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Layman’s Summary

Zebra Finches are monogamous birds that rely on the son@ oh#he for identification. Sep-
arating this song from the auditory rich environment of allwolony and distinguishing it from
those of foreign males is a challenging problem for the fem&lere we show that, in order to
cope with this problem, the Zebra Finch song has evolved ¥e samplex, nonlinear structure
that facilitates both source separation and identificatide develop tools for Independent Man-
ifold Analysis of such structure and apply them both to cbimaze the song and to reveal the
intricate neural control over the nonlinear dynamics ofgbeg-production apparatus.



Abstract

The song of the male Zebra Finch is the primary means of ifigation of one individual
from other males of the same species. In order to serve thaoge, it needs to have a statistical
structure that allows robust separation from the rich ato@svironment in the bird colony,
as well as enough degrees of freedom to allow specificity etetel of the individual bird.
Since second-order structure cannot be used for sourceatiepaof linear mixtures—typical
in the Zebra Finch acoustic environment—higher-ordelissieal structures must support the
social function of the song. Here we study the dynamics ofptaily localized elements
of an adult male’s song, and find that, when viewed suitablgubh Poincare sections, the
evolution of the sound lies close to a one-dimensional aumanifold, non-trivially embed-
ded in a high-dimensional linear space. On one hand, thensamlproperty of the manifold
generally survives linear mixtures, and the one-dimeraignplaces significant constraints
on the structure that could serve as the basis for robustat@pa On the other hand, the
degrees freedom in the embedding into the high-dimensgpade provide enough flexibility
for biometric identification of individuals. Also, we disssihow the known properties of the
sound-production apparatus of the Zebra Finch can be emgloysupport of this statistical
structure.



1 Introduction

Song recognition is central to the life of the Zebra FinchchEhird acquires in it's ontogeny a
distinct song which is used for identification by other Zebnaches. Since all Zebra Finches are
similarly camouphlaged, song is the sole means by whichitis ban distinguish one individual
from another. The female finch can only recognize its mateietwit keeps for life—through the
song the male sings; ability to distinguish songs is evenemmoportant for the female because
it lays its eggs in an enclosed nest, from which the femal@aibsee its mate. Exacerbating the
situation, Zebra Finches live in noisy communities in whisny Zebra Finches sing simultane-
ously. Each bird must be able to distinguish the songs of tiwerdoirds. Since noisy Zebra Finch
communities are natural and can function, it is reasonablssume the Zebra Finch has devel-
oped an efficient sound processing mechanism at the neuedlded that the songs themselves,
also guided by the brain of the Zebra Finch, have structued,facilitates source separation and
identification. It is well known that source separation ofelar mixtures of signals is impossible
[4]. Therefore, the bird song must have a higher order sirect

The current method of choice for analysis of the Zebra Firmtgds multi-taper spectral es-
timation [12] followed by the calculation of spectral dexiives, using Fourier Analysis. Though
this method has had some success in the study of song ledtdijat has several shortcomings
as well. Fourier Analysis does not account for the non-lireteucture of the song, analyzing
excess noise along with the desired signal. Also, Fouriaalysis assumes a translationally in-
variant signal, though the Zebra Finch song has severas typeell-defined localized structures;
Fourier Analysis assumes the signal to be the sum of sinesaasad represents the signal as
such—though a quick view of the recording on the millisectewe| reveals the presence of dis-
tinct repeated waveforms. The Karhunen-Loéeve Transfdind] (KLT) provides an advantage
over Fourier Analysis by representing the signal as the dunaweforms constructed on the basis
of statistics of the signal. Phaseplots of KLT coefficiemtisdn ensemble of like sound activities
revealed a low-dimensional manifold for the Zebra Finchgsdrhis manifold was well character-
ized by Independent Manifold Analysis (IMA), which showslatcounts for the song’s non-linear
structure.

There is great potential insight to be gained by chara@Bom of Zebra Finch songs by man-
ifold. The changing shape of a sequence type’s manifold fgouang finch can be analyzed for
significance in the field of language acquisition. Furthegsli@ation of IMA on bird songs, and
methods to remove sources of extraneous variability, ayeired, and will be pursued, to fully
realize the potential value of the IMA in this area.

2 Timescales of Zebra Finch Song Organization

The song of the adult zebra finch is very repetitious and agpede very well structured. Fig. 1A
shows several “renditions ” of the bird’s song. Each rendits composed of multiple “ chunks "—
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Figure 1: Timescales of song of adult male Zebra Finch reambid an open cage at 44100 Sam-
ples/second(A) shows several renditions (18500 ms windoW}) displays the interval structure
of one rendition (1600 ms window) (') displays the chunk highlighted i{B) (60 ms window).
Chunks of this type are analyzed in this pagér) enlargement to 30 ms window size; highlighted
area encompasses two pitch periods (3 ms).

sound activities with pauses of 10 to 30 ms on each end. Thoaghll chunks appear in every
rendition, both the “ structure ” of the chunks and their oraigpear to be stereotyped (Fig. 1A).

The chunks themselves are relatively well structured. ®hypes can be distinguished in
various ways—»by duration, by general shape, by amplituadtpg number of syllables, or sounds.
However, all chunks have shared properties as well. Eacindegth a period of excitation, as its
first sound activity begins and increases in amplitude. Eacs with a period of decay, as its final
sound activity decreases in amplitude (cf. Fig. 1C).

Each sound in a chunk consists of several repetitions of @fwew (cf. Fig. 1D). This wave-
form changes in amplitude, shape, and pitch as the chunkes/olThe ability to characterize
the changing nature of these waveforms within a chunk waeldal information about the zebra
finch’s auditory and vocal mechanisms among other things $&etion 7 for detailed discussion).
Notably, the chunk and sound activity selected for thisaegeis asymmetric with respect to the
time axis. This asymmetry is always realized in the samectioe, which suggests intricate neu-
ral control over the song production apparatus. Such asymnsea robust property of the song,
but cannot be captured by multi-taper spectral analysig;iwtharacterizes sound through com-
binations of sine waves, resulting in an identical represtén for the waveform in its recorded
state and the waveform if it were flipped with respect to theetiaxis. In such a case, use of
the KLT, which forms localized wave functions for charaization (see Section 3 for a complete
description), is clearly beneficial. The selected souniyictype also was interesting due to its
structure—unlike several other activity types, the selétype contained both a primary activity



(consisting of high “peaks” repeating approximately ev2mnilliseconds) and a secondary ac-
tivity (consisting of smaller peaks occurring with muchapex frequency). The distance between
two primary activity peaks is called the * pitch period.”

3 The Gaussian Model of Natural Sound

The part of the prepared recordirig a given window of duratiof” samples will be represented by
the digitized voltage valuesg(x), where{x} is the sampling grid. Arensemblef 7" waveforms
of the sound record will be denoted Ky'(x)},cr. Briefly, [see,e.qg.,[3] for details] itsKLT
representations

') = 3 alor () &

where{c?} is the (non-increasingdigenspectrurof the two correlation matrices

R(x,y) = %gwmww>:§)mmﬁww>
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Eight eigenmodes are displayed in Fig. 2. KLT is optimal msknse that, among &l-dimensional
subspaces < M), the subset of eigenmodés, }¥_, (2) span the subspace which captures the
most signal powenr Ry [6, 3]. For a given dlmenS|onaI|tW, the reconstructionof the snap-
shot¢’(x) is

=3 ahort(x). @

while error is

err _ ¢ ¢rec (5)

1An adult male zebra finch was recorded from in an isolatedn apge at a 44.1 kHz sampling rate. The audio file
and derivative files were held on a Silicon Graphics Indy cotaprunning the Iris operating system. Ansemblef
T = 5602 windows (from 532 chunks) was created. The windows wereetedton the peaks of primary activities;
these peaks were distinguished from secondary activitikgp@a pitch trackingEigenmodesf V' = 240 samples—
encompassing approximately 2 pitch periods— were formed.
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Figure 2: Eight eigenmodes scaled by their respective e&ees,s, 1, (x) (1). Note the differ-
ence in the scales of amplitudes.

With the standardnultidimensional Gaussiamodel for the probability densitp[¢], thein-
formation contenof the reconstruction (4) is

N
~log Pl o 3 |a; . ©)

Notably, this model ispherical—the KLT coefficients (1) are of unit variance (2)?) = 1,
and each of theV dimensions contributes equally to the information that esiveed from the
measurement.

However, as expected, the Gaussian assumption provesdtsbeThe eigenspectrum (Fig. 3A)
reveals three regimes of eigenmodes of decreasing power: €h[1, 90] regime is a power-law
regime which can be attributed to the structured signal. /The125 regime is indistinguishable
from the random matrices hypothesis [10, 9]. There is a ebvss regime in between.
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Figure 3:(A) Eigenspectrum of EnsembléB) Normalized fourth order moments of the disribu-
tions of KLT coefficients{a’) /3. Notably,(a?) = 1. The expectation for a Gaussian distribution,
1, is also shown.

The same three regimes are evident from the normalizedhfender moments (Fig. 3B). As
the eigenmodes decrease in power, they rise from slightlyGaussian to slightly super-Gaussian.
The greatest points of interest are the sub-Gaussian emgsnthe extreme super-Gaussianness
of a few of the less powerful eigenmodes, and the phenomehitre ¢east powerful eigenmodes
settling at a level that is slightly super-Gaussian, as epgdo purely Gaussian. The marginal dis-
tributions of the first five eigenmodes, which clearly arernist powerful eigenmodes (Fig. 3A),
are sub-Gaussian. Comparison of the marginal distribsitiath the Gaussian model (Fig. 4) fur-
ther demonstrates this phenomenon, indicating the stroegepce of structure in the signal, as
expected. The extreme super-Gaussian nature of some eigesr(such as = 101) may seem
more surprising, but is easily explained: each eigenmodeaide super-Gaussian by the random,
and infrequent, occurence of a small number of strong icstaf the eigenmode. In Fig. 5, the
marginal distribution of eigenmode= 101 is predominantly Gaussian, similar to= 160, but
there are a few very strong outliers. The presence of maglgrstrong outliers in the distribution
of r = 160 explain why it is super-Gaussian. Perfectly Gaussian emgeles would be indicated
by a concentration of normalized fourth order moments adduim Fig. 3B.

4 The Factorial Model of Noisy Trajectories Derived by Vecto
Quantization

The high level of structure of the first five eigenmodes, iy Fig. 3B and Fig. 4, indicates cor-
related joint distributions. The phaseplots reveal a wadirdinated motion in a high-dimensional



/\ Y

100 100 A T 100 S -
10 / \ 10 fv \j L0 5; / x |

05 0 05 1 15 2 25 4 3 -2 -1 0 1 2 3 4 4 3 -2 -1 0 1 2 3 4
KLT coefficient Al KLT coefficient A2 KLT coefficient A3

100 it m\% 100 100 o \w\\“
10 / R 10 M i

10
| ‘ii I | .JM 1e.

1
4 3 -2 -1 0 1 2 3 4 4 3 -2 -1 0 1 2 3 4 4 3 -2 -1 0 1 2 3 4
KLT coefficient A4 KLT coefficient A5 KLT coefficient A30

Figure 4: KLT marginal distributions. Histogram countsioé &KLT coefficients (1) are shown with
solid lines on a logarithmic scale fore {1,2,3,4,5,30}, and, with dashed lines, for a Gaussian
distribution. The distribution of Al is asymmetric by dasigNevertheless, it clearly lacks large
values.

KLT subspace (Fig. 6). The projections of the trajectory‘ded¢tened ” by extraneous sources of
variability, such as noise.

Explicit in the formulation of the KLT model (6) is the assutigm that the origin hasnaxi-
mum likelihood which is obviously incorrect in the (1:2:3:4:5) KLT subspa A generalization
has been suggested [8] to account for the actual locus ofrmamilikelihood—modeled as the
“midline,” C'(#, x), of the probability density, wheré is a 1-dimensional parameter (cf. Fig. 7).
In order to estimate this locus from the dat@ctor quantization (VQhas been applied previ-
ously [7, 8] to tessellate suitably-chosen KLT subspaces(hVoronoi cellswhose centers have
the property ominimum distortionjn the entropy-based metric (6), this is equivalenti@aximum
likelihood. Further,C(6) has been parameterized as a piecewise-linear curve adcabtbese
centers. Such a model of the (1:2:3:4:5) manifold (cf. F)gs&hown in Fig. 7.

With C(#), for any snapshop’, a paramg:teé(t), of the dynamics along the manifold, can
be found, such that the manifold elementf(¢)) is closest top" according to the metric used
for vector quantization; this is maximum likelihood estimat®/hen theresidual—the departure
from the manifold—is defined as

§(x) = ¢'(x) — C(B(t),x) (7)

the initial probability model (6) can be refined to
A

Plo(x)] = Plf] x Plo(x)] (8)
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Figure 5: Temporal evolution and marginal histograms ofch& coefficients of eigenmodes 101
and 160. It is clear that the high fourth order moment of AlBit)(3) is due to a small number of
outliers.

where the two factors are estimated independently.

Translating the Voronoi cells of the manifold (Fig. 7A) int@ve forms reveals an expected
progression. The chosen width of the eigenmodes (cf. Fig-12)= 240 samples—allow the
eigenmodes to characterize three central, non-statidraity of the sound activity: primary peak
shape, primary peak height, and pitch (inter-peak disfanE®cusing on the central peaks in
Fig. 8A and Fig. 8B reveals both a progressive change in pehti—from growing to shrinking
as the chunk excites and decays. Fig. 8A also shows theredbdrge in the shape of the wave
form portion immediately following the center peak. Themgiag locations of the peaks in Fig. 8C
and Fig. 8D reveals a progressive change in pitch; compénmgctivities after the peaks shows a
steady change in the shape of the activity follow the pealerdis little change in the middle of
the peaks; a set of eigenmodes with lesser volume would formrarafold that better characterized
the changing secondary activity.
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Figure 7: (A) The (2:1) subspace projection of the 1D trajectory, estahdty the LBG vector
guantization algorithm, according to the probability netestricted on the (1:2:3:4:5) KLT sub-
space. The number of anchdps= 10 was chosen at the end of the 1-dimensional regime of the
respective rate-distortion curveB) The smooth locus of maximum-likelihood (9).

5 Refinement of the Embedding Parameters

In Section 4, following [8],C'(#) was modeled as a piecewise-linear curve, in which the aschor
were somehow special—they were estimated directly frondtte, as averages of the snapshots
in a given Voronoi cell Fig. A. Once an estimat#(¢) is available though¢'(#) can be estimated
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has the highest peaks and, therefore, is probably the cehtiee cluster.(C') and (D) focus on

the peak to the right of the center peak of each cell’s wava fdiIC') compares the wave forms
before the center of the clustéry) compares the waves forms after the cluster center. See Fig. 2
for x- and y-axis units.

for all 4, not just for the anchors, as an average of those snapskmté(\nbi in some range—of
width 2A, centered af. Then, withf(t) = 6 + h(t), the true parameter on the manifold (which is
not known),h(t), the true, and(t), the estimated departure fraim

Ca(0) = <¢t>\6~(t)70\§A = (C(6 + h(t) + $t>\}~z(t)\§A 9)

whereA = 10% (Fig. 7B) as the number of Voronoi cells used in Fig. 7A was- 10.
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6 Dynamics on the Manifold

Graphing the trajectory of multiple sequences from the e in the KLT subspace reveal a
relatively smooth progressions along the manifold forme&ection 4 during the middle of the
sequences, but diverse paths used to “get on to” and “ gef bthe manifold. Such a pattern is
expected, given the means by which the sequences of the svpgoaluced.

The zebra finch syrinx is a nonlinear system, and, therefbeesound it produces is governed
by attractor dynamics, as shown in [1]. Briefly, a vocal systgoverned by attractor dynamics
tenses its muscles to produce a certain sound pattern—tthetat. Regardless of the sound ac-
tivity the system has been repeating prior to the estabkstirof the attractor, the system’s sound
activity approaches and reaches the pattern governed tatttiaetor. This pattern remains until
the attractor is removed. Notably, in such systems moddrgekin which multiple sine waves
coincide to form more complex wave functions, the equivisl@h eigenmodes—occurs [2, 1].
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In Section 2, the excitation and decay structure shown by Higindicates the presence of
attractor dynamics. Fig. 10 shows that the manifold acelyatharacterizes the attractor basin
phenomenon.

7 Discussion

Analysis of an ensemble of occurences of a certain soundtgdtom an adult male Zebra Finch’s
song reveals a high-order structure, as expected. ThragbfuPoincare sections, one can see that
the activity’s temporal evolution lies on a 1-dimensionainifold embedded in a high-dimensional
space. Views of the trajectories of individual sequence$dbunks ) in the selected space showed
the attractor dynamics characteristic of the nonlinear@&nch syrinx.

Much progress can be made from the work done to demonstrateair Gaussian nature of
the Zebra Finch song. The ensemble of eigenmodes used datoount for “temporal jitter,”
an inevitable inaccuracy in recording. The presence ofraéwerivative eigenmodes strongly
indicates room for variability reduction.

The next step would be to study the residual modes. Presdrecenanifold for the residual
would indicate a high-order structure greater than thabdished in this paper. Also, further
research should be done to characterize the temporal ggfe bird’s song along the manifold
already formed.

The phaseplots for the eigenmodeslof= 88 samples, which represented the ensemble in
terms of its secondary activity, indicated the presencevofrelatively distinct activities. Further
research may reveal a correlation between the locationeo&dhivity within the rendition of the
bird song and the secondary activity. Also, the presencavofapparently distinct manifolds
indicates the need to split the ensemble for more accurptegentation of both types of activities.
The usefulness of emphasizing the secondary activity mggest that there are other features of
the ensemble that could be emphasized by eigenmodes oflatHwurth volume.

Of course, the work done must be repeated on the other sotindies of the current Zebra
Finch song. Each type of activity is likely to have a distiset of eigenmodes and a distinct
manifold. However, comparison of the data for sequencestofites neighboring each other in
the rendition may reveal interesting inter-sequence petehinking optimistically, a complex,
currently unpredicted, manifold for an entire renditiortloé bird song might be possible. Before
such information could be revealed, the work must be done.

As previously noted, the sound record used in this study weated by recording a bird in
isolation. To prove IMA is robust, experiments must be doneexordings taken in sound rich
environments. Though a single male finch’s song can be degaifmm background noise, it is
left to be proven that a linear mixture of the songs of manyemand females can be separated
using IMA, as we have theorized.

Characterization of Zebra Finch song through IMA has imgrarapplications in the field of
behavioral science. The Zebra Finch, like the human, learssries of sounds (the equivalent
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of a language) through intensive imitation during the equdyt of its life. It is believed that
through study of the young Zebra Finch, one can learn moratainoman language acquisition.
Best understanding of finch language acquisition is gainexigh observation and analysis of the
changes in a young bird’s songs. Since a bird song can besmyiesl as a set of manifolds, it can
be easily analyzed. Progressive changes in a song over, luays and weeks can be represented
objectively as changes in the manifolds of the song. Alsdpbying songs that travel on or close
to the manifold at different speeds, and by slightly altgrihe manifolds within the identified
fields of variability, scientists can determine the degr&egriability of the songs a Zebra Finch
can learn. Such conclusions might be extended to humarihgarn

References

[1] M S Fee, B Shraiman, B Pesaran, and P P Mitra. The role dfmear dynamics of the syrinx
in the vocalizations of a songbirtNature 395(6697):67—71, 1998.

[2] N. H. Fletcher. Mode locking in non-linearly excited etmonic musical oscillators..
Acoust. Soc. Am64:1566—-1569, 1978.

[3] I. T. Jolliffe. Principal Component AnalysisSpringer-Verlag, New York Berlin Heidelberg
Tokio, 1986.

[4] Christian Jutten and Anisse Taleb. Source separatioomFelusk till dawn. InProceedings
of the Second International Workshop on Independent Coemgdknalysis and Blind Signal
Separationpages 15-26, Helsinki, Finland, June 19-22 2000. IEEESPres

[5] K. Karhunen. Zur Spektraltheorie Stochastich@rozesse Ann. Acad. Sci. Fennic&é,
1946.

[6] M.M. Loéve. Probability Theory Van Nostrand, Princeton, N.J., 1955.

[7] Evan Mandel and Penio S. Penev. Facial feature trackippmse estimation in video se-
qguences by factorial coding of the low-dimensional entnoy@nifolds due to the partial sym-
metries of faces. IfProc. 25th IEEE Int’'| Conf. Acoust., Speech, Sig. Proc. (&#200Q)
volume 1V, pages 2345-2348, Istanbul, Turkey, 2000. IEEE.

[8] Penio S. Penev, Manuela Gegui, and Ehud Kaplan. Usinprgaantization to build nonlin-
ear factorial models of the low-dimensional independentifolds in optical imaging data.
In Proc. 2000 Int'l Conf. Image Proc. (ICIP-2000pages MA08-11, Vancouver, Canada,
2000. IEEE.

[9] A M Sengupta and Partha P Mitra. Distributions of singwiaues for some random matrices.
Phys. Rev. E60(3):3389-3392, September 1999.

15



[10] Jack W Silverstein. Eigenvalues and eigenvectors mfelalimensional sample covariance
matrices.Contemporary Mathematic50:153—-159, 1986.

[11] Ofer Tchernichovski, Thierry Lints, Parth P. Mitra,caRernando Nottebohm. Vocal imita-
tion in zebra finches is inversely related to model abundai®tec. Natl. Acad. Sci. USA
96(22):12901-12904, August 1999.

[12] Dave J Thomson. Spectrum estimation and harmonic aisalroc. IEEE 70:1055-1096,
1982.

[13] R E Zann.The Zebra Finch: Synthesis of Field and Laboratory Stud@sford University
Press, New York, 1996.

16



