence space associated with the socket. Without loss of generality, we assume
for this explanation that each sequence space begins numbering at 0. Data bytes with sequence numbers
greater than snd_nxt have not yet been sent. Data bytes with sequence numbers less than rcv_nxt
have been received by the TCP stack, but perhaps not yet read by the application. We say that data is
acknowledged when the sender of the data receives an acknowledgment for it: snd_una will be less than
rcv_nxt whenever an ACK is in flight, delayed, or lost.

3.2. Mapping Sequence Spaces

When two connections are spliced together, the data sent to the proxy on one connection must be relayed
to the other connection so that it appears to seamlessly follow the data that came before it. The seamless
nature of the data must be preserved even if there are data or ACK packets in flight at the time the
splice is made, or if data must be retransmitted. Since all data bytes in TCP are assigned a sequence
number in the sequence space of their connection as described above, we achieve a seamless splice by
mapping the sequence numbers from one connection’s sequence space to the other connection’s sequence
space.

We call the sequence number of the next new byte to be received from A the splice initial receive
sequence number (splice_irs) and the sequence number B next expects the splice initial send sequence
number (splice_iss). Together, the pair <splice_irs,splice_iss> define a mapping between the
sequence number spaces of the spliced connections from A to B where data with sequence number
splice_irs + NN on the A to proxy connection maps to sequence number splice_iss+/N on the proxy
to B connection. A second pair similarly defines the mapping of the splice connection from B to A.
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Figure 6 Choice of base points for mapping data flowing from server to proxy to client.
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Figure 7 Choice for base points for mapping data flowing from client to proxy to server.

Figure 6 shows how splice_irs and splice_iss are chosen for the logical connection from server
to client. The proxy assumes any packets it receives after the DONT _ACK mode is set on socket D are
intended to be relayed to the client. It chooses splice_irs to be the sequence number it next expected
to hear at that time, so the next byte will be the first byte relayed across the splice. This byte of data,
when it arrives, should be the first byte of data the client sees after the OK message, so splice_iss is
set to the next sequence number after the OK message. Choosing splice_iss requires the splice code
be told how many bytes long the OK message will be when the splice is initiated, since the OK message
may not have been written when the splice is initiated.

Figure 7 shows how splice_irs and splice_iss are chosen for the logical connection from client to
server. The rcv_nxt counter at socket C holds the sequence number of the byte that falls immediately
after the end of the client-proxy authentication exchange, and is the sequence number of the first byte of
data the client application will send to the server. This byte of data should be mapped to the next byte
of data that the server expects, which is tracked by socket D’s snd_nxt counter at the time the splice is
initiated.

3.3. Relaying Segments

As each segment is received at a spliced socket, the segment’s headers are altered to address the segment
to the socket at the other end of the spliced connection. The segment’s TCP headers are altered so the
segment will be intelligible to the end system when it arrives  the segment will look like a continuation
of the normal TCP connection the end-system first started with the proxy. To alter a segment for
forwarding, the proxy needs only the state from the two sockets located on it (labeled C and D in the
figures). In the discussion below, all the variables referred to are those kept by the proxy. Below, the
socket a segment arrives on is labeled in and the socket it will be sent out from is labeled out.

Alter IP header
e Change source and destination address to that of outgoing connection.
e Remove IP options from incoming packet.

e Update IP header checksum.

Alter TCP header

e Change source and destination port numbers to match outgoing connection.

e Map sequence number of packet from incoming sequence space to outgoing space.
seq.num = (seq.num - in->splice._irs) + out->splice_iss

e Map ACK number of packet from incoming sequence space to outgoing space.
ack_num = (ack_num - in->splice_iss) + out->splice_irs

e Map TCP options as needed.
e Update TCP header checksum.

It is possible to update the TCP and IP header checksums in fail-safe manner, thereby saving the
time required to first check the checksum of a received packet and then recompute the checksum after



the headers have been altered (see [2]). Our current implementation does not use fail-safe checksum
updates, but verifies and computes the checksum as normal by making two passes over the entire packet,
so TCP Splice can potentially perform even better than reported here. With checksum updates, TCP
Splice would perform no passes over the packet other than the operation to copy the packet from the
network interface card onto the machine and the operation to copy it back to the network interface card.

The TCP urgent pointer is represented as an offset from the segment’s sequence number; hence, it
is not changed during the mapping procedure. By directly mapping and relaying packets, TCP Splice
preserves the complete semantics of TCP’s urgent pointer, so urgent data can be used in both the inline
and out-of-band modes provided by the Berkeley Sockets API. Normal application layer proxies require
urgent data to be used in the inline mode only as they will drop urgent data delivered out-of-band if it
arrives faster than it can be relayed.

While relaying a segment, one special check must be made to ensure the segment does not contain
data with sequence numbers less than the splice base point splice_irs. If such a segment is received, the
data up to splice_irs is simply chopped out of the segment and the remainder of the segment relayed.
If a segment containing data before splice_irs was relayed intact, the data would overwrite the OK
message that lies just before splice_irs and confuse the client SOCKS library. The dropped data is
only a retransmission of data received and processed by the proxy before the splice was set up, anyway,
so dropping it is harmless.

3.4. TCP Options

The TCP options that will be used on a connection are negotiated exactly once when the SYN packets
that establish the connection are exchanged. In the case of split-connection using TCP Splice, this initial
SYN exchange is with the proxy machine, not the server node. Since packets will flow almost directly
from client node to server node once the splice is in place, the proxy must either negotiate compatible
options on both connections, or have a way to convert between the options both nodes accept. This is
difficult since the proxy does not know which server the client wishes to connect to when it accepts and
negotiates options for the client-proxy connection. Not knowing the intended server, the proxy can not
simply negotiate compatible options.

We use a combination of three solutions to solve the options negotiation problem. First, we can
simply not splice together connections that have negotiated incompatible options and force the proxy
to forward data through application space as before, though this forfeits all the improvements of TCP
Splice. Second, we can have the proxy only support the minimally acceptable common set of options.
Third, certain options can be mapped or stripped? from packets being spliced between connections,
allowing the proxy to support the options at the cost of a small additional per-packet overhead.

The following sections describe how we handle options negotiation for the most common TCP options.
In reality, most of the options listed below are rare in practice, with few of them appearing in actual use
in traces we have examined, so our exercise to support them is largely academic. Supporting only the
minimum common subset of options including Timestamps and Maximum Segment Size appears to be
sufficient for deployment on corporate networks today.

3.4.1. Timestamps

The proxy can safely negotiate to use the Timestamp option [5] on any connections it creates, since if it
is called on to splice together a connection that uses timestamps with one that does not, it can simply
strip the Timestamp option from all packets as they pass through the proxy. Even if both connections
participating in a splice use Timestamps, special handling of the option is required to prevent an end-
system from having echoed to it timestamps it did not generate, since such timestamps could seriously
confuse the round trip time estimator. We handle the TCP Timestamp option in the same fashion as
sequence numbers: we map the timestamps used on the proxy-mobile connection to those used on the
proxy-server connection based on the last timestamps sent and received by the proxy before the splice
was established. To map the two fields contained in each Timestamp option, we use the equations:

e TSval_out = (TSval_in - in->lastrecv_TS) + out->lastsent_TS

e TSecho_out = (TSecho.in - in->lastsent_TS) + out->lastrecv._TS

20ptions can be stripped from packets either by simply replacing the option’s bytes with the TCP NOP (0x01), or by actually
moving later data up and on top of the option. Which choice is best is a tradeoff between proxy and network loading.



where lastrecv_TS and lastsent_TS represent the last TimeStamp that was received or sent on that
socket before the TCP Splice was established.

In reality, it is only necessary to map the Timestamp options which contain echoes of proxy-generated
timestamps, which would confuse an endsystem receiving them while expecting to receive timestamps
based on its own clock. Since packets containing proxy-generated timestamps will be cleared from the
system within one window’s worth of packets after the splice is completed, the overhead of mapping
could be saved if there was anyway to identify when the last of these packets had cleared the network.

3.4.2. Window Scale

Our proxy supports the Window Scale TCP option, but advertises a window scale of 0 to any client
node which connects to it. When the proxy makes the proxy-server connection, it propagates the client
node’s proposed Window Scale option. If the server does support the option, it will be able to send data
to the client using the client’s scaled window, though the client will believe the server only supports the
default 64KB window. This is compatible with the typical client-server model in which most data flows
from server to client. If the server does not support the Window Scale option, the proxy must unscale
the client’s advertised receive window when relaying packets to the server. If a Window Scale option is
received in later segments sent by the client node, the proxy must strip these options, though the client
node is prohibited by RFC1323 from sending additional segments with Window Scale options.

3.4.3. Selective Acknowledgments

A proxy using TCP Splice can support the Selective Acknowledgment (SACK) option [12] in a manner
similar to Timestamps. If called upon to splice together a connection use SACK with one that is not,
the splice simply strips all SACK options from the segments as it relays them. When relaying segments
between two connections that both use SACK, the acknowledgment block edges contained in the SACK
option are mapped in the same way as the segment’s cumulative ACK field.

3.4.4. Maximum Segment Size

The Maximum Segment Size (MSS) option [16] is sent in all SYN packets (and only SYN packets) to tell
the peer TCP machine what is largest TCP segment this TCP machine is capable of handling. Because
forcing the proxy to resegment the data would be a costly operation, our proxy uses a two tiered approach
to handle the MSS option.

If the connecting client node supports Path MTU Discovery [13] (as indicated by the presence of a
Don’t Fragment (DF) flag in the IP header), then the proxy advertises whatever MSS it feels appropriate
in the SYN packet it sends to the client node. Should the server advertise a smaller MSS on the proxy-
server connection than the proxy has advertised on the client-proxy connection, the proxy can generate
ICMP Destination Unreachable messages with the “Fragmentation needed, DF flag set” code to the
client node to force its segment size to be equal to the MSS accepted by the server.

If the client node does not support Path MTU Discovery, then the proxy simply advertises the mini-
mum MSS of 536.

4. EVALUATION

To evaluate the performance of TCP Splice, we benchmarked both an unmodified SOCKS server and a
SOCKS server modified to use TCP Splice as shown in figure 3. In a separate experiment, we configured
the proxy as a router and benchmarked its performance without the overhead of SOCKS. In the discus-
sion below we call the unmodified system SOCKS, the system with our TCP Splice modifications T'CP
Splice, and the system in which the proxy acts like a router IP Forward. We used the publicly available
distribution of SOCKS5 0.15.0 from NEC at ftp.nec.com. All the experiments were run on the 100Mbps
test network shown in figure 8. All the machines ran BSDI BSD/OS 3.0.

All send and receive TCP buffers were set to 16KB since this is a typical value. Experimentation
showed that the relative performance of the three system was unchanged by varying TCP buffer size,
though, as expected, the absolute performance increased with increasing buffer size. The length of input
and output interface queues on the proxy was increased to 150 to provide the network with extra buffering.
The extra buffering is needed only to prevent TCP synchronization between the packet sources, which is
commonly known to cause paradoxical decrease in TCP throughput. A production network would not
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require such buffering since the offered load would originate from significantly more than two machines,
and random early drop(RED) could be implemented at the proxy or other router.

For traffic generation and performance monitoring we used two applications: netperf, which is
publicly available from [6], and loadclient, which we implemented ourselves. Netperf is a network
benchmarking tool providing an interface for choosing socket buffer sizes; measuring throughput and
response time between two end systems, and recording CPU utilization. Since the netperf client sends
all data to the server over a single TCP connection, it is difficult to project how the proxy would scale
when many connections are routed though it. To overcome this limitation, we implemented a traffic
generator called loadclient that opens multiple connections through the proxy and then pushes data
through them as rapidly as possible. In all the results reported here loadclient was used to generate
workload and netperf was run on the proxy to measure CPU utilization.

To establish the baseline performance of the test network, we first configured the proxy to be a
normal router (without any firewall function), and used loadclient to measure the maximum attain-
able throughput from the clients (the sources) to the server (the sink). To compare the performance
of SOCKS versus TCP Splice, we used a SOCKSified loadclient to direct the traffic load through the
firewall functions of the proxy — the same client was used to test both the SOCKS and TCP Splice
firewalls. A comparison of throughput, response time, and CPU utilization numbers reveal the perfor-
mance advantage of using TCP Splice over SOCKS. Since IP Forward numbers provide an upper bound,
comparison with those numbers allows us to quantify the overhead of using TCP Splice and SOCKS.

In analyzing the performance of TCP Splice we will make three points.

1. The TCP Splice proxy can support substantially higher throughput than an Application Layer
Proxy. Furthermore, the proxy using TCP Splice can sustain throughput comparable to the equiv-
alent hardware acting as a router.

2. The TCP Splice proxy adds significantly less latency to the overall client-server connection than an
Application Layer Proxy.

3. The TCP Splice proxy uses fewer proxy machine resources to do to the same work as an Application
Layer Proxy.

All throughput measurements reported here are the average throughput of a minute long collection
period. CPU utilization numbers are the average of three different samples collected over ten second
periods while throughput tests were running. Except where noted, standard deviations are insignificantly
small and are not reported.

4.1. Throughput Comparisons

In the first experiment, a SOCKSified loadclient opens a given number of connections through the
proxy and then pushes data through them as rapidly as possible. The loadserver accepts connections
from the client through the proxy, and then reads data from the connections. The number of bytes per
second read by the loadserver, summed over all the connections, is what we report as the throughput of
the proxy, since all those bytes of data had to flow through the proxy.
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Figure 9 shows a comparison of the throughput of the SOCKS and TCP Splice proxies when running
on the test network shown in figure 8. Both the IP Forward and TCP Splice are faster than SOCKS by
a factor of more than two. Interestingly, TCP Splice performance is comparable to IP Forward. This is
because at 70Mbps load, proxy is not CPU constrained (as shown in Figure 10); the real bottleneck is the
100 Mbps Ethernet which could not transport more data due to collision and MAC layer encapsulation
overheard.

4.2. CPU Utilization Comparison

Figure 10 compares the CPU utilization required to achieve the throughput shown in figure 9. Clearly,
the SOCKS proxy is CPU limited at 33 Mbps. The TCP Splice proxy, on the other hand, provides twice
the throughput and remains only around 80 percent utilized. Under the same load condition, proxy’s
CPU utilization is below 70% in the IP Forwarding mode. Our current implementation of TCP Splice
recomputes the TCP layer checksum after modifying the TCP/IP header, causing an extra pass over the
data. With an optimized implementation (i.e., with incremental checksum computation) it is possible
to bridge the 15% performance gap between IP Forward and TCP Splice. The extra CPU cycles could
be used to carry more traffic, or for additional proxy services such as encryption or compression of the
carried data. Figure 11 compares the CPU utilization required to support a throughput of approximately
33Mbps, which is the largest throughput the SOCKS proxy could support, clearly indicating the oppor-
tunity to either add additional functionality to a Splice proxy, or to reduce the processing power required
of the proxy hardware allowing a cheaper system to be used.

4.3. Latency Comparison

Table 1 Forwarding latency comparison between TCP Splice, SOCKS, and IP Forwarding

mean | variance | std. deviation
TCP Splice | 0.1027 0.0019 0.0435
SOCKS 3.2273 0.5680 0.7536
IP Forward | 0.0925 0.0040 0.0629

10
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Figure 12 shows a comparison of the forwarding latency of TCP Splice, SOCKS, and IP Forward. A
single connection from client to server was set up, and packet arrival and departure times were recorded
using tcpdump. The difference in time between when each byte was received on the client-proxy con-
nection and sent on the proxy-server connection is plotted as a function of the byte’s sequence number.
Table 1 shows the mean, variance, and standard deviation of all the samples shown in Figure 12. The
average forwarding latency for TCP Splice is 102 microseconds, which is marginally greater that IP
Forwarding latency of 92 microseconds. The variance of both methods is comparable and small. Slightly
high value of IP Forward variance reported in table 1 is a random occurrence and is not statistically
significant.

Contrasted with TCP Splice, SOCKS has an average forwarding latency of 3.2 milliseconds, and the
variance is quite large. The first packet relayed by SOCKS sees no queuing delay (since there are no
queued packets yet), and so estimates the forwarding latency of the raw code path length. SOCKS’ path
length is then about 740 microseconds, compared to TCP Splice’s 102 microseconds.

As more data arrives at the SOCKS proxy, a queue of packets waiting to be relayed builds up in the
socket buffers of the proxy, so the per byte forwarding latency grows. The latency drops again as the
queue is drained, and the variation presumably indicates when the proxy process is scheduled.

5. RELATED WORK

A major contribution of TCP Splice is its ability to splice together two connections which were indepen-
dently set up with the proxy and that have already carried arbitrary traffic with the proxy application.
This feature is unique to TCP Splice, and it obviates the need for a separate control connection, thereby
making TCP Splice more general and powerful than previously existing techniques. There are dominant
applications, such as the Netscape web browser, and protocols, such as the SOCKS authenticated firewall
traversal protocol, which assume the ability to send in-line control and authentication information. With
TCP Splice, these applications and protocols can be supported easily in a backwards compatible fashion.

The addition of a constant offset to TCP sequence numbers was first proposed for TCP in order to
support the FTP protocol in Network Address Translation (NAT) gateways[2]. While this is a primitive
form of linear sequence number mapping, TCP Splice significantly extends the use of sequence number
mapping and works correctly even if data is in flight at the time of the splice, or data is later retrans-
mitted. TCP Splice also provides the necessary synchronization primitives to enable Application Layer
Proxies to use sequence number mapping as a generic primitive that increases performance.

From the publicly available information, the Cisco PIX Firewall[3] uses sequence mapping techniques
similar to those that underlie TCP Splice to implement what they call “cut-through proxy”. However,
TCP Splice is a significantly more general technique. The PIX firewall is a stateful firewall that traps and

11



queues outgoing SYN packets until they are authenticated by an out-of-band authentication protocol,
which requires a separate control connection to the client machine. If the authentication succeeds, the
queued packets are released and their headers modified in a kind of advanced NAT. The PIX firewall is
never a party to the communication with the client, and can not exchange information in-line with the
client. TCP Splice, on the other hand, allows two arbitrary connections on which arbitrary information
has been exchanged to be spliced together. This generality makes TCP Splice a primitive on which many
proxies, not just firewalls, can be built.

The problem of optimizing data movement has already received considerable attention in the OS and
networking community. Kevin Fall’'s work [7] on optimizing data transfer between I/O devices and the
University of Arizona’s work on fast buffers (FBUFS) [1] are some of the examples. The Microsoft NT
operating system also provides support for efficiently moving data from a file to a network connection
through the use of the TransmitFile() API. TCP Splice differs from these in that is is not solely another
buffer optimization trick. It provides a significantly tighter binding between the connections which no
other methods can provide. Using existing optimization methods, the two connections that make up the
logical client-server connection have a normal, complete protocol state machine running the endpoint of
the connections at the proxy. The only way in which the two connections are related is that the input
buffer, which normally holds data received from one connection and waiting to be read by the proxy
application, is used as the output buffer for the other connection. By moving received data from the
input buffer directly to the output buffer, the systems save the overhead of copying the data through
application space. In TCP Splice, there ¢s mo input or output buffer. Received data packets are altered
and then immediately forwarded. There is no protocol state machine at the “endpoints” on the proxy.
There are no buffers or timers to manage, and the proxy does not send retransmissions, as happens in
the other systems.

The ScoutOS project at the University of Arizona describes using a technique similar to TCP Splice to
implement their Escort system [15]. Escort is a security architecture that creates protected data-pathways
through the kernel in order to enforce a separation of connections that flow through the kernel.

For application layer proxies that modify data on the fly, the sequence number mapping tricks of TCP
Splice can be used to push the modification operation into the kernel, and also the data to be modified
while maintaining the end-to-end reliability semantics of TCP. We are currently looking at using TCP
Splice to increase the throughput of encryption and compression services offered by our firewall.

6. CONCLUSION

A commonly used technique for building application layer firewalls involves inserting a TCP proxy in the
communication path of the two communicating end points. In the majority of cases, the purpose of the
firewall is only to authenticate the originators of connections, exercise some form of excess control, and
monitor the network activity. After the authentication phase is over, the proxy effectively operates like
a bi-directional application layer relay, copying data back and forth between the two connections. Under
medium to high load conditions this becomes a major performance bottleneck.

We have shown that, using the technique of TCP Splice, we can overcome the performance bot-
tleneck of application layer firewalls. Our lab experiments show that with TCP Splice we can double
the throughput of a SOCKS firewall, while reducing the packet forwarding by a factor of 30. Besides
performance, TCP Splice also provides better end-to-end semantics, since TCP segments and ACKs are
exchanged end-to-end over a spliced connection.

With the TCP Splice technique, it is possible to build inexpensive and faster application layer proxies,
including SOCKS firewalls. Furthermore, with an optimized implementation (e.g., with the incremental
checksum) it is possible to push the performance envelope beyond current limits. As an on-going research
project we are building another kernel primitive called TCP Tap, using which a proxy can also collect
a local copy of the data forwarded over the spliced connection. Using both splice and tap, it is possible
to build a high performance HTTP caching proxy. Interested readers can find more details in our recent
workshop publication [10].
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