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1. INTRODUCTIONMany designs for Internet services use split-connection proxies, in which proxy machine is interposedbetween the server and the client machines in order to mediate the communication between them. Split-connection proxies have been used for everything from HTTP caches to security �rewalls to encryptionservers.[17] Split-connection proxy designs are attractive because they are backwards compatible withexisting servers, allow administration of the service at a single point (the proxy), and typically are easyto integrate with existing applications.While attractive in design, modern split-connection proxies typically su�er from three related prob-lems: they have poor performance; they add a signi�cant latency to the client-server communicationpath; and they potentially violate the end-to-end semantics of the transport protocol in use. In thispaper, we explain the details of a new, general technique called TCP Splice that improves the perfor-mance of split-connection proxies, and we show the performance improvements we created by addingTCP Splice to a SOCKS[9] application layer �rewall.Figure 1 shows the architecture of split-connection proxy system. When processes running on theclient attempt to connect to a server machine, a client library intercepts the connection attempt, redi-recting it to �rst make a connection to the proxy machine. The proxy machine then makes a secondconnection to the server, splitting the logical connection between server and client into two pieces. Thesplit nature forces all tra�c between client and server to 
ow through the proxy, which allows the proxyto manipulate the data and provide its service.In order to move data from the server to the client, an application layer proxy process reads the dataintended for the client from the proxy-server connection and writes it into the proxy-client connection.Proxies acting as �rewalls or HTTP caches often need to operate at router speeds, and this copyingoperation cannot be performed at the desired speeds using a general purpose operating system. The costof moving data twice through the TCP/IP stack, crossing the user/kernel protection boundaries, and thelatency of scheduling the processes are high enough to make proxies the bottleneck in the system. Manyresearchers have improved the performance of such systems by adjusting the management and motionof kernel bu�ers to reduce or eliminate the cost of data-movement [7, 8, 14]. Such techniques have theadvantage of being able to increase the performance of data moving between heterogeneous sub-systems(i.e., data being read from disk and output via the network), but their generality prevents them fromtaking maximum advantage of the optimizations available. Our approach is to maximize performance byachieving the tightest possible coupling between the two TCP connections co-terminating at the proxyvia a technique we call TCP Splice. 1



To support application layer proxies, we add a simple, generic kernel service called TCP Splice whichhas an easy-to-use application programming interface. The TCP Splice takes care of all data forwardingoperations directly in the kernel, leaving the set-up, tear-down and logging tasks speci�c to each type ofproxy in the user level application where they are easy to modify or amend as needed. The TCP Splicetechnique improves the current state of the art in three ways:� Performance: A proxy or �rewall using TCP Splice acts like a layer 3.5 router; it does not incureither transport or application layer protocol processing overhead for each packet it processes. Thereduced complexity and code path length dramatically improves throughput. There is no need totouch all data bytes: even the TCP checksum can be updated directly.� Less book keeping: Proxies using TCP Splice need to maintain less TCP state information for eachof the connections that pass through them, and the proxy does not have to bu�er any packets.� Better end-to-end semantics: TCP Splice enables two ends of the connection to communicate aspeers, allowing control information to 
ow end-to-end. Aside from other advantages, this providesthe connection with true TCP reliability semantics and correct urgent data handling.In the sections that follow, we �rst provide an overview of SOCKS �rewalls and application layerproxies in general. We then give some background material on the innards of TCP needed for theexplanation of of TCP Splice, and present the technique along with its performance.
2. BACKGROUNDSOCKS [9] is a protocol for use by application layer proxies implementing a network �rewall function,and its implementation [4] is typical of all application layer proxies. Figure 2 shows pseudocode for atypical SOCKS server. The implementation style requires at least two protection boundary crossings andat least 4 passes over all the packet data1 per chunk of data relayed, which greatly limits the performanceof the proxy.The intuition behind TCP Splice is that we can change the headers of incoming packets as they arereceived and immediately forward them, rather than passing packets up through the protocol stack touser space, only to have them passed back down again. The e�ect is to have the proxy relay packets as ifit were a layer 3.5 router (see 1). Authentication, logging, and other tasks are done by the proxy in userspace as normal, but the data copying part of the proxy | where the performance is normally lost | is
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replaced by single ioctl() call to set up the splice. After the splice is initiated, the user level proxy cango on to other tasks. Figure 3 shows the pseudo code for our splicing SOCKS server.
3. TCP SPLICEThe use of TCP Splice to support mobility is explained in [11], but that paper elides the details requiredfor a correct, high speed implementation. Figure 4 shows how the splice operations �t in to the normalSOCKS message exchange. We focus on clients making connections to servers, but SOCKS and TCPSplice also support clients accepting connections, such as used with FTP in active mode.When a client application calls connect(), the client library traps the call and converts it to a callto Sconnect(), which opens a connection to the proxy as shown. The proxy and client library engagein an authentication negotiation (eliminated from the diagram), and the client then sends the proxy theaddress of the server to which it wants to connect. The proxy opens a second socket, marked D in the�gure, and tells the transport layer it intends to splice the connection terminating at that socket withthe connection terminating at socket c using the INTEND SPLICE ioctl(). This call also sets a TCPSplice speci�c DONT ACK 
ag bit on the socket, which marks the beginning of the server to client splice.Any data sent by the server after the 
ag is set are queued at the proxy for relay to the client, ratherthan being read and processed by the proxy application. The proxy then connects to the request serverusing the normal connect() call.c = accept() client connection;<authenticate client>s = socket();connect(s) to server;send(c) OK message;while (1) {read() from c, write() to s;read() from s, write() to c;if (c and s return EOF) {close(c); close(s);break;}<service next request>

Figure 2 Pseudocode for a SOCKS �rewall, which is typical of most application layer proxies.c = accept() client connection;<authenticate client>s = socket();ioctl(s, INTEND_SPLICE, c);connect(s) to server;n = sizeof(OK message);/* splice c and s after n morebytes of data are sent */ioctl(c, PRESPLICE, {s, n})send(c) OK message;close(s);close(c);<service next request>
Figure 3 Pseudocode for a SOCKS �rewall using TCP Splice for the data relay. The forwardingloop is removed, allowing the proxy to immediately continue with other actions.3
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Figure 4 Packets exchanged during a SOCKS connectionsetup showing when splice operations take place.When the proxy application has completed any exchanges it wishes to have with the client, it callsioctl() to initiate the splice specifying the two sockets to be spliced together (C andD) and the numberof additional data bytes the proxy application wishes to write on the A-C connection before it is splicedand closed to the proxy application. For the SOCKS protocol, this is the length of the `connect succeeded'message the proxy sends to client library; allowing the client to return from the Sconnect() call to theclient application. In our general model, we refer this �nal message from proxy to client as the `OK'message. The `OK' message acts as a synchronization point for the client | data received after it arefrom the server, not the user level proxy process. Its length can be 0 if desired, in which case the spliceis completed immediately. Once the splice is set up, the splice code relays any queued packets from theserver and unsets the DONT ACK 
ag. When an ACK of the OK message arrives at the proxy, the spliceis complete.
3.1. TCP BackgroundBefore describing how segments are relayed by TCP Splice, some background on TCP is required (see[16] for more detailed information). Each TCP segment is typically sent in a single IP packet containingan IP header and TCP header followed by the TCP data. The IP header contains the IP address of thepacket's source and its destination. The TCP header contains which port on the destination machine thepacket is intended for, and which source port it came from. These four pieces of information uniquelyidentify which TCP connection the packet is part of. The TCP header also contains a sequence number�eld which indicates where in the connection the data in this segment belong, and an acknowledgment�eld indicating how many bytes of data the segment's sender has received from its peer.Figure 5 depicts a normal TCP connection with data in 
ight between endpoints. Each normal TCPconnection is point-to-point and terminates at a TCP socket which is named by an address and a portnumber. A TCP connection is uniquely identi�ed by the names of the two sockets at its endpoints.For each TCP socket, the normal TCP state machine maintains the following three counters. Using thecounters, TCP assigns each byte of data sent over the connection a sequence number so TCP can detectand recover from data loss or duplication.� snd nxt: The sequence number of the next data byte to be sent.� snd una: The sequence number of the �rst unacknowledged data byte (equivalent to the sequencenumber of the greatest ACK received).� rcv nxt: The sequence number of the next byte of data the sockets expects to receive (equivalentto one more than the greatest consecutive sequence number received so far).4
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Figure 5 A normal TCP connection between sockets A and C with state counters labeled.These counters de�ne a sequence space associated with the socket. Without loss of generality, we assumefor this explanation that each sequence space begins numbering at 0. Data bytes with sequence numbersgreater than snd_nxt have not yet been sent. Data bytes with sequence numbers less than rcv_nxthave been received by the TCP stack, but perhaps not yet read by the application. We say that data isacknowledged when the sender of the data receives an acknowledgment for it: snd_una will be less thanrcv_nxt whenever an ACK is in 
ight, delayed, or lost.
3.2. Mapping Sequence SpacesWhen two connections are spliced together, the data sent to the proxy on one connection must be relayedto the other connection so that it appears to seamlessly follow the data that came before it. The seamlessnature of the data must be preserved even if there are data or ACK packets in 
ight at the time thesplice is made, or if data must be retransmitted. Since all data bytes in TCP are assigned a sequencenumber in the sequence space of their connection as described above, we achieve a seamless splice bymapping the sequence numbers from one connection's sequence space to the other connection's sequencespace.We call the sequence number of the next new byte to be received from A the splice initial receivesequence number (splice_irs) and the sequence number B next expects the splice initial send sequencenumber (splice_iss). Together, the pair <splice_irs,splice_iss> de�ne a mapping between thesequence number spaces of the spliced connections from A to B where data with sequence numbersplice_irs +N on the A to proxy connection maps to sequence number splice_iss+N on the proxyto B connection. A second pair similarly de�nes the mapping of the splice connection from B to A.
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Figure 7 Choice for base points for mapping data 
owing from client to proxy to server.Figure 6 shows how splice_irs and splice_iss are chosen for the logical connection from serverto client. The proxy assumes any packets it receives after the DONT ACK mode is set on socket D areintended to be relayed to the client. It chooses splice_irs to be the sequence number it next expectedto hear at that time, so the next byte will be the �rst byte relayed across the splice. This byte of data,when it arrives, should be the �rst byte of data the client sees after the OK message, so splice_iss isset to the next sequence number after the OK message. Choosing splice_iss requires the splice codebe told how many bytes long the OK message will be when the splice is initiated, since the OK messagemay not have been written when the splice is initiated.Figure 7 shows how splice_irs and splice_iss are chosen for the logical connection from client toserver. The rcv_nxt counter at socket C holds the sequence number of the byte that falls immediatelyafter the end of the client-proxy authentication exchange, and is the sequence number of the �rst byte ofdata the client application will send to the server. This byte of data should be mapped to the next byteof data that the server expects, which is tracked by socket D's snd_nxt counter at the time the splice isinitiated.
3.3. Relaying SegmentsAs each segment is received at a spliced socket, the segment's headers are altered to address the segmentto the socket at the other end of the spliced connection. The segment's TCP headers are altered so thesegment will be intelligible to the end system when it arrives | the segment will look like a continuationof the normal TCP connection the end-system �rst started with the proxy. To alter a segment forforwarding, the proxy needs only the state from the two sockets located on it (labeled C and D in the�gures). In the discussion below, all the variables referred to are those kept by the proxy. Below, thesocket a segment arrives on is labeled in and the socket it will be sent out from is labeled out.
Alter IP header� Change source and destination address to that of outgoing connection.� Remove IP options from incoming packet.� Update IP header checksum.
Alter TCP header� Change source and destination port numbers to match outgoing connection.� Map sequence number of packet from incoming sequence space to outgoing space.seq num = (seq num - in->splice irs) + out->splice iss� Map ACK number of packet from incoming sequence space to outgoing space.ack num = (ack num - in->splice iss) + out->splice irs� Map TCP options as needed.� Update TCP header checksum.It is possible to update the TCP and IP header checksums in fail-safe manner, thereby saving thetime required to �rst check the checksum of a received packet and then recompute the checksum after6



the headers have been altered (see [2]). Our current implementation does not use fail-safe checksumupdates, but veri�es and computes the checksum as normal by making two passes over the entire packet,so TCP Splice can potentially perform even better than reported here. With checksum updates, TCPSplice would perform no passes over the packet other than the operation to copy the packet from thenetwork interface card onto the machine and the operation to copy it back to the network interface card.The TCP urgent pointer is represented as an o�set from the segment's sequence number; hence, itis not changed during the mapping procedure. By directly mapping and relaying packets, TCP Splicepreserves the complete semantics of TCP's urgent pointer, so urgent data can be used in both the inlineand out-of-band modes provided by the Berkeley Sockets API. Normal application layer proxies requireurgent data to be used in the inline mode only as they will drop urgent data delivered out-of-band if itarrives faster than it can be relayed.While relaying a segment, one special check must be made to ensure the segment does not containdata with sequence numbers less than the splice base point splice_irs. If such a segment is received, thedata up to splice_irs is simply chopped out of the segment and the remainder of the segment relayed.If a segment containing data before splice_irs was relayed intact, the data would overwrite the OKmessage that lies just before splice_irs and confuse the client SOCKS library. The dropped data isonly a retransmission of data received and processed by the proxy before the splice was set up, anyway,so dropping it is harmless.
3.4. TCP OptionsThe TCP options that will be used on a connection are negotiated exactly once when the SYN packetsthat establish the connection are exchanged. In the case of split-connection using TCP Splice, this initialSYN exchange is with the proxy machine, not the server node. Since packets will 
ow almost directlyfrom client node to server node once the splice is in place, the proxy must either negotiate compatibleoptions on both connections, or have a way to convert between the options both nodes accept. This isdi�cult since the proxy does not know which server the client wishes to connect to when it accepts andnegotiates options for the client-proxy connection. Not knowing the intended server, the proxy can notsimply negotiate compatible options.We use a combination of three solutions to solve the options negotiation problem. First, we cansimply not splice together connections that have negotiated incompatible options and force the proxyto forward data through application space as before, though this forfeits all the improvements of TCPSplice. Second, we can have the proxy only support the minimally acceptable common set of options.Third, certain options can be mapped or stripped2 from packets being spliced between connections,allowing the proxy to support the options at the cost of a small additional per-packet overhead.The following sections describe how we handle options negotiation for the most common TCP options.In reality, most of the options listed below are rare in practice, with few of them appearing in actual usein traces we have examined, so our exercise to support them is largely academic. Supporting only theminimum common subset of options including Timestamps and Maximum Segment Size appears to besu�cient for deployment on corporate networks today.
3.4.1. TimestampsThe proxy can safely negotiate to use the Timestamp option [5] on any connections it creates, since if itis called on to splice together a connection that uses timestamps with one that does not, it can simplystrip the Timestamp option from all packets as they pass through the proxy. Even if both connectionsparticipating in a splice use Timestamps, special handling of the option is required to prevent an end-system from having echoed to it timestamps it did not generate, since such timestamps could seriouslyconfuse the round trip time estimator. We handle the TCP Timestamp option in the same fashion assequence numbers: we map the timestamps used on the proxy-mobile connection to those used on theproxy-server connection based on the last timestamps sent and received by the proxy before the splicewas established. To map the two �elds contained in each Timestamp option, we use the equations:� TSval out = (TSval in - in->lastrecv TS) + out->lastsent TS� TSecho out = (TSecho in - in->lastsent TS) + out->lastrecv TS2Options can be stripped from packets either by simply replacing the option's bytes with the TCP NOP (0x01), or by actuallymoving later data up and on top of the option. Which choice is best is a tradeo� between proxy and network loading.7



where lastrecv TS and lastsent TS represent the last TimeStamp that was received or sent on thatsocket before the TCP Splice was established.In reality, it is only necessary to map the Timestamp options which contain echoes of proxy-generatedtimestamps, which would confuse an endsystem receiving them while expecting to receive timestampsbased on its own clock. Since packets containing proxy-generated timestamps will be cleared from thesystem within one window's worth of packets after the splice is completed, the overhead of mappingcould be saved if there was anyway to identify when the last of these packets had cleared the network.
3.4.2. Window ScaleOur proxy supports the Window Scale TCP option, but advertises a window scale of 0 to any clientnode which connects to it. When the proxy makes the proxy-server connection, it propagates the clientnode's proposed Window Scale option. If the server does support the option, it will be able to send datato the client using the client's scaled window, though the client will believe the server only supports thedefault 64KB window. This is compatible with the typical client-server model in which most data 
owsfrom server to client. If the server does not support the Window Scale option, the proxy must unscalethe client's advertised receive window when relaying packets to the server. If a Window Scale option isreceived in later segments sent by the client node, the proxy must strip these options, though the clientnode is prohibited by RFC1323 from sending additional segments with Window Scale options.
3.4.3. Selective AcknowledgmentsA proxy using TCP Splice can support the Selective Acknowledgment (SACK) option [12] in a mannersimilar to Timestamps. If called upon to splice together a connection use SACK with one that is not,the splice simply strips all SACK options from the segments as it relays them. When relaying segmentsbetween two connections that both use SACK, the acknowledgment block edges contained in the SACKoption are mapped in the same way as the segment's cumulative ACK �eld.
3.4.4. Maximum Segment SizeThe Maximum Segment Size (MSS) option [16] is sent in all SYN packets (and only SYN packets) to tellthe peer TCP machine what is largest TCP segment this TCP machine is capable of handling. Becauseforcing the proxy to resegment the data would be a costly operation, our proxy uses a two tiered approachto handle the MSS option.If the connecting client node supports Path MTU Discovery [13] (as indicated by the presence of aDon't Fragment (DF) 
ag in the IP header), then the proxy advertises whatever MSS it feels appropriatein the SYN packet it sends to the client node. Should the server advertise a smaller MSS on the proxy-server connection than the proxy has advertised on the client-proxy connection, the proxy can generateICMP Destination Unreachable messages with the \Fragmentation needed, DF 
ag set" code to theclient node to force its segment size to be equal to the MSS accepted by the server.If the client node does not support Path MTU Discovery, then the proxy simply advertises the mini-mum MSS of 536.
4. EVALUATIONTo evaluate the performance of TCP Splice, we benchmarked both an unmodi�ed SOCKS server and aSOCKS server modi�ed to use TCP Splice as shown in �gure 3. In a separate experiment, we con�guredthe proxy as a router and benchmarked its performance without the overhead of SOCKS. In the discus-sion below we call the unmodi�ed system SOCKS, the system with our TCP Splice modi�cations TCPSplice, and the system in which the proxy acts like a router IP Forward. We used the publicly availabledistribution of SOCKS5 0.15.0 from NEC at ftp.nec.com. All the experiments were run on the 100Mbpstest network shown in �gure 8. All the machines ran BSDI BSD/OS 3.0.All send and receive TCP bu�ers were set to 16KB since this is a typical value. Experimentationshowed that the relative performance of the three system was unchanged by varying TCP bu�er size,though, as expected, the absolute performance increased with increasing bu�er size. The length of inputand output interface queues on the proxy was increased to 150 to provide the network with extra bu�ering.The extra bu�ering is needed only to prevent TCP synchronization between the packet sources, which iscommonly known to cause paradoxical decrease in TCP throughput. A production network would not8



ServerProxy

100Mb Ethernet

200MHz PPro

100Mb Ethernet

100Mb Ethernet

166MHz 586 100MHz 586

166MHz 586

Clients

Figure 8 Test network topology. All machines running BSDI BSD/OS 3.0.require such bu�ering since the o�ered load would originate from signi�cantly more than two machines,and random early drop(RED) could be implemented at the proxy or other router.For tra�c generation and performance monitoring we used two applications: netperf, which ispublicly available from [6], and loadclient, which we implemented ourselves. Netperf is a networkbenchmarking tool providing an interface for choosing socket bu�er sizes, measuring throughput andresponse time between two end systems, and recording CPU utilization. Since the netperf client sendsall data to the server over a single TCP connection, it is di�cult to project how the proxy would scalewhen many connections are routed though it. To overcome this limitation, we implemented a tra�cgenerator called loadclient that opens multiple connections through the proxy and then pushes datathrough them as rapidly as possible. In all the results reported here loadclient was used to generateworkload and netperf was run on the proxy to measure CPU utilization.To establish the baseline performance of the test network, we �rst con�gured the proxy to be anormal router (without any �rewall function), and used loadclient to measure the maximum attain-able throughput from the clients (the sources) to the server (the sink). To compare the performanceof SOCKS versus TCP Splice, we used a SOCKSi�ed loadclient to direct the tra�c load through the�rewall functions of the proxy | the same client was used to test both the SOCKS and TCP Splice�rewalls. A comparison of throughput, response time, and CPU utilization numbers reveal the perfor-mance advantage of using TCP Splice over SOCKS. Since IP Forward numbers provide an upper bound,comparison with those numbers allows us to quantify the overhead of using TCP Splice and SOCKS.In analyzing the performance of TCP Splice we will make three points.1. The TCP Splice proxy can support substantially higher throughput than an Application LayerProxy. Furthermore, the proxy using TCP Splice can sustain throughput comparable to the equiv-alent hardware acting as a router.2. The TCP Splice proxy adds signi�cantly less latency to the overall client-server connection than anApplication Layer Proxy.3. The TCP Splice proxy uses fewer proxy machine resources to do to the same work as an ApplicationLayer Proxy.All throughput measurements reported here are the average throughput of a minute long collectionperiod. CPU utilization numbers are the average of three di�erent samples collected over ten secondperiods while throughput tests were running. Except where noted, standard deviations are insigni�cantlysmall and are not reported.
4.1. Throughput ComparisonsIn the �rst experiment, a SOCKSi�ed loadclient opens a given number of connections through theproxy and then pushes data through them as rapidly as possible. The loadserver accepts connectionsfrom the client through the proxy, and then reads data from the connections. The number of bytes persecond read by the loadserver, summed over all the connections, is what we report as the throughput ofthe proxy, since all those bytes of data had to 
ow through the proxy.9
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Figure 10 CPU utilization undervarying number of connections.Figure 9 shows a comparison of the throughput of the SOCKS and TCP Splice proxies when runningon the test network shown in �gure 8. Both the IP Forward and TCP Splice are faster than SOCKS bya factor of more than two. Interestingly, TCP Splice performance is comparable to IP Forward. This isbecause at 70Mbps load, proxy is not CPU constrained (as shown in Figure 10); the real bottleneck is the100 Mbps Ethernet which could not transport more data due to collision and MAC layer encapsulationoverheard.
4.2. CPU Utilization ComparisonFigure 10 compares the CPU utilization required to achieve the throughput shown in �gure 9. Clearly,the SOCKS proxy is CPU limited at 33 Mbps. The TCP Splice proxy, on the other hand, provides twicethe throughput and remains only around 80 percent utilized. Under the same load condition, proxy'sCPU utilization is below 70% in the IP Forwarding mode. Our current implementation of TCP Splicerecomputes the TCP layer checksum after modifying the TCP/IP header, causing an extra pass over thedata. With an optimized implementation (i.e., with incremental checksum computation) it is possibleto bridge the 15% performance gap between IP Forward and TCP Splice. The extra CPU cycles couldbe used to carry more tra�c, or for additional proxy services such as encryption or compression of thecarried data. Figure 11 compares the CPU utilization required to support a throughput of approximately33Mbps, which is the largest throughput the SOCKS proxy could support, clearly indicating the oppor-tunity to either add additional functionality to a Splice proxy, or to reduce the processing power requiredof the proxy hardware allowing a cheaper system to be used.
4.3. Latency Comparison

Table 1 Forwarding latency comparison between TCP Splice, SOCKS, and IP Forwardingmean variance std. deviationTCP Splice 0.1027 0.0019 0.0435SOCKS 3.2273 0.5680 0.7536IP Forward 0.0925 0.0040 0.062910
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Figure 12 Distribution of Forwardinglatency of TCP Splice, SOCKS, and IPForwardingFigure 12 shows a comparison of the forwarding latency of TCP Splice, SOCKS, and IP Forward. Asingle connection from client to server was set up, and packet arrival and departure times were recordedusing tcpdump. The di�erence in time between when each byte was received on the client-proxy con-nection and sent on the proxy-server connection is plotted as a function of the byte's sequence number.Table 1 shows the mean, variance, and standard deviation of all the samples shown in Figure 12. Theaverage forwarding latency for TCP Splice is 102 microseconds, which is marginally greater that IPForwarding latency of 92 microseconds. The variance of both methods is comparable and small. Slightlyhigh value of IP Forward variance reported in table 1 is a random occurrence and is not statisticallysigni�cant.Contrasted with TCP Splice, SOCKS has an average forwarding latency of 3.2 milliseconds, and thevariance is quite large. The �rst packet relayed by SOCKS sees no queuing delay (since there are noqueued packets yet), and so estimates the forwarding latency of the raw code path length. SOCKS' pathlength is then about 740 microseconds, compared to TCP Splice's 102 microseconds.As more data arrives at the SOCKS proxy, a queue of packets waiting to be relayed builds up in thesocket bu�ers of the proxy, so the per byte forwarding latency grows. The latency drops again as thequeue is drained, and the variation presumably indicates when the proxy process is scheduled.
5. RELATED WORKA major contribution of TCP Splice is its ability to splice together two connections which were indepen-dently set up with the proxy and that have already carried arbitrary tra�c with the proxy application.This feature is unique to TCP Splice, and it obviates the need for a separate control connection, therebymaking TCP Splice more general and powerful than previously existing techniques. There are dominantapplications, such as the Netscape web browser, and protocols, such as the SOCKS authenticated �rewalltraversal protocol, which assume the ability to send in-line control and authentication information. WithTCP Splice, these applications and protocols can be supported easily in a backwards compatible fashion.The addition of a constant o�set to TCP sequence numbers was �rst proposed for TCP in order tosupport the FTP protocol in Network Address Translation (NAT) gateways[2]. While this is a primitiveform of linear sequence number mapping, TCP Splice signi�cantly extends the use of sequence numbermapping and works correctly even if data is in 
ight at the time of the splice, or data is later retrans-mitted. TCP Splice also provides the necessary synchronization primitives to enable Application LayerProxies to use sequence number mapping as a generic primitive that increases performance.From the publicly available information, the Cisco PIX Firewall[3] uses sequence mapping techniquessimilar to those that underlie TCP Splice to implement what they call \cut-through proxy". However,TCP Splice is a signi�cantly more general technique. The PIX �rewall is a stateful �rewall that traps and11



queues outgoing SYN packets until they are authenticated by an out-of-band authentication protocol,which requires a separate control connection to the client machine. If the authentication succeeds, thequeued packets are released and their headers modi�ed in a kind of advanced NAT. The PIX �rewall isnever a party to the communication with the client, and can not exchange information in-line with theclient. TCP Splice, on the other hand, allows two arbitrary connections on which arbitrary informationhas been exchanged to be spliced together. This generality makes TCP Splice a primitive on which manyproxies, not just �rewalls, can be built.The problem of optimizing data movement has already received considerable attention in the OS andnetworking community. Kevin Fall's work [7] on optimizing data transfer between I/O devices and theUniversity of Arizona's work on fast bu�ers (FBUFS) [1] are some of the examples. The Microsoft NToperating system also provides support for e�ciently moving data from a �le to a network connectionthrough the use of the TransmitFile() API. TCP Splice di�ers from these in that is is not solely anotherbu�er optimization trick. It provides a signi�cantly tighter binding between the connections which noother methods can provide. Using existing optimization methods, the two connections that make up thelogical client-server connection have a normal, complete protocol state machine running the endpoint ofthe connections at the proxy. The only way in which the two connections are related is that the inputbu�er, which normally holds data received from one connection and waiting to be read by the proxyapplication, is used as the output bu�er for the other connection. By moving received data from theinput bu�er directly to the output bu�er, the systems save the overhead of copying the data throughapplication space. In TCP Splice, there is no input or output bu�er. Received data packets are alteredand then immediately forwarded. There is no protocol state machine at the \endpoints" on the proxy.There are no bu�ers or timers to manage, and the proxy does not send retransmissions, as happens inthe other systems.The ScoutOS project at the University of Arizona describes using a technique similar to TCP Splice toimplement their Escort system [15]. Escort is a security architecture that creates protected data-pathwaysthrough the kernel in order to enforce a separation of connections that 
ow through the kernel.For application layer proxies that modify data on the 
y, the sequence number mapping tricks of TCPSplice can be used to push the modi�cation operation into the kernel, and also the data to be modi�edwhile maintaining the end-to-end reliability semantics of TCP. We are currently looking at using TCPSplice to increase the throughput of encryption and compression services o�ered by our �rewall.
6. CONCLUSIONA commonly used technique for building application layer �rewalls involves inserting a TCP proxy in thecommunication path of the two communicating end points. In the majority of cases, the purpose of the�rewall is only to authenticate the originators of connections, exercise some form of excess control, andmonitor the network activity. After the authentication phase is over, the proxy e�ectively operates likea bi-directional application layer relay, copying data back and forth between the two connections. Undermedium to high load conditions this becomes a major performance bottleneck.We have shown that, using the technique of TCP Splice, we can overcome the performance bot-tleneck of application layer �rewalls. Our lab experiments show that with TCP Splice we can doublethe throughput of a SOCKS �rewall, while reducing the packet forwarding by a factor of 30. Besidesperformance, TCP Splice also provides better end-to-end semantics, since TCP segments and ACKs areexchanged end-to-end over a spliced connection.With the TCP Splice technique, it is possible to build inexpensive and faster application layer proxies,including SOCKS �rewalls. Furthermore, with an optimized implementation (e.g., with the incrementalchecksum) it is possible to push the performance envelope beyond current limits. As an on-going researchproject we are building another kernel primitive called TCP Tap, using which a proxy can also collecta local copy of the data forwarded over the spliced connection. Using both splice and tap, it is possibleto build a high performance HTTP caching proxy. Interested readers can �nd more details in our recentworkshop publication [10].
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