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Abstract

We present a novel extension of normal form games that
we call biased games. In these games, a player’s utility
is influenced by the distance between his mixed strat-
egy and a given base strategy. We argue that biased
games capture important aspects of the interaction be-
tween software agents. Our main result is that biased
games satisfying certain mild conditions always admit
an equilibrium. We also tackle the computation of equi-
libria in biased games.

1 Introduction

Since the seminal work of Nash (1950), the notion of
Nash equilibrium has been the cornerstone of game the-
ory (and its interaction with Al, and computer science
more broadly). Nash equilibrium is most commonly
employed as a solution concept for normal form games,
which are defined by a set of n players, their sets of pure
strategies, and their payoff functions that map profiles of
pure strategies (reflecting the choice of each player) to
the player’s payoff. In Nash equilibrium, each player’s
choice of strategy is a best response to other players’
strategies, in the sense that the player cannot secure a
higher payoff by deviating to a different strategy. Nash’s
key mathematical contribution was to show that if play-
ers have the option of playing mixed strategies — prob-
ability distributions over pure strategies — then a Nash
equilibrium always exists.

More specifically, the payoffs under a mixed strategy
profile are simply the expected payoffs. To compute this
expectation, note that the probability of each possible
pure strategy profile (s1,...,s,) is the product of proba-
bilities of each player i playing strategy s;, and the pay-
offs for this pure strategy profile are given by the play-
ers’ payoff functions. Importantly, even when players
play mixed strategies, their utilities are completely de-
termined by the payoff functions, which only take pure
strategies as input.

In this paper, we are interested in a fundamentally dif-
ferent way in which a player’s mixed strategy can di-
rectly affect his utility. Specifically, the player may be
biased towards (or away from) a specific base strategy,
so his utility may also depend on the distance between
his mixed strategy and the base strategy.
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We believe that these issues have been largely over-
looked, as normal form games are typically seen as one-
shot interactions: the mixed strategy is only important
insofar as it selects a pure strategy. However, the mixed
strategy itself can play a more significant role in some
settings, justifying the preceding notions of bias:

e In computational environments (e.g., networks), the
mixed strategies of software agents can be encoded
as programs that are submitted to a server, and there-
fore the mixed strategies themselves are visible to
certain parties. Such game-theoretic settings were
nicely motivated in the work of Rozenfeld and Ten-
nenholtz (2007), and their justification is also im-
plicit in the earlier work of Tennenholtz (2004).
Once mixed strategies are visible, bias towards cer-
tain mixed strategies can arise due to social norms —
agents are expected to play certain strategies, media-
tion (Monderer and Tennenholtz 2009; Rozenfeld and
Tennenholtz 2007) — agents are fold to play certain
strategies, and privacy — certain mixed strategies re-
veal more about the agent’s preferences than others.

e In other settings, mixed strategies may be instantiated
multiple times before the agents actually interact. For
example, security games (Tambe 2012) are 2-player
games played by a defender and an attacker. The de-
fender’s strategy specifies a random allocation of se-
curity resources to potential targets, and the attacker’s
strategy pinpoints a target that will be attacked. It
is typically assumed that the defender would play a
mixed strategy for a period of time before the attacker
makes his move. The crux of this example is that
redeploying security resources (such as boats, in the
case of the US Coast Guard) is costly, and different
instantiations of a mixed strategy lead to different de-
ployments. This can bias the defender, say, towards
pure strategies, or away from high-entropy strategies.
While security games are often viewed as Stackel-
berg games (where the defender moves first), they
have also been studied as normal form games that are
solved using Nash equilibrium (Korzhyk et al. 2011).

1.1 Overview of Our Model and Results

Our definition of a biased game starts from a normal
form game, but lets the utility of player i for a strat-



egy profile p = (p1,...,pn) be his (expected) payoff in
the normal form game, minus a bias term of the form
fi(lpi — pill) - Here, f;(-) is some real-valued function
(possibly 0 everywhere), ||-|| is a norm, and p; is the
base strategy of i. Given a biased game that includes of
all these components, we can define an equilibrium in
the same way that the Nash equilibrium is defined (each
strategy is a best response to other strategies).

We remark that a biased game and its equilibria can-
not be captured as a normal form game and its Nash
equilibria. From a mathematical viewpoint, we believe
that biased games are a very natural (strict) generaliza-
tion of normal form games. And from a conceptual
viewpoint, as we have argued above, they provide a new
perspective on important, Al-related problems.

In §3 we prove our main result: the existence of equi-
libria in biased games. Specifically, we show that an
equilibrium always exists if each f; is a non-decreasing
continuous convex function, and the norms are all L,
norms. We also construct a biased game that satisfies
these conditions, except for having decreasing f; func-
tions, in which equilibria do not exist.

In §4 we make some progress on the computation of
equilibria in biased games, by (significantly) generaliz-
ing a basic algorithm for Nash equilibrium computation.

1.2 Related Work

A line of work that is somewhat related to ours includes
the classic paper on psychological games (Geanakoplos,
Pearce, and Stacchetti 1989), and influential papers that
extended these ideas (see, e.g., (Battigalli and Dufwen-
berg 2009)). Psychological games are extensions of nor-
mal form games, where each player’s utility depends on:
(1) the mixed strategies played by all players (as usual),
and (ii) his beliefs. A psychological game also includes,
for each player, a coherent response mapping, which
maps the beliefs held by others and strategies played
by others to the player’s belief. A psychological equi-
librium consists of a vector of beliefs, and a vector of
strategies, such that the beliefs are coherent, and given
these beliefs, the strategies form a Nash equilibrium.

Of course, in order to obtain technical results (such
as equilibrium existence), one must restrict the struc-
ture of these various components of the game. One may
wonder, though, whether our bias term can be encoded
in a player’s beliefs. This is not the case, because in
biased games the utility functions are defined in a way
that, when the beliefs are fixed, we obtain a normal form
game. That is, the beliefs only play a role to the extent
that they determine the payoffs in the induced normal
form game. Therefore, the psychological games frame-
work cannot model our novel notion of bias.

2  Our Model

Before we begin, it will be helpful to establish some
notation which we will use throughout the paper.

o Vm:[m]={1,2,...m}.

o P"={xeR"Y} x;=1,Yi: x; > 0} is the space of
allowed probability vectors in n dimensions.

e Given a vector x € R", we define (y,x_;) as
(X152, ooy Xim 1y Yy X 15 Xt 25 o5 Xin) -
We begin with the definition of the centerpiece of

study in game theory.

Definition 1. A normal form game with n players is
given by:

e An n-tuple of finite strategy spaces (51,52, ...,5,).

e An n-tuple of multilinear payoff functions

(Th,T,...,T;) where

T, PSI x PIS2) . x PIS 5 R

is linear in each of its n parameters for all i.

In such a game, player i plays a mixed strategy, which is
a probability distribution p; € P51 over his finite strat-
egy space S;, and receives an (expected) utility of 7;(p)
where p = (p1,p2; .-, Pn)-

Alternatively, one can think of the payoff functions
as assigning a payoff to every profile of pure strategies
in 8 X --- x §,. These functions induce payoffs for a
mixed strategy profile by calculating expected payoffs.
We will find it more convenient, though, to think of the
domain of the functions 7; as mixed strategy profiles.

Importantly, when using a normal form game to an-
alyze or predict actions of agents it is sensible to as-
sume they act rationally: they will maximize their util-
ity to the best of their ability. As a result, the equilib-
rium notion where each agent i best responds to other’s
strategies by choosing a distribution p; such that T;(p) >
max T;(p}, p—i) (i.e., such that no other mixed strategy
gives a higher payoff) is a natural focal point of study.
This is known as a Nash Equilibrium of a normal form
game, and is so named due to Nash’s proof of its exis-
tence in any such game (Nash 1950).

The main focus of our paper is on an extension of nor-
mal form games that we call biased games. Informally,
a biased game is a normal form game but where the utili-
ties of the players are determined by a multilinear payoff
function (similarly to the standard setting) summed to a
function of the distance of the player’s strategy to some
base strategy.

Definition 2. A biased game with n players includes an
n-tuple of finite strategy spaces (51,52, ...,Sy). For all i,
player i’s utility for a mixed strategy profile is given by
ui(p) :=Ti(p) = fi(llpi— pill) ,

where:

® p= (PlaP2» “'apn)~

e The 7; are multilinear payoff functions similar to the

classic setting.

e The f; are real-valued functions.

e The norms || - || are any valid norms (possibly different
for different players).!
1We do not attach an index to the norm to avoid confusion,

as we later use subscripts for L, norms and superscripts for
exponents.



e The p; describe base strategies in RIS — it is not
necessary, but intuitive, that they be in PISi,

For ease of exposition we define the bias term as
filllpi = Bill)-
Notice that despite the name biased game, we allow

that all f; = 0 — which reduces immediately to the def-
inition of a standard game.

Definition 3. An equilibrium of a biased game is a strat-
egy profile p such that u;(p) > u;(g;, p—;) for all i € [n]
and all ¢; € PISil.

Below we illustrate these definitions using a simple
example.

Example 1. Let us consider a security game with two
players, the defender and the attacker, and two targets.
The defender has one resource that can cover a single
target. He receives a utility of 1 if he catches the at-
tacker and O otherwise. Similarly, the attacker receives
a utility of 1 if he attacks an undefended target and O oth-
erwise. Now suppose the defender has a base strategy of
[3/4,1/4] (for pedagogical purposes). The utilities may
then be described by:

2
1 0 3/4
ul(PbPZ):PI[O 1 }pz—Z‘m—{ 1;4]
2
0 1
uz(Pl,pz)ZplT[ 10 }Pz

If we let

_ X _ y
pl_|:1x:|7 p2_|:1y:|a

then simple analysis shows that simultaneously maxi-
mizing u; w.r.t. x and up w.r.t. y, is equivalent to:

_ 2y+5
T

1 ifx<1/2
y={0 ifx>1/2

anything otherwise

We can then see that the only equilibrium is for x =15/8
and y =0.

3 Existence of Equilibria
In this section we examine the question of existence of
equilibria in biased games, and prove our main result:

Theorem 1. Every biased game in which f; is a non-
decreasing continuous convex function for all i € [n],
and the norms are all L, norms, has an equilibrium.

Proof. Consider the function A(p) = (q1,92,--,qn)
where p;,q; € PISi| are probability distributions over i’s
actions and g; = argmax ; v;(p;, p) with

vi(ply p) = wi(pls p—i) — 1P} — pil3-

We first show that this function is a well-defined” con-
tinuous function and thus, because it acts upon a convex
compact set, must have a fixed point by Brouwer’s the-
orem. We then proceed to show that any fixed point of
h must be an equilibrium.

Lemma 1. 4 is well-defined.

Proof. Let i be given. We will show that g; is well-
defined.

Since v;(p}, p) — as a function of p; — is a contin-
uous function on a compact space it must achieve its
maximum. It therefore suffices to show that there exists
a unique maximizer to v;. Suppose for the purposes of
contradiction there exist two such ¢;, denoted x and y.
Then let @ € (0,1) and z = ox + (1 — a)y. Now con-
sider the value v; would achieve at z:

vi(z,p) = ui(z,p—i) — HZ_PiH%
=Ti(z.p—i) — fi(lz— Bill) — == pill3-

Specifically, let us consider each term separately:

o Ti(z,p—i) = Ti(ax+ (1 - a)y,pi)
= aTi(x, p—i) + (1 = ) Ti(y, p—i).
o filllz—pil)
= fi(llax+ (1 —a)y — api — (1 - a)pill)
= f(lle(x—pi) + (1 =) (y = pi)ll)
< flally=pill+ 1 — o) lly—pill)
< of ([lx=pil) + (1 =) f (ly—pill) -
where we have used the triangle inequality and the
definition of convexity.

o llz—pill3 =llax+ (1 —a)y—pil3
= [lo(x—pi)+ (1= ) (y—pi)|13
< (allx=pilo+1—a)ly—pil2)’

< alle—pil3+ (1 —a)lly - pill3
where we have again used the triangle inequality and
the definition of convexity. Importantly, there are two
critical differences between this term and the previous
one.
First, in this case the first inequality (created due to
the use of the triangle inequality of || - ||2) achieves
equality if and only if x — p; = B(y — p;) for some
B > 0. This is a well-known fact of L, norms> and
intuitively the condition is equivalent to the two vec-
tors facing the same direction.
Second, in this case the second equality (created due
to the use of convexity) is over a strictly convex func-
tion. We thus have equality if and only if ||x — p;||» =
|ly = pill2. Thatis, the two vectors have the same mag-
nitude.

2We must prove that the argmax produces exactly one
probability distribution.

3This is due to the biconditional conditions for equality in
Minkowski’s inequality.



From these two observations, we see that we have
equality if and only if x — p; = y — p; or more explic-
itly, x =y. As we are assuming this is not the case,
we have strict inequality.

With this analysis of each term in separation, we get the
following:

vi(z,p) = Ti(z.p—i) — fi (lz— Bill) = == pill3
> aTi(x,p—i) + (1 — a)Ti(y, p—i)

—of ([lx—pill) — (A=) f(lly—pill)
—allx—pill3 = (1—a)lly—pill3

= awvi(x, p) + (1 —a)vi(y,p)

= ow;(x,p) + (1 — o)vi(x, p)

=vi(x,p).

Thus, z is strictly better than the assumed maximizers x
and y! This is a clear contradiction. O (Lem 1)

Lemma 2. % is continuous.

Proof. We first establish some notation which we will
use throughout the proof.

e P will be the set of values that p can be drawn from.
e || - || will be the L, norm for vectors in R” and for p €

P|p|l> = X%, Ip:|l>. The induced metrics of these
norms will allow us to formally discuss continuity.

e p € P will denote the arbitrary input point to & for
which we wish to show continuity.

Now it suffices to show that g; is continuous at p for
arbitrary i. Suppose € > 0 is given. We wish to
show that there exists a § such that ||[p—p'[| < § im-
plies ||g; — ¢}|| < € where g; = argmax, v;(x, p) and ¢, =
argmax, v;(x, p’).

Let X = {x| |[x— ¢i|| < €} and assume that X is non-
empty (if this is not the case, decrease the size of € until
this is the case). Furthermore, as X¢ is a closed sub-
set of a compact set, it is compact as well. Now note
that v;(y, p) is a continuous function of y and therefore
achieves its maximum on the compact set X¢, denoted
M. Importantly, Lemma 1 shows that M # M, where

M= mfxv,-(x,p) =vi(qi,p)-

We now further observe that v;(x,q) is a continuous
function of ¢ on a compact set and thus, by the Heine-
Cantor theorem is uniformly continuous. We therefore
have that there exists some & > 0 such that if || p— p/|| <
6 then
M — M,

2
for all x. Two important consequences of this are:

|vi(x7p) 7Vi(x7p/)‘ <

e vi(gi,p") =vi(qi,p) —vi(gi,p) +vi(gi, P')
>vi(gi,p) — vi(gi, p) —vi(gi, P)|
M—M, M+M,
2 2

>M—

e Forally € X°: vi(y,p') = vi(y,p) —vi(y, p) +vi(», P')
»,P)

<vi(y,p) + iy, p) —vi(y, p")|
M—-M, M+M
<M£+ 2 € _ —‘; €

Together, these imply that v;(g;, p’) > vi(x,p’) and so
argmax, v;(x,p’) € X. Thus, ||g; — ¢}|| <&. O (Lem 2)

We have shown that 4 is indeed well-defined and con-
tinuous. By Brouwer’s fixed point theorem, it must
therefore have a fixed point. Our next lemma demon-
strates that such fixed points are equilibria.

Lemma 3. Any fixed point of h represents an equilib-
rium in the biased game.

Proof. Suppose for the purposes of contradiction we
have a fixed point of 4 that is not an equilibrium. That
is, suppose h(p) = p and there exists some i such that
player i gains by the unilateral deviation from p; to p!.
Now let o € [0,1] and z = atp;+ (1 — ot)p;. Then we
have:
vi(z,p) = iz, p-i) = Iz = pill3
= Ti(z.p-i) — fi (2= pill) — llz— pill3-
Similarly to the proof of Lemma 1 we find that
Ti(z, p—i) = aTi(p;, p—i) + (1 — &) Ti(pi, i)
and
fillz=pill) < et (|pi = pil]) + (1= ) (lpi = pil)
Moreover,
Iz pill3 = lloep+ (1 — o) pi = pill3
= lla(pi =Pz
= o’[|p} — pill3.
We therefore find that:
Vi(Z7p)
= Ti(z,p—i) — fi(lz— pill) = llz— pill3
> OCTi(P;P—i) + (1 - a)Ti(piap—i)
—af (|lpi=pill) = (=) f (llpi = pill)
—a?||p = pill3
= aui(pl, p-i) + (1 — @)ui(pi, p-i) — & || pi = pill3.
Now let us consider this lower bound, call LB. For ot =0
we have LB = u;(p;, p—;) — which is tight (as z = p; in
this case). That is, we have equality. Moreover, we have

d
%LBM:O ul(pnp i) — ui(pi, p—i)-

Importantly, we assumed that it was advantageous for
player i to deviate from p; to p} and thus we have that
ui(pi,p—i) — ui(pi,p—i) > 0. Therefore, there exists a
small ¢ such that

vi(z,p) > ui(pi, p—i)
= ui(pi,p—i) — |pi — pill3
=vi(pi,p)-

This is a clear contradiction. 0 (Lem 3)



To conclude, we have argued that & has a fixed
point, and every fixed point is an equilibrium of the
biased game. This completes the proof of the theo-
rem. 0 (Thm 1)

Let us now examine the assumptions that Theorem 1
makes. The assumption that the f; are continuous and
convex, and that the norms are L, norms, can be seen as
mild technical assumptions. But the assumption that the
fi are non-decreasing has more conceptual bite.

What would a biased game with decreasing f; look
like? For example, recall our discussion of security
games, where a mixed strategy equates to a potentially
costly redeployment of resources. One of the possible
interpretations is to set the base strategy to be the uni-
form distribution (that is, a uniformly random assign-
ment of resources), and let the defender be biased away
from this strategy, that is, the f; functions are negative
and strictly decreasing.

Unfortunately, it turns out that Theorem 1 is simply
not true for decreasing f; functions: a biased game may
not admit equilibria even when all the other assumptions
hold, i.e., the f; are continuous convex functions and
the norms are L, norms. Below we construct such an
example.

Example 2. Suppose we have a two-player game with:

4 0 0 4
T1|:O 0:|7 T2|:0 0:|a

JE(CAI EAEE
([ 2 D=1l

where the B; describe the bias terms. Then the util-
ity of the (row) player 1 as a function of x and y is:
up(x,y) = 2(x* +2(y — 1)x+1). Similarly, the utility
of the (column) player 2 is: uy(x,y) = 2(y* — 2xy +2x).
Now note that as u; is an upward-facing parabola in x,
its maximum over the set x € [0, 1] is reached at one of
the endpoints (i.e. x € {0,1}). So let us consider these
two cases.

Suppose first that x = 0. Then u;(x,y) = uz(0,y) =
2y? and so u, is maximized for y € [0,1] when y = 1.
However, this implies that u; (x,y) = uj(x,1) = 2x*> +2
and thus u; is maximized when x = 1 — a contradiction.

Now suppose instead that x = 1. Then up(x,y) =
up(1,y) = 2(y* — 2y +2) and so u, is maximized for
y € [0,1] when y = 0. However, this implies that
u(x,y) = uy(x,0) = 2(x*> —2x+ 1) and thus u; is max-
imized when x = 0 — a contradiction.

4 Computation of Equilibria

In this section we investigate the computation of equi-
libria in biased games. From the outset our expectations
are quite low, as even in normal form games, computing

a Nash equilibrium is computationally hard (Daskalakis,
Goldberg, and Papadimitriou 2009; Conitzer and Sand-
holm 2008). However, there are various equilib-
rium computation algorithms that work well on aver-
age or in special cases, such as the famous Lemke-
Howson (1964) Algorithm.

A major challenge in our (much more general) setting
is that algorithms for computing Nash equilibria in nor-
mal form games typically rely on the property that if p
is a Nash equilibrium and s; is a pure strategy in the sup-
port of p;, then s; is itself a best response to p_;. This
is clearly not the case when it comes to biased games
and their equilibria. This can be seen in Example 1,
where pure strategies in the support of p; are never best
responses to ps.

To further illustrate the difficulties that one encoun-
ters in our setting, we note that in normal form games
with two players and rational payoffs, Nash equilibria
are defined by rational probabilities (Nash 1950), and
this is, of course, true if there is only one player. In
contrast, below we give an example of a biased game
with one player and rational parameters, but irrational
equilibrium.

Example 3. Consider the game where the sole player
has two strategies with payoffs 1 and 0, and the bias term
is||p—1[1/2,1/2]7 ||g A simple analysis then yields that
the sole equilibrium is to play the first strategy with
probability 5 + EYh

Due to these difficulties, we focus on certain sub-
sets of biased games (which, in particular, circumvent
Example 3). Specifically, we consider the two-player
(and later, more generally the n-player) setting with a
bias term of the form c| - ||; or ¢| - ||5 where ¢ > 0 is
some constant. Crucially, this still generalizes the clas-
sic setting. Our goal is to generalize the (extremely sim-
ple) support enumeration algorithm for computing Nash
equilibria (see, e.g., (von Stengel 2007, Algorithm 3.4)).

Let us first consider the L, case: player i has a bias
term of the form ¢;| - |3 where ¢; > 0. Recall that for
each player i, if the strategy of the other player is fixed,
then i simply wishes to maximize his utility u;(p;). That
is, for every player i, we wish to have that u;(p;) is max-
imized subject to the constraints that the entries of p; are
nonnegative and sum to one. The Karush-Kuhn-Tucker
(KKT) conditions on a player’s utility then give neces-
sary and sufficient conditions for maximization — suf-
ficiency is due to the concavity of the objective and the
affine nature of the constraints. Thus, equilibrium com-
putation is equivalent to solving the following system.
For all i and pure strategies j of i:

pi,j=>0

Mij =0

Mijpij =0

plT_f =1

STANDARD(i, j) —2 BIAS(i, j) + A + i j = 0.



where

d
STANDARD(i, j) = i —T(p1,p2),

iJ

and
BIAS(i, j) = ci(pi,j — Pij) -

Crucially, aside from the y; ;p; ; = O conditions, the
complete characterization is then a linear feasibility pro-
gram. We can thus consider the 2/511H152] possibilities
(recall that |S;| is the number of pure strategies of player
i) of which one of y; ; and p; ; are zero to find the equi-
libria. That is, for every player i and strategy j of i we
set one of ; ; and p; ; to zero and solve the resulting
linear program. This computes an equilibrium exactly
(albeit in exponential time).

Dealing with bias terms of the form ¢;|| - ||; where ¢; >
0is largely analogous. The important difference appears
due to the discontinuity of the derivative of the L; norm.
Via a simple case analysis which we omit here, we see
that for all i and pure strategies j of i:

pij >0
Wwi;j=>0
Ui jpij=0
pii=1.

and at least one of two discontinuity-caused require-
ments must be satisfied: either

STANDARD(i, j) — BIAS(i, ) + A+ i ; =
BIAS(i, j) >

or

STANDARD(i, j) + BIAS(i, j) + A+ Wi = 0
BIAS(i, j) < 0.

Therefore, to compute an equilibrium when all players
have c| - ||; bias terms we can consider the 4/511+152] Jin-
ear programs that arise. That is, for every player i who
has a c|| - ||; bias term, and strategy j of i, we set one
of y; ; and p; ; to zero (as before) and also determine
which of the two discontinuity-caused requirements we
will choose to include in our linear program — the play-
ers who have c|| - ||3 bias terms are dealt with as before.

The next statement summarizes the discussion above.

Theorem 2. Given a biased game with two players
and bias terms of the form ;|| p; — pil|3 or cil|pi — pill1,
an equilibrium can be computed by solving at most
4I15t+1%2] linear programs.

Although we have discussed the algorithm only for
the two-player setting, this approach can be extended to
multiple players at the cost of solving multilinear pro-
grams instead of linear ones. The discrepancy is caused
due to the STANDARD(i, j) term: the derivative in its
expression is multilinear for n > 3. This is a general-
ization of the sequential approach discussed by Widger
and Grosu (2009) for normal form games.

5 Discussion

In our model of biased games, a player’s bias term is
fi(llpi = pil|). Consider a more general definition of the

bias term,
fi< pi— <pz+ ) %m)”)
Jj€ln]

where the ¥; ; are real weights such that ¥ ; = 0 if play-
ers i and j do not have the same number of pure strate-
gies. The new term ;) %,;p; captures a different type
of bias, towards playing a mixed strategy that is similar
to, or different from, those played by other players. This
extension can help capture well-known social phenom-
ena, such as homophily (the propensity of individuals to
bond with others that are similar to themselves). Inter-
estingly, all our results (existence and computation) also
hold for the more general definition of biased games.
However, it seems poorly motivated in the context of the
settings discussed in Section 1, which is why we chose
to simplify the presentation by focusing on the more re-
stricted definition of biased games.

We feel that our existence result (Theorem 1) is
rather general, but the computation of equilibria in bi-
ased games poses difficult problems even for zero-sum
games. Still, we have been able to identify a rather in-
teresting property of two-player zero-sum biased games
with bias terms of the form c||p; — dp;||3 for some con-
stants ¢ > 0 and d. Based on quite a bit of linear algebra,
we can show that each of the 2/S11+1%2| Jinear programs
in the support enumeration machinery yields at most one
solution. This stands in contrast to more general biased
games that may have infinitely many equilibria. For ex-
ample, it can be easily seen that in the two-player game

with
|20
71—72—[0 2}

and the same bias term ||p; — [ 3]7||3 for both play-
ers, every pair of identical mlxed strategles is an equi-
librium.

The analytical uniqueness result mentioned above to-
gether with preliminary experimental results leads us to
the following conjecture.

Conjecture 1. In two-player zero-sum biased games
with bias terms of the form c||p; — dp; % where ¢ > 0
and d are constants, there exists exactly one equilib-
rium.

Of course, the conditions of Conjecture 1 are quite
restrictive. In order to tackle equilibrium computation
in biased games under assumptions that are as general
as those of Theorem 1, fundamentally new ideas are re-
quired.
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