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Abstract

We study the paradigmatic fair division problem of
fairly allocating a divisible good among agents with het-
erogeneous preferences, commonly known as cake cut-
ting. Classic cake cutting protocols are susceptible to
manipulation. Do their strategic outcomes still guaran-
tee fairness? To address this question we adopt a novel
algorithmic approach, proposing a concrete computa-
tional model and reasoning about the game-theoretic
properties of algorithms that operate in this model.
Specifically, we show that each protocol in the class of
generalized cut and choose (GCC) protocols — which
includes the most important discrete cake cutting pro-
tocols — is guaranteed to have approximate subgame
perfect Nash equilibria, or even exact equilibria if the
protocol’s tie-breaking rule is flexible. We further ob-
serve that the (approximate) equilibria of proportional
protocols — which guarantee each of the n agents a
1/n-fraction of the cake — must be (approximately)
proportional, thereby answering the above question in
the positive (at least for one common notion of fairness).

1 Introduction

A large body of literature deals with the so-called cake cut-
ting problem — a misleadingly childish metaphor for the
challenging and important task of fairly dividing a heteroge-
neous divisible good between multiple agents (see, e.g., the
recent survey by Procaccia 2013, and the books by Brams
and Taylor (1996) and Robertson and Webb (1998)). In par-
ticular, there is a significant amount of Al work on cake cut-
ting (Procaccia 2009; Caragiannis, Lai, and Procaccia 2011;
Cohler et al. 2011; Brams et al. 2012; Bei et al. 2012; Au-
mann, Dombb, and Hassidim 2013; Kurokawa, Lai, and Pro-
caccia 2013; Branzei, Procaccia, and Zhang 2013; Branzei
and Miltersen 2013; Chen et al. 2013; Balkanski et al. 2014;
Bréanzei and Miltersen 2015; Li, Zhang, and Zhang 2015),
which is tightly intertwined with emerging real-world appli-
cations of fair division more broadly (Goldman and Procac-
cia 2014; Kurokawa, Procaccia, and Shah 2015).

Going back to the word “fairly”, two formal notions
of fairness have emerged as the most appealing and well-
studied in the context of cake cutting: proportionality, in
which each of the n agents receives at least a 1 /n-fraction of
the entire cake according to its valuation; and envy-freeness,
which stipulates that no agent would wish to swap its own
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piece with that of another agent. At the heart of the cake cut-
ting endeavor is the design of cake cutting protocols, which
specify an interaction between agents — typically via iter-
ative steps of manipulating the cake — such that the final
allocation is guaranteed to be proportional or envy-free.

The simplest cake cutting protocol is known as cut and
choose, and is designed for the case of two agents. The first
agent cuts the cake into two pieces that it values equally; the
second agent then chooses the piece that it prefers, leaving
the first agent with the remaining piece. It is easy to see that
this protocol yields a proportional and envy-free allocation
(in fact these two notions coincide when there are only two
agents). However, taking the game-theoretic point of view,
it is immediately apparent that the agents can often do bet-
ter by disobeying the protocol when they know each other’s
valuations. For example, in the cut and choose protocol, as-
sume that the first agent only desires a specific small piece
of cake, whereas the second agent uniformly values the cake.
The first agent can obtain its entire desired piece, instead of
just half of it, by carving that piece out.

So how would strategic agents behave when faced with
the cut and choose protocol? A standard way of answering
this question employs the notion of Nash equilibrium: each
agent would use a strategy that is a best response to the other
agent’s strategy. To set up a Nash equilibrium, suppose that
the first agent cuts two pieces that the second agent values
equally; the second agent selects its more preferred piece,
and the one less preferred by the first agent in case of a tie.
Clearly, the second agent cannot gain from deviating, as it is
selecting a piece that is at least as preferred as the other. As
for the first agent, if it makes its preferred piece even big-
ger, the second agent would choose that piece, making the
first agent worse off. Interestingly enough, in this equilib-
rium the tables are turned; now it is the second agent who
is getting exactly half of its value for the whole cake, while
the first agent generally gets more. Crucially, the equilibrium
outcome is also proportional and envy-free. In other words,
even though the agents are strategizing rather than follow-
ing the protocol, the outcome in equilibrium has the same
fairness properties as the “honest” outcome!

With this motivating example in mind, we would like to
make general statements regarding the equilibria of cake
cutting protocols. We wish to identify a general family of
cake cutting protocols — which captures the classic cake



cutting protocols — so that each protocol in the family is
guaranteed to possess (approximate) equilibria. Moreover,
we wish to argue that these equilibrium outcomes are fair.
Ultimately, our goal is to be able to reason about the fair-
ness of cake divisions that are obtained as outcomes when
agents are presented with a standard cake cutting protocol
and behave strategically.

1.1 Model and Results

To set the stage for a result that encompasses classic cake
cutting protocols, we introduce (in Section 2) the class of
generalized cut and choose (GCC) protocols. A GCC pro-
tocol is represented by a tree, where each node is associ-
ated with the action of an agent. There are two types of
nodes: a cut node, which instructs the agent to make a cut
between two existing cuts; and a choose node, which offers
the agent a choice between a collection of pieces that are
induced by existing cuts. Moreover, we assume that the pro-
gression from a node to one of its children depends only on
the relative positions of the cuts (in a sense to be explained
formally below). We argue that classic protocols — such as
Dubins-Spanier (1961), Selfridge-Conway (see (Robertson
and Webb 1998)), Even-Paz (1984), as well as the original
cut and choose protocol — are all GCC protocols. We view
the definition of the class of GCC protocols as one of our
main contributions.

In Section 3, we observe that GCC protocols may not have
exact Nash equilibria (NE). We then explore two ways of
circumventing this issue, which give rise to our two main
results.

1. We prove that every GCC protocol has at least one e-NE
for every € > 0, in which agents cannot gain more than e
by deviating, and € can be chosen to be arbitrarily small.
In fact, we establish this result for a stronger equilibrium
notion, (approximate) subgame perfect Nash equilibrium
(SPNE), which is, intuitively, a strategy profile where the
strategies are in NE even if the game starts from an arbi-
trary point.

2. We slightly augment the class of GCC protocols by giving
them the ability to make informed tie-breaking decisions
that depend on the entire history of play, in cases where
multiple cuts are made at the exact same point. While,
for some valuation functions of the agents, a GCC pro-
tocol may not possess any exact SPNE, we prove that it
is always possible to modify the protocol’s tie-breaking
scheme to obtain SPNE.

In Section 4, we observe that for any proportional pro-
tocol, the outcome in any e-equilibrium must be an e-
proportional division. We conclude that under the classic
cake cutting protocols listed above — which are all pro-
portional — strategic behavior preserves the proportional-
ity of the outcome, either approximately, or exactly under
informed tie-breaking.

One may wonder, though, whether an analogous result
is true with respect to envy-freeness. We give a negative
answer, by constructing an envy-inducing SPNE under the
Selfridge-Conway protocol, a well-known envy-free proto-
col for three agents. However, we are able to design a curious

GCC protocol in which every NE outcome is a contiguous
envy-free allocation and vice versa, that is, the set of NE
outcomes coincides with the set of contiguous envy-free al-
locations. It remains open whether a similar result can be
obtained for SPNE instead of NE.

1.2 Related Work

The notion of GCC protocols is inspired by the Robertson-
Webb (1998) model of cake cutting — a concrete complex-
ity model that specifies how a cake cutting protocol may
interact with the agents. Their model underpins a signifi-
cant body of work in theoretical computer science and Al,
which focuses on the complexity of achieving different fair-
ness or efficiency notions in cake cutting (Edmonds and
Pruhs 2006a; 2006b; Woeginger and Sgall 2007; Deng, Qi,
and Saberi 2012; Aumann, Dombb, and Hassidim 2013;
Procaccia 2009; Kurokawa, Lai, and Procaccia 2013). In
Section 2, we describe the Roberston-Webb model in de-
tail, and explain why it is inappropriate for reasoning about
equilibria.

In the context of the strategic aspects of cake cutting,
Nicolo and Yu (2008) were the first to suggest equilibrium
analysis for cake cutting protocols. Focusing exclusively on
the case of two agents, they design a specific cake cutting
protocol whose unique SPNE outcome is envy-free. And
while the original cut and choose protocol also provides this
guarantee, it is not “procedural envy free” because the cut-
ter would like to exchange roles with the chooser; the two-
agent protocol of Nicolé and Yu aims to solve this diffi-
culty. Branzei and Miltersen (2013) also investigate equi-
libria in cake cutting, but in contrast to our work they focus
on one cake cutting protocol — the Dubins-Spanier protocol
— and restrict the space of possible strategies to threshold
strategies. Under this assumption, they characterize NE out-
comes, and in particular they show that in NE the allocation
is envy-free. Branzei and Miltersen also prove the existence
of e-equilibria that are e-envy-free; again, this result relies
on their strong restriction of the strategy space, and applies
to one specific protocol.

Several papers by computer scientists (Chen et al. 2013;
Mossel and Tamuz 2010; Maya and Nisan 2012) take a
mechanism design approach to cake cutting; their goal is
to design cake cutting protocols that are strategyproof, in
the sense that agents can never benefit from manipulat-
ing the protocol. This turns out to be an almost impossi-
ble task (Zhou 1991; Branzei and Miltersen 2015); positive
results are obtained by either making extremely strong as-
sumptions (agents’ valuations are highly structured), or by
employing randomization and significantly weakening the
desired properties. In contrast, our main results, given in
Section 3, deal with strategic outcomes under a large class
of cake cutting protocols, and aim to capture well-known
protocols; our result of Section 4 is a positive result that
achieves fairness “only” in equilibrium, but without impos-
ing any restrictions on the agents’ valuations.

2 The Model

The cake cutting literature typically represents the cake as
the interval [0, 1]. There is a set of agents N = {1,...,n},



and each agent 7 € N is endowed with a valuation func-
tion V; that assigns a value to every subinterval of [0, 1].
These values are induced by a non-negative continuous
value density function v;, so that for an interval I, V;(I) =
/. cr v;(z) dz. By definition, V; satisfies the first two prop-
erties below; the third is an assumption that is made without
loss of generality.

1. Additivity: For every two disjoint intervals I; and I,
Vi(Iy U Iy) = Vi(11) + Vi(12).
A <1

2. Divisibility: For every interval I C [0,1] and 0 < X <
there is a subinterval I’ C I such that V;(I") = AV;(I).

3. Normalization: V;([0, 1]) = 1.

Note that the valuation functions are non-atomic, i.e., they
assign zero value to points. This allows us to disregard the
boundaries of intervals, and in particular we treat intervals
that overlap at their boundary as disjoint. We sometimes ex-
plicitly assume that the value density functions are strictly
positive, i.e., v;(x) > 0 for all z € [0,1] and for all i € N;
this implies that V;([z,y]) > 0 for all z, y € [0, 1] such that
r <y.

A piece of cake is a finite union of disjoint intervals.
We are interested in allocations of disjoint pieces of cake
Xi,...,X,, where X; is the piece that is allocated to agent
i € N. A piece is contiguous if it consists of a single inter-
val.

We study two fairness notions. An allocation X is pro-
portional if for all ¢ € N, V;(X;) > 1/n; and envy-free if
foralli,j € N, V;(X;) > V;(X,). Note that envy-freeness
implies proportionality.

2.1 Generalized Cut and Choose Protocols

The standard communication model in cake cutting was pro-
posed by Robertson and Webb (1998). The model restricts
the interaction between the protocol and the agents to two
types of queries:

e Cut query: Cut;(x, ) asks agent 4 to return a point y such
that V;([z, y]) = «.

e Evaluate query: Evaluate;(x,y) asks agent i to return a
value « such that V;([z,y]) = a.

However, the communication model does not give much in-
formation about the actual implementation of the protocol
and what allocations it produces. For example, the protocol
could allocate pieces depending on whether a particular cut
was made at a specific point (see Algorithm 2).

For this reason, we define a generic class of protocols
that are implementable with natural operations, which cap-
ture all bounded' and discrete cake cutting algorithms, such
as cut and choose, Dubins-Spanier, Even-Paz, Successive-
Pairs, and Selfridge-Conway (see, e.g., (Procaccia 2013)).
At a high level, the standard protocols are implemented us-
ing a sequence of natural instructions, each of which is ei-
ther a Cut operation, in which some agent is asked to make
a cut in a specified region of the cake; or a Choose opera-
tion, in which some agent is asked to take a piece from a set

'In the sense that the number of operations is upper-bounded
by a function that takes the number of agents n as input.

agent 1 Cuts in {[0,1]} // Qz
agent 1 Cuts in {[0, 1]} // Qy
agent 1 Cuts in {[0,1]} // Qz
if (z <y < z) then
agent 1 Chooses from {[z, y], [y, z]}
end if

Algorithm 1: A GCC protocol. The notation “// Qz” assigns
the symbolic name z to the cut point made by agent 1.

agent 1 Cuts in {[0, 1]} // Qz
if (z = 3) then

agent 1 Chooses from {[0, z], [z, 1]}
end if

Algorithm 2: A non-GCC protocol.

of already demarcated pieces indicated by the protocol. In
addition, every node in the decision tree of the protocol is
based exclusively on the execution history and absolute or-
dering of the cut points, which can be verified with any of
the following operators: <, <, =, >, >.

More formally, a generalized cut and choose (GCC) pro-
tocol is implemented exclusively with the following types of
instructions:

e Cut: The syntax is “¢ Cuts in S”, where S =
{[z1,y1], - -, [®m, Ym]} is a set of contiguous pieces (in-
tervals), such that the endpoints of every piece [z, y;] are
0,1, or cuts made in the previous steps of the protocol.
Agent 7 can make a cut at any point z € [z}, y;], for some
jed{l,...,m}.

e Choose: The syntax is “7 Chooses from S”, where S =
{[z1,v1],-- -, [®m,ym]} is a set of contiguous pieces,
such that the endpoints of every piece [x;,y;] € S are
0, 1, or cuts made in the previous steps of the protocol.
Agent i can choose any single piece [z;,y,] from S to
keep.

o [f-Else Statements: The conditions depend on the result of
choose queries and the absolute order of all the cut points
made in the previous steps.

A GCC protocol uniquely identifies every contiguous
piece by the symbolic names of all the cut points contained
in it. For example, Algorithm 1 is a GCC protocol. Algo-
rithm 2 is not a GCC protocol, because it verifies that the
point where agent 1 made a cut is exactly 1/3, whereas a
GCC protocol can only verify the ordering of the cut points
relative to each other and the endpoints of the cake. Note
that, unlike in the communication model of Robertson and
Web (1998), GCC protocols cannot obtain and use informa-
tion about the valuations of the agents — the allocation is
only decided by the agents’ Choose operations.

As an illustrative example, we now discuss why the dis-
crete version of Dubins-Spanier belongs to the class of GCC
protocols — but first we must describe the original protocol.
Dubins-Spanier is a proportional (but not envy-free) proto-
col for n agents, which operates in n rounds. In round O,
each agent makes a mark =} such that the piece of cake to
the left of the mark is worth 1/n, i.e., V;([0, z}]) = 1/n. Let




1" be the agent that made the leftmost mark; the protocol al-
locates the interval [0, 2] to agent i*; the allocated interval
and satisfied agent are removed. In round ¢, the same pro-
cedure is repeated with the remaining n — ¢ agents and the
remaining cake. When there is only one agent left, it receives
the remaining cake. To see why the protocol is proportional,
first note that in round ¢ the remaining cake is worth at least
1 —t/n to each remaining agent, due to the additivity of the
valuation functions and the fact that the pieces allocated in
previous rounds are worth at most 1/n to these agents. The
agent that made the leftmost mark receives a piece that it
values at 1/n. In round n — 1, the last agent is left with a
piece of cake worth at least 1 — (n — 1)/n = 1/n.

The protocol admits a GCC implementation as follows.
For the first round, each agent ¢ is required to make a cut in
{[0, 1]}, at some point denoted by x}. The agent i* with the
leftmost cut ). can be determined using If-Else statements
whose conditions only depend on the ordering of the cut
points x1,...,zL. Then, agent i* is asked to choose “any”
piece in the singleton set {[0, x1.]}. The subsequent rounds
are similar: at the end of every round the agent that was al-
located a piece is removed, and the protocol iterates on the
remaining agents and remaining cake. Note that agents are
not constrained to follow the protocol, i.e., they can make
their marks (in response to cut instructions) wherever they
want; nevertheless, an agent can guarantee a piece of value
at least 1/n by following the Dubins-Spanier protocol, re-
gardless of what other agents do.

While GCC protocols are quite general, a few well-known
cake cutting protocols are beyond their reach. For exam-
ple, the Brams-Taylor (1995) protocol is an envy-free pro-
tocol for n agents, and although its individual operations are
captured by the GCC formalism, the number of operations
is not bounded as a function of n (i.e., it may depend on
the valuation functions themselves). Its representation as a
GCC protocol would therefore be infinitely long. In addi-
tion, some cake cutting protocols use moving knives (see,
e.g., (Brams, Taylor, and Zwicker 1997)); for example, they
can keep track of how an agent’s value for a piece changes
as the piece smoothly grows larger. These protocols are not
discrete, and, in fact, cannot be implemented even in the
Robertson-Webb model.

2.2 The Game

We study GCC protocols when the agents behave strate-
gically. Specifically, we consider a GCC protocol, coupled
with the valuation functions of the agents, as an extensive-
form game of perfect information (see, e.g., (Shoham and
Leyton-Brown 2008)). In such a game, agents execute the
Cut and Choose instructions strategically. Each agent is fully
aware of the valuation functions of the other agents and aims
to optimize its overall utility for the chosen pieces, given the
strategies of other agents.

While the perfect information model may seem restric-
tive, we note that the same assumption is also made in previ-
ous work on equilibria in cake cutting (Nicolo and Yu 2008;
Branzei and Miltersen 2013). More importantly, it under-
pins foundational papers in a variety of areas of microeco-
nomic theory, such as the seminal analysis of the General-

ized Second Price (GSP) auction by Edelman et al. (2007). A
common justification for the complete information setting,
which is becoming increasingly compelling as access to big
data becomes pervasive, is that agents can obtain a signifi-
cant amount of information about each other from historical
data.

In more detail, the game can be represented by a tree
(called a game tree) with Cut and Choose nodes:

e In a Cut node defined by “i cuts in S”, where S =
{[z1,v1],- -, [®m, ym]}, the strategy space of agent i is
the set S of points where agent ¢ can make a cut at this
step.

e In a Choose node defined by “i chooses from S, where
S = {[z1,y1],- -, [Tm,Ym]}, the strategy space is the
set {1,...,m}, i.e.,, the indices of the pieces that can be
chosen by the agent from the set S.

The strategy of an agent defines an action for each node
of the game tree where it executes a Cut or a Choose op-
eration. If an agent deviates, the game can follow a com-
pletely different branch of the tree, but the outcome will still
be well-defined.

The strategies of the agents are in Nash equilibrium (NE)
if no agent can improve its utility by unilaterally deviating
from its current strategy, i.e., by cutting at a different set
of points and/or by choosing different pieces. A subgame
perfect Nash equilibrium (SPNE) is a stronger equilibrium
notion, which means that the strategies are in NE in every
subtree of the game tree. In other words, even if the game
started from an arbitrary node of the game tree, the strategies
would still be in NE. An e-NE (resp., e-SPNE) is a relaxed
solution concept where an agent cannot gain more than € by
deviating (resp., by deviating in any subtree).

3 Existence of Equilibria

It is well-known that finite extensive-form games of perfect
information can be solved using backward induction: start-
ing from the leaves and progressing towards the root, at each
node the relevant agent chooses an action that maximizes its
utility, given the actions that were computed for the node’s
children. The induced strategies form an SPNE. Unfortu-
nately, although we consider finite GCC protocols, we also
need to deal with Cut nodes where the action space is infi-
nite, hence naive backward induction does not apply.

In fact, it turns out that not every GCC protocol admits an
exact NE — not to mention SPNE. For example, consider
Algorithm 1, and assume that the value density function of
agent 1 is strictly positive. Assume there exists a NE where
agent 1 cuts at x*, y*, 2*, respectively, and chooses the piece
[x*,y*]. If * > 0, then the agent can improve its utility
by making the first cut at 2’ = 0 and choosing the piece
[/, y*], since Vi([z',y*]) > Va([z*,y*]). Thus, z* = 0.
Moreover, it cannot be the case that y* = 1, since the agent
only receives an allocation if y* < z* < 1. Thus, y* < 1.
Then, by making the second cut at any 3’ € (y*, 2*), agent 1
can obtain the value V3 ([0,y']) > V1 ([0, y*]). It follows that
there is no exact NE where the agent chooses the first piece.
Similarly, it can be shown that there is no exact NE where
the agent chooses the second piece, [y*, z*]. This illustrates



why backward induction does not apply: the maximum value
at some Cut nodes may not be well defined.

3.1 Approximate SPNE

One possible way to circumvent the foregoing example is by
saying that agent 1 should be happy to make the cut y very
close to z. For instance, if the agent’s value is uniformly
distributed over the case, cuttingatx =0,y =1—¢,2 =1
would allow the agent to choose the piece [z, y] with value
1 — €; and this is true for any e.

More generally, we have the following theorem.

Theorem 1. For any n-agent GCC protocol P with
a bounded number of steps, any n valuation functions
Vi,...,V,, and any € > 0, the game induced by P and
Vi,...,V, has an e-SPNE.

The proof of Theorem 1 is relegated to Appendix A. In a
nutshell, the high-level idea of our proof relies on discretiz-
ing the cake — such that every cell in the resulting grid has
a very small value for each agent — and computing the opti-
mal outcome on the discretized cake using backward induc-
tion. At every cut step of the protocol, the grid is refined by
adding a point between every two consecutive points of the
grid from the previous cut step. This ensures that any order-
ing of the cut points that can be enforced by playing on the
continuous cake can also be enforced on the discretized in-
stance. Therefore, for the purpose of computing an approx-
imate SPNE, it is sufficient to work with the discretization.
We then show that the backward induction outcome from the
discrete game gives an e-SPNE on the continuous cake.

3.2 Informed Tie-Breaking

Another approach for circumventing the example given at
the beginning of the section is to change the tie-breaking
rule of Algorithm 1, by letting agent 1 choose even if y = z
(in which case agent 1 wouldcutinz =0,y =1,z = 1,and
get the entire cake). Tie-breaking matters: Even the Dubins-
Spanier protocol fails to guarantee SPNE existence due to a
curious tie-breaking issue (Branzei and Miltersen 2013).

To accommodate more powerful tie-breaking rules, we
slightly augment GCC protocols, by extending their ability
to compare cuts in case of a tie. Specifically, we can as-
sume without loss of generality that the If-Else statements
of a GCC protocol are specified only with weak inequali-
ties (as an equality can be specified with two inequalities
and a strong inequality via an equality and weak inequality),
which involve only pairs of cuts. We consider informed GCC
protocols, which are capable of using If-Else statements of
the form “if [x < y or (x = y and history of events € H)]
then”. That is, when cuts are made in the same location and
cause a tie in an [f-Else, the protocol can invoke the power
to check the entire history of events that have occurred so
far. We can recover the x < y and x < y comparisons of
“uninformed” GCC protocols by setting H to be empty or
all possible histories, respectively. Importantly, the history
can include where cuts were made exactly, and not simply
where in relation to each other.

We say that an informed GCC protocol P’ is equivalent
up to tie-breaking to a GCC protocol P if they are identical,

except that some inequalities in the If-Else statements of P
are replaced with informed inequalities in the corresponding
If-Else statements of P’. That is, the two protocols are pos-
sibly different only in cases where two cuts are made at the
exact same point.

For example, in Algorithm 1, the statement “if z < y < z
then” can be specified as “if * < y then if y < z then”. We
can obtain an informed GCC protocol that is equivalent up to
tie-breaking by replacing this statement with “if * < y then
if y < z then” (here we are not actually using augmented
tie-breaking). In this case, the modified protocol may feel
significantly different from the original — but this is an ar-
tifact of the extreme simplicity of Algorithm 1. Common
cake cutting protocols are more complex, and changing the
tie-breaking rule preserves the essence of the protocol.

We are now ready to present our second main result.

Theorem 2. For any n-agent GCC protocol P with a
bounded number of steps and any n valuation functions
Vi,...,V,, there exists an informed GCC protocol P’ that
is equivalent to P up to tie-breaking, such that the game in-
duced by P' and V1, . .., V, has an SPNE.

Intuitively, we can view P’ as being “undecided” when-
ever two cuts are made at the same point, that is, x = y:
it can adopt either the < y branch or the x > y branch
— there exists an appropriate decision. The theorem tells
us that for any given valuation functions, we can set these
tie-breaking points in a way that guarantees the existence of
an SPNE. In this sense, the tie-breaking of the protocol is
informed by the given valuation functions. Indeed, this in-
terpretation is plausible as we are dealing with a game of
perfect information.

The proof of Theorem 2 is somewhat long, and has been
relegated to Appendix B. This proof is completely differ-
ent from the proof of Theorem 1; in particular, it relies
on real analysis instead of backward induction on a dis-
cretized space. The crux of the proof is the development
of an auxiliary notion of mediated games (not to be con-
fused with Monderer and Tennenholtz’s mediated equilib-
rium (Monderer and Tennenholtz 2009)) that may be of in-
dependent interest. We show that mediated games always
have an SPNE. The actions of the mediator in this SPNE
are then reinterpreted as a tie-breaking rule under an in-
formed GCC protocol. In the context of the proof it is worth
noting that some papers prove the existence of SPNE in
games with infinite action spaces (see, e.g., (Harris 1985;
Hellwig and Leininger 1987)), but our game does not satisfy
the assumptions required therein.

4 Fair Equilibria
The existence of equilibria (Theorems 1 and 2) gives us a
tool for predicting the strategic outcomes of cake cutting
protocols. In particular, classic protocols provide fairness
guarantees when agents act honestly; but do they provide
any fairness guarantees in equilibrium?

We first make a simple yet crucial observation. In a pro-
portional protocol, every agent is guaranteed a value of at
least 1/n regardless of what the others are doing. Therefore,
in every NE (if any) of the protocol, the agent still receives



1: Agent 1 cuts the cake into three equal parts in the agent’s
value.

2: Agent 2 trims the most valuable of the three pieces such

that there is a tie with the two most valuable pieces.

Set aside the trimmings.

Agent 3 chooses one of the three pieces to keep.

5. Agent 2 chooses one of the remaining two pieces to keep
— with the stipulation that if the trimmed piece is not
taken by agent 3, agent 2 must take it.

6: Agent 1 takes the remaining piece.

7: Denote by 7 € {2,3} the agent which received the
trimmed piece, and j = {2,3} \ {¢}.

8: Agent 7 now cuts the trimmings into three equal parts in
the agent’s value.

9: Agents i, 1, and j choose one of the three pieces to keep
in that order.

W

Algorithm 3: Selfridge-Conway: an envy-free protocol for
three agents.

a piece worth at least 1/n; otherwise it can deviate to the
strategy that guarantees it a utility of 1/n and do better.
Similarly, an e-NE must be e-proportional, i.e., each agent
must receive a piece worth at least 1/n — e. Hence, classic
protocols such as Dubins-Spanier, Even-Paz, and Selfridge-
Conway guarantee (approximately) proportional outcomes
in any (approximate) NE (and of course this observation car-
ries over to the stronger notion of SPNE).

One may wonder, though, whether the analogous state-
ment for envy-freeness holds; the answer is negative. We
demonstrate this via the Selfridge-Conway protocol — a 3-
agent envy-free protocol, which is given in its truthful, non-
GCC form as Algorithm 3. To see why the protocol is envy
free, note that the division of three pieces in steps 4, 5, and
6 is trivially envy free. For the division of the trimmings in
step 9, agent 7 is not envious because it chooses first, and
agent j is not envious because it was the one that cut the
pieces (presumably, equally according to its value). In con-
trast, agent 1 may prefer the piece of trimmings that agent ¢
received in step 9, but overall agent 1 cannot envy ¢, because
at best 7 was able to “reconstruct” one of the three original
pieces that was trimmed at step 2, which agent 1 values as
much as the untrimmed piece it received in step 6.

We construct an example by specifying the valuation
functions of the agents and their strategies, and arguing that
the strategies are in SPNE. The example will have the prop-
erty that the first two agents receive utilities of 1 (i.e. the
maximum value). Therefore, we can safely assume their play
is in equilibrium; this will allow us to define the strategies
only on a small part of the game tree. In contrast, agent 3
will deviate from its truthful strategy to gain utility, but in
doing so will become envious of agent 1.

In more detail, suppose after agent 2 trims the three pieces
we have the following.

e Agent 1 values the first untrimmed piece at 1, and all other
pieces and the trimmings at 0.

e Agent 2 values the second untrimmed piece at 1, and all
other pieces and the trimmings at 0.

e Agent 3 values the untrimmed pieces at 1/7 and 0, re-
spectively, the trimmed piece at 1/14, and the trimmings
at11/14.

Now further suppose that if agent 3 is to cut the trimmings
(i.e. take on the role of j in the protocol), then the first two
agents always take the pieces most valuable to agent 3. Thus,
if agent 3 does not take the trimmed piece it will achieve a
utility of at most 1/7 + (11/14)(1/3) = 119/294 by taking
the first untrimmed piece, and then cutting the trimmings
into three equal parts. On the other hand, if agent 3 takes the
trimmed piece of worth 1/14, agent 2 cuts the trimmings
into three parts such that one of the pieces is worth 0 to
agent 3, and the other two are equivalent in value (i.e. they
have values (11/14)(1/2) = 11/28). Agents 1 and 3 take
these two pieces. Thus, in this scenario, agent 3 receives a
utility of 1/14 + 11/28 = 13/28 which is strictly better
than the utility of 119/294. Agent 3 will therefore choose
to take the trimmed piece. However, in this outcome agent
1, from the point of view of agent 3, receives a piece worth
1/7 4 11/28 = 15/28 and therefore agent 3 will indeed be
envious.

The foregoing example shows that envy-freeness is not
guaranteed when agents strategize, and so it is difficult to
produce envy-free allocations when agents play to maximize
their utility. A natural question to ask, therefore, is whether
there are any GCC protocols such that all SPNE are envy-
free, and existence of SPNE is guaranteed. This remains an
open question, but we do give an affirmative answer for the
weaker solution concept of NE in the following theorem,
whose proof appears in Appendix C.

Theorem 3. There exists a GCC protocol P such that on
every cake cutting instance with strictly positive valuation
functions V..., V,, an allocation X is the outcome of a
NE of the game induced by P and V1, ..., V, if and only
if X is an envy-free contiguous allocation that contains the
entire cake.

Crucially, an envy-free contiguous allocation is guaran-
teed to exist (Stromquist 1980), hence the set of NE of pro-
tocol P is nonempty.

Theorem 3 is a positive result a la implementation theory
(see, e.g., (Maskin 1999)), which aims to construct games
where the NE outcomes coincide with a given specifica-
tion of acceptable outcomes for each constellation of agents’
preferences (known as a social choice correspondence). Our
construction guarantees that the NE outcomes coincide with
(contiguous) envy-free allocations, that is, in this case the
envy-freeness criterion specifies which outcomes are accept-
able.

That said, the protocol P constructed in the proof of Theo-
rem 3 is impractical: its Nash equilibria are unlikely to arise
in practice. This further motivates efforts to find an analo-
gous result for SPNE. If such a result is indeed feasible, a
broader, challenging open question would be to character-
ize GCC protocols that give rise to envy-free SPNE, or at
least provide a sufficient condition (on the protocol) for the
existence of such equilibria.
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A Proof of Theorem 1

Let € > 0, and let f(n) be an upper bound on the number
of operations (i.e., on the height of the game tree) of the
protocol. Define a grid, Gy, such that every cell on the grid
is worth at most W to each agent. For every n, let K

denote the maximum number of cut operations, where 0 <
K < f(n).Foreachi € {1,..., K}, we define the grid G;
so that the following properties are satisfied:

e The grids are nested, i.e., {0,1} C G C G2 C ... C Ok.

e There exists a unique point z € G;;1 between any two
consecutive points z,y € G;, such that x < z < y and
z & G, foreveryie {1,...,K —1}.

e Each cell on G; is worth at most W to any agent, for

alli e {1,...,K}.

Having defined the grids, we compute the backward in-
duction outcome on the discretized cake, where the i-th Cut
operation can only be made on the grid G;. We will show
that this outcome is an e-SPNE, even though agents could
deviate by cutting anywhere on the cake. On the continuous
cake, the agents play a perturbed version of the idealized
game from the grid G, but maintain a mapping between the
perturbed game and the idealized version throughout the ex-
ecution of the protocol, such that each cut point from the
continuous cake is mapped to a grid point that approximates
it within a very small (additive) error. Thus when determin-
ing the next action, the agents use the idealized grid as a
reference. The order of the cuts is the same in the ideal and
perturbed game, however the values of the pieces may differ
by at most €/ f(n).

We start with the following useful lemma. (For ease of
exposition, in the following we refer to [z, y| as the segment
between points x and y, regardless of whether x < y or
y <z

Lemma 1. Given a sequence of cut points x1, ..., Ty and
nested grids Gy C ... C G with cells worth at most W

to each agent, there exists a map M : {x1,...,xp} — Gk
such that:

(1) Foreachic {1,...,k}, M(x;) € G,.

(2) The map M is order-preserving. Formally, for all i, j €
{1,...k} 2 <z <= M(z;) < M(z;) and z; =
T; < M(l‘l) = M(l‘J)

(3) The piece [x;, M(x;)] is “small”, that is:
Vi([zs, M(z;)]) < foiz)z,for each agentl € N.

Proof. We prove the statement by induction on the number
of cut points k.

Base case: We consider a few cases. If ;1 € G, then
define M(z1) := x1. Otherwise, let R(x1) € G; be the left-
most point on the grid G; to the right of 1. If R(x1) # 1, de-
fine M(z1) := R(x1); else, let L(z1) denote the rightmost
point on G; strictly to the left of 1 and define M(z;) :=
L(z1). To verify the properties of the lemma, note that:

(D) M($1) € Gy.
(2) The map M is order-preserving since there is only one
point.

3) Vi([x1, M(z1)]) < 37z for each agent [ € N since
the grid G; has (by construction) the property that each
cell is worth at most W to each agent, and the inter-

val [x1, M(z1)] is contained in a cell.

Induction hypothesis: Assume that a map M with the re-
quired properties exists for any sequence of £ — 1 cut points.

Induction step: Consider any sequence of k cut points
Z1,...,T. By the induction hypothesis, we can map each
cut point z; to a grid representative M(z;) € G;, for all
i € {1,...,k — 1}, in a way that preserves properties 1—
3. We claim that the map M on the points z1,..., 2,1
can be extended to the k-th point, xy, such that the entire
sequence M (z1), ..., M(zy) satisfies the requirements of
the lemma. We consider four exhaustive cases.

(a) Thereexistsi € {1,...,k—1} such that z;, = z;. Then
define M(zy) := M(x;).

(b) There exists ¢ € {1,...,k — 1} such that z; < xy,
but M(z;) > xj. Let z; be the rightmost cut such that
x; < xy; because M is order-preserving, it holds that
M(xj) > xp. Let R(M(x;)) be the leftmost point on
Gy, strictly to the right of M(z;), and set M(zy) =
R(M(z;).
Now let us check the conditions. Condition (1) holds
by definition. Condition (2) holds because M (zy) >
M(z;), and for every ¢ such that z; > xp, M(z) >
M(z;) and M(x¢) € Gg—1, whereas M(zy) uses a
“new” point of Gy, \ Gx—1 that is closer to M(x;). For
condition (3), we have that for every [ € N,

Vi(law, M(z)])
< Vi([zj, M(2k)))
= Vi([zj, M(z5)]) + Vi(IM (), M(xx)])
< (k—1)e £ < ke

< S 2w S A

where the third transition follows from the induction as-
sumption.

(c) There exists ¢ € {1,...,k — 1} such that z; > x, but
M(x;) < xp. This case is symmetric to case (b).

(d) For every x; such that z; < xg, M(z;) < xy, and for
every x; such that x; > x, M(x;) > . Let x; and
x; be the rightmost and leftmost such cuts, respectively;
without loss of generality they exist, otherwise our task
is even easier.

Let R(xy,) be the leftmost point in G, such that R(xy,) >
xy, and let L(xy) be the rightmost point in G such that
L(xy) < . Assume first that M(z;) > R(xy); then
set M(xy) := R(xy). This choice obviously satisfies
the three conditions, similarly to the base of the induc-
tion.

Otherwise, R(xy) = M(x;) (notice that it cannot be
the case that R(x) > M(x)); then set M(xy) :=
L(xy,). Let us check that this choice is order-preserving
(as the other two conditions are trivially satisfied). Note
that M(z;) € Gr_1, so R(xy) € Gr—1. Therefore, it
must hold that L(x) € G\ Gi—1 — it is the new point
that we have added between R(xy), and the rightmost

M
M




point the left of it on Gj_;. Since it is also the case that
M(x;) € Gr_1, we have that M(z;) < M(zg) <
M(z;).

By induction, we can compute a mapping with the re-
quired properties for k£ points. This completes the proof of
the lemma. O

Now we can define the equilibrium strategies. Let
Z1,...,T) be the history of cuts made at some point dur-
ing the execution of the protocol. By Lemma 1, there exists
an order-preserving map M such that each point z; has a
representative point M(z;) € G; and the piece [z;, M(z;)]
is “small”, i.e.

ke €
Vi([zi, M(z)]) < <
2f(n)> = 2f(n)
for each agent [ € N — using k < f(n).
Consider any history of cuts (z1,...,zy). Let i be the
agent that moves next. Agent ¢ computes the mapping
(M(x1), ..., M(xy)). If the next operation is:

e Choose: agent ¢ chooses the available piece (identified by
the symbolic names of the cut points it contains and their
order) which is optimal in the idealized game, given the
current state and the existing set of ordered ideal cuts,
M(x1), ..., M(xy). Ties are broken according to a fixed
deterministic scheme which is known to all the agents.

e Cut: agent ¢ computes the optimal cut on Gy, say at
xj,, - Then i maps z} , ; back to a point zx.1 on the con-
tinuous game, such that M(zy41) = zj,. That is, the
cut xx41 (made in step k£ + 1) is always mapped by the
other agents to xy | € Gr+1. Agent i cuts at zp 1.

We claim that these strategies give an e-SPNE. The proof
follows from the following lemma, which we show by in-
duction on ¢ (the maximum number of remaining steps of
the protocol):

Lemma 2. Given a point in the execution of the protocol
from whlch there are at most t operations left until termina-
tion, it is ( ) -optimal to play on the grid.

Proof. Consider any history of play, where the cuts were
made at z1, ..., x. Without loss of generality, assume it is
agent ¢’s turn to move.

Base case: t = 1. The protocol has at most one remain-
ing step. If it is a cut operation, then no agent receives any
utility in the remainder of the game regardless of where the
cut is made. Thus cutting on the grid (Gy) is optimal. If it
is a choose operation, then let Z = {Z;,...,Z;} be the
set of pieces that 7 can choose from. Agent ¢’s strategy is
to map each piece Z; to its equivalent M(Z;) on the grid
Gy, and choose the piece that is optimal on Gy. Recall that
Vo[, M(z;)]) < 357Gy for each agent ¢ € N. Thus if a
piece is optimal on the grid, it is f -optimal in the continu-
ous game (adding up the difference on both sides). It follows
that ¢ cannot gain more than ﬁ in the last step by deviating
from the optimal piece on Gy.

Induction hypothesis: Assume that playing on the grid is

(tf_(igé—optimal whenever there are at most ¢ — 1 operations

left on every possible execution path of the protocol, and
there exists one path that has exactly ¢ — 1 steps.

Induction step: If the current operation is Choose, then
by the induction hypothesis, playing on the grid in the re-

mainder of the protocol is (tf_(ig ©_optimal for all the agents,

regardless of ¢’s move in the current step. Moreover, agent ¢
cannot gain by more than ﬁ by choosing a different piece

in the current step, compared t0 piece which is optimal on
Gy, since V;([x;, M(z)]) < 377Gy forall L € {1,...,k}.
If the current operation is Cut, then the followmg hold:

1. By construction of the grid Gy 1, agent ¢ can induce any

given branch of the protocol using a cut in the continuous
game if and only if the same branch can be induced using
a cut on the grid Gy 1.

2. Given that the other agents will play on the grid for the

remainder of the protocol, agent 7 can change the size of
at most one piece that it receives down the road by at most
7 (n) by deviating (compared to the grid outcome), since
Vi(ler, M(zy)]) < foralll € {1,...,k+ 1} and
forallj € N.
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Thus by deviating in the current step, agent ¢ cannot gain
more than fE;)' O

Since t < f(n), the overall loss of any agent is bounded
by € by Lemma 2. We conclude that playing on the grid is
e-optimal for all the agents, which completes the proof of
the theorem. U

B Proof of Theorem 2

Before we begin, we take this moment to formally intro-
duce the auxiliary concept of a mediated game in an abstract
sense. We will largely distance ourselves from the specificity
of GCC games here and work in a more general model. We
do this for two purposes. First, it allows for a cleaner view of
the techniques; and second, we believe such general games
may be of independent interest. We begin with a few defini-
tions.

Definition In an extensive-form game, an action tuple is
a tuple of actions that describe an outcome of the game. For
example, the action tuple (aq, ..., a,) states that a; was the
first action to be played, a, the second, and a, the last.

Definition Given an action tuple, the kth action is said to
be SPNE if the subtree of the game tree rooted where the first
k — 1 actions are played in accordance to the action tuple is
induced by some SPNE strategy profile. Furthermore, call
such an action tuple k-SPNE.

Note that if the k™ action is SPNE, so too are all actions
succeeding it in the action tuple. To clarify Definition B,
note that strategies of an extensive-form game are defined
on every possible node of the game tree, so a k-SPNE action
tuple can be equivalently defined as being an SPNE of the
subgame rooted at the k*" action.

With these definitions in hand, we can now describe the
games of interest.

Definition We call an extensive-form game a mediated
game if the following conditions hold:



1. The set of agents consists of a single special agent, re-
ferred to as the mediator, and some finite number n of
other regular agents. Intuitively, the mediator is an agent
who is overseeing the proper execution of a protocol.

2. The height h of the game tree is bounded.
3. Every agent’s utility is bounded.

4. Starting from the first or second action, the mediator plays
every second action (and only these actions).

5. Every action played by the mediator shares the same ac-
tion space:

{0, ...,n} x ([0, 12U 2{1)~~’h}) ‘

This represents the agent who plays next (0 represents
ending the game), and the interval which represents their
action space or the allowed pieces they may choose from.

6. The mediator’s utility is binary (i.e. it is in {0,1}) and is
described entirely by the notion of allowed edges. This is
a set of edges in the game tree such that the mediator’s
utility is 1 iff it plays edges only in this set. Importantly,
this set has the property that for every allowed edge, each
grandchild subtree (i.e. subtree that represents the next
mediator’s action) must have at least one allowed edge
from its root. Intuitively, these edges are the ones that fol-
low the protocol the mediator is implementing.

7. A regular agent’s utility is continuous? in the action tuple.

8. Allowed-edges-closedness: given a convergent sequence
of action tuples where the mediator plays only allowed
edges, the mediator must play only allowed edges in the
limit action tuple as well.

Note that appending meaningless actions (that affect no
agent’s utility) to a branch of the game tree will not affect
the game in any impactful way. Thus, for the sake of conve-
nience, we will assume for any game we consider all leaves
of the game occur at the same depth (often denoted by ).

We now give a series of definitions and lemmas that cul-
minate in the main tool used in the proof of Theorem 2: all
mediated games have an SPNE.

Definition A sequence of action tuples (ai7 ey af;) s is
said to be consistent if for every j the agent who plays action
az- is constant throughout the sequence and, moreover, its
action spaces are always subsets of [0, 1] or always the same
subset of {1, ..., h} throughout the sequence.

Lemma 3. Let (aﬁ, cey af,) |; be a sequence of action tuples
in a mediated game. Then there is a convergent subsequence.

Proof. Due to the finite number of agents and bounded
height of the game, we can find an infinite consistent subse-
quence b |;= (bi,...,b%) |. It suffices to show this subse-
quence has a convergent subsequence of its own. It is fairly

>The notions of convergence, compactness and continuity,
which we will utilize often, necessarily assumes our action spaces
are defined as metric spaces. Applicable metrics for the action
spaces are not difficult to find, but are cumbersome to describe
fully. We therefore will not belabour this point much further.

clear that we can find a convergent subsequence via com-
pactness arguments, but there is a slight caveat: we must
show that the limit action tuple is legal. That is, if the limit
action tuple is (a1, ..., a,-) we must show that for every i < r
such that the mediator plays action 7, action 141 is played by
the agent prescribed by a;, and within the bounds prescribed
by it. We will prove this by induction.

Base hypothesis: First 0 actions have a convergent subse-
quence — this is vacuously true.

Induction hypothesis: Assume there exists a subsequence
such that the first k£ actions converge legally.

Induction step: We wish to show that there exists a sub-
sequence such that the first k¥ + 1 actions converge. By the
inductive assumption, there exists a subsequence ¢’ |; such
that the first k£ actions converge. Now suppose p plays the
k + 1t action. If p is the mediator, then the action space
is indifferent to actions played previously and is compact.
Thus, the & |; must have a convergent subsequence such
that the & + 1*" element of the action tuple converges and so
we are done.

Alternatively, if p is a regular agent, the action space is
not necessarily indifferent to previous actions. If the action
spaces are always the same subset of {1,...,h}, then we
are clearly done. We therefore need only consider the case
where the action spaces will be contained in [0, 1]. Due to
the compactness of this interval, there will be a convergent
subsequence of ¢ |; such that the k + 1! action converges

to some ~y € [0, 1]. Call this subsequence d' |;.

We argue that + is in the limit action space of the k + 1t"
action. For purposes of contradiction, assume this is false.
Let 0 be the length from +y to the closest point in the limit
action space (i.e. the action space in the limit given by the
k" action played by the mediator). Then there exists some
M such that after the M*" element in d’ i» the closest point
in the k& + 1*" action space to + is at least §/2 away. More-
over, there exists some [V such that after the N th element in
d" |; the k + 1*" action is no further than 6 /3 to ~y. Elements

of d' |; after element max (M, N) then simultaneously must
have the k + 1*" action space be at least /2 away from -y
and have a point at most 6/3 away from ~. This is a clear
contradiction. O

Lemma 4. For every k, if we have a convergent sequence
of action tuples where the k' action from the end is SPNE,
then the k" action from the end for the limit action tuple
is also SPNE. That is, for every k, convergent sequences of
(r — k + 1)-SPNE action tuples are (r — k + 1)-SPNE.

Proof. We prove the result by induction on k.

Base Case (k = 0): This is vacuously true.

Induction hypothesis (k = m): Assume convergent se-
quences of (r —m+ 1)-SPNE action tuples are (r —m +1)-
SPNE.

Induction step (k = m + 1): Leta® |;= (ai,...,al) |; be
a convergent sequence of (r — m)-SPNE action tuples with
the limit action tuple (az, ..., a,-). We wish to show that if all
actions before the last m + 1 actions play their limit actions,
then the remaining m + 1 actions are SPNE — note that by



Lemma 3 we know that the limit sequence is a valid action
tuple.

Let p be the agent that commits the m + 1** action from
the end. If p is the mediator, then by the definition of medi-
ated games the desired statement is true (specifically via the
allowed-edges-closedness condition). Now suppose instead
that p is not the mediator, and simply a regular agent. We
show if the m + 1! action from the end took on some other
valid value o # a,_,, there exists SPNE strategies for the
remaining m actions such that p achieves a utility no higher
than had it stuck with the limit action of a,_,,.

So suppose the m + 1*" action from the end in the it"
element of the sequence is o’ such that lim;_,., o = a.
Since @’ |; is a sequence of (7 —m)-SPNE action tuples, we
can construct the sequence:

b |i= (al, ..., a,

al ot al,al) |

where the d; are SPNE actions such that p achieves at most
the utility achieved by instead playing a'._,,. Via Lemma 3,
bi |; must have a convergent subsequence — call & |; and
indexed by increasing function o. That is, & = 5°(). &
is then a convergent sequence of (r — m -+ 1)-SPNE action
tuples and thus, by the inductive assumption, its limit action
tuple is also an (r — m + 1)-SPNE.

Now consider the limit action tuple (a1, ..., a,) (of @ |;)
and the limit action tuple of ¢ |; denoted by (c1, ..., c,).
Note that:

1. Vi<r—m:a; =c.
2. By the continuity requirement of mediated games (where
V), is the utility function of p):

Vplai,...,ar)
= lim V,(d},...,al)
1—00

= lim Vp(a'f(i), wryal®)

1—00
. o (i) o (i) o(i) ~o(i) 50 (1)
> e
- lligglo Vp(al yeeelyp 1, & » Q15 ) @y )
= illglo Vp(chy ooy cl)
= Vp(81’ cery CT‘)'

These two points imply that we can set SPNE strategies for
the remaining m actions such that the utility of p playing
« is less than or equal to if it plays a,._,, for the m + 1t"
action from the end (when the actions preceding the m -+ 1*"
action from the end are those given in the limit action tuple
(ay,...,a,)). As the a was arbitrary, the m -+ 1" action from
the end of (aq, ..., a,) can be made an SPNE action, which
completes the proof. O

Lemma 5. All mediated games have an SPNE.

Proof. We prove the lemma via induction on the height of
the game tree. Note that this is possible as mediated games
(like extensive-form games) are recursive: the children of a
node of a mediated game are mediated games.

Base case (at most 0 actions): This is vacuously true.

Induction hypothesis (at most k actions): Assume we have
shown that any mediated game with a game tree of height at
most k has an SPNE.

Induction step (at most k + 1 actions): Let p be the agent
that commits the first action. If p is the mediator, any action
that is an allowed edge will be SPNE; and if no such action
exists, any action will be SPNE (as the mediator is doomed
to a utility of 0). Now suppose p is not the mediator.

Assume by the inductive assumption, once p makes its
move, all remaining (at most) k£ actions are SPNE actions.
By the definition of a mediated game, p’s utility is bounded.
Then the least upper bound property of R implies that p’s
utility as a function of the first action must have a supremum
S. Via the axiom of choice, we construct a sequence of pos-
sible actions for the first action that approaches .S in p’s util-
ity. That is, we have some sequence z° |; such that if p plays
' for the first action, it achieves some utility f(z*) — where
lim; o f(x) = S. Moreover, let g(z*) map the action z*
to a tuple of the remaining actions — which are SPNE. By
Lemma 3 (x%, g(z")) |; must have a convergent subsequence
(y%, g(y")) |; that converges to (y, g(y)) — where y is a legal
first action and g(y) are legal subsequent actions.

Notice that (y;,g(y;)) |; is a convergent sequence of 2-
SPNE action tuples and thus by Lemma 4, (y, g(y)) is a 2-
SPNE action tuple as well. Furthermore, note that by the
continuity requirement of mediated games, y must give p a
utility of S. Therefore, this must be an SPNE action and so
we are done. O

With this machinery in hand, we are now ready to com-
plete the proof of Theorem 2. Our main task is to make a
formal connection between mediated games and (informed)
GCC protocols.

Proof of Theorem 2. Suppose we have a n-agent GCC pro-
tocol P with a bounded number of steps and and set valu-
ations of the agents V7, ..., V,,. Then we wish to prove that
there exists an informed GCC protocol P’ that is equivalent
to P up to tie-breaking such that the game induced by P’
and V1, ..., V,, has an SPNE.

Outfit P as a game M, such that all but the final condition
of mediated games are satisfied — that is, the mediator en-
forces the rules of P and achieves utility 1 if it follows the
rules of P and 0 otherwise. More explicitly, the mediator
plays every second action and upon examination of the his-
tory of events (i.e. the ordering of the cuts made thus far, and
results of choose queries), decides the next agent to play and
their action space based on the prescription of P. To see how
all but the last condition is satisfied, we go through them in
order.

1. This is by definition.
2. The height of the tree is twice the height of the GCC pro-
tocol.

3. The mediator’s utility is bounded by 1 by definition, and
all other agent’s utilities are bounded by 1 as that is their
value of the entire cake.

4. This is by definition.



5. When the mediator wishes to ask a Cut query to agent ¢
in the interval [a, b], it plays the action (i, (a, b)), whereas
when it wishes to ask a Choose query to agent ¢ giving
them the choice between the zt", ..., 2! pieces from the
left, it plays the action (i, {1, ..., 2% }). This method of
giving choose queries deviates slightly from the defini-
tion given in Section 2.1, but the two representations are

clearly equivalent.
6. The allowed edges are ones that follow the rules of P.

7. This property is only relevant when considering Cut
nodes. To establish it, first consider the action in a single
Cut node, and fix all the other actions. We claim that for
every € > 0 there exists § = d(e) > 0 that is independent
of the choice of actions in other nodes such that moving
the cut by at most § changes the values by at most €. In-
deed, let us examine how pieces change as the cut point
moves. As long as the cut point moves without passing
any other cut point, one piece shrinks as another grows.
As the cut point approaches another cut point, the induced
piece — say k’th from the left — shrinks. When the cut
point passes another cut point x, the k’th piece from the
left grows larger, or it remains a singleton and another
piece grows if there are multiple cut points at x. In any
case, it is easy to verify that the sizes of various pieces
received in Choose nodes change by at most ¢ if the cut
point is moved by d. Furthermore, note that the number
of steps is bounded by r and — since the value density
functions are continuous — there is an upper bound M
on the value density functions such that if y — z < ¢’
then V;([z,y]) < M’ for all i € N. Therefore, choosing
0 < €/(Mr) is sufficient. Finally, V4,...,V,, are con-
tinuous even in the actions taken in multiple Cut nodes,
because we could move the cut points sequentially.

We now alter M such that at every branch induced by a
comparison of cuts via an If-Else, we allow in the case of a
tie to follow either branch. Formally, suppose at a branch in-
duced by the statement “if = < y then A else B” we now set
in the case of « = y the edges for both A and B as allowed.
Then we claim the property of allowed-edges-closedness is
satisfied.

To see this, let us consider action tuples. An action tuple
where the mediator in M only plays on allowed edges can
be viewed as a trace of an execution of P which records
the branch taken on every If-Else statement — though when
there is a tie the trace may follow the “incorrect” branch.
A convergent sequence of such action tuples at some point
in the sequence must then keep the branches it chooses in
the execution of P constant — unless in the limit, the cuts
compared in a branch that is not constant coincide. Thus, we
have that in the limit, if a branch is constant, the mediator
always takes an allowed edge trivially, and otherwise due to
our modification of M the mediator still takes an allowed
edge. Furthermore, for all actions of the mediator that are
not induced by If-Else statements, the mediator clearly still
plays on allowed edges and so we have proved the claim.

Now as M is a mediated game, it has an SPNE S by
Lemma 5. Let P’ be the informed GCC protocol equivalent
to P up to tie-breaking such that for every point in the game

tree of M that represents the mediator branching on an “if
x < y then A else B” statement in the original protocol P,
P’ chooses the A or B that S takes in the event of a tie. Then
the informedness of the tie-breaking is built into P’ and we
immediately see that the SPNE actions of the regular agents
in M correspond to SPNE actions in P’. O

C Proof of Theorem 3

The proof of the theorem uses the Thieves Protocol given
by Algorithm 4. In this protocol, agent 1 first demarcates a
contiguous allocation X = {Xj, ..., X,,} of the entire cake,
where X is a contiguous piece that corresponds to agent 4.
This can be implemented as follows. First, agent 1 makes n
cuts such that the ¢-th cut is interpreted as the left endpoint of
X;. The left endpoint of the leftmost piece is reset to O by the
protocol. Then, the rightmost endpoint of X is naturally the
leftmost cut point to its right or 1 if no such point exists. Ties
among overlapping cut points are resolved in favor of the
agent with the smallest index; the corresponding cut point is
assumed to be the leftmost one. Notice that every allocation
that assigns nonempty contiguous pieces to all agents can be
demarcated in this way.

After the execution of the demarcation step, X is only
a tentative allocation. Then, the protocol enters a verifica-
tion round, where each agent  is allowed to steal some non-
empty strict subset of a piece (say, X;) demarcated for an-
other agent. If this happens (i.e., the if-condition is true) then
agent 7 takes the stolen piece and the remaining agents get
nothing. This indicates the failure of the verification and the
protocol terminates. Otherwise, the pieces of X are eventu-
ally allocated to the agents, i.e., agent 7 takes X;.

We will require two important characteristics of the pro-
tocol. First, it guarantees that no state in which some agent
steals can be a NE; this agent can always steal an even more
valuable piece. Second, stealing is beneficial for an envious
agent.

Proof of Theorem 3. Let P be the Thieves protocol given
by Algorithm 3 and £ be any NE of P. Denote by X the
contiguous allocation of the entire cake obtained during the
demarcation step, where X; = [z;,y;] for all i € N, and
let w; and z; be the cut points of agent ¢ during its ver-
ification round. Assume for the sake of contradiction that
X is not envy-free. Let k* be an envious agent, where
Vigr (Xj+) > Vi= (X~ ), for some j* € N. There are two
cases to consider:

Case 1: Each agent ¢ receives the piece X; in £. This
means that, during its verification round, each agent 7 selects
its cut points from the set U;l:l{l‘j, y; }. By the non-envy-
freeness condition for X above (and by the fact that the val-
uation function Vj is strictly positive), there exist w., z}..
such that j+ < wy. < 2. < yj« and Vi ([wy., 23,.]) >
Vier ([ k=, y~]). Thus, agent k* could have been better off
by cutting at points wj. and z. in its verification round,
contradicting the assumption that £ is a NE.

Case 2: There exists an agent ¢ that did not receive the
piece X;. Then, it must be the case that some agent k stole a
non-empty strict subset [wy,, 2;/] = [wg, 2] N Z; of another
piece X ;. However, agent k could have been better off at the



Agent 1 demarcates a contiguous allocation X of the cake
fori=2,...,n,1do
// Verification of envy-freeness for agent i
Agent i Cuts in {[0,1]} // @u;
Agent i Cuts in {{w;, 1]} /] @ z;
for j = 1ton do
if 0 #* ([wi,zi] n XJ) - Xj then
// Agent i steals a non-empty strict subset of X ;
Agent i Chooses from {[w;, z;] N X}
exit // Verification failed: protocol terminates
end if
end for
// Verification successful for agent i
end for
fori =1tondo
Agent i Chooses from {X;}
end for

Algorithm 4: Thieves Protocol: Every NE induces a con-
tiguous envy-free allocation that contains the entire cake and
vice versa.

node in the game tree reached in its verification round by
making the following marks: wj, = * J;w’/“, and zj, = 1Y,
Since either z; < w) < z;! < y;orz; < wy <z <y,
(recall that [w)/, z}/] is a non-empty strict subset of X; and
the valuation function V} is strictly positive), it is also true
that Vi ([wy,, z.]) > Vi([w), 2}]), again contradicting the
assumption that £ is a NE.

So, the allocation computed by agent 1 under every NE £
is indeed envy-free; this completes the proof of the first part
of the theorem.

We next show that every contiguous envy-free allocation
of the entire cake is the outcome of a NE. Let Z be such an
allocation, with Z; = [z;,y;] for all i € N. We define the
following set of strategies £ for the agents:

e At every node of the game tree (i.e., for every possible
allocation that could be demarcated by agent 1), agent 7 >
2 cuts at points w; = x; and z; = y; during its verification
round.

e Agent 1 specifically demarcates the allocation Z and cuts
at points wy; = x; and z; = y; during its verification
round.

Observe that [w;, z;] N Z; is either empty or equal to Z;
for every pair of 7,5 € IN. Hence, the verification phase is
successful for every agent and agent ¢ receives the piece Z;.

We claim that this is a NE. Indeed, consider a deviation of
agent 1 to a strategy that consists of the demarcated alloca-
tion Z’ (and the cut points w} and z}). First, assume that the
set of pieces in Z’ is different from the set of pieces in Z.
Then, there is some agent k # 1 and some piece Z ]/ such that
the if-condition () C [z, yx] N Z} C Zj is true. Hence, the
verification round would fail for some agent ¢« € {2,...,k}
and agent 1 would receive nothing. So, both Z’ and Z con-
tain the same pieces, and may differ only in the way these
pieces are tentatively allocated to the agents. But in this case
the maximum utility agent 1 can get is max; V1(Z}), either

by keeping the piece Z] or by stealing a strict subset of some
other piece Z ]’ Due to the envy-freeness of Z, we have:

max V4 (Z}) = max V1(Z;) = Vi(Z1),
J J

hence, the deviation is not profitable in this case either.
Now, consider a deviation of agent ¢ > 2 to a strategy
that consists of the cut points w} and z. If both w} and 2]
belong to | J;_, {zi, y;}, then [w}, 2{] N Z; is either empty or
equal to Z; for some j € V. Hence, the deviation will leave
the allocation unaffected and the utility of agent ¢ will not
increase. If instead one of the cut points w; and z, does not
belong to U?:I {z;,y:}, this implies that the condition
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is true for some j € N, i.e., agent ¢ will steal the piece
[w}, z]] N Z;. However, the utility V;([w}, z{] N Z;) of agent
i cannot be greater than V;(Z;), which is at most V;(Z;) due
to the envy-freeness of Z. Hence, again, this deviation is not
profitable for agent <.

We conclude that £ is a NE; this completes the proof of

the theorem. O



