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Abstract

High-throughput methods of protein interaction anal-
ysis have resulted in an abundance of data that re-
quires complex computational approaches to inter-
pret. We attempt to extract biological meaning from
the topology of a protein-protein interaction graph.
We describe an algorithm for finding interesting mo-
tifs within the graph and then describe our limited
success at deriving biological meaning from the re-
sults.

1 Introduction

High-throughput analyses, combined with the expo-
nential growth of genome sequencing, make possible
the study of protein-protein interactions at a genome-
wise scale. When the results of these techniques are
combined, we can define the protein networks which
operate in living cells. There are two basic types of
protein networks.

One is the protein-protein interaction network
which shows the direct physical interactions between
protein pairs. This network indicates the functional
and structural relationship among its nodes. Vari-
ous post-translational regulations such as phospho-
rylation and catalysis can be found in it. The high-
throughput two-hybrid experiments give systematic
information about the specific binding of yeast (Sac-
charomyces cerevisiae) proteins [3][2]. Also, a recent
combined experimental and computational approach
defines the protein interaction network for domain
recognition[7].

The other basic type of protein network is the ge-
netic regulatory network, which shows how one pro-
tein regulates the expression of another one. Most
of these regulations occur at the level of transcrip-
tion. By binding to the gene of the controlled protein,
the transcriptional factor can up-regulate or down-

regulate the transcription of the RNA. Genetic reg-
ulatory networks are usually obtained using gene ex-
pression microarray or DNA-chip technologies[4]. Be-
cause the number of proteins in a living cell is large,
the topologies of the protein networks are usually
very complicated. However, based on statistical anal-
ysis, researchers have found that protein networks
have some properties which make them specific and
stable. For example, these networks share the scale
free property with the Internet[5].

Protein networks are so large that it is a challenge
to extract biological functions or pathways from them
even if some global features have been found. The
natural thought is to break a network into small ele-
ments. “Network motifs”, defined by R. Milo et al in
their Science publication [6], are now well-accepted
as topological units of protein networks. Network
motifs describe the interaction patterns among a few
nodes, and these patterns appear a significant num-
ber of times all over the protein network. Also, these
patterns appear many more times in the real network
than in a randomized network, which suggests that
they are significant. By comparing the frequency a
motif occurrs in a real network to the expected fre-
quency in a randomized network, R. Milo et al found
some interesting motifs which are statistically signifi-
cant and indicative of biological functions. They also
found that other complex networks such as the eco-
logical food network and the Internet have their own
basic motifs. As the motifs found in distinct networks
are different, they can be used to universally classify
the networks.

Recently, Johannes Berg and Michael Lässig re-
ported a new algorithm of motif search in protein
networks[1]. Inspired by gene sequence alignment,
they perform a local graph alignment based on a score
function measuring the significance of the subgraphs
found. They applied this algorithm to the E. coli reg-
ulatory network. Our project partially implements
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their algorithm and applies it to the protein-protein
network from the yeast 2-hybrid experiments.

The 2-hybrid experiment is used to study the phys-
ical interaction of two proteins. Two-hybrid refers to
the fact that both the proteins studied are hybrids.
By hybridizing the pair of proteins to a DNA binding
domain (DBD) and activation domain (AD), the ex-
pression of the report gene indicates that the pair of
proteins interact with each other. The DBD and AD
are put together to initialize the transcription of the
report gene. Although false positives can be intro-
duced by DBD or AD activity of the subject proteins
themselves, and false negatives can be introduced by
low binding stability, the two-hybrid experiment is
the most applicable approach for protein interaction
studies. Ito et al. were the first to established the
genome-wide scale of two-hybrid screening and in-
troduced the term “interactome”[3][2]. They cloned
all the yeast ORFs (Open Reading Frames) as both
DNA-binding domain fusions and activation domain
fusions in MATa strains and screened by mating. In
addition to the positive reaction in the two-hybrid,
they did sequence-tagging of the pair of proteins to
obtain the Interaction Sequence Tags (ISTs). Only
the interactions with more than 3 IST hits are in-
cluded in the core data. Their full data contains 4549
interactions and the core data includes 841 interac-
tions among 797 proteins. Because of the increased
reliability of the data and the reduced computation
complexity, we only tested our program on the core
data of Ito et al.

2 Algorithm

In Berg and Lässig’s paper[1], they discuss probabilis-
tic motifs derived from families of mutually similar
but not necessarily identical patterns. A statistical
model for the occurrence of such motifs in a graph is
established, from which a scoring function for their
statistical significance is derived. Based on this scor-
ing function, a heuristic search algorithm for topolog-
ical motifs, called graph alignment, is derived.

A key contribution of Berg’s paper[1] is the de-
velopment of the idea of probabilistic motifs. Shen
and Milo[6] found motifs which occur more frequently
in real networks compared to a suitable null ensem-
ble, but the motifs were exactly identical in shape.
Berg generalized the notion of a motif to a stochastic
one. The motifs found do not need to be topolog-
ically identical. Probabilistic motifs arise as a con-
sensus of a family of sufficiently similar subgraphs in
a network. This variation tolerance meets the im-
portant characteristic of biological systems, which

is similar to sequence analysis where one searches
for local sequence similarities blurred by mutations
and insertions/deletions rather than for identical sub-
sequences. This was an important reason for us
choosing Berg’s algorithm for our project.

To distinguish interesting motifs from random sub-
graphs, Berg characterized the motifs of interest in
two ways: they have an enhanced number of inter-
nal links, e.g. associated with feedback, and they
appear in a significant number of subgraphs. Identi-
fying these local deviations from randomness in net-
works requires the coherent statistical mechanics of
local graph structure, which is established in Berg’s
paper. Based on the statistical mechanics a scoring
scheme is established.

Berg’s local graph alignment is conceptually sim-
ilar to sequence alignment. It is based on a scor-
ing function measuring the statistical significance for
families of mutually similar subgraphs. This scoring
involves quantifying the significance of the individual
subgraphs as well as their mutual similarity, and is
thus considerably more complicated than for families
of identical motifs.

As a computational problem, graph alignment
is more challenging than sequence alignment. Se-
quences can be aligned in polynomial time using dy-
namic programming algorithms. For graph align-
ment, a polynomial-time algorithm does not exist un-
less P equal NP (graph isomorphism is in NP). Thus,
an important issue for graph alignment is the con-
struction of efficient heuristic search algorithms. Berg
solved this problem by mapping graph alignment onto
a spin model familiar in statistical physics, which can
be solved by simulated annealing.

3 Terminology

We adopt the same terminology as Berg and Lässig
which, for convenience, we repeat here.

A graph is a set of nodes and links. Labeling the
nodes by an index r = 1, . . . , N the network is de-
scribed by the adjacency matrix C, which has entries
Crr′ = 1 if there is a directed link from node r to
node r′ and Crr′ = 0 otherwise. The special case
of a symmetric adjacency matrix can be used to de-
scribe undirected graphs. In a undirected graph, the
connectivity of a node, kr =

∑
r′ Crr′ , is defined as

the number of links. The total number of links in an
undirected graph is denoted by

K =

∑
r,r′ Crr′

2

A subgraph of G is given by a subset of k vertices
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{r1, ...rk} and the resulting restriction of the adja-
cency matrix. More precisely, we define the matrix
c(G,A) with the entries

ci,j = Crirj (i, j = 1, . . . , k)

specifying the internal links of the subgraph for a
given ordering A of the nodes. This matrix c is called
a motif, which is contained in the graph G. The most
important characteristic of motifs for what follows is
their number of internal links,

L(c) =
∑
i,j

cij

Graphs and graph alignments

A topological network or graph is a set of nodes and
links. Labeling the nodes by an index r = 1, . . . , N ,
the network is described by the adjacency matrix C,
which has entries Crr′ = 1 if there is a directed
link from node r to node r′ and Crr′ = 0 otherwise.
Graphs with a generic adjacency matrix are called di-

rected. The special case of a symmetric adjacency ma-
trix can be used to describe undirected graphs. The
in and out connectivities of a node, k+

r =
∑

r′ Cr′r

and k−
r =

∑

r′ Crr′ , are defined as the number of in-
and outgoing links, respectively. The total number
of links is denoted by K =

∑

r,r′ Crr′ . The networks
considered here are sparse, i.e., their average connec-
tivity K/N is of order 1.

A subgraph G is given by a subset of n vertices
{r1, . . . rn} and the resulting restriction of the adja-
cency matrix. More precisely, we define the matrix
c(G,A) with the entries cij = Crirj

(i, j = 1, . . . , n)
specifying the internal links of the subgraph for a
given order A of the nodes. This matrix c is called a
motif, which is contained in the subgraph G 1. The
most important characteristic of motifs for what fol-
lows is their number of internal links,

L(c) =
∑

i,j

cij . (1)

Fig. 1 shows two subgraphs that differ in the values
of L.

A graph alignment is defined by a set of several sub-
graphs Gα (α = 1, . . . , p) and a specific order of the
nodes {rα

1 , . . . , rα
n} in each subgraphs; this joint order

is again denoted by A. We assume here that the sub-
graphs are of the same size n. For mutually disjoint
subgraphs there are (n!)p different alignments of the
same set of subgraphs. An alignment associates each
node in a subgraph with exactly one node in each
of the other subgraphs. This can be visualized by n
‘strings’, each connecting the p nodes with the same
index i as shown in fig. 1 (c).

A given alignment A specifies a motif in each sub-
graph, we write cα ≡ c(Gα,A). The consensus motif

1The definition of a motif used here implies that two motifs

are counted separately if the matrices c and c
′ are different.

This assumes that nodes are distinguishable by their biochem-

ical identity and their functional role even if they are at sym-

metric positions, i.e., if c and c
′ differ only by the labeling of

the nodes. An alternative definition would count two matrices

c and c
′ related by a relabeling as defining an identical motif.

a)                                       b)

a)

b)

i=1

i=3

i=4

i=2

α=1

α=2

α=3

i=1

i=4

i=2

i=3

Figure 1: Motifs and alignment in topological net-

works. (a) A randomly chosen connected subgraph is
likely to be a tree, i.e., it has a the number of internal
links links equal to its number of nodes minus 1. (b) Pu-
tatively functional subgraphs are distinguished by inter-
nal loops, i.e., by a higher number of internal links. (c)
An alignment of three subgraphs with four nodes each.
Each nodes carries an index α = 1, 2, 3 labeling its sub-
graph and an index i = 1, 2, 3, 4 given by the order of
nodes within the subgraph. Nodes with the same index i

are joined by dashed lines, defining a one-to-one mapping
between any two subgraphs. Network links are shown as
solid lines (with their arrows suppressed for clarity). (d)
The consensus motif of this alignment. Each link occurs
with a likelihood c̄ij indicated by the gray scale.

of this alignment is given by the matrix

c =
1

p

p
∑

α=1

cα. (2)

This is a probabilistic motif, the entry cij denoting the
likelihood that a given link is present in the aligned
subgraphs. For any two aligned subgraphs Gα and
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Figure 1: Graph alignment and consensus motif

A graph alignment is defined by a set of several
subgraphs Gα(α = 1, . . . , p) and a specific order of
the nodes {rα1 , . . . , rαn} in each subgraphs; this joint
order is again denoted by A. We assume here that
the subgraphs are of the same size k. For mutually
disjoint subgraphs there are (k!)p different alignments
of the same set of subgraphs. An alignment associates
each node in a subgraph with exactly one node in each
of the other subgraphs. This can be visualized by k
“strings”, each connecting nodes with the same index
i as shown in Figure 1

A given alignment A specifies a motif in each sub-
graph cα ≡ c(Gα, A). The consensus motif of this
alignment is given by the matrix

c =
1
p

p∑
α=1

cα

The consensus motif is a probabilistic motif, the entry
cij denoting the likelihood that a given link is present

in the aligned subgraphs. For any two aligned sub-
graphs Gα and Gβ , we can define the pairwise mis-
match

M(cα, cβ) =
n∑

i,j=1

[cαij(1− c
β
ij) + (1− cαij)c

β
ij ]

The mismatch is 0 if and only if the matrices cα and
cβ are equal, and is positive otherwise. The average
mismatch over all pairs of aligned subgraphs, M ≡
M(c, c), is termed the fuzziness of the consensus motif
c.

4 Implementation

We have implemented the algorithm of [1] with some
simplifications. The main differences are that we use
different methods for removing “uninteresting” sub-
graphs from consideration, we don’t use their logZ
normalization factor in the score function, we do not
perform parametric optimization, and we use a simple
greedy algorithm for multiple alignment construction
instead of a second pass of simulated annealing.

We have converted the yeast two-hybrid protein
interaction data from Ito into a standard plain text
format used by our motif finding application. A sam-
ple of this intermediate form is shown in Figure 2.
Each protein is assigned a unique integer identifier,
is tagged with both its name and a short description,
and lists the unique identifiers of the proteins it inter-
acts with. Our application could work with any data
source once the data was converted into this format.

The application reads in the specified input file
and constructs an undirected graph represented us-
ing both an adjacency matrix and adjacency lists. All
subgraphs of a specified size k are then found using
a recursive enumeration algorithm.

k connected very connected
subgraphs subgraphs

3 3947 33
4 46766 199
5 586545 840
6 6709002 3552

Table 1: Number of subgraphs in the graph formed
from the Ito data set as the size of the subgraph, k,
increases.

The number of subgraphs of size k in a graph with n
nodes is O(

(
n
k

)
) which grows exponentially in k. Even

though we restrict ourselves to connected subgraphs,
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797

core data: 841 interactions with more than 3 IST hits

ECM11

Protein possibly involved in cell wall structure or biosynthesis

102

399

AMS1

Alpha-mannosidase, hydrolyzes terminal non-reducing alpha-D-mannose residues from alpha-D-mannosides

10

752

DUO1

Protein that interacts with Dam1p and causes cell death upon overproduction

100

84 38 86 416

<continued...>

Figure 2: A portion of the Ito yeast two-hybrid data in our intermediate representation.

empirically the number of subgraphs still increases
exponentially as shown in Table 1.

Because the number of subgraphs increases so
rapidly and the running time and memory consump-
tion of the algorithm is Ω(g2) where g is the number
of subgraphs, it is necessary to restrict the number
of subgraphs considered to just those that are con-
sidered to be interesting. We evaluated two methods
of reducing the number of subgraphs. Both methods
can by applied during subgraph enumeration so that
the application doesn’t run out of memory in the first
phase of the algorithm.

One way to limit ourselves to only interesting
graphs would be to only consider those subgraphs
where every node of the subgraph has more than one
link. We refer to these subgraphs as being “very con-
nected.” Very connected subgraph exclude “dangling
links” and are also used by [1] in gene regulation net-
works. It is not clear that there is a reasonable bio-
logical justification for imposing this limitation in a
protein-protein interaction graph.

Another way we limit the number of subgraphs is
by only considering those subgraphs that are unlikely
to occur in a random graph with the same connectivi-
ties as our input graph. The probability of a subgraph
G represented by the adjacency matrix c in this null
ensemble can be approximated by

P0(G) =
n∏

i,j=1

(1− wij)1−cijw
cij
ij

where wij = degreei ∗ degreej/K. Having computed

the probability of each subgraph, we can then con-
sider some threshold-ed number of subgraphs which
have a very low probability of appearing by chance
alone. Since we are not using the logZ normaliza-
tion factor in our scoring function, we expect this
technique to be particular effective at removing un-
interesting subgraphs.

A third method for reducing the number of sub-
graphs used by the algorithm would be to compute
on generic shapes of subgraphs. There are O(2

k(k−1)
2 )

graphs with k nodes. Empirically this is much less
than the O(

(
n
k

)
) subgraphs we find. This is be-

cause many of the subgraphs we find are isomorphic.
Instead of computing on the subgraphs themselves,
we could compute on a generic shape of a subgraph
that is weighted by the number of corresponding sub-
graphs in the actual data. This would require fairly
substantial changes to the algorithmic and graph pro-
cessing code, and due to time constraints we chose not
to pursue this method.

Once we have an appropriate set of subgraphs, we
then compute the best pairwise alignment for every
pair of subgraphs. For each pair of subgraphs, α and
β, we enumerate the n! possible alignments and score
each alignment using the formula

M(cα, cβ) =
n∑

i,j=1

[cαij(1− c
β
ij) + (1− cαij)c

β
ij ]

We define Mαβ to be the minimum score possible
between α and β.

The pairwise alignments are used to find a multiple
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alignment. Instead of finding a multiple alignment di-
rectly, we find a set of subgraphs which maximize a
score function and then construct a multiple align-
ment out of this set using a greedy algorithm. The
function we use to score set of subgraphs S is

S(S) = σ
∑
α∈S

Lα − µ

2|S|
∑
α,β∈S

Mαβ

The σ and µ parameters are specified by the user. Lα

is the number of internal links in subgraph α. Thus,
we reward sets of subgraphs containing many internal
links and penalize sets with many pairs of subgraphs
that have poor alignment scores. The σ and µ param-
eters can be used to balance the effects of these two
factors. A significant omission from this formula is
a normalization factor that adjusts for the likelihood
of subgraphs appearing in the null ensemble. Such
a factor (logZ) is very difficult to compute as it re-
quires that we construct the multiple alignment and
maximize a complicated function every time we score
a subset. Although incremental approximations can
be used to improve performance, we omit it for rea-
sons of time (both ours and the running time of the
application). It also should be pointed out that even
with the normalization factor, the maximization of
this score function would not necessarily correspond
exactly with the optimal multiple alignment since it
is built from the pairwise alignment scores.

We attempt to find a set that maximizes our score
function using simulated annealing. We start with a
random subset of all subgraphs and randomly pick a
subgraph to be excluded or included in this subset.
We compare the scores of the original subset and the
modified subset. If the score improves, we keep the
change. If the score does not improve we will only
keep the change with some diminishing probability.
This allows us to exit a local minimum. We repeat
this process for some fixed number of iterations and
hope that the result is a decent approximation of the
actual global maximum.

Once we’ve found a set of subgraphs that does a
decent job of maximizing our score function, we con-
struct a multiple alignment from this set using a sim-
ple greedy algorithm. We start by fixing the align-
ment of a single subgraph from the set. Then we
inductively pick a subgraph from the set and fix its
alignment to be the alignment that aligns best with
the most already-aligned subgraphs. Since the sub-
graphs we find tend to be very similar, this approach
works very well in practice.

Having fixed a multiple alignment from the set of
subgraphs that maximized our score function, it is
simple to build a consensus motif c. The consensus

motif is just a single subgraph which represents the
whole multiple alignment by averaging the effects of
the individual subgraphs of the alignment.

5 Results

We’ve applied our implementation of the algorithm
to the yeast two-hybrid core data and extracted con-
sensus motifs of sizes 3, 4, and 5. In Figure 3 we
show the effect of increasing µ. As this parameter
is increased, the fuzziness of the graph (the amount
of disagreement in the alignment) decreases and the
total number of members in the alignment decreases.
There is little biologically relevant information that
we could extract from this motif because it was so
common. The main cause of the frequency of this
motif is the existence of several very “popular” pro-
teins which bind with many other, usually unrelated,
proteins. For example, a common protein found at
node 3 in the multiple alignment was SRP1, which
binds with over 50 proteins. Although identifying
such “popular” proteins is useful, they are more eas-
ily identified by the simple heuristic of looking at the
highest degree nodes in the interaction graph.

In Figure 4 we compare the two different techniques
we used to limit the number of subgraphs we consid-
ered using a subgraph size of four. In Figure 4(a),
all nodes have a degree greater than one, making for
a potentially more interesting motif. However, we
find that all we’re doing is identifying two very “pop-
ular” proteins. Over 90% of the subgraphs in this
alignment have the proteins SRP1 and TEM1 at po-
sitions 3 and 4. Furthermore, it may be that lim-
iting ourselves to only very connected graph is too
restrictive. Only 199 of the 46766 possible subgraphs
met this criteria. In Figure 4(b), we examine the
result of limiting the subgraphs to only 1000 least
likely to occur in the null ensemble. The result is a
chain of interacting proteins. Interestingly, contained
within this motif are four chains which, when merged,
form the clatherin-associated protein complex AP-1
as shown in Figure 5. However, this is just four mem-
bers of a 486 alignment and it is not clear that there is
an interesting biological significance to the remaining
members of the alignment. Furthermore, it is worth
pointing out that the algorithm only succeeded in re-
ducing the initial 1000 subgraphs to 486 interesting
subgraphs, which is not a very big reduction.

In Figure 6 we show the motifs we found of size five,
limiting the number of subgraphs to the 2000 least
likely to occur. In analyzing the data, we found that
there were many sub-motifs. That is, many members
of the multiple alignment were identical except for a
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1

32

σ = 1, µ = 1

Alignment Size: 3371
Alignment Score: 6011

1

32

σ = 1, µ = 20

Alignment Size: 1904
Alignment Score: 560

Figure 3: Motifs of size three. The number of initial subgraphs was not restricted. As µ increases the
fuzziness of the motif decreases.

Number
matching

1 2 3 4 5 subgraphs
SNO1 SRP1 SNZ3 SNZ2 x 13
SNZ1 SRP1 SNZ3 SNZ2 x 13
SNO2 SRP1 SNZ3 SNZ2 x 23
SNO1 SRP1 SNZ3 SNZ1 x 24

Table 2: We can look for overlap within the mem-
bers of multiple alignment. In the case of the k = 5,
threshold-ed data, 8.7% of the members of the multi-
ple alignment are represented by subgraphs contain-
ing the four above patterns. The x is a different pro-
tein in each subgraph. Protein names in bold are B6
vitamins. The interconnected-ness we found between
them is probably a result of their similarities (that
is, one can replace another so they interact with the
same proteins).

few proteins. Inspired by the clatherin AP-1 complex
found in the motif of size four, we found those mem-
bers of the motif which had the most overlap (differed
by just one protein). The top results are shown in Ta-
ble 2. This technique was successful at discovering a
set of vitamin B6 proteins.

6 Conclusion

Our hope in performing these experiments was that
we would be able to extract biological meaning from
motifs we found in protein-protein interaction net-
works. Our technique was not very successful at iden-
tifying interaction subgraphs from which we could
find biological meaning. One reason may be that we
omitted the logZ normalization factor resulting in a
faster, but possibly less interesting, score function.
Another possibility may be that, due to the nature of
the interactions, the shape of a protein-protein inter-
action subgraph may communicate little information
that is biologically interesting. However, it is possi-
ble that when combined with other analyses, such as
finding the maximal overlap of the members of the
motif, our technique could yield interesting results.

Our source code is available from
http://www.cs.cmu.edu/ dkoes/research/motifs.
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1 2

3 4

σ = 1, µ = 10

Alignment Size: 164
Alignment Score: 452

(a)

σ = 1, µ = 10

1 2

3 4

Alignment Size: 486
Alignment Score: 1410

(b)

Figure 4: Motifs of size four. Two different techniques were used to limit the initial number of subgraphs. For
Figure 4(a), only those subgraphs with all nodes having degree greater than 1 (very connected subgraphs)
were used. For Figure 4(b), just the 1000 subgraphs with the lowest probability relative to the null ensemble.
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APM2 APL2 APL4 APS1

APM1

YFR043C

AP-1

Figure 5: The clatherin-associated protein complex AP-1. The protein YFR043C has an unknown function.
The lines represent members of the chain-like motif of size four that, when merged, form AP1.
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σ = 1, µ = 10

Alignment Size: 840
Alignment Score: 1898

1

2

4 3

5

σ = 1, µ = 20

Alignment Size: 580
Alignment Score: 1143

1

2

4 3

5

Figure 6: Motif of size five found using two different values of µ. The number of initial subgraphs was
restricted to just the 2000 subgraphs with the lowest probability relative to the null ensemble.

10


