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Abstract

The fairness notion of maximin share (MMS) guarantee un-
derlies a deployed algorithm for allocating indivisible goods
under additive valuations. Our goal is to understand when we
can expect to be able to give each player his MMS guaran-
tee. Previous work has shown that such an MMS allocation
may not exist, but the counterexample requires a number of
goods that is exponential in the number of players; we give a
new construction that uses only a linear number of goods. On
the positive side, we formalize the intuition that these coun-
terexamples are very delicate by designing an algorithm that
provably finds an MMS allocation with high probability when
valuations are drawn at random.

1 Introduction

We study the classic problem of fairly allocating indivisi-
ble goods among players with additive valuation functions.
Specifically, let the set of players be N = {1,...,n}, and
let the set of goods be G, with |G| = m. We denote the value
of player i € N for good g € G by V;(g) > 0. For a bundle
of items S C G, we assume that V;(S) = >_ 5 Vi(g) (ie.
additive valuations). We are interested in finding an alloca-
tion Ay, ..., A, — this is a partition of G where A; is the
bundle of goods allocated to player i € N.

Let us now revisit the first sentence above — what do we
mean by “fairly”? Before presenting the fairness notion we
are interested in, let us briefly discuss two others. An allo-
cation is envy free if for all i,j € N, Vi(4;) > Vi(4,);
and it is proportional if for all i € N, V;(4;) > Vi(G)/n.
Note that, in our setting, any envy-free allocation is also pro-
portional. While these notions are compelling — and prov-
ably feasible in some fair division settings, such as cake cut-
ting (Brams and Taylor 1996; Procaccia 2013) — they can-
not always be achieved in our setting (say for example when
there are two players and one good).

We therefore focus on a third fairness notion: maximin
share (MMS) guarantee, introduced by Budish (2011). The
MMS guarantee of player ¢ € N is

MMS(i) = gmax. grél]{flvz(sj),
where 51, ..., S, is a partition of the set of goods G; a par-
tition that maximizes this value is known as an MMS par-
tition. In words, this is the value player ¢ can achieve by
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dividing the goods into n bundles, and receiving his least
desirable bundle. Alternatively, this is the value ¢ can guar-
antee by partitioning the items, and then letting all other
players choose a bundle before he does. An MMS alloca-
tion is an allocation Aq,..., A, such that for all i € N,
Vi(A;) > MMS(i). In contrast to work on maximizing the
minimum value of any player (Bansal and Sviridenko 2006;
Asadpour and Saberi 2007; Roos and Rothe 2010), MMS is
a “Boolean” fairness notion. Also note that a proportional
allocation is always an MMS allocation, that is, proportion-
ality is a stronger fairness property than MMS.

It is tempting to think that in our setting (additive valua-
tions), an MMS allocation always exists. In fact, extensive
experiments by Bouveret and Lemaitre (2014) did not yield
a single counterexample. Alas, it turns out that (intricate)
counterexamples do exist (Procaccia and Wang 2014). On
the positive side, approximate MMS allocations are known
to exist. Specifically, it is always possible to give each player
a bundle worth at least 2/3 of his MMS guarantee, that is,
there exists an allocation A1, ..., A, suchthatforalli € N,
Vi(A;) > 2MMS(i) (Procaccia and Wang 2014). Further-
more, very recent work by Amanatidis et al. (2015) achieves
the same approximation ratio in polynomial time.

These theoretical results have already made
a significant real-world impact through Spliddit
(www.spliddit.org), a not-for-profit fair division
website (Goldman and Procaccia 2014). Since its launch in
November 2014, Spliddit has attracted more than 52,000
users. The website currently offers five applications, for
dividing goods, rent, credit, chores, and fare. Spliddit’s
algorithm for dividing goods, in particular, elicits additive
valuations (which is easy to do), and maximizes social
welfare (the total value players receive) subject to the
highest feasible level of fairness among envy-freeness,
proportionality, and MMS. If envy-freeness and proportion-
ality are infeasible, the algorithm computes the maximum
a such that all players can receive an « fraction of their
MMS guarantee; since « > 2/3 (Procaccia and Wang
2014), the solution is, in a sense, provably fair. The website
summarizes the method’s fairness guarantees as follows:

“We guarantee each participant at least two thirds of
her maximin share. In practice, it is extremely likely
that each participant will receive at least her full max-
imin share.”



Our goal in this paper is to better understand the second sen-
tence of this quote: When is it possible to find an (exact)
MMS allocation? And how “likely” is it?

Our results. Our first set of results has to do with the fol-
lowing question: what is the maximum f(n) such that ev-
ery instance with n players and m < f(n) goods admits
an MMS allocation? The previously known counterexample
to the existence of MMS allocations uses a huge number of
goods — n™, to be exact (Procaccia and Wang 2014). Hence,
f(n) < n™ — 1. Our first major result drastically improves
this upper bound: an MMS allocation may not exist even
when the number of goods is linear in the number of play-
ers.

Theorem 2.1. For all n > 3, there is an instance with n
players and m < 3n—+4 goods such that an MMS allocation
does not exist.

That is, f(n) < 3n + 3. On the other hand, Bouveret and
Lemaitre (2014) show that f(n) > n + 3. As a bonus result,
we show in Appendix C that f(n) > n + 4.

The counterexamples to the existence of MMS allocations
are extremely delicate, in the sense that an MMS alloca-
tion does exist if the valuations are even slightly perturbed.
In addition, as mentioned above, randomly generated in-
stances did not contain any counterexamples (Bouveret and
Lemaitre 2014). We formalize these observations by consid-
ering the regime where for each ¢ € N there is a distribution
D; such that the values V;(g) are drawn independently from
D;.

Theorem 3.1 Assume that for all i € N, V[D;] > c for a
constant ¢ > 0. Then for all € > 0 there exists K = K(c,¢)
such that if max(n,m) > K, then the probability that an
MMS allocation exists is at least 1 — e.

In words, an MMS allocation exists with high probability
as the number of players or the number of goods goes to in-
finity. It was previously known that an envy-free allocation
(and, hence, an MMS allocation) exists with high probability
when m € Q(nlnn) (Dickerson et al. 2014). Our analysis
therefore focuses on the case of m € O(nInn). In this case,
an envy-free allocation is unlikely to exist (such an alloca-
tion certainly does not exist when m < n), but (as we show)
the existence of an MMS allocation is still likely. Specifi-
cally, we develop an allocation algorithm and show that it
finds an MMS allocation with high probability. The algo-
rithm’s design and analysis leverage techniques for match-
ing in random bipartite graphs.

2 Dependence on the Number of Goods
The main result of this section is the following theorem:

Theorem 2.1. For all n > 3, there is an instance with n
players and m < 3n+4 goods such that an MMS allocation
does not exist.

Note that when n = 2, an MMS allocation is guaranteed
to exist: simply let player 1 divide the goods into two bun-
dles according to his MMS partition, and let player 2 choose.
Player 1 then obviously receives his MMS guarantee,

whereas player 2 receives a bundle worth at least V5 (G) /2 >
MMS(2). The result of Procaccia and Wang (2014) shows
that an MMS allocation may not exist even when n = 3 and
m = 12 which proves the theorem for n = 3, but, as noted
in Section 1, their construction requires n" goods in general.

Because the new construction that proves Theorem 2.1 is
somewhat intricate, we relegate the detailed proof to Ap-
pendix A. Here we explicitly provide the special case of
n = 4. To this end, let us define the following two matri-
ces, where ¢ is a very small positive constant (¢ = 1,/16 will
suffice).
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Let M = S+ T. Crucially, the rows and columns of M sum
to 1. Let G contain goods that correspond to the nonzero
elements of M, that is, for every entry M; ; > 0 we have a
good g; ;; note that |G| = 14 < 3n + 4.

Next, partition the 4 players into P = {1,2} and Q =
{3,4}. Define the valuations of the players in P as follows
where 0 < £ < ¢ (£ = 1/64 will suffice).

00 0 —&
00 0 —&
M+1g 0 0 -z
00 0 32

That is, the values of the rightmost column are perturbed.
For example, fori € P, V;(g1,4) =1/8 — et — &. Similarly,
for players in @), the values of the bottom row are perturbed:

0 0 0 0
0 0 0 0
M+1o o o o

—£ —& —£ 3¢

It is easy to verify that the MMS guarantee of all players is
1. Moreover, the unique MMS partition of the players in P
(where every subset has value 1) corresponds to the columns
of M, and the unique MMS partition of the players in Q)
corresponds to the rows of M. If we divide the goods by
columns, one of the two players in @) will end up with a
bundle of goods worth at most 1 — £ — less than his MMS
value of 1. Similarly, if we divide the goods by rows, one of
the players in P will receive a bundle worth only 1 — €. Any
other partition of the goods will ensure that some party does
not achieve their MMS value due to the relative size of €.

3 Random Valuations

The counterexamples to the existence of MMS allocations
— Theorem 2.1 and the construction of Procaccia and
Wang (2014) — are very sensitive: tiny random perturba-
tions are extremely likely to invalidate them. Our goal in



this section is to prove MMS allocations do, in fact, exist
with high probability, if a small amount of randomness is
present.

To this end, let us consider a probabilistic model with the
following features:

1. For all « € N, D; denotes a probability distribution over
[0,1].

2. Foralli € N,g € G, V;(g) is randomly sampled from
D;.

3. The set of random variables {V;(g) }ien, ge is mutually
independent.

We will establish the following theorem:

Theorem 3.1. Assume that for all i € N, V[D;] > ¢ fora
constant ¢ > 0. Then for all ¢ > 0 there exists K = K(c,¢)
such that if max(n,m) > K, then the probability that an
MMS allocation exists is at least 1 — e.

In words, as long as each D; has constant variance, if ei-
ther the number of players or the number of goods goes to
infinity, there exists an MMS allocation with high probabil-
ity. In parallel, independent work, Amanatidis et al. (2015)
establish (as one of several results) a special case of The-
orem 3.1 where each D; is the uniform distribution over
[0,1]. Dealing with arbitrary distributions presents signifi-
cant technical challenges, and is also important in terms of
explaining the abovementioned experiments, which cover a
wide range of distributions. Yet the result of Amanatidis et
al. is not completely subsumed by Theorem 3.1, as they care-
fully analyze the rate of convergence to 1.

Our starting point is a result by Dickerson et al. (2014),
who study the existence of envy-free allocations. They show
that an envy-free allocation exists with high probability as
m — 00, as long as n € O(m/Inm), and the distributions
D; satisfy the following conditions for all 7, 7 € N:

1. Plargmaxgen Vi(g) = {i}] = 1/n.
2. There exist constants i, u* such that

0<E [V;-(g)

arggcnea]%cvk(g) {J}] <pu<p

<E [Vz—(g) arg max Vi (g) = {i}] :

The proof uses a naive allocation algorithm: simply give
each good to the player who values it most highly. The first
condition then implies that each player receives roughly 1/n
of the goods, and the second condition ensures that each
player has higher expected value for each of his own goods
compared to goods allocated to other players.

It turns out that, via only slight modifications, their theo-
rem can largely work in our setting. That is, alter their allo-
cation algorithm to give a good g to a player ¢ who believes g
is in the top 1/n of their probability distribution D;. If there
are multiple such players, choose one uniformly at random
and if no such player exists, give it to any player uniformly
at random.

This procedure is fairly straightforward for continuous
probability distributions. For example, if player ¢’s distribu-
tion D; is uniform over the interval [0, 1] then he believes g

isinthe top 1/n of D; if V;(g) > (n—1)/n. However, distri-
butions with atoms require more care. For example, suppose
D; is 1/3 with probability 7/8 and uniform over [1/2, 1]
with probability 1/8. Then if n = 3, i believes g is in the top
1/n of D; if Vi(g) > 1/3 orif V;(g) = 1/3 he should be-
lieve it is in his top 1/n only 1/n — 1/8 = 5/24 of the time.
To implement such a procedure, when sampling from D;, we
should first sample from the uniform distribution over [0, 1].
If our sampled value is at least (n — 1)/n we will say 4 has
drawn from his top 1/n. We then convert our sampled value
to a sampled value from D; by applying the inverse CDF.

Utilizing the observation that any envy-free allocation is
also an MMS allocation we can then restate the result of
Dickerson et al. (2014) as the following lemma, whose proof
is relegated to Appendix B.

Lemma 3.2 ((Dickerson et al. 2014)). Assume that for all
i € N, V[D;] > cfor a constant ¢ > 0. Then for all € >
0 there exists K = K(g) such that if m > K and m >
anlnn, for some o = «(c), then the probability that an
MMS allocation exists is at least 1 — €.

Note that the statement of Lemma 3.2 is identical to that
of Theorem 3.1, except for two small changes: only m is
assumed to go to infinity, and the additional condition m >
anlnn. So it only remains to deal with the case of m <
anlnn. We can handle this scenario via consideration of
the case m < n®/7 — formalized in the following lemma.

Lemma 3.3. Forall € > 0 there exists K = K (¢) such that

ifn > K and m < n®/7, then the probability that an MMS
allocation exists is at least 1 — €.

Note that this lemma actually does not even require the
minimum variance assumption, that is, we are proving a
stronger statement than is needed for Theorem 3.1.

It is immediately apparent that when the number of goods
is relatively small, we will not be able to prove the existence
of MMS allocations via the existence of envy-free alloca-
tions. For example, envy-free allocations certainly do not
exist if m < n, and are provably highly unlikely to exist
if m = n + o(n) (Dickerson et al. 2014). Our approach,
to which we devote the remainder of this section, is signifi-
cantly more intricate.

3.1 Proof of Lemma 3.3

We assume that m > n, because an MMS allocation always
exists when m < n (in fact, when m < n + 4, as Theo-
rem C.1 shows). We will require the following notions and
lemma.

Definition 3.4. A ranking of the goods G for some player
t € N is the order of the goods by value from most valued to
least. Ties are broken uniformly at random. Furthermore, a
good g’s rank for a player ¢ is the position of g in ¢’s ranking.

An important observation of the rankings that we will use
often throughout this section is that the players’ rankings are
independent of each other.
Definition 3.5. Suppose X C N and Y C G where | X| <
|Y]. Let

s = [ X[[IY]/IX[T =Y

and G be the bipartite graph where:



1. L represents the vertices on the left, and R on the right.

2. L is comprised of ||Y|/|X|| copies of the first s players
of X and [|Y|/|X|] copies of the other players.

3. R=Y.

4. The i*" copy of a player has an edge to a good g iff ¢’s
rank is in ((¢ — 1)A,4A] in the player’s ranking where
A =1n®n.

Note that |L| = |R| since if we let z = |X| and y = |Y|

(and therefore s = z[y/x] — y). Then

L] = sly/z] + (x — 5)[y/x]
= 2[y/z] — s ([y/z] - ly/z]).

If = divides y, then we have that [y/x] = |y/x| = £ and
so |L| = y. If, on the other hand, = does not divide y, then
we have that [y/x] — |y/z| = 1 and so we have

\L| = z[y/z] — s
zly/z] — (z[y/z] —y)

Therefore, in either case, |L| =y = |Y| = | R|.

The matched draft on X and Y is the process of construct-
ing G and producing an allocation corresponding to a perfect
matching of G. That is, if a perfect matching exists then a
player in X is given all goods the copies of it are matched
to. In the event that no perfect matching exists, the matched
draft is said to fail.

Lemma 3.6. Suppose of the m < n®/7 goods x = v|m/n|
are randomly chosen and removed, where vy < nt/ 3 and the
remaining m = m — x goods are allocated via a matched
draft to n := n—y players. Then this matched draft succeeds
with probability — 1 as n — oo (note that as n — oo, so
too do n,m).

Proof. Define d as the minimum degree of a vertex of L in
G and D = 21lgnlInn. Then we have

IP [matched draft fails]
= IP [matched draft fails | d < D|P[d < D]

+ P [matched draft fails | d > D]|P[d > D]
< P[d < D] + P [matched draft fails | d > D].

Let us consider these two terms separately and show they
— 0asn — oo.

If x = 0 we have that P [d < D] = 0 for sufﬁciently large
n, so let us assume = > 0. Denoting by p7, the probability
that player ¢ has less than D of the goods ranked in positions
((j — 1)A, jA] remaining, we have

number of goods
% receives

Pld < D] <Z >

The right hand side is equal to m times the probability that
player 1 has less than D of the goods ranked in the top A
positions remaining, which is equal to 7 times the probabil-
ity that of the = randomly chosen goods, more than A — D
are ranked in the top A positions for player 1.

Now let the random variable X denote the number of the
x random goods ranked in the top A for player 1. Clearly
E[X] = %. Thus by Markov’s inequality we have that

P[X > A — D]

IP[X>IE[X]m(AA;D)}
IE[X]

< =

m(A
(%) x5
03 n)(y[m/n])\
<(lm —)’(Y’Y&n/{i;)) In®n — 211gnlnn
(E=mm) s

<
- ln?’n—2lgnlnn
— 0.

Next let us consider P [matched draft fails | d > D]. We
would like to appeal to the plethora of results on perfect
matchings in bipartite Erdos-Rényi graphs (Bollobas 2001)
or random bipartite k-out graphs (McDiarmid 1980), but due
to the lack of independence on the edge existences we do not
satisfy a crucial assumption of much of this literature, and
more importantly its proofs. We will therefore prove this in
full here via an approach that allows us to ignore the depen-

dence. We will utilize Hall’s theorem and denote by N (X)
the set of neighbors of X in the bipartite graph G.

P [matched draft fails | d > D]
=P[EX CLs.t |X|<|N(X)||d> D]
< Y PIX|I<INX)||d= D]

XCL

m

<22 2.

i=D {XCL|[X|=i} {YCR|[Y|=i~1}

PIN(X)CY |d> D].

If the edges of G were independent then we would find that
for | X|=dand |Y|=1i—1,

m

?

P[N(X)CY]= (i— 1)ZmexN(:r)

and more importantly

IP’[N(X)CY|d>D}<(i_1>iD. (1)

Via our independence assumptions in our randomized set-
ting there is only one form of dependence in the edges of
G. Specifically, if we take all copies of any player i € L,
then their neighbors in R never intersect. Though this does
indeed introduce dependence into our system, note that we
still have that Equation (1) as the dependence only lowers



the probability of N (X)) “fitting” into Y. We therefore find
IP [matched draft fails | d > D]

S o

lm/2] , - ~ S (m—35)D
m m m—j—1

+ . , E— .
2, (J)<J+1>< n )

Jj=0

We now show both of these terms separately — 0 as n —
0.
First,

2e2n8/7
n2 Inn

— 0,

where the first inequality follows from the fact that () <

(%)b for b > 0, and the third inequality follows from the
fact thati < |m/2].
Second,

E 08 )
j j+1 m

=0

lm/2] , . 241 . (m—3)D
me +1
S (5) ()
; J m
Jj=1
/2] , _ \ 2j+1
<me P+ <me) e~ DU+ (m—j) /m
= N
/2] , -\ 2j+1
<me P+ <me) o—DG+1)/2
=1 N
oD . /2] < M2e? )j+1
= 2 .D/2
o\
nd/7 2] (n8/7)2e? A
S e T ( o1 )
n2lgn “ j nlen
Jj=1
nd/7 o7 (n®/7)2¢2
= n2lgn +ln / /2 < nlgn )
— 0,

where the first inequality follows from (§) < (%)b for b >
0 and the third inequality follows from 1 + x < e” for all x.
Thus, we find that as n — oo the matched draft succeeds

with probability — 1. B
We are now ready to prove the lemma.

Proof of Lemma 3.3. Recall that we may assume that m >
n. We will ensure every player has at most one less good
than any other player. Let s then represent the number of
players that receive one less good than any other player, that
is,

s =n[m/n] —m.
We consider two separate cases here.

Case 1: s < n'/3. In this scenario we do the following.

1. If possible, give each of the first s players their top |m/n ]
goods. Otherwise, fail to produce any allocation.

2. Hold a matched draft for the remaining (n — s)[m/n]

goods and n — s players.

We first show that as n — oo this procedure successfully
produces an allocation with probability — 1.

Consider the probability that the first step of the procedure
successfully completes. That is, the first s players each get
their top |m/n] goods. Similarly to a birthday paradox like



argument we get that this occurs with probability at least

slm/n] . sm/n
-1
(1_2 )>(1_sm/n>
i=1
1

lim (1 — 1) =1
T—00 w(m)

we find that this too goes to 1 as n — oo.

Now consider the second step of the procedure. By
Lemma 3.6 with v = s, we know that this succeeds with
probability 1 as n — oo. Therefore the entire procedure will
successfully complete with probability — 1 as n — oo.

Therefore, to prove the theorem, it suffices to show that
if the procedure successfully completes, then we have an
MMS allocation. Since for every player any MMS partition
must include a subset with at most |m/n] goods and the
first s players are given their top |m/n] goods, they must
receive their MMS value.

Let us turn our attention then to the remaining n — s play-
ers. Upon successful completion of the matched draft, we
know that all of these players will receive goods ranked
in their top A[m/n]. We claim that for sufficiently large
n any player’s MMS partition must include a subset of at
most [m/n] goods where each good is ranked lower than
A[m/n]. Suppose this were not true for purposes of contra-
diction. Then each of the n subsets in an offending player’s
MMS partition must include either one of the top A[m/n|
goods or [m/n] + 1 goods. We then see that for sufficiently
large n, the number of such subsets is bounded by

m— Alm/n]
[m/n] +1

_ Aoy 4 0m/

n10/21

But as

Alm/n]| +
— 1)+ (n—s)[m/n] = Alm/n]

[m/n] +1
_ Alm/n]% +n[m/n] — s
[m/n] +1
< %n—i—Afm/n}
/7
S
<mn.

n+nt"Inn

Thus the offending player cannot produce such an MMS par-
tition which proves the claim.

Now note that the n — s players of interest have MMS par-
titions that include the same number of goods they received,
but all of which are worth strictly less than every good in
their bundle. They therefore must have achieved their MMS
value.

Case 2: s > n'/3. In this scenario we simply run a matched
draft. Similarly to the previous case we know from Lemma
3.6 with v = 0 that all the players will receive goods ranked
in their top A[m/n] with probability — 1 as n — oo.

In this case for sufficiently large n any player’s MMS par-
tition must include a subset of at most |m/n]| goods where
each good is ranked lower than A[m/n]. Again, suppose
this were not true for purposes of contradiction. Then each
of the n subsets in a player’s MMS partition must include ei-
ther one of the top A[m/n| goods or [m/n| + 1= [m/n|
goods (in this case m # 0 (mod n)). We then see that for
sufficiently large n, the number of subsets is at most

Afmfu] 4 2]
RN LU ED e ILT

s

=n+Alm/n] - ——

[m/n]

1/3

/71,3,

<n+n’"In’n 17
<n.

Via logic similar to the previous case, we conclude that all
players must have achieved their MMS value. B

4 Discussion

Theorem 3.1, together with the extensive experiments of
Bouveret and Lemaitre (2014), tells us that an MMS allo-
cation is very likely to exist ex post, that is, after the play-
ers report their preferences. But imagine a parallel universe
where, unless the number of goods is huge —e.g., n™ like in
the construction of Procaccia and Wang (2014) — an MMS
allocation must exist. In such a universe one would typically
be able to guarantee to players an MMS allocation a priori
— before they even enter their preferences (simply based on
n and m). In contrast, in our universe we can typically (un-
less m is quite small) only guarantee an approximate MMS
allocation. As far as people’s perception is concerned, we
believe that the difference between the two universes is sig-
nificant — and Theorem 2.1 places us, for the first time, in
the latter universe.

While Theorem 2.1 essentially settles one of the main
open problems of Procaccia and Wang (2014), it sheds no
light on the other: For each number of players n, what is the
maximum g(n) € (0,1) such that it is always possible to
achieve a g(n)-approximate MMS allocation, that is, an al-
location satisfying V;(4;) > g(n) - MMS(%) for all players
1. Procaccia and Wang prove that

2[1] oad

> - -
g(n) = 3[njo — 1’
where |n]oqq is the largest odd n’ such that n’ < n. In par-
ticular, for all n we have that g(n) > 2/3, and ¢(3) > 3/4.
Amanatidis et al. (2015) establish (among their other results)
an improved bound of ¢(3) > 7/8, but do not improve the
general lower bound. On the other hand, counterexamples
to the existence of MMS allocations — the construction of
Procaccia and Wang (2014), and the proof of Theorem 2.1
— only imply that g(n) < 1 — o(1), that is, they give an
upper bound that is extremely close to 1. The challenge of
closing this gap is, in our view, both technically fascinating
and practically significant.



References

Amanatidis, G.; Markakis, E.; Nikzad, A.; and Saberi, A.
2015. Approximation algorithms for computing maximin
share allocations. In Proceedings of the 42nd Interna-

tional Colloquium on Automata, Languages and Program-
ming (ICALP), 39-51.

Asadpour, A., and Saberi, A. 2007. An approximation al-
gorithm for max-min fair allocation of indivisible goods. In
Proceedings of the 39th Annual ACM Symposium on Theory
of Computing (STOC), 114—-121.

Bansal, N., and Sviridenko, M. 2006. The Santa Claus prob-
lem. In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC), 31-40.

Bollobas, B. 2001. Random Graphs. Cambridge University
Press, 2nd edition.

Bouveret, S., and Lemaitre, M. 2014. Characterizing con-
flicts in fair division of indivisible goods using a scale of cri-
teria. In Proceedings of the 13th International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS),
1321-1328.

Brams, S. J., and Taylor, A. D. 1996. Fair Division: From
Cake-Cutting to Dispute Resolution. Cambridge University
Press.

Budish, E. 2011. The combinatorial assignment problem:
Approximate competitive equilibrium from equal incomes.
Journal of Political Economy 119(6):1061-1103.

Dickerson, J. P.; Goldman, J.; Karp, J.; Procaccia, A. D.;
and Sandholm, T. 2014. The computational rise and fall of
fairness. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI), 1405-1411.

Goldman, J., and Procaccia, A. D. 2014. Spliddit: Unleash-
ing fair division algorithms. SIGecom Exchanges 13(2):41—
46.

McDiarmid, C. J. H. 1980. Clutter percolation and random
graphs. Mathematical Programming Study 13:17-25.

Procaccia, A. D., and Wang, J. 2014. Fair enough: Guar-
anteeing approximate maximin shares. In Proceedings of
the 14th ACM Conference on Economics and Computation
(EC), 675-692.

Procaccia, A. D. 2013. Cake cutting: Not just child’s play.
Communications of the ACM 56(7):78-87.

Roos, M., and Rothe, J. 2010. Complexity of social wel-
fare optimization in multiagent resource allocation. In Pro-
ceedings of the 9th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), 641-648.



A Proof of Theorem 2.1

With the illustrative n = 4 example under our belt, we now
prove the general case where n > 4 (recall that Procaccia
and Wang (2014) establish the result for n = 3). The crux
of the argument is proving the existence of a matrix M €
R™*™ with the following properties:

1. VZ,j : Mi,j > 0.
2. Vi: Mi,na Mn,i > 0.

3. The sum of a row or column of M is 1 (i.e. M1 =
MT1=1).

4. Define M as the set of all positive entries in M. Then if
we wish to partition M into n subsets that sum to exactly
1 then our partition must correspond to the rows of M or
the columns of M.

To begin, let S € R™"*" be the following matrix.

[ R 0 - 0 0 it
0 2" 21 0 o0 0 Lo
2n—2 " L in—z

0 0 = 0 00 55

: 3 . )

o o o o1l
1 1 1 1 f ?

L 2n-1 2n=2 2n=3 4 2 2n-T]

ie.,

201 ifi=j£n

2’".—7.
L ifi=nandj #n

Sij = Qn% ifj=mnandi#n
1 . . .
Sn—T ifi = J=n
0 otherwise.

Now for ¢ ~ 0 where ¢ > 0, and for all i € {1,...,n — 2},
let r; = 27272 and ¢; = €2"%3, Specifically, this
implies:

<MK <KEMmKen <K .EKrp_o<Lcp_o=c~0.

Furthermore, let T' € R™*"™ be the matrix given by:

[ 0 V1 0 tee 0 0 —T1
Uy 0 vy - 0 0 —7y
0 U9 0 tee 0 0 —T3
0 0 0 0 Un—2 —Tn-2
0 0 0 Up—9 0 —y
|—C1 —C2 —C3 —Cp—2 —T z

where the only nonzero entries are on the first diagonals
above and below the main diagonal, and the last row and
column.

Assign positive values to the u;,v;, z,y, and 2z such that
all rows and columns sum to zero. A bit of arithmetic then
gives:

U; = E Cj — E ] ~ C;

ji<i,j=i (mod 2) j<i,jZi (mod 2)

V; = E Tj — E Cj T

j<ij=i  (mod 2) J<ij#i  (mod 2)
T =Up—2 N TIp_2

Y =Up—2 = Cp—2

>

j<n—2,j=n (mod 2)

] +Cj ~ Cp—2.

Now define M = S + T and M as the set of nonzero
elements of M. Moreover, for a (finite) set X C R, let
X = Z sex - Then we see for sufficiently small & that
the following properties hold.

[P1] 0 < M; ; (elements of M are positive), and if S; ; #

0or Ti7j 75 0, then MiJ > 0.

[P2] Mi,j ~ Si,j~
[P3] The sum of a row or column of M is 1 (i.e. M1 =

MT1=1).

[P4] Vi € [n — 1] if we have X C M s.t. M;; € X and
>~ X =1 then one of the following is true:

(a) Mi,n € X.

(b) M, ; € X.

(C) Ml,na M27n7 ceey Mifl,na Mn;n cX.

(d) Mn,la Mn727 sy Mn,i—la Mn,n € X.

(e) Jj,k<ist. Mj,, M, € X.
This is easy to see when we take note that S ~ M by
[P2].

[P5] If X C MT st. > X = r;, then X =
{M; i1, M; 1}
[P6] If X C MT st > X = ¢, then X =

M1, Migy i}
P71 IfX CMTst.> X=ua,thenX ={M,_3,1}.
P8l f X C MTs.t.> X =y, then X = {M,,_1 ,—2}.
We now make a key observation with respect to M.

Lemma A.1. Suppose we partition M into n subsets such
that the elements in each subset of the partition sum exactly
to 1. Then for sufficiently small €, the partition must corre-
spond to the rows of M or the columns of M.

Proof. Let us first consider the subset in the partition which
includes M 1, call X;. We wish to prove that X is either:
1. the first row: {]\41717 MLQ, Ml,n}

2. the first column: {Mj 1, Mo 1, My, 1}

By [P4] we see that exactly one of M, 1, M ,, and M,, ,
must be part of our subset X .

1. Suppose M, , € Xq. Then > X7 > My1 + M, ,, =
1+ 2z > 1. This is therefore impossible.



2. Suppose My, € Xi. As My + My, =1 — 11 we see
that by [P5] we must have M; 5 € X;. Then X; corre-
sponds to the first row.

3. Suppose M, 1 € Xi. As My + M, 1 =1—c; we see
that by [P6] we must have M>; € X;. Then X; corre-
sponds to the first column.

Now suppose we wish to find a partition as in the lemma’s
statement such that the first ¢ — 1 rows are in the partition
where i € {2,...,n}. Then we claim row 7 must be in the
partition as well. Importantly, this implies that if the first
row is to be in the partition, then the partition must be the
TOwsS.

We first consider the case where i < n — 1. Let X; denote
the subset in the partition that includes M, ;. By [P4] we see
that we must have one of the following.

1. Mzn € X;.
If n < n — 2 we find that M, ; + M, , = —r; and so
by [P5] we have M; ; 1, M; ;11 € X;. We therefore find
that X1 = {Mi’ifl,Mi’i,MLiJrhMi’n}. On the other
hand, if i = n — 1 we find that M, ; + M;,, = —y
and so by [P8] we have M,,_1 ,—2 € X;. Thus X; =
{Myp—1n-2,Mp_1n-1,Mp_1,}. In either case X; is
the it row.

2. Mn,i € X;.
If n < n— 2 we find that M, ; + M,,; = —c; and so
by [P6] we have M;_;; € X;. But M;_; ; is in a previ-
ous row, which by our assumption is already assigned to a
subset in the partition. On the other hand, if i = n — 1
we have M;; + M, ; = —x and so by [P7] we have
My _2 -1 € X;. Similarly to before, this element is in
a previous row and thus is already assigned to a subset in
the partition.

3. Ml,na M2,n7 ) Mi—l,na Mn,n € Xl
As M, ,, is in a previous row it is already assigned to a
subset in the partition.

4. Mn,h Mn,2a 23} Mn,ifla Mn,n € Xz
This is impossible because

ZXi > M +Mp1+Mpo+ ...+ M, + My,

:1—7“1—7"2—...—7’2',14-2’
:1+7"7;+7'i+1+...+7"n+2+y
> 1.

5. 3], k <is.t. Mjﬂ“ Mn,k € X;.
As M; ,, is in a previous row it is already assigned to a
subset in the partition.

Next, suppose ¢ = n. In this case, since we are only al-
lowed n subsets in this partition, all remaining entries (i.e.
the last row) must be in the last set. By [P3] we know this
last row sums to 1. We therefore have shown that if the first
row is in the partition, then the partition simply corresponds
to the rows. A similar argument gives an analogous result for
columns. As the first row or first column must be a subset in
the partition (namely as X;) we are done. B

To prove the theorem, we now consider our construction
through the lens of MMS allocations.

Proof of Theorem 2.1. We first show that there exists a set
of 5n — 6 such goods for n > 4.

Partition the n players into two groups P and () such that
|P|,|Q| > 2. For each element such that M; ; > 0, we will
define a good g; ; (note that there are 5n — 6 such goods).
For k € P, we define

M; ; if j <n
Vi(gij) = Mij — € ifj=nandi<n
M;j+(n—1) ifj=nandi=n
and similarly, for k € Q, let
M; ; ifi<n
Vi(gij) =S M;; — € ifi=mnandj <n
M;;j+(n—1) ifi=nandj=n

where € is small enough to ensure all V4, (g; ;) > 0.

As all players in P (respectively () can partition the
goods into columns (respectively rows) such that the value
of each subset in the partition is exactly 1, the MMS guaran-
tee of all players in P (respectively (J) must remain 1.

Next, let us consider an allocation of the goods.
Lemma A.1 tells us that if the V}(g; ;) were exactly equal
to the M; ; there are only two ways to allocate the goods
such that every subset in the partition has value 1 (i.e. we
get an MMS allocation): via the rows or via the columns.
But note that the alteration to the value of a good g; ; from
M; ; is at most (n — 1)¢ and indeed no subset of goods can
have its total value altered by more than (n — 1)& for any
player. Therefore, we claim that if we wish to have any hope
of achieving an MMS allocation we must still partition ac-
cording to the rows or columns (assuming € is sufficiently
small). To see this, define

Y= _max min X;
X1,..,Xp€X i€n]

where X is the set of partitions of M T excluding the rows
and the columns. Importantly, via Lemma A.1 and the finite
nature of X we know that 7 < 1. Now suppose € < H
Then for any allocation that did not correspond to the rows or
columns some player must have value at most y+(n—1)& <
1. This proves the claim.

Now note that if we split via rows the players of P will
believe only the last row is worth at least 1 and all other rows
are worth strictly less than 1. As there are at least two players
in P, not all players can receive their MMS guarantee. A
similar issue occurs when we split via the columns for the
players in @). Therefore, there exists no MMS allocation in
this setting.

We have just shown the result for 5n—6 goods (for n > 4)
and now set our sights on 3n + 4 goods. Let i = [(n +
4)/2] > 4. We know that we can find 57 — 6 goods that do
not admit an MMS allocation for 7 players. Take this set of
goods, and let there be n players such that |n/2] players are
in group P and the remaining [n /2] are in group Q. Finally,
add n — n goods each of value 1 to all players. Note that the
number of goods is:

m=(Bn—-6)+(n—n)=4[(n+4)/2]+n—6 < 3n+4.



We then see that every player’s MMS value remains 1, but
even after the n — n goods of value 1 are allocated we still
must have at least 2 players in both P and ) when we allo-
cate the original 5n — 6 goods. Therefore, there cannot exist
an MMS allocation. H

B Proof of Lemma 3.2

The crux of the proof of Dickerson et al. (2014) relies on
the allocation algorithm only satisfying the following two
properties.

1. For any good g, if we do not condition on the V;(g), then
every player has a 1/n probability of receiving g.

2. For some constant /A, we have that

E[Vi(g) | i receives g] — E[V;(g) | ¢ does not receive g] > A.

We must show that our allocation algorithm implies these
two properties in our setting. The first is clear via symmetry
and so we turn our attention to the second. We claim that
A = ¢/16 suffices (recall that V [D;] > c).

Let X ~D;,, X =E[X],p = ]P’[X <X], and ~ rep-
resent the value such that P [X > +] = 1/n.! We first show
that E[X | X > 4] —E[X | X <~] > ¢/2.

c <VI[X]
_E[(xX - X))
<E[x - X]

—pE[X - X|X<X]+(1-pE[X-X]|X>X]

= pE[X | X<X]+(1-pE[X|X>X]+2p-1X

Knowing that X = »pE[X|X<X] + (1 —
p)E [X | X > X] there are two cases.
1. v < X. It follows that
c<2p(X-E[X]|X<X]),
and therefore

igX—E[X|X<X].
We conclude that
¢/2< X ~E[X| X < X]
SEX[X29]-E[X|X <q].
2. v > X. Tt follows that
c<2(1-p) (E[X| X >X] - X),

and therefore
c

2(1-p)

We conclude that
¢2<E[X|X>X]-X
SEX X 29 -EX[X <q].

<E[X|X>X]-X.

'As discussed previously, such a «y may not exist in distribu-
tions with atoms, but we ignore this possibility purely for ease of
exposition.

We now can show the second property. Since

BVi(0) | ireceives ] = (1= ) E[X] X <
+<L—Q_;Y>Em|xzﬂ,

E [Vi(g) | i does not receive g] < E[V;(g)]

and

:(1_;)E[X|X<v]+iE[X|XZﬂ7

we have that

E [Vi(g) | i receives g] — E [V;(g) | ¢ does not receive ¢]

2(<11><11>n)<E[X|XzﬂE[XX<vD

n n
1 1\ e¢

> (22 )2

“\2 e)?2
c

> —.
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C A Small Number of Goods Guarantees the
Existence of an MMS Allocation

In Section 2 we have seen that even with m = 3n+4 goods,
we cannot guarantee an MMS allocation. On the other hand,
note that when m < n, the MMS guarantee of each player
is 0, so any allocation is an MMS allocation. If m = n, we
have that MMS(¢) = mingeg Vi(g), so any allocation that
gives a single good to each player fits the bill. The case of
m = n + 1 is still trivial: the MMS partition of a player
puts his two least desirable goods in one bundle, and ev-
ery other good in a singleton bundle. Therefore, it is suffi-
cient to let the players choose a single good each in the or-
der 1,...,n — 1, and allocate to player n the two remaining
goods. Bouveret and Lemaitre (2014) extend this argument
to show that an MMS allocation exists whenever m < n+ 3.

In this appendix, which we view as an aside, we slightly
improve the bound of Bouveret and Lemaitre (2014) to m <
n + 4. While the improvement is not of major excitement,
we include it as we believe the approach is quite interesting
and its ideas may be used to further hone the bounds.

Theorem C.1. If m < n + 4 then there exists an MMS
allocation.

Proof. We give a detailed algorithm (with some commen-
tary) to handle the case of m < n + 4 as Algorithm 1, but
we highlight some of the nuances here.

Observe that whenever a player believes a single good is
worth at least his MMS value we can give that good to him
and in the reduced problem (where there is one less player
and one less good) every player’s MMS value has not de-
creased. Thus, so long as the reduced problem has an MMS
allocation we will have an MMS allocation overall.



Algorithm 1 MMS Allocation for m < n + 4.

while 3i € N s.t. 3g € G where V;(g) > MMS(i) do
Give g to player :.
N+ N\ {i}
G+ G\{g}
/I Note that at this point |[N| < 4.
For convenience, relabel the players so the first is 1, the
second is 2, and so on.
if |N| = 1 then
Give all of G to player 1.
else if | V| = 2 then
Let player 1 produce an MMS partition (for 2 players).
Let player 2 choose a single subset of the partition.
Give player 1 the remaining subset.
else if | V| = 3 then
/1'|G| € {6, 7}, so every MMS partition of any player
has two subsets of size 2.
Let X, X5, X3 be an MMS partition of player 1
where | X | = | X3| = 2.
if 30 € {2,3} s.t. Vi(X1) < MMS(i) or V;(X2) <
MMS(i) then
WLOG assume V5(X;) < MMS(2).
Let Y7, Y5, Y3 be an MMS partition of player 2.
WLOG assume X; C Y] UY5.
Z:=Y1UYy)\ X;.
Let player 3 choose one of X1, Y3, Z.
if Player 3 chooses X; then
/I As Va(X1) < MMS(2) at least one of
Va(X2), Va(X3) > MMS(2).
Give player 2 one of X5 and X3 such that he
achieves his MMS.
Give player 1 the other subset.
else if Player 3 chooses Y3 then
Give X to player 1.
// Note that VQ(Yl), VQ(YQ) > MMS(Q) and
Vg(Xl) < MMS(Q)
/I Thus, Va(Z) = Va(Y1) + Va(Y2) —
VQ(Xl) > MMS(Z)
Give Z to player 2.
else if Player 3 chooses Z then
Give X to player 1.
Give Y3 to player 2.

else
Give X3 to player 1.
Give X to player 2.
Give X5 to player 3.
else if | V| = 4 then
/I'|G| = 8, so every MMS partition of any player has
only subsets of size 2.
Let the players choose a single good one at a time in
the order: 1,2,3,4,4,3,2, 1.

Now note that as long as m < 2n every MMS partition
of any player must include a subset with a single good. We
can therefore utilize the observation repeatedly until there
are at most 4 players left. In the event that there are at most
2 players left, we know this is easily handled and so only
the cases where there are 3 or 4 players remaining are of
interest.

In the more complex outcome where there are 3 players
we essentially have an intricate case analysis that is best
understood via the fully explicit treatment given in Algo-
rithm 1. We therefore only consider the case where there are
4 players left here. In such an outcome exactly 8 goods re-
main and in every MMS partition of any player all subsets of
the partition are of size 2 (as otherwise some player achieves
his MMS value with a single good).

We claim then that for any player ¢ if the goods g1, ..., gs
were sorted by value in that order (i.e. Vi(g;) > Vi(gw)
for all j < k) then {g1,9s}, {92, 97}, {93, 96}, {94, 95} is
an MMS partition for ¢ (i.e. the partition where g; paired
with gg_;). Suppose this were not true, then let j ¢
arg ming<a(V;(gx) + Vi(go—x)). Now let Sy, S2, 53,54 be
any MMS partition for 7 and consider the good g; is paired
with, say g;. We know that that £ < 9 — j as otherwise we
would have

MMS (i) = min Vi(Sk) < Vi(g;) + Vi(gr)
< Vi(g;) + Vi(go—j) = gcngig(Vi(gk) + Vi(go—k))-

Now consider the j goods go—;, g10—j, ---, gg- As We require
MMS (i) = ming V;(Sk) > Vi(g;)+Vi(go—;) we must have
that the goods they are paired with in the MMS partition
chosen have value greater than V;(g;). Unfortunately, there
are at most j — 1 such goods — a clear contradiction.

Thus, if we allow players to choose one good at a time,
we find that so long as a player gets to make the j** and
(9 — 5)*" choice, he will have his MMS value.

As mentioned above, see Algorithm 1 for the complete
approach. l



