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Register Allocation Problem

unbounded number of limited number of
program variables processor registers +
slow memory
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Register Allocation

Graph coloring
Linear scan
Optimal frameworks

“Move elimination” allocators

Assignment




Questions

 What is the penalty of decomposing register
allocation into individual components?

* What is the individual impact of each
component on code quality?

* How far from optimal are existing heuristics?

An optimal register allocation framework is used to empirically evaluate
the importance of the components of register allocation, the impact of

component integration, and the effectiveness of existing heuristics.
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Move Insertion

* Additional move instructions can simplify
assignment problem

e Can eliminate need to spill
* Only indirect impact on code quality
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Move Insertion Evaluation

full: move instructions may be inserted at any
program point

limited: move instructions may be inserted only
at the entry and exit of basic blocks

none: no register-to-register move instructions
are generated by the allocator



Coalescing

* Eliminate move instructions by assigning each
operand to the same location

* Can be performed

— lose ability to coa
— lose ability to coa
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tl

t2

11

tl
tl
t2

J\
‘l/

t3 «
— t3

— t3

dasS separate Pass
esce with physical registers
esce “uncoalescables”

Physical Reg “Uncoalescable”
t3 < r0 tl <
— t1
t2 < t1l
— t2
— t1




Coalescing Evaluation

integrated optimal: move coalescing is solved optimally
as part of the complete register allocation problem

integrated optimal ignoring uncoalescable: the register
allocator fully optimizes only those move instructions
identified as coalescable prior to register allocation

separate optimal: move coalescing is solved optimally as
a separate problem prior to allocation

separate aggressive: a greedy heuristic aggressively
eliminates coalescable moves prior to register allocation

none: no coalescing is performed



Spilling

* Can be performed as a separate pass

— spill variables to memory to meet register needs
at each program point

— if move and swap insertions are allowed,
assignment is now possible

reg H

MAXLIVE < #REG = 2
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Spilling Evaluation

integrated optimal: spill code generation is solved
optimally as part of the complete register allocation
problem

separate optimal: the spill code generation
problem (reducing max liveness to meet register
availability) is solved optimally as a standalone
problem

separate heuristic: the spill code generation
problem is solved as a standalone problem using a
heuristic algorithm



Assignment

assign physical register(s) to each variable at
every program point

may change assignment of variable by
Inserting move instruction

if spilling and coalescing are performed
separately, leaves assighment

optimizes for register preferences



Assignment Evaluation

integrated optimal: assignment is solved optimally
as part of the complete register allocation problem

graph heuristic: a graph-coloring based heuristic is
used to assign registers to the results of spill code
generation; move instructions may be inserted to
improve colorability

linear scan heuristic: a linear scan based heuristic is
used to assign register to the results of spill code
generation; move instructions may be inserted to
improve colorability



Methodology

Implement optimal register allocation framework in LLVM 2.4
Consider four target architectures and two code quality metrics

CISC

Fewer registers _More registers
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Limitations

Self-selecting bias in results

— limited to those functions where an optimal solution
can be found in reasonable timeframe

— however, qualitative results do not appear to change
as more time is allowed for optimal allocator

Implement swap using memory location

Performance metric necessarily inexact (weighted
sum of memory operations)

Evaluate performance only on desktop processors



Results: Code Size

 Evaluate subset of Mibench

* Consider all functions where optimal solutions
can be found in <10 minutes
— more than 70% coverage of functions

* Report code size increase relative to fully
optimal (1.0 best possible result)



Results: Code Performance

Evaluate subset of SPEC2006

Optimize only critical(>85% of running time)
functions

Intel Core 2 Quad (Q6600) @ 2.4GHz

Report geometric mean relative to fully
optimal model

Possible to do better than optimal due to
limitations of metric



Move Insertion: Code Size
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Code Performance

Move Insertion
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Coalescing: Code Performance
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Spilling: Code Size
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Spilling: Code Performance
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Assignment: Code Performance
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Heuristics: Code Size
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Heuristics: Code Performance
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Conclusions

* When targeting processor performance, new
register allocator designs should focus on solving
spill code optimization as the coalescing, move
insertion, and register assignment problems are
adequately solved using existing heuristics.

* When targeting code size, new register allocator
designs should focus on solving both the spill
code optimization and register assignment
problems, possibly in an integrated framework.



