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Layman’s Summary

Zebra Finches are monogamous birds that rely on the song of the male for identification. Sep-
arating this song from the auditory rich environment of a bird colony and distinguishing it from
those of foreign males is a challenging problem for the female. Here we show that, in order to
cope with this problem, the Zebra Finch song has evolved to have complex, nonlinear structure
that facilitates both source separation and identification. We develop tools for Independent Man-
ifold Analysis of such structure and apply them both to characterize the song and to reveal the
intricate neural control over the nonlinear dynamics of thesong-production apparatus.
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Abstract

The song of the male Zebra Finch is the primary means of identification of one individual
from other males of the same species. In order to serve that purpose, it needs to have a statistical
structure that allows robust separation from the rich acoustic environment in the bird colony,
as well as enough degrees of freedom to allow specificity at the level of the individual bird.
Since second-order structure cannot be used for source separation of linear mixtures—typical
in the Zebra Finch acoustic environment—higher-order statistical structures must support the
social function of the song. Here we study the dynamics of temporally localized elements
of an adult male’s song, and find that, when viewed suitably through Poincare sections, the
evolution of the sound lies close to a one-dimensional curved manifold, non-trivially embed-
ded in a high-dimensional linear space. On one hand, the nonlinear property of the manifold
generally survives linear mixtures, and the one-dimensionality places significant constraints
on the structure that could serve as the basis for robust separation. On the other hand, the
degrees freedom in the embedding into the high-dimensionalspace provide enough flexibility
for biometric identification of individuals. Also, we discuss how the known properties of the
sound-production apparatus of the Zebra Finch can be employed in support of this statistical
structure.
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1 Introduction

Song recognition is central to the life of the Zebra Finch. Each bird acquires in it’s ontogeny a
distinct song which is used for identification by other ZebraFinches. Since all Zebra Finches are
similarly camouphlaged, song is the sole means by which the birds can distinguish one individual
from another. The female finch can only recognize its mate—which it keeps for life—through the
song the male sings; ability to distinguish songs is even more important for the female because
it lays its eggs in an enclosed nest, from which the female cannot see its mate. Exacerbating the
situation, Zebra Finches live in noisy communities in whichmany Zebra Finches sing simultane-
ously. Each bird must be able to distinguish the songs of the other birds. Since noisy Zebra Finch
communities are natural and can function, it is reasonable to assume the Zebra Finch has devel-
oped an efficient sound processing mechanism at the neural level and that the songs themselves,
also guided by the brain of the Zebra Finch, have structure, that facilitates source separation and
identification. It is well known that source separation of linear mixtures of signals is impossible
[4]. Therefore, the bird song must have a higher order structure.

The current method of choice for analysis of the Zebra Finch song is multi-taper spectral es-
timation [12] followed by the calculation of spectral derivatives, using Fourier Analysis. Though
this method has had some success in the study of song learning[11], it has several shortcomings
as well. Fourier Analysis does not account for the non-linear structure of the song, analyzing
excess noise along with the desired signal. Also, Fourier Analysis assumes a translationally in-
variant signal, though the Zebra Finch song has several types of well-defined localized structures;
Fourier Analysis assumes the signal to be the sum of sine waves—and represents the signal as
such—though a quick view of the recording on the millisecondlevel reveals the presence of dis-
tinct repeated waveforms. The Karhunen-Loève Transform [6, 5] (KLT) provides an advantage
over Fourier Analysis by representing the signal as the sum of waveforms constructed on the basis
of statistics of the signal. Phaseplots of KLT coefficients for an ensemble of like sound activities
revealed a low-dimensional manifold for the Zebra Finch song. This manifold was well character-
ized by Independent Manifold Analysis (IMA), which shows and accounts for the song’s non-linear
structure.

There is great potential insight to be gained by characterization of Zebra Finch songs by man-
ifold. The changing shape of a sequence type’s manifold for ayoung finch can be analyzed for
significance in the field of language acquisition. Further application of IMA on bird songs, and
methods to remove sources of extraneous variability, are required, and will be pursued, to fully
realize the potential value of the IMA in this area.

2 Timescales of Zebra Finch Song Organization

The song of the adult zebra finch is very repetitious and appears to be very well structured. Fig. 1A
shows several “ renditions ” of the bird’s song. Each rendition is composed of multiple “ chunks ”—
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Figure 1: Timescales of song of adult male Zebra Finch recorded in an open cage at 44100 Sam-
ples/second.(A) shows several renditions (18500 ms window).(B) displays the interval structure
of one rendition (1600 ms window).(C) displays the chunk highlighted in(B) (60 ms window).
Chunks of this type are analyzed in this paper.(D) enlargement to 30 ms window size; highlighted
area encompasses two pitch periods (3 ms).

sound activities with pauses of 10 to 30 ms on each end. Thoughnot all chunks appear in every
rendition, both the “ structure ” of the chunks and their order appear to be stereotyped (Fig. 1A).

The chunks themselves are relatively well structured. Chunk types can be distinguished in
various ways—by duration, by general shape, by amplitude, and by number of syllables, or sounds.
However, all chunks have shared properties as well. Each begins with a period of excitation, as its
first sound activity begins and increases in amplitude. Eachends with a period of decay, as its final
sound activity decreases in amplitude (cf. Fig. 1C).

Each sound in a chunk consists of several repetitions of a waveform (cf. Fig. 1D). This wave-
form changes in amplitude, shape, and pitch as the chunk evolves. The ability to characterize
the changing nature of these waveforms within a chunk would reveal information about the zebra
finch’s auditory and vocal mechanisms among other things (see Section 7 for detailed discussion).
Notably, the chunk and sound activity selected for this research is asymmetric with respect to the
time axis. This asymmetry is always realized in the same direction, which suggests intricate neu-
ral control over the song production apparatus. Such asymmetry is a robust property of the song,
but cannot be captured by multi-taper spectral analysis, which characterizes sound through com-
binations of sine waves, resulting in an identical representation for the waveform in its recorded
state and the waveform if it were flipped with respect to the time axis. In such a case, use of
the KLT, which forms localized wave functions for characterization (see Section 3 for a complete
description), is clearly beneficial. The selected sound activity type also was interesting due to its
structure—unlike several other activity types, the selected type contained both a primary activity
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(consisting of high “ peaks ” repeating approximately every2 milliseconds) and a secondary ac-
tivity (consisting of smaller peaks occurring with much greater frequency). The distance between
two primary activity peaks is called the “ pitch period. ”

3 The Gaussian Model of Natural Sound

The part of the prepared recording1 in a given window of durationV samples will be represented by
the digitized voltage values�(x), wherefxg is the sampling grid. Anensembleof T waveforms
of the sound record will be denoted byf�t(x)gt2T . Briefly, [see,e.g., [3] for details] itsKLT
representationis �t(x) = VXr=1 atr�r r(x) (1)

wheref�2rg is the (non-increasing)eigenspectrumof the two correlation matricesR(x;y) 4= 1T Pt �t(x)�t(y) = VXr=1 r(x)�2r r(y)Ctt0 4= 1V Px �t(x)�t0(x) = VXr=1 atr�2rat0r (2)

andf r(x)g andfatrg are their respectiveorthonormaleigenvectors. Theaverage signal powerof
the ensemble is 1TV Xx;t j�t(x)j2 = trR � trRM 4= VXr=1�2r : (3)

Eight eigenmodes are displayed in Fig. 2. KLT is optimal in the sense that, among allN -dimensional
subspaces (N < M ), the subset of eigenmodesf rgNr=1 (2) span the subspace which captures the
most signal power,trRN [6, 3]. For a given dimensionalityN , the reconstructionof the snap-
shot�t(x) is �tN(x) 4= NXr=1 atr�r r(x): (4)

while error is �errN = �� �recN : (5)

1An adult male zebra finch was recorded from in an isolated, open cage at a 44.1 kHz sampling rate. The audio file
and derivative files were held on a Silicon Graphics Indy computer running the Iris operating system. AnensembleofT = 5602 windows (from 532 chunks) was created. The windows were centered on the peaks of primary activities;
these peaks were distinguished from secondary activity peaks via pitch tracking.Eigenmodesof V = 240 samples—
encompassing approximately 2 pitch periods— were formed.
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Figure 2: Eight eigenmodes scaled by their respective eigenvalues,�r r(x) (1). Note the differ-
ence in the scales of amplitudes.

With the standardmultidimensional Gaussianmodel for the probability densityP[�], the in-
formation contentof the reconstruction (4) is� logP[�tN ] / NXr=1 jatrj2: (6)

Notably, this model isspherical—the KLT coefficients (1) are of unit variance (2),ha2ri � 1,
and each of theN dimensions contributes equally to the information that is derived from the
measurement.

However, as expected, the Gaussian assumption proves to be false. The eigenspectrum (Fig. 3A)
reveals three regimes of eigenmodes of decreasing power. The r 2 [1; 90] regime is a power-law
regime which can be attributed to the structured signal. Ther > 125 regime is indistinguishable
from the random matrices hypothesis [10, 9]. There is a cross-over regime in between.
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Figure 3:(A) Eigenspectrum of Ensemble.(B) Normalized fourth order moments of the disribu-
tions of KLT coefficients,ha4ri=3. Notably,ha2ri � 1. The expectation for a Gaussian distribution,
1, is also shown.

The same three regimes are evident from the normalized fourth order moments (Fig. 3B). As
the eigenmodes decrease in power, they rise from slightly sub-Gaussian to slightly super-Gaussian.
The greatest points of interest are the sub-Gaussian eigenmodes, the extreme super-Gaussianness
of a few of the less powerful eigenmodes, and the phenomenon of the least powerful eigenmodes
settling at a level that is slightly super-Gaussian, as opposed to purely Gaussian. The marginal dis-
tributions of the first five eigenmodes, which clearly are themost powerful eigenmodes (Fig. 3A),
are sub-Gaussian. Comparison of the marginal distributions with the Gaussian model (Fig. 4) fur-
ther demonstrates this phenomenon, indicating the strong presence of structure in the signal, as
expected. The extreme super-Gaussian nature of some eigenmodes (such asr = 101) may seem
more surprising, but is easily explained: each eigenmode ismade super-Gaussian by the random,
and infrequent, occurence of a small number of strong instance of the eigenmode. In Fig. 5, the
marginal distribution of eigenmoder = 101 is predominantly Gaussian, similar tor = 160, but
there are a few very strong outliers. The presence of moderately strong outliers in the distribution
of r = 160 explain why it is super-Gaussian. Perfectly Gaussian eigenmodes would be indicated
by a concentration of normalized fourth order moments around 1 in Fig. 3B.

4 The Factorial Model of Noisy Trajectories Derived by Vector
Quantization

The high level of structure of the first five eigenmodes, implied by Fig. 3B and Fig. 4, indicates cor-
related joint distributions. The phaseplots reveal a well coordinated motion in a high-dimensional
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Figure 4: KLT marginal distributions. Histogram counts of the KLT coefficients (1) are shown with
solid lines on a logarithmic scale forr 2 f1; 2; 3; 4; 5; 30g, and, with dashed lines, for a Gaussian
distribution. The distribution of A1 is asymmetric by design. Nevertheless, it clearly lacks large
values.

KLT subspace (Fig. 6). The projections of the trajectory are“ fattened ” by extraneous sources of
variability, such as noise.

Explicit in the formulation of the KLT model (6) is the assumption that the origin hasmaxi-
mum likelihood, which is obviously incorrect in the (1:2:3:4:5) KLT subspace. A generalization
has been suggested [8] to account for the actual locus of maximum likelihood—modeled as the
“midline,” C(�;x), of the probability density, where� is a 1-dimensional parameter (cf. Fig. 7).
In order to estimate this locus from the data,vector quantization (VQ)has been applied previ-
ously [7, 8] to tessellate suitably-chosen KLT subspaces intoQ Voronoi cells,whose centers have
the property ofminimum distortion;in the entropy-based metric (6), this is equivalent tomaximum
likelihood. Further,C(�) has been parameterized as a piecewise-linear curve anchored at these
centers. Such a model of the (1:2:3:4:5) manifold (cf. Fig. 6) is shown in Fig. 7.

With C(�), for any snapshot�t, a parameter~�(t), of the dynamics along the manifold, can
be found, such that the manifold elementC(~�(t)) is closest to�t according to the metric used
for vector quantization; this is amaximum likelihood estimate.When theresidual—the departure
from the manifold—is defined as~�t(x) 4= �t(x)� C(~�(t);x) (7)

the initial probability model (6) can be refined toP[�(x)] 4= P[~�]� P[ ~�(x)] (8)
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Figure 5: Temporal evolution and marginal histograms of theKLT coefficients of eigenmodes 101
and 160. It is clear that the high fourth order moment of A101 (Fig. 3) is due to a small number of
outliers.

where the two factors are estimated independently.
Translating the Voronoi cells of the manifold (Fig. 7A) intowave forms reveals an expected

progression. The chosen width of the eigenmodes (cf. Fig. 2)—V = 240 samples—allow the
eigenmodes to characterize three central, non-stationarytraits of the sound activity: primary peak
shape, primary peak height, and pitch (inter-peak distance). Focusing on the central peaks in
Fig. 8A and Fig. 8B reveals both a progressive change in peak height—from growing to shrinking
as the chunk excites and decays. Fig. 8A also shows there to bechange in the shape of the wave
form portion immediately following the center peak. The changing locations of the peaks in Fig. 8C
and Fig. 8D reveals a progressive change in pitch; comparingthe activities after the peaks shows a
steady change in the shape of the activity follow the peak. There is little change in the middle of
the peaks; a set of eigenmodes with lesser volume would form amanifold that better characterized
the changing secondary activity.
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Figure 7: (A) The (2:1) subspace projection of the 1D trajectory, estimated by the LBG vector
quantization algorithm, according to the probability metric restricted on the (1:2:3:4:5) KLT sub-
space. The number of anchorsQ = 10 was chosen at the end of the 1-dimensional regime of the
respective rate-distortion curve.(B) The smooth locus of maximum-likelihood (9).

5 Refinement of the Embedding Parameters

In Section 4, following [8],C(�) was modeled as a piecewise-linear curve, in which the anchors
were somehow special—they were estimated directly from thedata, as averages of the snapshots
in a given Voronoi cell Fig. 7A. Once an estimate~�(t) is available though,C(�) can be estimated
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for all �, not just for the anchors, as an average of those snapshots with ~�(t) in some range—of
width 2�, centered at�. Then, with��(t) = � + �h(t), the true parameter on the manifold (which is
not known),�h(t), the true, and~h(t), the estimated departure from�,~C�(�) 4= h�tij~�(t)��j�� = hC(� + �h(t)) + ��tij~h(t)j�� (9)

where� = 10% (Fig. 7B) as the number of Voronoi cells used in Fig. 7A wasQ = 10.
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occurence, the projections of the wave forms for one chunk, or sequence, in the ensemble onto the
(2:1) KLT subspace..

6 Dynamics on the Manifold

Graphing the trajectory of multiple sequences from the ensemble in the KLT subspace reveal a
relatively smooth progressions along the manifold formed in Section 4 during the middle of the
sequences, but diverse paths used to “ get on to ” and “ get off of ” the manifold. Such a pattern is
expected, given the means by which the sequences of the song are produced.

The zebra finch syrinx is a nonlinear system, and, therefore,the sound it produces is governed
by attractor dynamics, as shown in [1]. Briefly, a vocal system governed by attractor dynamics
tenses its muscles to produce a certain sound pattern—the attractor. Regardless of the sound ac-
tivity the system has been repeating prior to the establishment of the attractor, the system’s sound
activity approaches and reaches the pattern governed by theattractor. This pattern remains until
the attractor is removed. Notably, in such systems mode locking—in which multiple sine waves
coincide to form more complex wave functions, the equivalents of eigenmodes—occurs [2, 1].
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In Section 2, the excitation and decay structure shown by Fig. 1D indicates the presence of
attractor dynamics. Fig. 10 shows that the manifold accurately characterizes the attractor basin
phenomenon.

7 Discussion

Analysis of an ensemble of occurences of a certain sound activity from an adult male Zebra Finch’s
song reveals a high-order structure, as expected. Through use of Poincare sections, one can see that
the activity’s temporal evolution lies on a 1-dimensional manifold embedded in a high-dimensional
space. Views of the trajectories of individual sequences (or “ chunks ”) in the selected space showed
the attractor dynamics characteristic of the nonlinear Zebra Finch syrinx.

Much progress can be made from the work done to demonstrate the non-Gaussian nature of
the Zebra Finch song. The ensemble of eigenmodes used did notaccount for “ temporal jitter, ”
an inevitable inaccuracy in recording. The presence of several derivative eigenmodes strongly
indicates room for variability reduction.

The next step would be to study the residual modes. Presence of a manifold for the residual
would indicate a high-order structure greater than that established in this paper. Also, further
research should be done to characterize the temporal progress of a bird’s song along the manifold
already formed.

The phaseplots for the eigenmodes ofV = 88 samples, which represented the ensemble in
terms of its secondary activity, indicated the presence of two relatively distinct activities. Further
research may reveal a correlation between the location of the activity within the rendition of the
bird song and the secondary activity. Also, the presence of two apparently distinct manifolds
indicates the need to split the ensemble for more accurate representation of both types of activities.
The usefulness of emphasizing the secondary activity may suggest that there are other features of
the ensemble that could be emphasized by eigenmodes of a third or fourth volume.

Of course, the work done must be repeated on the other sound activities of the current Zebra
Finch song. Each type of activity is likely to have a distinctset of eigenmodes and a distinct
manifold. However, comparison of the data for sequences of activities neighboring each other in
the rendition may reveal interesting inter-sequence patterns; thinking optimistically, a complex,
currently unpredicted, manifold for an entire rendition ofthe bird song might be possible. Before
such information could be revealed, the work must be done.

As previously noted, the sound record used in this study was created by recording a bird in
isolation. To prove IMA is robust, experiments must be done on recordings taken in sound rich
environments. Though a single male finch’s song can be separated from background noise, it is
left to be proven that a linear mixture of the songs of many males and females can be separated
using IMA, as we have theorized.

Characterization of Zebra Finch song through IMA has important applications in the field of
behavioral science. The Zebra Finch, like the human, learnsa series of sounds (the equivalent
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of a language) through intensive imitation during the earlypart of its life. It is believed that
through study of the young Zebra Finch, one can learn more about human language acquisition.
Best understanding of finch language acquisition is gained through observation and analysis of the
changes in a young bird’s songs. Since a bird song can be represented as a set of manifolds, it can
be easily analyzed. Progressive changes in a song over hours, days, and weeks can be represented
objectively as changes in the manifolds of the song. Also, byforming songs that travel on or close
to the manifold at different speeds, and by slightly altering the manifolds within the identified
fields of variability, scientists can determine the degreesof variability of the songs a Zebra Finch
can learn. Such conclusions might be extended to human learning.
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